JP7243223B2 - Method for manufacturing high-purity chemical container - Google Patents

Method for manufacturing high-purity chemical container Download PDF

Info

Publication number
JP7243223B2
JP7243223B2 JP2019012052A JP2019012052A JP7243223B2 JP 7243223 B2 JP7243223 B2 JP 7243223B2 JP 2019012052 A JP2019012052 A JP 2019012052A JP 2019012052 A JP2019012052 A JP 2019012052A JP 7243223 B2 JP7243223 B2 JP 7243223B2
Authority
JP
Japan
Prior art keywords
molecular weight
screw
polyethylene resin
less
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019012052A
Other languages
Japanese (ja)
Other versions
JP2020116912A (en
Inventor
広崇 石原
弘昌 西川
義幸 茂呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2019012052A priority Critical patent/JP7243223B2/en
Priority to TW109101171A priority patent/TWI829850B/en
Priority to CN202010074044.4A priority patent/CN111483130B/en
Publication of JP2020116912A publication Critical patent/JP2020116912A/en
Application granted granted Critical
Publication of JP7243223B2 publication Critical patent/JP7243223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/56Screws having grooves or cavities other than the thread or the channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C49/786Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

本発明は、半導体装置産業分野、精密工業部品分野及び医薬品等に使用される高純度薬品用容器の製造に好適で、高純度薬品を充填した場合に、薬品への微粒子の発生および金属溶出の極めて少なく、クリーン性に優れた高純度薬品容器の製造方法に関するものである。 INDUSTRIAL APPLICABILITY The present invention is suitable for the manufacture of high-purity chemical containers used in the fields of the semiconductor device industry, precision industrial parts, and pharmaceuticals. The present invention relates to a method for manufacturing a high-purity chemical container which is extremely small and excellent in cleanness.

近年、電子工業分野の著しい発達に伴って、高純度薬品の需要が高まっている。高純度薬品は、例えば、大規模化、集積化されたLSI等の電子回路の製造に不可欠の薬品として使用されている。具体的には、ウエハー洗浄・エッチング用、配線・絶縁膜エッチング用、治具洗浄用、現像液、レジスト希釈液、レジスト剥離液、乾燥用等の用途として、硫酸、塩酸、硝酸、フッ化水素酸、フッ化アンモニウム、過酸化水素水、イソプロピルアルコール、キシレン、TMAH、メタノール、酢酸、リン酸、アンモニア水、PGMEA、DMSO、NMP、ECA、乳酸エチル等が用いられている。従来、これらの高純度薬品用容器材料として、耐薬品性、耐衝撃性、価格等の点から、ポリエチレン樹脂が使用されている。しかしながら、従来のポリエチレン樹脂製の容器では、薬品による該樹脂の溶出物や劣化物等の汚染物質による内容物への汚染問題があり、高純度薬品容器用として限界があった。すなわち、超LSIの微細化に伴い、従来では金属不純物濃度が1PPBであ
ったものが、現在では1PPT以下が要求されている。また、従来、0.5μm以上の微粒子が問題であったものが、0.2μm以上の微粒子が100個/ml以下と厳しい品質が要求されるようになり、さらに、最近では0.1μmレベルの微粒子が問題となり0.1μm以上の微粒子が100個/ml以下とより厳しい品質が要求されている。そのため、金属不純物濃度と微粒子レベルを満足するクリーンに優れた高純度薬品容器の出現が待たれている。
In recent years, the demand for high-purity chemicals has increased along with the remarkable development of the electronics industry. High-purity chemicals are used, for example, as essential chemicals for the manufacture of electronic circuits such as large-scale integrated LSIs. Specifically, for wafer cleaning/etching, wiring/insulating film etching, jig cleaning, developer, resist diluent, resist remover, drying, etc., sulfuric acid, hydrochloric acid, nitric acid, hydrogen fluoride Acid, ammonium fluoride, hydrogen peroxide solution, isopropyl alcohol, xylene, TMAH, methanol, acetic acid, phosphoric acid, aqueous ammonia, PGMEA, DMSO, NMP, ECA, ethyl lactate, etc. are used. Conventionally, polyethylene resins have been used as container materials for these high-purity chemicals in terms of chemical resistance, impact resistance, price, and the like. However, conventional containers made of polyethylene resin have the problem of contamination of the contents with contaminants such as eluted substances and degraded substances of the resin caused by chemicals, and there is a limit as a container for high-purity chemicals. That is, with the miniaturization of VLSI, the metal impurity concentration, which was conventionally 1PPB, is now required to be 1PPT or less. In addition, although fine particles of 0.5 μm or more have been a problem in the past, a strict quality requirement of 100 or less particles/ml of 0.2 μm or more has come to be demanded. Fine particles have become a problem, and stricter quality requirements are being demanded, with fine particles of 0.1 μm or more being 100/ml or less. Therefore, the appearance of a high-purity chemical container that satisfies the metal impurity concentration and fine particle level and is excellent in cleanliness is awaited.

ここで、ポリエチレン樹脂からなり、温度173~190℃にて成形した不純微粒子の溶出が極めて少ない容器の提案があるが、クリーン性の指標となる微粒子のレベルが0.2μm以上と十分でない(例えば、特許文献1参照。)。 Here, there is a proposal for a container made of polyethylene resin and molded at a temperature of 173 to 190 ° C. with very little elution of impure fine particles. , see Patent Document 1).

また、クリーンエアーを用いたクリーンな中空容器の成形方法の提案があるが、容器から溶出する微粒子の評価に関する記述がない(例えば、特許文献2参照。)。 Also, there is a proposal for a clean hollow container molding method using clean air, but there is no description regarding the evaluation of fine particles eluted from the container (see, for example, Patent Document 2).

