JP2023143278A - ダイシング装置 - Google Patents

ダイシング装置 Download PDF

Info

Publication number
JP2023143278A
JP2023143278A JP2022050564A JP2022050564A JP2023143278A JP 2023143278 A JP2023143278 A JP 2023143278A JP 2022050564 A JP2022050564 A JP 2022050564A JP 2022050564 A JP2022050564 A JP 2022050564A JP 2023143278 A JP2023143278 A JP 2023143278A
Authority
JP
Japan
Prior art keywords
blade
sensor
spindle
attached
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022050564A
Other languages
English (en)
Inventor
貴大 飯田
Takahiro Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2022050564A priority Critical patent/JP2023143278A/ja
Priority to CN202310273269.6A priority patent/CN116803580A/zh
Publication of JP2023143278A publication Critical patent/JP2023143278A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D79/00Methods, machines, or devices not covered elsewhere, for working metal by removal of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Dicing (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

【課題】ブレードから生じる弾性波を精度よく検出できるダイシング装置を提供する。【解決手段】ダイシング装置は、加工テーブルと、スピンドル24と、スピンドル24のブレード装着部60に装着されるブレード26と、ブレード26から生じる弾性波を検出する弾性波検出部90と、を備える。弾性波検出部90は、スピンドル24、ブレード装着部60、及び加工テーブルの少なくとも1つに取り付けられるAEセンサ92と、スピンドル24、ブレード装着部60、及び加工テーブルの少なくとも1つに取り付けられ、AEセンサ92と接続される送信側コイル94と、送信側コイル94と対向して配置され、送信側コイルと94磁気結合される受信側コイル96と、を備え、AEセンサ92から出力される信号が、送信側コイル94を介して、送信側コイル94と受信側コイル96との相互誘導によって、受信側コイル96に伝送される。【選択図】図3

Description

本発明はダイシング装置に係り、特に、回転するブレードでワークを切削又はワークに切溝を加工するダイシング装置に関する。
高速回転するスピンドルの先端に取り付けられたブレード(極薄外周刃)でワークを切削又はワークに切溝を加工するダイシング装置(いわゆるブレードダイサ)では、ブレードに目詰まり等の異常が生じると、ワークに加工不良(たとえば、チッピング等)が発生する。
特許文献1には、AEセンサを固定式のワークテーブルに取り付けた装置が記載されている。特許文献1に記載の装置は、ブレードでワークを切断する際に発生する弾性波をAEセンサで検出し、そのセンサ出力からブレードの切れ味を測定する。
特開平4-99946号公報
弾性波は、物質内を伝搬するが、一様ではない物体間は大きく減衰するという特性を有する。このため、ワークテーブルが回転する場合、AEセンサを取り付ける位置によっては、途中の軸受け部等において、弾性波が大きく減衰し、高精度な検出ができない可能性がある。
本発明は、このような事情に鑑みてなされたもので、ブレードから生じる弾性波を精度よく検出できるダイシング装置を提供することを目的とする。
