JP2023148560A - 金属管光ファイバケーブル - Google Patents

金属管光ファイバケーブル Download PDF

Info

Publication number
JP2023148560A
JP2023148560A JP2022056660A JP2022056660A JP2023148560A JP 2023148560 A JP2023148560 A JP 2023148560A JP 2022056660 A JP2022056660 A JP 2022056660A JP 2022056660 A JP2022056660 A JP 2022056660A JP 2023148560 A JP2023148560 A JP 2023148560A
Authority
JP
Japan
Prior art keywords
optical fiber
tube
outer tube
inner tube
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022056660A
Other languages
English (en)
Inventor
康 須藤
Yasushi Sudo
大介 政岡
Daisuke Masaoka
信博 春日
Nobuhiro Kasuga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OCC Corp
Original Assignee
OCC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OCC Corp filed Critical OCC Corp
Priority to JP2022056660A priority Critical patent/JP2023148560A/ja
Publication of JP2023148560A publication Critical patent/JP2023148560A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

【課題】光ファイバのスラックを維持することで光ファイバの反射減衰量の低下を抑止する。【解決手段】本発明に係る金属管光ファイバケーブルにおいては、センサ用の光ファイバと、前記光ファイバが管内に配置された内管と、前記内管が管内に配置された外管とを備え、前記外管の先端側が閉塞されるとともに、前記外管の基端側にガス流入口が形成され、前記内管の先端側が前記外管の先端よりも基端側に位置され前記外管の管内と連通されるとともに、前記内管の基端側にガス排出口が形成され、前記光ファイバの先端が前記内管の先端よりも基端側に位置される。【選択図】図3