特開平7-257540号公報JP-A-7-257540 特開平8-192455号公報JP-A-8-192455

本発明はブロー成形により、ポリエチレン樹脂製容器を製造する方法において、ブロー成形機にて特定の形状を有するスクリューを用いて容器を成形し、高純度薬品容器として使用した場合に、薬品による該樹脂の溶出物や劣化物等の汚染物質の溶出を極力抑え、樹脂の変色が少なく長期間の使用が可能な高純度薬品容器の製造方法を提供するものである。 The present invention relates to a method for producing a polyethylene resin container by blow molding, in which the container is molded using a screw having a specific shape with a blow molding machine, and when used as a high-purity chemical container, the resin is exposed to chemicals. To provide a method for producing a high-purity chemical container that can be used for a long period of time while minimizing the elution of contaminants such as eluted substances and degraded substances from resin, and less discoloration of the resin.

本発明者は、特定の性状を有するポリエチレン樹脂からなる容器を製造するにあたって、ブロー成形機のスクリュー形状について鋭意検討した結果、クリーン性に優れた容器が得られることが分かり、本発明に到達した。 As a result of intensive studies on the screw shape of a blow molding machine in producing a container made of polyethylene resin having specific properties, the present inventor found that a container with excellent cleanliness can be obtained, and arrived at the present invention. .

即ち、本発明の各態様は以下に示す[1]~[5]である。
[1]ポリエチレン樹脂をブロー成形により容器を製造する方法において、ブロー成形機のスクリュー形状が以下の(1)~(3)の条件を満たしており、該スクリューによって押し出された溶融樹脂(パリソン)温度が170℃~210℃の範囲であることを特徴とする高純度薬品容器の製造方法。
(1)該スクリュー有効長Lと該スクリュー径Dとの比(L/D比)が24~32の範囲
(2)該供給部における該スクリューの溝深さが0.1D~0.3Dの範囲
(3)該供給部の溝深さと該圧縮部の溝深さとの比が0.80~1.00の範囲
[2]ブロー成形により、得られた高純度薬品容器から溶出する0.1μm以上の微粒子数が10個/mL以下である上記[1]に記載の高純度薬品容器の製造方法。
[3]ポリエチレン樹脂として、密度が940~980kg/mの低分子量成分と、密度が920~950kg/mで該低分子量より密度の低い高分子量成分の2成分を含み、該2成分の重量比が、低分子量成分:高分子量成分=20:80~80:20であり、以下の(1)~(5)の性状を有するものを用いた上記[1]又は[2]に記載の高純度薬品容器の製造方法。
(1)密度(JIS K6922-1:1997)が940~970kg/m
(2)190℃、21.6kg荷重のメルトフローレート(JIS K6922-1:1997)が2.0~15g/10分
(3)ゲルパーミエーション・クロマトグラフィー(GPC)より求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が8~15
(4)ゲルパーミエーション・クロマトグラフィー(GPC)用いて得られたる分子量分布曲線において、分子量1000以下の成分が0.50重量%以下
(5)含有塩素量がポリエチレン樹脂に対して8PPM以下
[4]ポリエチレン樹脂に含有されている灰分量が該樹脂に対して30PPM以下である上記[1]~[3]のいずれかに記載の高純度薬品容器の製造方法。
[5]ポリエチレン樹脂が添加剤を含まないことを特徴とする上記[1]~[4]のいずれかに記載の高純度薬品容器の製造方法。
That is, each aspect of the present invention is [1] to [5] shown below.
[1] In the method of manufacturing a container by blow molding polyethylene resin, the screw shape of the blow molding machine satisfies the following conditions (1) to (3), and the molten resin (parison) extruded by the screw A method for producing a high-purity chemical container, characterized in that the temperature is in the range of 170°C to 210°C.
(1) The ratio of the screw effective length L to the screw diameter D (L/D ratio) is in the range of 24 to 32. (2) The groove depth of the screw in the feed section is in the range of 0.1D to 0.3D. Range (3) Range where the ratio of the groove depth of the supply portion to the groove depth of the compression portion is 0.80 to 1.00 [2] 0.1 μm eluted from the high-purity chemical container obtained by blow molding The method for producing a high-purity chemical container according to [1] above, wherein the number of fine particles is 10/mL or less.
[3] The polyethylene resin contains two components: a low molecular weight component with a density of 940 to 980 kg/m 3 and a high molecular weight component with a density of 920 to 950 kg/m 3 and a density lower than the low molecular weight component, and The weight ratio of the low molecular weight component: high molecular weight component = 20:80 to 80:20, and the following [1] or [2] using the one having the properties of (1) to (5) A method for manufacturing a high-purity chemical container.
(1) Density (JIS K6922-1: 1997) is 940 to 970 kg/m 3
(2) Melt flow rate (JIS K6922-1: 1997) at 190° C. and 21.6 kg load is 2.0 to 15 g/10 minutes (3) Weight average molecular weight determined by gel permeation chromatography (GPC) ( Mw) to number average molecular weight (Mn) ratio (Mw / Mn) is 8 to 15
(4) In the molecular weight distribution curve obtained using gel permeation chromatography (GPC), the content of components having a molecular weight of 1000 or less is 0.50% by weight or less (5) The amount of chlorine contained is 8 PPM or less relative to the polyethylene resin [4 ] The method for producing a high-purity chemical container according to any one of the above [1] to [3], wherein the polyethylene resin contains ash in an amount of 30 PPM or less relative to the resin.
[5] The method for producing a high-purity chemical container according to any one of [1] to [4] above, wherein the polyethylene resin does not contain additives.

本発明の該スクリュー有効長Lと該スクリュー径Dの比(L/D比)は、24~32であり、より好ましくは25~28である。L/Dが24以上であれば、該ポリエチレン樹脂を充分に溶融混練できる。また、L/Dが32以下であればスクリューを駆動させるモーター容量が経済的な問題とならない程度の負荷となる。 The ratio of the screw effective length L to the screw diameter D (L/D ratio) of the present invention is 24-32, more preferably 25-28. If L/D is 24 or more, the polyethylene resin can be sufficiently melt-kneaded. Also, if L/D is 32 or less, the capacity of the motor for driving the screw becomes a load that does not pose an economic problem.