上記課題を解決するために、本発明に係るダイシング装置は、ワークを保持するテーブルと、テーブルに対し相対的に移動するスピンドルと、スピンドルに一体的に取り付けられるブレード装着部と、ブレード装着部に装着されるブレードと、弾性波を検出する弾性波検出部と、備え、弾性波検出部は、スピンドル、ブレード装着部、及びテーブルの少なくとも1つに取り付けられるAEセンサと、スピンドル、ブレード装着部、及びテーブルの少なくとも1つに取り付けられ、AEセンサと接続される送信側コイルと、送信側コイルと対向して配置され、送信側コイルと磁気結合される受信側コイルと、を備え、AEセンサから出力される信号が、送信側コイルを介して、送信側コイルと受信側コイルとの相互誘導によって、受信側コイルに伝送される。
本発明の一形態は、テーブル、スピンドル、及びブレード装着部は、回転体であることが好ましい。
本発明の一形態は、弾性波検出部から出力される信号に基づいて、ブレードとテーブルとの接触を検出する接触検出部と、ブレードの基準位置を設定する基準位置設定部と、を備え、基準位置設定部は、ブレードとテーブルとが離間した位置からスピンドルをテーブルに向けて移動させ、接触検出部で接触が検出される位置をブレードの基準位置に設定することが好ましい。
本発明の一形態は、ワークの加工中に弾性波検出部から出力される信号に基づいて、ブレード及び/又はワークの状態を推定する推定部を更に備えることが好ましい。
本発明の一形態は、推定部が、弾性波検出部から出力される信号に基づいて、チッピングの発生を推定することが好ましい。
本発明の一形態は、推定部が、弾性波検出部から出力される信号に基づいて、ブレードの目詰まりの状態を推定することが好ましい。
本発明の一形態は、推定部が、安定切削時に弾性波検出部から出力される信号との比較でブレード及び/又はワークの状態を推定することが好ましい。
本発明の一形態は、AEセンサ及び送信側コイルが、ブレード装着部に取り付けられることが好ましい。
本発明の一形態は、AEセンサ及び送信側コイルが、スピンドルに取り付けられることが好ましい。
本発明の一形態は、ブレード装着部が、スピンドルの先端部に備えられ、AEセンサが、スピンドルの先端部に内蔵され、送信側コイルが、スピンドルの基端部に取り付けられることが好ましい。
本発明の一形態は、AEセンサ及び送信側コイルが、テーブルに取り付けられることが好ましい。
本発明の一形態は、受信側コイル及び送信側コイルが、スピンドル、ブレード装着部、及びテーブルの少なくとも1つの回転軸の周囲に巻回して配置されることが好ましい。
本発明の一形態は、スピンドル、ブレード装着部、及びテーブルの少なくとも1つにバランスウェイトが備えられることが好ましい。
本発明によれば、ブレードから生じる弾性波を精度よく検出できる。
図1は、ダイシング装置の概略構成を示す斜視図である。 図2は、加工部の概略構成を示す斜視図である。 図3は、ブレード装着部の構成を示す断面図である。 図4は、後フランジの背面図である。 図5は、先端カバーの正面図である。 図6は、カッターセットに関してシステムコントローラが有する主な機能のブロック図である。 図7は、AEセンサの出力の一例を示すグラフである。 図8は、カッターセットの処理手順を示すフローチャートである。 図9は、スピンドルへのAEセンサの取り付け構造の一例を示す図である。 図10は、加工テーブルへのAEセンサの取り付け構造の一例を示す図である。 図11は、センサベースの下面図である。 図12は、コイルベースの上面図である。 図13は、切削ラインを上面から見た模式図である。 図14は、チッピングの発生の模式図である。 図15は、加工中のAEセンサの出力の一例を示すグラフである。 図16は、加工中のAEセンサの出力の一例を示すグラフである。 図17は、加工中のブレードの模式図である。 図18は、加工中のAEセンサの出力の一例を示すグラフである。 図19は、推定に関してシステムコントローラが有する機能のブロック図である。
以下、添付図面に従って本発明の好ましい実施の形態について説明する。
(第1の実施の形態)
[ダイシング装置の全体構成]
図1は、ダイシング装置の概略構成を示す斜視図である。図1には、X方向、Y方向、及びZ方向を示している。X方向及びY方向は、互いに交差している。例えば、X方向及びY方向は、互いに直交している。Z方向は、X方向及びY方向に交差している。例えば、Z方向は、X方向及びY方向に直交している。以下で、X方向及びY方向の長さを厚さ、若しくは幅と称する場合もある。Z方向の長さを厚さ、深さ、及び高さと称する場合もある。また、Z方向において、Z方向の矢印の先端側に向かう方向を上方向、上側、若しくは上と称し、上方向と反対方向を下方向、下側、若しくは下と称する場合もある。以下、X方向と平行な軸をX軸と称し、Y方向と平行な軸をY軸と称し、Z方向と平行な軸をZ軸と称する場合もある。X軸及びY軸を含む面を水平面と称する場合もある。