Description

本発明は、光ファイバをセンサとして用いる金属管光ファイバケーブルの構造に関する。
地熱検層等の高温高圧環境下で使用するために、光ファイバの周りに耐熱、耐圧のための防壁層を施し、光ファイバ自体をDAS(Distributed Acoustic Sensor)やDTS(Distributed Temperature Sensor)として、振動や温度を検出する金属管光ファイバケーブルが知られている。
このような高温高圧環境下では、金属管光ファイバケーブルに用いられる金属を透過して水素ガスが内部に侵入する場合がある。また、金属の腐食により水素ガスが発生することがある。この水素ガスは特定波長における光ファイバの損失増加を招き、歪みや圧力や温度の検出に影響を及ぼすおそれがある。これは水素ガスの侵入や金属の腐食のみならず、水素濃度の高い環境下で金属管光ファイバケーブルを使用する場合にも同様のことが起こりうる。
特許2992191号公報 特開平6-59169号公報
上記課題に鑑み、例えば特許文献1及び特許文献2では、光ファイバを内管及び外管で二重に覆う金属管光ファイバケーブルの構造が開示されている。この構造では、内管の基端側にガス供給機構が設けられるとともに先端側が外管の内部と接続され、外管の先端側が封止されている。このような状態で内管の基端側から不活性ガスを流入させることで、光ファイバが、常時不活性ガスが充填された環境下に置かれることになり、水素ガスによる影響が緩和される。内管に流入された不活性ガスは外管を通り、外管の基端側から排出される。
また、特許文献2では内管の基端を封止材で封止し、内管の基端の近傍に孔を開けてガスの封入口を設け、外管の基端で外管と内管の間を封止材で封止し、外管の基端の近傍に孔を開けてガスの排出口を設けている。
しかしながら、内管の基端側から不活性ガスを流入させた場合、内管では光ファイバに対して、内管の基端側から先端側に向かう不活性ガスのガス流に常時さらされることになる。光ファイバはある程度のスラック(弛み)をもって内管の管内に配置されているが、このガス流や重力によりスラックが引き伸ばされ、先端が防壁層などに接触するおそれがある。光ファイバの先端が防壁層などに接触すると反射状態が悪化し、歪みや圧力や温度の検出に影響を及ぼすおそれがある。特に昨今のDASによる計測では光ファイバ先端の反射減衰量を低く抑えることが重要とされる。
また、封入したガスが抜けないように外管と内管の隙間および管の端部を封止する必要がある。特許文献1では内管の基端に分岐管を取り付けて封止しているが、内管をいったん切断して分岐管に取り付けており、内管を切断する工程が生じると共に露出した光ファイバに外傷を及ぼす危険がある。特許文献2では内管の基端および外管と内管の隙間を封止材で封止すると共に内管および外管の基端の近傍にガスの封入口、排出口として孔を開ける加工を行っており加工工数が掛かると共に加工に伴って内管内の光ファイバに外傷を及ぼす危険がある。
そこで本発明では、光ファイバのスラックを維持することによる光ファイバの反射減衰量の低下を抑止することができると共にガス封入口と排出口を容易に設けることができる金属管光ファイバケーブルの構造を提案する。
本発明に係る金属管光ファイバケーブルは、センサ用の光ファイバと、前記光ファイバが管内に配置された内管と、前記内管が管内に配置された外管とを備える金属管光ファイバケーブルにおいて、前記外管の先端側が閉塞されるとともに、前記外管の基端側にガス流入口が形成され、前記内管の先端側が前記外管の先端よりも基端側に位置され前記外管の管内と連通されるとともに、前記内管の基端側にガス排出口が形成され、前記光ファイバの先端が前記内管の先端よりも基端側に位置される。
これにより、外管の基端側のガス流入口から管内に流入した不活性ガスが、外管の先端側から内管の管内に流入し、内管の先端側から基端側のガス排出口に向けて流れる。
また上記金属管光ファイバケーブルは、前記外管の基端が前記内管の基端よりも先端側に位置され、挿通された前記外管を保持する外管挿通孔と、挿通された前記内管を保持する内管挿通孔と、ガス供給孔と、前記ガス供給孔と前記外管のガス流入口とを連通する流入路と、を有する継手部を備えている。
これにより、内管挿通孔に挿通された内管のガス排出口が継手部の外部に位置するとともに、外管挿通孔に挿通された外管のガス流入口が継手部の内部の流入路に位置することになる。
本発明によれば、光ファイバのスラックを維持することによる光ファイバの反射減衰量の低下を抑止することができる。
また、継手部を用いることにより、設置後に何らかの装置不具合が生じたとしても大掛かりな取り付け設備を必要とせず、設置現場において容易に継手部を金属管光ファイバケーブルに取り付けて再生することが可能であり工数の削減を図ることができる。
本発明の実施の形態の金属管光ファイバケーブルの構成例を模式的に示す図である。 本実施の形態のケーブル部の構成例を模式的に示す図である。 本実施の形態のケーブル部の領域Pの断面を模式的に示す図である。 本実施の形態の継手部の断面を模式的に示す図である。 比較例のケーブル部の先端側の断面を模式的に示す図である。
以下、実施の形態について図1から図4を参照して説明する。
なお、本実施の形態の説明にあたり参照する図面に記載された構成は、本実施の形態を実現するにあたり必要な要部及びその周辺の構成を抽出して示したものである。また図面は模式的なものであり、本発明の技術的思想を逸脱しない範囲であれば設計などに応じて種々な変更が可能である。
本実施の形態では、図1に示すような地熱井などの観測井100に降下(挿入)して内部の振動及び温度を検出するための金属管光ファイバケーブル1について説明する。
本開示において、金属管光ファイバケーブル1を観測井100などの検出対象に挿入する方向を先端方向とし、先端方向と逆の方向を基端方向として説明する。またこのとき、金属管光ファイバケーブル1を構成する各部材の先端方向の端を先端とし、基端方向の端を基端とする。