本発明の供給部おけるスクリューの溝深さは、0.1D~0.3Dであり、より好ましくは0.1D~0.15Dである。供給部の溝深さが0.1D未満である場合、押出量が少なくなり過ぎるので、ダイレクトブロー成形等では、金型形状に見合った所望のパリソンの長さになるまでのパリソン降下時間が長くなり、成形サイクルが長くなってしまう。反対に供給部の溝深さが0.3Dよりも大きくなると、押出量は増加するので、モーター負荷が大きくなり、より大きなモーター容量をもったスクリュー押出機モーターが必要となることやスクリューが破損する可能性がある。 The groove depth of the screw in the feeding section of the present invention is 0.1D to 0.3D, more preferably 0.1D to 0.15D. If the groove depth of the feed section is less than 0.1D, the amount of extrusion is too small, so in direct blow molding, etc., the parison descending time is long until the parison reaches the desired length that matches the mold shape. This results in a longer molding cycle. On the other hand, if the groove depth of the feeding section is larger than 0.3D, the output will increase, so the motor load will increase, and a screw extruder motor with a larger motor capacity will be required or the screw will break. there's a possibility that.

また、本発明の供給部の溝深さと該圧縮部の溝深さとの比は0.80~1.00であり、より好ましくは0.80~0.90である。溝深さの比が0.80未満では、押出量の増加により、モーター負荷が大きくなり、スクリューが破損する可能性がある。溝深さの比が1.00よりも大きい場合、供給部と圧縮部の樹脂の加熱不足により可塑化不良を起こし、押出量が少なくなり、ダイレクトブロー成形等では、金型形状に見合った所望のパリソンの長さになるまでのパリソン降下時間が長くなり、成形サイクルが長くなってしまう。 Also, the ratio of the groove depth of the supply portion to the groove depth of the compression portion of the present invention is 0.80 to 1.00, more preferably 0.80 to 0.90. If the groove depth ratio is less than 0.80, the motor load increases due to an increase in extrusion rate, and the screw may be damaged. If the ratio of the groove depths is greater than 1.00, insufficient heating of the resin in the supply section and the compression section causes poor plasticization, resulting in a reduced extrusion rate. The parison descending time to reach the length of the parison becomes longer, resulting in a longer molding cycle.

本発明のスクリュー形状は、スクリュー有効長に対する供給部の長さの比が0.35~0.50であるのが好ましい。供給部の長さの比が0.35~0.50の範囲であれば、該ポリエチレンに充分な予熱を与えることができる。 The screw shape of the present invention preferably has a ratio of the length of the feeding portion to the effective length of the screw of 0.35 to 0.50. Sufficient preheating of the polyethylene can be provided when the length ratio of the feed section is in the range of 0.35 to 0.50.

本発明のスクリュー形状は、スクリュー有効長に対する圧縮部の長さの比が0.30~0.40であるのが好ましい。圧縮部の長さの比が0.30~0.40であれば、該ポリエチレンを充分に溶融混練できる。 The screw shape of the present invention preferably has a ratio of the length of the compressed portion to the effective length of the screw of 0.30 to 0.40. When the length ratio of the compressed portion is 0.30 to 0.40, the polyethylene can be sufficiently melt-kneaded.

本発明のスクリュー形状は、スクリュー有効長に対する計量部の長さの比が0.20~0.30であるのが好ましい。計量部の長さの比が0.20~0.30の範囲であれば、押出量の変動(サージング現象)が少ない状態で該ポリエチレンを押し出すことができる。 The screw shape of the present invention preferably has a ratio of the length of the metering portion to the effective length of the screw of 0.20 to 0.30. When the ratio of the lengths of the metering portions is in the range of 0.20 to 0.30, the polyethylene can be extruded with little variation in extrusion rate (surging phenomenon).

また、スクリュー形状には、より剪断効果を上げるために計量部にマードック等のねじ形状とは異なる凹凸をもった箇所を設ける場合もある。 Further, in the screw shape, there is a case where the metering portion is provided with unevenness different from the screw shape such as Murdoch in order to increase the shearing effect.

本発明のスクリューによって押し出された溶融樹脂(パリソン)温度は170℃~210℃の範囲である。溶融樹脂(パリソン)温度が170℃よりも低い場合、該ポリエチレン樹脂を充分に溶融混練できない。溶融樹脂(パリソン)温度が210℃よりも高い場合、溶融樹脂が劣化し、成形容器のクリーン性に影響を及ぼす。溶融樹脂(パリソン)温度は、スクリューにおけるシリンダーの温度により制御することができ、160℃~200℃の範囲にすることにより、上記範囲内に制御することができる。 The molten resin (parison) temperature extruded by the screw of the present invention ranges from 170°C to 210°C. When the molten resin (parison) temperature is lower than 170°C, the polyethylene resin cannot be sufficiently melt-kneaded. If the molten resin (parison) temperature is higher than 210° C., the molten resin deteriorates, affecting the cleanliness of the molded container. The molten resin (parison) temperature can be controlled by the temperature of the cylinder in the screw, and can be controlled within the above range by setting it in the range of 160°C to 200°C.

本発明により製造された高純度薬品容器から溶出する0.1μm以上の微粒子数は10個/mL以下であることが好ましい。0.1μm以上の微粒子数が10個/mL以下であれば、LSIの微細化に対応できる。 It is preferable that the number of fine particles of 0.1 μm or more eluted from the high-purity chemical container manufactured according to the present invention is 10/mL or less. If the number of fine particles of 0.1 μm or more is 10/mL or less, it is possible to cope with miniaturization of LSI.