本実施の形態のダイシング装置10は、いわゆるブレードダイサである。ブレードダイサは、高速回転するスピンドルの先端に取り付けられたブレードによってワークWを切削又はワークに切溝を加工する。ワークWは、たとえば、半導体ウェーハである。
図1に示すように、本実施の形態のダイシング装置10は、ワークWを供給及び回収する供給回収部12、ワークWを加工する加工部14、加工後のワークWを洗浄する洗浄部16、及び、各部にワークWを搬送する搬送部18等を備える。
供給回収部12は、ロードポート20を含み、ロードポート20にセットされたカセット(図示せず)から加工対象のワークWを供給する。また、ロードポート20を介して、加工後のワークWはカセット(図示せず)に回収される。ワークWは、ダイシングフレーム(図示せず)に取り付けられた状態でハンドリングされる。ダイシングフレームには、ダイシングテープを介してワークWが取り付けられる。
加工部14は、ワークWを加工テーブル22に保持して加工する。加工テーブル22は、図1に示すθ軸を中心に回転可能であり、かつ、X方向に沿って移動可能である。θ軸は、加工テーブル22の中心を通り、Z軸と平行な軸である。加工部14は、高速回転するスピンドル24の先端に取り付けられたブレード26をワークWに当接させて、ワークWを切削又はワークWに切溝を加工する。図1に示した例では、ダイシング装置10は、スピンドル24を2本有し、2個所を同時に加工できる。加工部14の構成については、後述する。
洗浄部16は、加工後のワークWを洗浄テーブル28で保持してスピン洗浄する。具体的には、洗浄部16は、洗浄テーブル28を回転させながら、ワークWに洗浄液を供給して、ワークWを洗浄する。また、洗浄終了後には、洗浄部16は、洗浄テーブル28を回転させながら、ワークWにエアを吹き付けて、ワークWを乾燥させる(いわゆるスピン乾燥)。
搬送部18は、ロボットアーム30を有し、ロボットアーム30によって各部にワークWを搬送する。具体的には、搬送部18は、供給回収部12から供給されるワークWをロボットアーム30によって加工部14に搬送する。また、搬送部18は、加工部14で加工されたワークWをロボットアーム30によって洗浄部16に搬送する。更に、搬送部18は、洗浄部16で洗浄されたワークWをロボットアーム30によって供給回収部12に搬送する。
図2は、加工部の概略構成を示す斜視図である。
図2に示すように、加工部14は、サドル32及び門型コラム34を有する。サドル32及び門型コラム34は、図示しない架台の上に設置される。
X軸ガイドレール38は、サドル32に設けられている。X軸テーブル36は、X軸ガイドレール38に取り付けられている。X軸テーブル36は、X軸ガイドレール38にガイドされて、X方向に沿って移動自在に支持される。X軸テーブル36は、X軸モータに駆動されて移動する。X軸モータは、たとえば、リニアモータで構成される。また、X軸テーブル36は、X軸センサによって、その移動軸上での位置(X方向の位置)が検出される。X軸センサは、たとえば、リニアスケールで構成される。
X軸テーブル36には、テーブルユニット40が備えられる。テーブルユニット40は、ワークWを保持する加工テーブル22と、加工テーブル22を回転させるテーブル駆動部42と、を含む。加工テーブル22は、円板状の形状を有し、上面部にワークWを保持するワーク保持面22Aを有する。ワークWは、たとえば、真空吸着によってワーク保持面22Aに保持される。ワークWは、水平に保持される。テーブル駆動部42は、モータを含み、モータによって加工テーブル22を回転させる。
門型コラム34には、Y方向に沿って移動する一対のY軸テーブル44が備えられる。各Y軸テーブル44は、門型コラム34に配設された共通のY軸ガイドレール46にガイドされて、Y方向に沿って移動自在に支持される。各Y軸テーブル44は、たとえば、個別にY軸モータに駆動されて、個別に移動する。Y軸モータは、たとえば、リニアモータで構成される。また、各Y軸テーブル44は、Y軸センサによって、その移動軸上での位置(Y方向の位置)が個別に検出される。Y軸センサは、たとえば、リニアスケールで構成される。
各Y軸テーブル44には、Z方向に沿って移動するZ軸テーブル48が備えられる。各Z軸テーブル48は、Y軸テーブル44に配設された図示しないZ軸ガイドレールにガイドされて、Z方向に沿って移動自在に支持される。各Z軸テーブル48は、たとえば、個別にZ軸モータに駆動されて、個別に移動する。Z軸モータは、たとえば、リニアモータで構成される。また、各Z軸テーブル48は、Z軸センサによって、その移動軸上での位置(Z方向の位置)が個別に検出される。Z軸センサは、たとえば、リニアスケールで構成される。