金属管光ファイバケーブル1はケーブル部2及び継手部3を備えている。ケーブル部2は基端側が継手部3に接続されており、継手部3から供給された不活性ガスGSがケーブル部2に流入するようになっている。これにより、ケーブル部2の内部に不活性ガスGSが充填される。不活性ガスGSは、後述する光ファイバ4を保護するものであり、例えば窒素、アルゴン、ヘリウムなどを用いることができる。なお、各図面に示す矢印は不活性ガスGSの流れる方向を示している。
図2に示すように、ケーブル部2は、光ファイバ4、内管5及び外管6を備えている。内管5及び外管6は金属管であり、光ファイバ4を保護する耐熱、耐圧のための防壁層として機能する。内管5及び外管6の管内には、金属の腐食や外管6からの透過などの要因により発生した水素ガスが光ファイバ4に接触しないように不活性ガスGSが充填される。
水素ガスは特定波長における光ファイバ4の損失増加を招き、振動や温度の検出に影響を及ぼすおそれがある。そのため、不活性ガスGSを管内に充填することで、光ファイバ4に水素ガスが接触することを防止している。
光ファイバ4は歪みや圧力や温度を検出するセンサとして機能し、その外周面は断熱性材料により被覆されている。ケーブル部2の先端側が観測井100に挿入されることで、振動及び温度の検出が行われる。
光ファイバ4は内管5の管内に挿入されており、内管5は外管6の管内に挿入されている。例えば内管5は0.7~3.0mm程度の内径を備えたものであり、外管6は内管5よりも大きい内径を備えたものである。
図3は、ケーブル部2の先端部の領域Pの断面を模式的に示す図である。
図3に示すように、外管6の先端部には、外管6の先端を封止(閉塞)する耐圧防壁層7が設けられている。耐圧防壁層7は、外管6にキャップ8を打ち込み、外管6とキャップ8の隙間を銀ロウ30などの封止材により封止することにより形成される。
図4に示すように、外管6の基端側には、ガス流入口9が設けられている。例えば外管6の先端の開口がガス流入口9として形成されている。ガス流入口9には、後述する継手部3のガス供給孔16から供給された不活性ガスGSが流入する。
内管5の先端側は外管6の管内と連通されている。図3では内管5の先端が開口端10として形成されている。内管5の開口端10は、外管6の管内先端の封止面12よりも基端側に位置しており、これにより内管5と外管6の管内が連通されている。従って、外管6に流入した不活性ガスGSは内管5に流れ込むことになる。
また内管5の管内に挿入された光ファイバ4にはスラック(弛み)が設けられており、図1のようにケーブル部2が重力方向(観測井100の底へ向かう方向)に降下(挿入)された状態において、光ファイバ4の先端13は内管5の開口端10よりも基端側に位置している。光ファイバ4は、スラックのない引き延ばされた状態においては外管6の封止面12に接触する場合があるが、スラックを設けることで先端13が開口端10よりも基端側となるような位置を維持している。
図1に示すように、内管5の基端側にはガス排出口11が設けられている。例えば内管5の基端の開口がガス排出口11として形成されている。ガス流入口9から流入した不活性ガスGSは内管5及び外管6の管内に充填されるとともに、押し出された不活性ガスGSはガス排出口11から排出される。外管6の基端は内管5の基端よりも先端側に位置していることから、外管6のガス流入口9は、内管5のガス排出口11よりも先端側に位置している。
なお、内管5のガス排出口11から基端側に延びる光ファイバ4は成端箱20の余長収納体21を介して測定器22に接続される。測定器22では、光ファイバ4からの検出に基づく歪みや圧力や温度の測定が行われる。
図4に示すように継手部3は、外管挿通孔14、内管挿通孔15、ガス供給孔16及び流入路17を備えている。外管挿通孔14、内管挿通孔15及びガス供給孔16は、流入路17を介して互いに連通されている。
外管挿通孔14には外管6が挿通され保持される。外管6は外管挿通孔14に挿通された状態で、外管引留め部18により封止及び固定される。外管引留め部18は例えばナットであり、当該ナットでねじ止めすることでフェルール23を圧縮して外管6が外管挿通孔14に封止及び固定される。このとき、外管6のガス流入口9は流入路17の管内に位置し、流入路17と連通している。
内管挿通孔15は外管挿通孔14よりも基端側に形成され、内管挿通孔15には外管6のガス流入口9から延びる内管5が挿通され保持される。内管5は内管挿通孔15に挿通された状態で、内管引留め部19により封止及び固定される。内管引留め部19は例えばナットであり、当該ナットでねじ止めすることでフェルール24を圧縮して内管5が内管挿通孔15に封止及び固定される。
内管挿通孔15は内管5を挿通するため、内管挿通孔15の内径は外管6を挿通する外管挿通孔14の内径よりも小さくされている。
ガス供給孔16には図示しないガス供給機構などから不活性ガスGSが供給される。
ここで、金属管光ファイバケーブル1における不活性ガスGSの流路について説明する。
図4に示すように、継手部3のガス供給孔16に不活性ガスGSが供給されると、内管挿通孔15が封止されているため、供給された不活性ガスGSは流入路17を介して外管6のガス流入口9に流入する。
ガス流入口9から外管6の管内に流入した不活性ガスGSは、外管6の先端側に向かい、図3に示すように、外管6の先端部において内管5の開口端10に流入する。開口端10から内管5の管内に流入した不活性ガスGSは、内管5の先端側から基端側に向かうことになる。これにより、内管5及び外管6の管内に不活性ガスGSが充填される。
内管5及び外管6の管内に不活性ガスGSが充填されると、ガス流入口9への不活性ガスGSの流入に伴い、管内に充填された不活性ガスGSが内管5の基端側に押し出され、図1に示すガス排出口11から排出される。
ここで、内管5の管内に挿通された光ファイバ4は、図1のようにケーブル部2が重力方向(観測井100の底へ向かう方向)に挿入された状態において常に重力の影響を受けている。そのため、時間が経つにつれて光ファイバ4のスラックが引き延ばされ、光ファイバ4の先端13が封止面12に接触してしまうおそれがある。