本発明に用いられるポリエチレン樹脂は、密度が0.94~0.98g/cmの低分子量成分と、密度が0.92~0.95g/cmで該低分子量より密度の低い高分子量成分の2成分とからなり、該2成分の重量比が、低分子量成分:高分子量成分=20:80~80:20であり、以下の(1)~(5)の性状を有するものを用いることが好ましい。
(1)密度(JIS K6922-1)が0.94~0.97g/cm
(2)190℃、21.6kg荷重のメルトフローレート(JIS K6922-1:1997)が2.0~15g/10分
(3)ゲルパーミエーション・クロマトグラフィー(GPC)より求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が8~15
(4)ゲルパーミエーション・クロマトグラフィー(GPC)用いて得られたる分子量分布曲線において、分子量1000以下の成分が0.50重量%以下
(5)含有塩素量がポリエチレン樹脂に対して8PPM以下
さらに、該ポリエチレン樹脂に含有されている灰分量が樹脂に対して30PPM以下であるポリエチレン樹脂が好ましい。また、ポリエチレン樹脂は、添加物を含まないことが好ましい。
The polyethylene resin used in the present invention comprises a low molecular weight component with a density of 0.94 to 0.98 g/cm 3 and a high molecular weight component with a density of 0.92 to 0.95 g/cm 3 and a lower density than the low molecular weight component. The weight ratio of the two components is low molecular weight component: high molecular weight component = 20:80 to 80:20, and the following properties (1) to (5) are used. is preferred.
(1) Density (JIS K6922-1) is 0.94 to 0.97 g/cm 3
(2) Melt flow rate (JIS K6922-1: 1997) at 190° C. and 21.6 kg load is 2.0 to 15 g/10 minutes (3) Weight average molecular weight determined by gel permeation chromatography (GPC) ( Mw) to number average molecular weight (Mn) ratio (Mw / Mn) is 8 to 15
(4) In the molecular weight distribution curve obtained using gel permeation chromatography (GPC), the content of components having a molecular weight of 1000 or less is 0.50% by weight or less (5) The amount of chlorine contained is 8 PPM or less relative to the polyethylene resin Further, A polyethylene resin having an ash content of 30 PPM or less relative to the resin is preferred. Moreover, it is preferable that the polyethylene resin does not contain additives.

本発明に用いられるポリエチレン樹脂は、チーグラー系触媒又はメタロセン系触媒等の高活性触媒により製造できる。例えばチタン、ジルコニウム等の遷移金属化合物、マグネシウムの化合物、及び有機アルミニウム化合物から成る高活性チーグラー系触媒を重合用触媒として用い、エチレンもしくは、エチレンと炭素数3~20のα-オレフィンを所望の密度となる割合にして共重合することにより、製造される。 The polyethylene resin used in the present invention can be produced using a highly active catalyst such as a Ziegler catalyst or a metallocene catalyst. For example, using a highly active Ziegler catalyst composed of a transition metal compound such as titanium and zirconium, a magnesium compound, and an organoaluminum compound as a polymerization catalyst, ethylene or ethylene and an α-olefin having 3 to 20 carbon atoms is mixed to a desired density. It is produced by copolymerizing in a ratio of

その際の触媒は、特許第3319051号に記載の触媒を挙げることができる。 The catalyst in that case can include the catalyst described in Japanese Patent No. 3,319,051.

炭素数3~20のα-オレフィンとしては、プロピレン、1-ブテン、4-メチル-1-ペンテン、3-メチル-1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセンなどを挙げることができる。 α-olefins having 3 to 20 carbon atoms include propylene, 1-butene, 4-methyl-1-pentene, 3-methyl-1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene and the like. be able to.

該ポリエチレン樹脂の製造における重合方法は、薬品に溶出する金属不純物濃度を低く抑え、また、微粒子の発生の原因となる低分子重合体の樹脂への取り込みを制限するため、炭素数が6以上かつ10以下の重合媒体、例えば、ノルマルヘキサン、ノルマルヘプタン等を用いるスラリー重合であり、密度が0.94~0.98g/cmの低分子量成分と、密度が0.92~0.95g/cmで該低分子量より密度の低い高分子量成分の2成分を含み、該2成分の重量比が、低分子量成分:高分子量成分=20:80~80:20である。低分子量成分および高分子量成分の2成分は、例えば二段重合法で製造される。 The polymerization method in the production of the polyethylene resin is to keep the concentration of metal impurities eluted in chemicals low and to limit the incorporation of low-molecular-weight polymers that cause the generation of fine particles into the resin. 10 or less polymerization medium, for example, normal hexane, normal heptane, etc., a low molecular weight component with a density of 0.94 to 0.98 g/cm 3 and a low molecular weight component with a density of 0.92 to 0.95 g/cm 3 contains two components, a high molecular weight component having a lower density than the low molecular weight component, and the weight ratio of the two components is low molecular weight component:high molecular weight component=20:80 to 80:20. Two components, a low molecular weight component and a high molecular weight component, are produced, for example, by a two-stage polymerization method.

また、該ポリエチレン樹脂は以下に示すように密度、メルトフローレート、分子量分布(Mw/Mn)、溶融温度、分子量1000以下の成分、25℃におけるキシレン抽出分および含有塩素量を特定するものである。 In addition, the polyethylene resin is specified in terms of density, melt flow rate, molecular weight distribution (Mw/Mn), melting temperature, components with a molecular weight of 1000 or less, xylene extractables at 25°C, and chlorine content, as shown below. .

即ち、該ポリエチレン樹脂の密度(JIS K6922-1:1997)は940~970kg/mであり、好ましくは950~960kg/mである。密度が940~970kg/mの範囲であれば、微粒子発生による容器のクリーン性および強度に問題なく容器が成形できる。 That is, the density of the polyethylene resin (JIS K6922-1:1997) is 940-970 kg/m 3 , preferably 950-960 kg/m 3 . If the density is in the range of 940 to 970 kg/m 3 , the container can be formed without any problem of cleanliness and strength due to generation of fine particles.

該ポリエチレン樹脂の190℃、21.6kg荷重のメルトフローレート(JIS K6922-1:1997)は2.0~15g/10分であり、好ましくは5.0~10g/10分である。メルトフローレートが2.0~15g/10分の範囲であれば、容器の表面肌の悪化を抑制することができる。 The melt flow rate (JIS K6922-1:1997) of the polyethylene resin at 190° C. and 21.6 kg load is 2.0 to 15 g/10 minutes, preferably 5.0 to 10 g/10 minutes. If the melt flow rate is in the range of 2.0 to 15 g/10 minutes, deterioration of the surface texture of the container can be suppressed.