各Z軸テーブル48には、ワークWを加工する加工ユニット50が備えられる。加工ユニット50は、スピンドル24と、スピンドル24を回転させるスピンドル駆動部52と、切削液を供給する切削液供給部(図示せず)と、を含む。図2に示した例では、2つの加工ユニット50が、方向Yにおいて対向している。2つの加工ユニット50は、例えば、方向Yにおいて、互いに反対向きに配置されている。例えば、2つの加工ユニット50は、サドル32(若しくは、X軸ガイドレール38)を間に挟んで対称に配置されている。スピンドル24は、Y方向に沿って配置される。スピンドル24は、先端にブレード装着部を有する。ブレード26は、ブレード装着部に着脱可能に装着される。ブレード装着部の構成については後述する。スピンドル駆動部52は、モータを含み、モータによってスピンドル24を回転させる。切削液供給部は、ノズルを含み、ノズルからブレード26とワークWとの接触部に切削液を供給する。
前述したように構成される加工部14によれば、X軸テーブル36を駆動することにより、加工テーブル22がX方向に沿って送られる。これにより、ワークWが切削送りされる。また、Y軸テーブル44を駆動することにより、加工ユニット50がY方向に沿って送られる。これにより、ブレード26がインデックス送りされる。更に、Z軸テーブル48を駆動することにより、加工ユニット50がZ方向に沿って送られる。これにより、ブレード26が切り込み送りされる。また、加工テーブル22を回転させることにより、ワークWの向き(回転位置)が切り替えられる。このような加工部14の動作によって、ワークWが切削又はワークWに切溝が加工される。
[ブレード装着部]
図3は、ブレード装着部の構成を示す断面図である。図3では、図2に示した2つの加工ユニット50の内のY方向の矢印の先端側に配置された加工ユニット50のブレード装着部60を用いて説明する。図3に示した加工ユニット50のブレード装着部60の構成は、他の加工ユニット50のブレード装着部に適用され得る。
本実施の形態において、ブレード26は、いわゆるハブレスブレードが使用される。ハブレスブレードは、台金(ハブ)のないブレードである。なお、台金を備えたハブブレードを使用する構成とすることもできる。ブレード26は、円板状の形状を有し、中央部分に円形の装着穴26Aを有する。
上記のように、ブレード26は、ブレード装着部60を介して、スピンドル24の先端部に着脱可能に装着される。
ブレード装着部60は、スピンドル24の先端に備えられたフランジ装着部24B、フランジ装着部24Bに装着される後フランジ70、後フランジ70をフランジ装着部24Bに固定する固定用ネジ72、ブレード26を後フランジ70との間で挟んで固定する前フランジ74、及び、前フランジ74を固定する固定用ナット76等で構成される。ブレード装着部60は、スピンドル24の回転に応じて回転する。
フランジ装着部24Bは、先端に向かって径が小さくなるテーパ状の形状(円錘台形状)を有する。フランジ装着部24Bは、スピンドル本体24Aの先端に一体的に備えられる。スピンドル24は、フランジ装着部24Bが、スピンドル駆動部52のハウジング52Aの先端から突出して配置される。より具体的には、ハウジング52Aの先端に取り付けられた先端カバー80の開口部80Aから突出して配置される。先端カバー80は、ボルト82によって、スピンドル駆動部52のハウジング52Aの先端に固定して取り付けられる。
後フランジ70は、主として、後フランジ本体70A及びフランジ部70Bで構成される。後フランジ本体70Aは、円筒状の形状を有する。後フランジ本体70Aは、その内側にフランジ装着部24Bが嵌合する孔を有する。後フランジ本体70Aの内側に形成された孔は、フランジ装着部24Bの形状に合致した形状を有する。すなわち、後フランジ本体70Aの孔の内周部は、フランジ装着部24Bの形状に対応したテーパ状の形状を有する。フランジ部70Bは、円板状の形状を有し、後フランジ本体70Aの基端部外周に一体的に備えられる。フランジ部70Bには、Y方向の矢印の先端と反対側(以下、前側若しくは先端側と称する場合もある)の端面にブレード嵌合部70Cが備えられる。ブレード嵌合部70Cは、ブレード26の装着穴26Aに対応した形状を有する。ブレード26は、その装着穴26Aをブレード嵌合部70Cに嵌めることで、後フランジ70の同軸上に保持される。
固定用ネジ72は、フランジ装着部24Bの先端にネジ結合される。フランジ装着部24Bには、固定用ネジ72がネジ結合されるネジ穴24Cが備えられる。ネジ穴24Cは、フランジ装着部24Bの先端に、スピンドル24の軸に沿って形成される。