光ファイバ4の先端13が封止面12に接触してしまうと、光ファイバ4の反射状態が悪化し、振動や温度の検出に悪影響を及ぼすことになる。
また、図5の比較例に示すように、内管5Aの基端側から不活性ガスGSを流入させた場合、内管5Aの管内では光ファイバ4Aに対して、内管5Aの基端側から先端側に向かう不活性ガスGSによるガス流に常時さらされることになる。このガス流により、却って光ファイバ4Aのスラックの延びを促進してしまうおそれがある。
一方、本実施の形態では、図3に示すように、外管6の基端側にガス流入口9が形成され、かつ内管5の基端側にガス排出口11が形成されているため、外管6の先端側に向けて流れ込んだ不活性ガスGSが内管5の開口端10を介して、内管5の先端側から基端側に向かって流れていく。
このように内管5の先端側から基端側に向かって流れる不活性ガスGSにより、内管5の管内に重力と反対方向に流れるガス流が発生する。このガス流により、計測中、常に光ファイバ4が基端側に僅かに押されることになり、重力により光ファイバ4のスラックが延びることを抑制することができる。
従って、本実施の形態によれば、計測中に光ファイバ4のスラックを維持することが可能となり、光ファイバ4のスラックが引き延ばされ、光ファイバ4の先端13が封止面12に接触することによる伝送損失を防ぐことができる。
なお、使用時により良い計測品質を保つためには、常時、継手部3のガス供給孔16から不活性ガスGSを供給することが望ましいが、検層中のケーブル部2の降下(挿入)及び引揚時は、ケーブル部2を巻いたドラムが回転するため、不活性ガスGSの供給が困難となる。そこで、検層前(ケーブル部2の降下前)に不活性ガスGSをあらかじめ供給しておき、内管5及び外管6の管内に不活性ガスGSを充填しておくことで、ケーブル部2の降下時においても管内の残圧の低下を抑制することができる。その後、検層中に不活性ガスGSを供給し、さらに引揚後に改めて不活性ガスGSを供給することで、管内の不活性ガスGSの充填状態を常に維持して光ファイバ4の損傷を抑制することができる。これにより、金属管光ファイバケーブル1のさらなる長寿命化を図ることができる。
以上に述べた本実施の形態によれば、金属管光ファイバケーブル1のケーブル部2は、センサ用の光ファイバ4と、光ファイバ4が管内に配置された内管5と、内管5が管内に配置された外管6とを備えている(図2参照)。
このとき、光ファイバ4の先端は内管5の先端よりも基端側に位置されている。また外管6の先端側は閉塞され、外管6の基端側にはガス流入口9が形成されている。さらに内管5の先端側は外管6の先端よりも基端側に位置され外管6の管内と連通されるとともに、内管5の基端側にガス排出口11が形成されている(図1、図3及び図4参照)。
これにより、外管6の基端側のガス流入口9から管内に流入した不活性ガスGSが、外管6の先端側から内管5の管内に流入し、内管5の先端側から基端側のガス排出口11に向けて流れる。従って、上述のとおり、内管5の先端側から基端側に向かって流れる不活性ガスGSのガス流により光ファイバ4のスラックが延びることを抑制し、光ファイバ4の先端13が封止面12に接触することによる伝送損失を防ぐことができる。よって、金属管光ファイバケーブル1の高品質化・長寿命化を図ることができる。
また本実施の形態では、外管6の基端の開口をガス流入口9として形成し、内管5の基端の開口をガス排出口11としている(図1及び図4参照)。このように、各管の開口をそれぞれガス流入口9及びガス排出口11とすることで、ガス流入口9やガス排出口11を設けるために、各管に孔を開けたり内管を切断して光ファイバを露出させる必要がなくなる。従って、工数の削減を図ることができるとともに、各管に孔を開けたり内管を切断する工程などにおいて管内の光ファイバ4に外傷を与えてしまうような事態を避けることができる。
本実施の形態における金属管光ファイバケーブル1の継手部3は、挿通された外管6を保持する外管挿通孔14と、挿通された内管5を保持する内管挿通孔15と、供給された不活性ガスGSを流入するガス供給孔16と、ガス供給孔16と外管6のガス流入口9を連通する流入路17と、を備えている(図4参照)。
これにより、内管挿通孔15に挿通された内管5のガス排出口11が継手部3の外部に位置するとともに、外管挿通孔14に挿通された外管6のガス流入口9が継手部3の内部の流入路17に位置することになる。即ち、外管6のガス流入口9と内管5のガス排出口11との位置関係を継手部3により容易に規定して固定することができる。
また継手部3では、外管挿通孔14に外管6を挿通することで、ガス供給孔16から供給される不活性ガスGSが流入路17を介して外管6のガス流入口9に流入させることができる。従って、外管挿通孔14に外管6を挿通すれば、外管6に別途不活性ガスGSを供給するための孔を開けなくても不活性ガスGSを供給することができる。即ち、外管挿通孔14に外管6を挿通するだけで、内管5との位置関係を規定できるばかりか、不活性ガスGSを供給するための孔を開けるといった工数も削減することができる。
また継手部3によれば、外管挿通孔14に挿通された外管6を外管引留め部18により、内管挿通孔15に挿通された内管5を内管引留め部19により、容易に封止及び固定することができる。
継手部3は通常は工場等で金属管光ファイバケーブル1に取り付けられて出荷され地熱井などの観測井に設置されるが、設置後に何らかの装置不具合が生じたとしても大掛かりな取り付け設備を必要とせず、設置現場において容易に継手部3を金属管光ファイバケーブル1に取り付けて再生することが可能であり工数の削減を図ることができる。
最後に、本開示に記載された効果は例示であって限定されるものではなく、他の効果を奏するものであってもよいし、本開示に記載された効果の一部を奏するものであってもよい。また、実施の形態で説明されている構成の組み合わせの全てが課題の解決に必須であるとは限らない。
1 金属管光ファイバケーブル
2 ケーブル部
3 継手部
4 光ファイバ
5 内管
6 外管
9 ガス流入口
11 ガス排出口
14 外管挿通孔
15 内管挿通孔
16 ガス供給孔
17 流入路