該ポリエチレン樹脂のゲルパーミエーション・クロマトグラフィー(GPC)より求められる重量平均分子量(Mw)と数平均分子量(Mn)の比Mw/Mnは8~15である。Mw/Mnが8~15の範囲であれば、容器の表面肌の悪化を抑制し、微粒子発生による容器のクリーン性および落下強度に問題なく容器が成形できる。 The ratio Mw/Mn of the weight average molecular weight (Mw) to the number average molecular weight (Mn) determined by gel permeation chromatography (GPC) of the polyethylene resin is 8-15. When the Mw/Mn is in the range of 8 to 15, deterioration of the surface texture of the container can be suppressed, and the container can be molded without problems in cleanliness and drop strength due to generation of fine particles.

ゲルパーミエーション・クロマトグラフィー(GPC)用いて得られたる分子量分布曲線において、分子量1000以下の成分が0.50重量%以下であることが好ましい。より好ましくは0.30重量%以下である。分子量1000以下の成分が0.50重量%以下であれば、微粒子発生による容器のクリーン性に問題なく容器が成形できる。 In a molecular weight distribution curve obtained using gel permeation chromatography (GPC), it is preferable that the content of components having a molecular weight of 1000 or less is 0.50% by weight or less. More preferably, it is 0.30% by weight or less. If the content of the component having a molecular weight of 1000 or less is 0.50% by weight or less, the container can be molded without any problem of cleanliness due to generation of fine particles.

該ポリエチレン樹脂の、蛍光X線装置で測定される含有塩素量は、全ポリエチレン樹脂に対して8PPM以下であることが好ましい。含有塩素量が全ポリエチレン樹脂に対して8PPM以下であれば、容器の変色を抑制することができる。全ポリエチレン樹脂に対して8PPMを超えると、塩素が容器の変色の原因となり、外観不良となる。また、成形機及び金型の金属を腐食させるため、塩素を補足する中和剤が必要となり、止むを得ず使用した中和剤が金属不純物の原因となる。 The chlorine content of the polyethylene resin measured with a fluorescent X-ray device is preferably 8 PPM or less with respect to the entire polyethylene resin. If the amount of chlorine contained is 8 PPM or less with respect to all polyethylene resins, discoloration of the container can be suppressed. If it exceeds 8 PPM for all polyethylene resins, chlorine causes discoloration of the container, resulting in poor appearance. In addition, since it corrodes the metals of the molding machine and the mold, a neutralizing agent for supplementing chlorine is required, and the neutralizing agent used unavoidably causes metal impurities.

また、該ポリエチレン樹脂に含有されている灰分量は該樹脂に対して30PPM以下であることが好ましい。該ポリエチレン樹脂に含有されている灰分量が30PPM以下であれば、薬品への灰分溶出量が少ないため、薬品中の金属不純物濃度を抑制することができる。灰分量は、全樹脂に対する完全灰化物の割合を重量PPMで示すものである。完全灰化物は電気炉で完全灰化して得られるもので、Al,Mg,Ti,Si等の重合触媒の残存物、中和剤等の金属含有の添加物及びポリエチレン樹脂の製造時の不純物・付着物の金属酸化物である。 Also, the ash content contained in the polyethylene resin is preferably 30 PPM or less relative to the resin. If the amount of ash contained in the polyethylene resin is 30 PPM or less, the amount of ash eluted into the chemical is small, so the concentration of metal impurities in the chemical can be suppressed. Ash content indicates the percentage of completely ash to total resin in parts per million by weight. Completely incinerated products are obtained by complete incineration in an electric furnace, and include residuals of polymerization catalysts such as Al, Mg, Ti, and Si, metal-containing additives such as neutralizers, and impurities and impurities during polyethylene resin production. Deposits are metal oxides.

該ポリエチレン樹脂は、ブロー成形により容器状に成形することにより高純度薬品容器となる。特に、クリーンルーム内に設置したブロー成形機を使用し、フィルターで微粒子を取り除いたエアーをブローエアーに用いたブロー成形方法はクリーンな容器を製造するのに好ましい。 The polyethylene resin can be molded into a container shape by blow molding to form a high-purity chemical container. In particular, a blow molding method using a blow molding machine installed in a clean room and using air from which fine particles have been removed by a filter is preferable for manufacturing clean containers.

薬品の種類によっては遮光性容器にする必要があり、該ポリエチレン樹脂を内層とし、有機顔料あるいは無機顔料等の遮光性材料を含む層を少なくとも一層含む多層容器としても、また、クリーン度を保てる範囲内で有機顔料あるいは無機顔料を該ポリエチレン樹脂に添加してもかまわない。 Depending on the type of chemical, it is necessary to make it a light-shielding container, and a multilayer container containing at least one layer containing a light-shielding material such as an organic pigment or an inorganic pigment with the polyethylene resin as an inner layer is also possible. An organic pigment or an inorganic pigment may be added to the polyethylene resin inside.

本発明の形状を有するスクリューを使用し、容器を成形した場合に薬品による該ポリエチレン樹脂の溶出物や劣化物及び金属不純物等の汚染物質を極力抑え、超LSIの微細化に対応できるクリーンな容器を提供できる。 When a container is molded using a screw having the shape of the present invention, a clean container that can handle miniaturization of ultra-LSI by suppressing contaminants such as elution and deterioration of the polyethylene resin due to chemicals and metal impurities as much as possible. can provide

以下、本発明について実施例および比較例により説明する。なお、実施例および比較例で使用するポリエチレン樹脂、ブロー成形機およびスクリュー形状、試験方法は次に示すとおりである。 EXAMPLES The present invention will now be described with reference to examples and comparative examples. The polyethylene resin, blow molding machine, screw shape, and test method used in Examples and Comparative Examples are as follows.