後フランジ70は、その内周部をフランジ装着部24Bに嵌めることで、フランジ装着部24Bの同軸上に装着される。装着後、フランジ装着部24Bのネジ穴24Cに固定用ネジ72を嵌め、締め付けることにより、後フランジ70がフランジ装着部24Bに押し付けられて、フランジ装着部24Bに一体的に固定される。
前フランジ74は、円板状の形状を有し、中央部分に円形の穴74Aを有する。前フランジ74は、穴74Aを後フランジ本体70Aに嵌めることで、後フランジ70に装着される。
固定用ナット76は、後フランジ本体70Aの先端部にネジ結合される。後フランジ本体70Aの先端部には、固定用ナット76がネジ結合される雄ネジ部70Dが備えられる。
ブレード26は、ブレード装着部60に装着される。ここで、ブレード26のブレード装着部60への装着方法について説明する。まず、スピンドル24に後フランジ70を装着する。後フランジ70は、その内周部をフランジ装着部24Bに嵌めることで、フランジ装着部24Bに装着される。装着後、固定用ネジ72で後フランジ70をフランジ装着部24Bに固定する。次に、ブレード26を後フランジ70に装着する。ブレード26は、その装着穴26Aを後フランジ70のフランジ部70Bに備えられたブレード嵌合部70Cに嵌めることで、後フランジ70に装着される。その後、後フランジ70に前フランジ74を装着する。前フランジ74は、中央の穴74Aに後フランジ本体70Aを通すことで、後フランジ70に装着される。前フランジ74の装着後、固定用ナット76を後フランジ70の雄ネジ部70Dに嵌めて、締め付ける。これにより、ブレード26が後フランジ70と前フランジ74との間で挟まれて固定される。
[弾性波検出部]
本実施の形態のダイシング装置10は、ブレード26から生じる弾性波を検出する弾性波検出部90を備える。弾性波検出部90は、AEセンサ92を含む。AEは、アコースティック・エミッション(acoustic emission)の略である。アコースティック・エミッションとは、材料が変形あるいは破壊する際に、内部に蓄えていたひずみエネルギを弾性波(AE波)として放出する現象である。AE波は、数kHz~数MHzと非常に高い周波数成分をもつ。周波数の高い信号は、空気中では減衰が大きいので、AE波は、主に物体中を伝播する。AEセンサ92は、このAE波を検出し、電気信号に変換して出力する。AEセンサは、一般的にPZT(ジルコン酸チタン酸鉛)などの圧電素子を用いてAE波を検出する。なお、AEセンサ自体は、公知の構成であるので、その詳細についての説明は省略する。
本実施の形態のダイシング装置10では、AEセンサ92がブレード装着部60に取り付けられる。ブレード装着部60は、回転体であることから、本実施の形態では、コイルを使用して、AEセンサ92の信号を外部に伝送する。以下、弾性波検出部90の構成、及び、その取り付け構造について説明する。
図3に示すように、弾性波検出部90は、AEセンサ92と、AEセンサ92と電気的に接続される送信側コイル94と、送信側コイル94と磁気結合される受信側コイル96と、を備える。AEセンサ92及び送信側コイル94は、回転体である後フランジ70に取り付けられる。一方、受信側コイル96は、ハウジング52Aの先端に固定されて回転しない先端カバー80に取り付けられる。なお、回転体に対して回転しない物体を「固定体」と称する場合もある。
図4は、後フランジの背面図である。
同図に示すように、後フランジ70には、フランジ部70Bの背面部にAEセンサ取付部70E、バランスウェイト取付部70F及び送信側コイル取付部70Gが備えられる。
AEセンサ取付部70E及びバランスウェイト取付部70Fは、同じ形状の凹部で構成され、後フランジ70の軸に対し、対称に配置される。AEセンサ92は、AEセンサ取付部70Eに収容されて、後フランジ70に取り付けられる。
バランスウェイト取付部70Fには、バランスウェイト98が取り付けられる。バランスウェイト98は、後フランジ70の回転バランスをとるウェイトである。バランスウェイト98を取り付けることにより、スピンドル24を高速回転させた場合であっても、ブレのない安定した回転を確保できる。
送信側コイル取付部70Gは、円環状の凹部で構成され、回転軸となる後フランジ70の軸と同軸上に配置される。送信側コイル94は、送信側コイル取付部70Gに収容されて、後フランジ70に取り付けられる。後フランジ70に取り付けられた送信側コイル94は、回転体である後フランジ70の軸(回転軸)の周囲に巻回して配置される。
図5は、先端カバーの正面図である。