Claims (4)

  1. センサ用の光ファイバと、前記光ファイバが管内に配置された内管と、前記内管が管内に配置された外管とを備える金属管光ファイバケーブルにおいて、
    前記外管の先端側が閉塞されるとともに、前記外管の基端側にガス流入口が形成され、
    前記内管の先端側が前記外管の先端よりも基端側に位置され前記外管の管内と連通されるとともに、前記内管の基端側にガス排出口が形成され、
    前記光ファイバの先端が前記内管の先端よりも基端側に位置される
    金属管光ファイバケーブル。
  2. 前記外管の基端は前記内管の基端よりも先端側に位置され、
    挿通された前記外管を保持する外管挿通孔と、挿通された前記内管を保持する内管挿通孔と、ガス供給孔と、前記ガス供給孔と前記外管のガス流入口とを連通する流入路と、を有する継手部を備える
    請求項1に記載の金属管光ファイバケーブル。
  3. 前記外管は、前記外管挿通孔に挿通された状態で封止及び固定され、
    前記内管は、前記内管挿通孔に挿通された状態で封止及び固定された
    請求項2に記載の金属管光ファイバケーブル。
  4. 前記内管の先端の開口により前記外管の管内と連通された
    請求項1から請求項3の何れかに記載の金属管光ファイバケーブル。
JP2022056660A 2022-03-30 2022-03-30 金属管光ファイバケーブル Pending JP2023148560A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022056660A JP2023148560A (ja) 2022-03-30 2022-03-30 金属管光ファイバケーブル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022056660A JP2023148560A (ja) 2022-03-30 2022-03-30 金属管光ファイバケーブル