(1)ポリエチレン樹脂
密度=957g/cm、MFR=8.0g/10分(荷重:21.6kgf、温度:190℃)、Mw/Mn=13、分子量1000以下の成分=0.26重量%、含有塩素量=2PPM、灰分量=16PPM
(1) Polyethylene resin Density = 957 g/cm 3 , MFR = 8.0 g/10 minutes (load: 21.6 kgf, temperature: 190°C), Mw/Mn = 13, components with a molecular weight of 1000 or less = 0.26% by weight , chlorine content = 2 PPM, ash content = 16 PPM

(2)ブロー成形機
電動式ブロー成形機、MSE-50E/54M-A(株式会社タハラ製)
(2) Blow molding machine Electric blow molding machine, MSE-50E/54M-A (manufactured by Tahara Co., Ltd.)

(3)スクリュー形状
実施例および比較例で使用するスクリューは、表1に記載する形状のスクリューである。
(3) Screw Shape Screws used in Examples and Comparative Examples have shapes described in Table 1.

Figure 0007243223000001
Figure 0007243223000001

(4)微粒子数:該ポリエチレンをブロー成形することで得られた内容積800mL容器を使用した。クリーンルーム内で容器に800mlの超純水を充填し、蓋をして1時間放置後、0.1μm以上の微粒子の数をリオン株式会社製微粒子カウンター(コントローラー:KE-40B1、パーティクルセンサー:KS-42A)で測定した。水中の微粒子数は個/mlで示す。 (4) Number of fine particles: A container with an inner volume of 800 mL obtained by blow molding the polyethylene was used. Fill the container with 800 ml of ultrapure water in a clean room, cover it and leave it for 1 hour. 42A). The number of microparticles in water is given in particles/ml.

(5)押出特性
形状Aのスクリューを挿入した電動式ブロー成形機(株式会社タハラ製)を使用し、シリンダー設定温度180℃~220℃、回転数を10~40rpmにて該ポリエチレンを押し出して、スクリュー回転数に対する該ポリエチレンの押出量(kg/h)を測定した。結果を表2に記載した。
また、形状Bのスクリューを挿入した電動式ブロー成形機(株式会社タハラ製)を使用し、シリンダー設定温度180℃~220℃、回転数を10~60rpmにて該ポリエチレンを押し出して、スクリュー回転数に対する該ポリエチレンの押出量(kg/h)を測定した。結果を表3に記載した。
(5) Extrusion characteristics Using an electric blow molding machine (manufactured by Tahara Co., Ltd.) in which a screw of shape A is inserted, the polyethylene is extruded at a cylinder setting temperature of 180 ° C. to 220 ° C. and a rotation speed of 10 to 40 rpm, The extrusion rate (kg/h) of the polyethylene with respect to the screw rotation speed was measured. The results are listed in Table 2.
In addition, using an electric blow molding machine (manufactured by Tahara Co., Ltd.) in which a screw of shape B is inserted, the polyethylene is extruded at a cylinder setting temperature of 180 ° C. to 220 ° C. and a rotation speed of 10 to 60 rpm, and a screw rotation speed. The extrusion rate (kg/h) of the polyethylene was measured. The results are listed in Table 3.

Figure 0007243223000002
Figure 0007243223000002

Figure 0007243223000003
Figure 0007243223000003

実施例1
形状Aのスクリューを挿入した電動式ブロー成形機(株式会社タハラ製)を使用し、シリンダー設定温度180℃、スクリュー回転数26.0rpm、押出量20kg/hにて該ポリエチレンを押し出し、成形サイクル27秒にて重量120gの内容積800mL容器を成形した。パリソン温度は184.6℃であった。得られた容器を用いて上記した微粒子測定を行った。表4に示すように、0.1μm以上の微粒子数は、6.2個/mLであった。
Example 1
Using an electric blow molding machine (manufactured by Tahara Co., Ltd.) in which a screw of shape A is inserted, the polyethylene is extruded at a cylinder setting temperature of 180 ° C., a screw rotation speed of 26.0 rpm, and an extrusion rate of 20 kg / h, and the molding cycle is 27. A container with an internal volume of 800 mL and a weight of 120 g was molded in seconds. The parison temperature was 184.6°C. The fine particle measurement described above was performed using the obtained container. As shown in Table 4, the number of fine particles of 0.1 µm or more was 6.2/mL.

実施例2
実施例1と同様の成形機を使用し、シリンダー設定温度200℃、スクリュー回転数25.5rpm、押出量20kg/hにて該ポリエチレンを押し出し、成形サイクル27秒にて重量120gの内容積800mL容器を成形した。パリソン温度は204.8℃であった。得られた容器を用いて上記した微粒子測定を行った。表4に示すように、0.1μm以上の微粒子数は、8.5個/mLであった。
Example 2
Using the same molding machine as in Example 1, the polyethylene was extruded at a cylinder setting temperature of 200 ° C., a screw rotation speed of 25.5 rpm, and an extrusion rate of 20 kg / h, and a molding cycle of 27 seconds and an inner volume of 800 mL container with a weight of 120 g. was molded. The parison temperature was 204.8°C. The fine particle measurement described above was performed using the obtained container. As shown in Table 4, the number of fine particles of 0.1 µm or more was 8.5/mL.

Figure 0007243223000004
Figure 0007243223000004

比較例1
実施例1と同様の成形機を使用し、シリンダー設定温度220℃、スクリュー回転数25.5rpm、押出量20kg/hにて該ポリエチレンを押し出し、成形サイクル27秒にて重量120gの内容積800mL容器を成形した。パリソン温度は223.9℃であった。得られた容器を用いて上記した微粒子測定を行った。表5に示すように、0.1μm以上の微粒子数は、12.4個/mLであった。
Comparative example 1
Using the same molding machine as in Example 1, the polyethylene was extruded at a cylinder setting temperature of 220 ° C., a screw rotation speed of 25.5 rpm, and an extrusion rate of 20 kg / h, and a molding cycle of 27 seconds and an inner volume of 800 mL container with a weight of 120 g. was molded. The parison temperature was 223.9°C. The fine particle measurement described above was performed using the obtained container. As shown in Table 5, the number of fine particles of 0.1 µm or more was 12.4/mL.