図5に示すように、先端カバー80の先端側の面には、受信側コイル取付部80Bが備えられる。受信側コイル取付部80Bは、円環状の凹部で構成され、送信側コイル取付部70Gと同軸上に配置される。受信側コイル96は、受信側コイル取付部80Bに収容されて、先端カバー80に取り付けられる。先端カバー80に取り付けられた受信側コイル96は、送信側コイル94と同軸上に配置される。したがって、送信側コイル94と同様に、後フランジ70の軸(回転軸)の周りに巻回されて配置される。
以上の構成により、送信側コイル94と受信側コイル96とが、所定の隙間をもって互いに対向して配置され、両者が非接触の状態で磁気結合される。また、この構成により、AEセンサ92から出力される信号が、送信側コイル94と受信側コイル96との相互誘導によって、受信側コイル96に伝送される。
[カッターセット]
ダイシング装置10では、高精度な加工を実現するために、加工テーブル22に対し、ブレード26の高さが高精度に管理される。ブレード26の高さの管理は、加工テーブル22の表面にブレード26が接触する位置を検出することで行われる。この処理は、カッターセットと呼ばれ、定期的に実施される。検出された位置は、ブレード26の基準位置に設定され、この基準位置の情報に基づいて、ブレード26の切り込み送りが制御される。また、この基準位置の情報に基づいて、ブレード26の摩耗量が計測される。すなわち、基準位置の変化量からブレード26の径の変化量(摩耗量)を算出する。
本実施の形態のダイシング装置10では、カッターセットに際し、加工テーブル22へのブレード26の接触を弾性波検出部90の出力に基づいて検出する。
カッターセットは、カッターセットの実行指令に応じて、システムコントローラ100が行う。実行指令は、手動と自動の双方を含む。手動の場合、オペレータが、ダイシング装置10の操作部(図示せず)を介して、手動で入力する。自動の場合、特定のタイミングで自動的に入力される。たとえば、ブレード26を交換してから一定時間が経過した場合、ブレード26を交換してから一定数のワークを加工した場合等に自動で実行指令が入力される。
システムコントローラ100は、ダイシング装置10の全体の動作を統括制御する制御部であり、たとえば、プロセッサ及びメモリ等を備えたコンピュータで構成される。プロセッサは、たとえば、CPU(central processing unit)で構成される。メモリは、RAM(random access memory)及びROM(read only memory)を含む。
システムコントローラ100は、スピンドル駆動部52及びZ軸モータ48Mの駆動を制御して、カッターセットの処理を実行する。
図6は、カッターセットに関してシステムコントローラが有する主な機能のブロック図である。
図6に示すように、カッターセットに関し、システムコントローラ100は、スピンドル回転制御部110、切り込み送り制御部112、接触検出部114、基準位置設定部116等の機能を有する。各機能は、プロセッサが所定の制御プログラムを実行することにより、プロセッサにより実現される。制御プログラムは、メモリ又は記憶部102に格納される。記憶部102は、たとえば、フラッシュメモリで構成される。
スピンドル回転制御部110は、スピンドル駆動部52の駆動を制御して、ブレード26の回転を制御する。
切り込み送り制御部112は、Z軸モータ48Mの駆動を制御して、ブレード26のZ軸方向の送り(切り込み送り)を制御する。
接触検出部114は、弾性波検出部90から出力される信号(AEセンサ92の出力信号)を処理して、加工テーブル22へのブレード26の接触を検出する。
図7は、AEセンサの出力の一例を示すグラフである。同図に示すグラフにおいて、横軸は時間であり、縦軸はAEセンサの出力(圧電素子の出力電圧[V])である。図7(A)は、ブレードが空転している場合のAEセンサの出力の一例を示している。また、図7(B)は、途中でブレードが加工テーブルに接触した場合のAEセンサの出力の一例を示している。図7(B)は、時刻T1において、ブレードが加工テーブルに接触した場合の例である。
図7(A)に示すように、ブレード26が、空転している場合、すなわち、ブレード26に何も接触していない場合、AEセンサ92の出力は、接触している場合に比して低い値となり、かつ、ほぼ一定の範囲内で推移する。
一方、図7(B)に示すように、ブレード26が、途中で加工テーブル22に接触すると、AEセンサ92の出力が上昇する。