Publications (1)

Publication Number Publication Date
JP2023148560A true JP2023148560A (ja) 2023-10-13

Family

ID=88289361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022056660A Pending JP2023148560A (ja) 2022-03-30 2022-03-30 金属管光ファイバケーブル

Country Status (1)

Country Link
JP (1) JP2023148560A (ja)

Similar Documents

Publication Publication Date Title
EP2076655B1 (en) Breathable-hole fibre optic cable and method of restoring its performance
US7369716B2 (en) High pressure and high temperature acoustic sensor
JP3814144B2 (ja) 苛酷な環境で使用するための光ファイバケーブル
JP6096354B2 (ja) 漏出検知装置、ダクト、漏出検知装置を用いる方法
US20080273852A1 (en) Sensing System Using Optical Fiber Suited to High Temperatures
JP4679941B2 (ja) 断熱を施した毛管溶接延長部
US9335224B2 (en) High temperature fiber optic turnaround
BRPI0509995B1 (pt) método de produzir uma tubulação enrolada em forma de serpentina equipada com fibra ótica, método de fazer medições em um furo de sondagem, e método de comunicação em um furo de sondagem
US20030111796A1 (en) Redundant metal-metal seal
JP2023148560A (ja) 金属管光ファイバケーブル
US20090022458A1 (en) Optical Turnaround System
JP2011504577A (ja) 背の高い外部構造を有する水素添加による残留硫黄の脱硫のためのサーモウエル複合型装置
CN114341463A (zh) 用于电光装置的包层
JP4065307B2 (ja) 構造物の腐食箇所の特定方法
CN102073107A (zh) 一种井下光缆连接装置
JP3955855B2 (ja) 構造物の腐食箇所の特定方法
JP7114930B2 (ja) 装置、測定装置、および装置の製造方法
JP2005257393A5 (ja)
GB2217871A (en) Optical fibre seals in walls of a chamber
CA2490225C (en) Feedthrough fiber strain relief
JP2000234953A (ja) 光学プローブ組立体
JP7479717B2 (ja) センサ装置、故障診断システム、及びセンサ装置の施工方法
JP7115565B2 (ja) 温度測定構造および温度測定システム
JP2705186B2 (ja) 浸水検知ファイバ
JP2002310808A (ja) 電力ケーブル温度測定方法、電力ケーブル温度測定区間部構造、ならびに電力ケーブル温度測定区間部の構築方法