比較例2
形状Bのスクリューを挿入した電動式ブロー成形機(株式会社タハラ製)を使用し、設定温度
180℃および200℃の条件において、実施例1および2と同等の成形サイクルにて該ポリエチレンを用いた容器の成形を試みたが、表3に示すように、180℃および200℃では、スクリューが高回転数である60rpmにおいても該ポリエチレンの押出量は少なく、20kg/hに達しないため、成形不可であった。設定温度180℃および200℃、回転数60rpmの条件にて該ポリエチレンを押し出した際のパリソン温度はそれぞれ193.0℃、212、2℃であった。そこで、設定温度220℃、スクリュー回転数60.0rpm、押出量20kg/hにてポリエチレン2を押し出し、成形サイクル27秒にて重量120gの内容積800mL容器を成形した。パリソン温度は232.1℃であった。得られた容器を用いて上記した微粒子測定を行った。表5に示すように、0.1μm以上の微粒子数は、15.1個/mLであった。
Comparative example 2
Using an electric blow molding machine (manufactured by Tahara Co., Ltd.) in which a screw of shape B was inserted, the polyethylene was used in the same molding cycle as in Examples 1 and 2 under the conditions of set temperatures of 180 ° C. and 200 ° C. An attempt was made to mold a container, but as shown in Table 3, at 180°C and 200°C, even at a high screw rotation speed of 60 rpm, the extrusion rate of the polyethylene was small and did not reach 20 kg/h, so molding was impossible. Met. The parison temperatures when the polyethylene was extruded under conditions of set temperatures of 180° C. and 200° C. and a rotational speed of 60 rpm were 193.0° C., 212° C. and 2° C., respectively. Therefore, polyethylene 2 was extruded at a set temperature of 220° C., a screw rotation speed of 60.0 rpm, and an extrusion rate of 20 kg/h, and a container weighing 120 g and having an internal volume of 800 mL was molded in a molding cycle of 27 seconds. The parison temperature was 232.1°C. The fine particle measurement described above was performed using the obtained container. As shown in Table 5, the number of fine particles of 0.1 µm or more was 15.1/mL.

Figure 0007243223000005
Figure 0007243223000005

Claims (2)

ポリエチレン樹脂をブロー成形により容器を製造する方法において、ポリエチレン樹脂として、密度が940~980kg/m の低分子量成分と、密度が920~950kg/m で該低分子量より密度の低い高分子量成分の2成分を含み、該2成分の重量比が、低分子量成分:高分子量成分=20:80~80:20であり、以下の(1)~(5)の性状を有し、ポリエチレン樹脂に含有されている灰分量が該樹脂に対して30PPM以下であり、ポリエチレン樹脂が添加剤を含まないものを用い、
ブロー成形機のスクリュー形状が以下の(1’)~(3’)の条件を満たしており、該スクリューによって押し出された溶融樹脂(パリソン)温度が170℃~210℃の範囲であることを特徴とする高純度薬品容器の製造方法。
(1)密度(JIS K6922-1:1997)が940~970kg/m
(2)190℃、21.6kg荷重のメルトフローレート(JIS K6922-1:1997)が2.0~15g/10分
(3)ゲルパーミエーション・クロマトグラフィー(GPC)より求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が8~15
(4)ゲルパーミエーション・クロマトグラフィー(GPC)用いて得られたる分子量分布曲線において、分子量1000以下の成分が0.50重量%以下
(5)含有塩素量がポリエチレン樹脂に対して8PPM以下
(1’)該スクリュー有効長Lと該スクリュー径Dとの比(L/D比)が24~32の範囲
(2’)該供給部における該スクリューの溝深さが0.1D~0.3Dの範囲
(3’)該供給部の溝深さと該圧縮部の溝深さとの比が0.80~1.00の範囲
In the method of manufacturing a container by blow molding a polyethylene resin, the polyethylene resin comprises a low molecular weight component having a density of 940 to 980 kg/m 3 and a high molecular weight component having a density of 920 to 950 kg/m 3 and a density lower than the low molecular weight component. The weight ratio of the two components is low molecular weight component: high molecular weight component = 20: 80 to 80: 20, has the following properties (1) to (5), and is a polyethylene resin Using a polyethylene resin having an ash content of 30 PPM or less relative to the resin and containing no additives ,
The screw shape of the blow molding machine satisfies the following conditions (1′) to (3′), and the temperature of the molten resin (parison) extruded by the screw is in the range of 170° C. to 210° C. A method for manufacturing a high-purity chemical container.
(1) Density (JIS K6922-1: 1997) is 940 to 970 kg/m 3
(2) Melt flow rate (JIS K6922-1: 1997) at 190°C and 21.6 kg load is 2.0 to 15 g/10 minutes
(3) The ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) determined by gel permeation chromatography (GPC) is 8 to 15.
(4) In the molecular weight distribution curve obtained using gel permeation chromatography (GPC), the component with a molecular weight of 1000 or less is 0.50% by weight or less
(5) Chlorine content is 8 PPM or less for polyethylene resin
(1′) the ratio of the screw effective length L to the screw diameter D (L/D ratio) is in the range of 24 to 32
(2′) the groove depth of the screw in the supply portion is in the range of 0.1D to 0.3D
(3') The ratio of the groove depth of the supply portion to the groove depth of the compression portion is in the range of 0.80 to 1.00.
ブロー成形により、得られた高純度薬品容器から溶出する0.1μm以上の微粒子数が10個/mL以下である請求項第1項に記載の高純度薬品容器の製造方法。 2. The method for producing a high-purity chemical container according to claim 1, wherein the number of fine particles of 0.1 μm or more eluted from the high-purity chemical container obtained by blow molding is 10/mL or less.
JP2019012052A 2019-01-28 2019-01-28 Method for manufacturing high-purity chemical container Active JP7243223B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019012052A JP7243223B2 (en) 2019-01-28 2019-01-28 Method for manufacturing high-purity chemical container
TW109101171A TWI829850B (en) 2019-01-28 2020-01-14 Manufacturing method of high-purity pharmaceutical container and high-purity pharmaceutical container
CN202010074044.4A CN111483130B (en) 2019-01-28 2020-01-22 Method for manufacturing high-purity medicine container and high-purity medicine container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019012052A JP7243223B2 (en) 2019-01-28 2019-01-28 Method for manufacturing high-purity chemical container