接触検出部114は、弾性波検出部90から出力される信号を監視し、ブレード26が加工テーブル22に接触したことを検出する。具体的には、弾性波検出部90から出力される信号と閾値Thとを比較し、弾性波検出部90から出力される信号が閾値を超えた場合に、ブレード26が加工テーブル22に接触したと判定する。
基準位置設定部116は、接触検出部114の出力及びZ軸センサ48Sの出力に基づいて、ブレード26の基準位置を設定する。具体的には、加工テーブル22へのブレード26の接触が検出された時点で検出されるZ軸テーブル48の位置をブレード26の基準位置として設定する。設定された基準位置の情報は、記憶部102に記録される。
[カッターセットの処理]
図8は、カッターセットの処理手順を示すフローチャートである。
まず、カッターセットの実行指令の有無が判定される(ステップS1)。上記のように、カッターセットは、操作部を介して手動で入力される他、特定のタイミングで自動的に入力される。
カッターセットの実行指示が入力されると、ブレード26が原点位置にセットされる(ステップS2)。原点位置は、ブレード26が、加工テーブル22に接触しない位置、すなわち、離間した位置に設定される。
次に、ブレード26を回転させながら、加工テーブル22に向けて切り込み送りされる(ステップS3)。
ブレード26の切り込み送りが開始されると、接触検出部114において、ブレード26の接触検出が行われる。接触検出部114は、AEセンサ92の出力に基づいて、ブレード26が加工テーブル22に接触したか否かを判定する(ステップS4)。より詳細には、AEセンサ92の出力が閾値を超えたか否かを判定して、ブレード26が加工テーブル22に接触したか否かを判定する。
ブレード26の接触が検出されると、基準位置の設定が行われる(ステップS5)。すなわち、ブレード26の接触が検出された時点のZ軸テーブル48の位置の情報を取得し、取得した位置をブレード26の基準位置に設定する。設定された基準位置の情報は、記憶部102に記憶される。
また、ブレード26の接触が検出されると、ブレード26が原点位置に戻され、かつ、ブレード26の回転が停止される(ステップS6)。
以上一連の工程でカッターセットの処理が完了する。以後、設定された基準位置を基準にして、ブレード26の切り込み送りが制御される。また、設定された基準位置の情報に基づいて、ブレード26の摩耗量が計測される。
なお、本実施の形態のダイシング装置10には、2つの加工ユニット50が備えられているので、加工ユニット50ごとにカッターセットが行われる。
以上説明したように、本実施の形態のダイシング装置10によれば、AEセンサ92の出力に基づいて、ブレード26の接触を検出するので、ブレード26の種類に依らずに、ブレード26と加工テーブル22との高さ関係を高精度に管理できる。したがって、たとえば、導電性を有していないブレードも使用できる。
また、本実施の形態のダイシング装置10によれば、ブレード装着部60にAEセンサ92が取り付けられるので、ブレード26から生じる弾性波(ブレードに起因して生じる弾性波)を精度よく検出できる。すなわち、ブレード26を直接保持する部材にAEセンサ92が取り付けられるので、ブレード26から生じる弾性波をほぼ減衰させることなく検出できる。また、加工ユニット50を複数有する場合であっても、各加工ユニット50のブレード26から生じる弾性波を精度よく検出できる。更に、後フランジ70に専用の取付部を設けて、AEセンサ92及び送信側コイル94を取り付けることにより、AEセンサ92及び送信側コイル94を回転体である後フランジ70に強固に固定できる。これにより、スピンドル24を高速回転させた場合であっても、安全に使用できる。
なお、上記実施の形態では、ブレード26を加工テーブル22に直接接触させる構成としているが、加工テーブル22にカッターセット用の部材(加工テーブル22との位置関係が既知の部材)を取り付け、その部材にブレード26を接触させて、カッターセットを行う構成とすることもできる。この場合も実質的にブレード26を加工テーブル22に接触させる構成に含まれる。
(変形例)
上記実施の形態では、AEセンサ92をブレード装着部60に取り付けて、ブレード26から生じる弾性波を検出する構成としているが、AEセンサ92を取り付ける部位は、これに限定されるものではない。以下、AEセンサ92の取り付け箇所についての他の例について説明する。
[スピンドルに取り付ける例]
ブレード26は、ブレード装着部60を介して、スピンドル24と一体化される。よって、ブレード26から生じる弾性波は、スピンドル24にも伝播される。したがって、AEセンサ92をスピンドル24に取り付けた場合も、ブレード26から生じる弾性波を検出できる。
図9は、スピンドルへのAEセンサの取り付け構造の一例を示す図である。