Publications (2)

Publication Number Publication Date
JP2020116912A JP2020116912A (en) 2020-08-06
JP7243223B2 true JP7243223B2 (en) 2023-03-22

Family

ID=71789218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019012052A Active JP7243223B2 (en) 2019-01-28 2019-01-28 Method for manufacturing high-purity chemical container

Country Status (3)

Country Link
JP (1) JP7243223B2 (en)
CN (1) CN111483130B (en)
TW (1) TWI829850B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073969A1 (en) 2010-11-30 2012-06-07 三菱瓦斯化学株式会社 Molded article having excellent fuel barrier properties
JP2015101680A (en) 2013-11-26 2015-06-04 旭化成ケミカルズ株式会社 Polyethylene resin composition and vessel for high purity chemical
JP2017095632A (en) 2015-11-26 2017-06-01 東ソー株式会社 Polyethylene resin for ultra high purity chemical container and high purity chemical container containing the same
JP2018172177A (en) 2017-03-30 2018-11-08 日本ポリエチレン株式会社 Polyethylene for high purity chemical container and high purity chemical container

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3609945A (en) * 1969-09-12 1971-10-05 Lev Vaagovich Saradzhev Shut-off filtering device to be used in vessels for storing substances,mainly high-purity and decomposable substances
JPS61144324A (en) * 1984-12-19 1986-07-02 Idemitsu Petrochem Co Ltd Extruding method of thermoplastic resin and extruding device therefor
JP2749513B2 (en) * 1994-03-24 1998-05-13 アイセロ化学株式会社 High purity solvent container
JPH08192455A (en) * 1995-01-17 1996-07-30 Kodama Jushi Kogyo Kk Molding of clean hollow container
JP3743787B2 (en) * 1997-09-03 2006-02-08 東ソー株式会社 Polyethylene resin for high-purity chemical containers and high-purity chemical containers comprising the same
JP3743788B2 (en) * 1997-09-03 2006-02-08 東ソー株式会社 Polyethylene resin for high-purity chemical containers, composition and high-purity chemical container comprising the same
US20030068434A1 (en) * 2001-08-21 2003-04-10 Moore James B. Method for bonding thermoplastic films to metal surfaces of cylinders, vessels and component parts
JP6153853B2 (en) * 2013-11-21 2017-06-28 東洋ゴム工業株式会社 Rubber composition and pneumatic tire
CN105729762B (en) * 2016-04-14 2018-08-28 中山市富邦机械有限公司 The hollow forming equipment that low energy consumption low temperature squeezes out

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073969A1 (en) 2010-11-30 2012-06-07 三菱瓦斯化学株式会社 Molded article having excellent fuel barrier properties
JP2015101680A (en) 2013-11-26 2015-06-04 旭化成ケミカルズ株式会社 Polyethylene resin composition and vessel for high purity chemical
JP2017095632A (en) 2015-11-26 2017-06-01 東ソー株式会社 Polyethylene resin for ultra high purity chemical container and high purity chemical container containing the same
JP2018172177A (en) 2017-03-30 2018-11-08 日本ポリエチレン株式会社 Polyethylene for high purity chemical container and high purity chemical container

Also Published As

Publication number Publication date
CN111483130B (en) 2024-04-26
TW202043008A (en) 2020-12-01
CN111483130A (en) 2020-08-04
JP2020116912A (en) 2020-08-06
TWI829850B (en) 2024-01-21

Similar Documents

Publication Publication Date Title
JP3559062B2 (en) Tetrafluoroethylene / fluoroalkoxytrifluoroethylene copolymer composition
JP3743787B2 (en) Polyethylene resin for high-purity chemical containers and high-purity chemical containers comprising the same
JP2021195436A (en) Polyethylene-based resin composition and container for high purity chemical solution
WO2013046923A1 (en) Fluororesin molded article
JP2542119B2 (en) Thermoplastic interpenetrating network structure and its formation method
US10889666B2 (en) Molecular modification of polyethylene resin
JP5145911B2 (en) Polyethylene resin composition and blow container comprising the same
JPH1180258A (en) Polyethylene resin for highly pure chemical container, composition and highly pure chemical container comprising same
JP2932567B2 (en) Blow blow molding
JP7243223B2 (en) Method for manufacturing high-purity chemical container
JP2012207219A (en) Resin composition and heat-radiating component
JP3513556B2 (en) Molded product for liquid transfer
JP6571237B2 (en) Fluoropolymer molded product
JP6546143B2 (en) Method of manufacturing injection molded articles
JP2006299062A (en) Polyethylene resin for container to store sulfuric acid and container made of the same
JP6206286B2 (en) Polyethylene for large high-purity chemical containers
JP6705157B2 (en) Polyethylene resin for ultra high purity chemical containers and high purity chemical containers made of the same
JP7056304B2 (en) Polyethylene for high-purity chemical containers and high-purity chemical containers
JP5283891B2 (en) Polyethylene resin composition for clean container packaging
JP3750200B2 (en) Container for high-purity chemicals
WO2024195541A1 (en) Polyethylene resin container for high-purity chemical
JP2006299067A (en) Blow molded container
JP2024094583A (en) Manufacturing method of high purity chemical container
JP3067220B2 (en) Blow hollow molded product
JP2023149524A (en) Polyethylene resin for high purity chemical and container made of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R151 Written notification of patent or utility model registration

Ref document number: 7243223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151