同図に示すように、本例では、AEセンサ92が、スピンドル24の先端(ブレード装着部60側の端部)に内蔵される。
スピンドル24には、軸に沿って基端部から先端部まで延びる孔24Dが備えられる。孔24Dは、スピンドル24の回転軸と同軸上に配置される。AEセンサ92は、このスピンドル24に備えられた孔24Dに収容され、孔24Dの先端部分に固定して取り付けられる。
スピンドル24の基端部には、送信側コイル94を備えた送信側ボビン94Aが取り付けられる。送信側コイル94は、回転体であるスピンドル24の回転軸の周囲に巻回して配置される。AEセンサ92は、孔24Dに配置された導線93を介して、送信側コイル94と電気的に接続される。
固定部であるスピンドル駆動部52のハウジング52Aには、その基端部にエンドキャップ84が取り付けられる。エンドキャップ84には、その内面に受信側コイル96を備えた受信側ボビン96Aが取り付けられる。受信側コイル96は、スピンドル24の回転軸の周囲に巻回して配置され、かつ、送信側コイル94と所定の隙間をもって対向して配置される。これにより、送信側コイル94と受信側コイル96とが、非接触の状態で磁気結合される。
以上の構成により、AEセンサ92が、スピンドル24に取り付けられる。AEセンサ92から出力される信号は、送信側コイル94と受信側コイル96との相互誘導によって、受信側コイル96に伝送される。
上記のように、ブレード26は、ブレード装着部60を介してスピンドル24と一体化されるので、スピンドル24にAEセンサ92を取り付けた場合であっても、ブレード26から生じる弾性波を検出できる。特に、本例では、スピンドル24の先端側(ブレード装着部側)にAEセンサ92が取り付けられるので、ほぼ減衰させることなく、ブレード26から生じる弾性波を検出できる。また、本例では、AEセンサ92及び送信側コイル94が、スピンドル24の同軸上に取り付けられるので、スピンドル24を安定して回転させることができる。AEセンサ92は、スピンドル24に内蔵されるので、強固に固定できる。
[加工テーブルに取り付ける例]
上記のように、カッターセットでは、ブレード26が加工テーブル22に接触した際に生じる特定パターンの弾性波をAEセンサ92で検出することにより、ブレード26が加工テーブル22に接触したことを検出する。この特定パターンの弾性波は、加工テーブル22にも伝播される。よって、加工テーブル22にAEセンサ92を取り付けた場合も、そのAEセンサ92の出力からブレード26の接触を検出できる。
図10は、加工テーブルへのAEセンサの取り付け構造の一例を示す図である。
同図に示すように、回転体である加工テーブル22にAEセンサ92及び送信側コイル94が取り付けられ、固定体であるテーブル駆動部42に受信側コイル96が取り付けられる。AEセンサ92及び送信側コイル94は、センサベース86を介して加工テーブル22に取り付けられる。また、受信側コイル96は、コイルベース88を介して、テーブル駆動部42に取り付けられる。
図11は、センサベースの下面図である。
図11に示すように、センサベース86は、円環状の形状を有する。センサベース86の下面部には、AEセンサ取付部86A、バランスウェイト取付部86B及び送信側コイル取付部86Cが備えられる。
AEセンサ取付部86Aは及びバランスウェイト取付部86Bは、同じ形状の凹部で構成され、センサベース86の軸(=加工テーブル22の回転軸)に対し、対称に配置される。AEセンサ92は、AEセンサ取付部86Aに収容されて、センサベース86に取り付けられる。
バランスウェイト取付部86Bには、バランスウェイト98が取り付けられる。バランスウェイト98は、センサベース86の回転バランスをとるウェイトである。
送信側コイル取付部86Cは、円環状の凹部で構成され、センサベース86の軸と同軸上に配置される。送信側コイル94は、送信側コイル取付部86Cに収容されて、センサベース86に取り付けられる。これにより、送信側コイル94が、センサベース86の軸の周囲に巻回して配置される。
以上の構成のセンサベース86は、図10に示すように、加工テーブル22の下面同軸上に取り付けられて、加工テーブル22と一体化される。センサベース86が加工テーブル22に取り付けられることにより、送信側コイル94が、加工テーブル22の回転軸と同軸上に配置され、その周囲に巻回して配置される。
図12は、コイルベースの上面図である。
図12に示すように、コイルベース88は、円環状の形状を有する。コイルベース88の上面部には、受信側コイル取付部88Aが備えられる。受信側コイル取付部88Aは、円環状の凹部で構成され、コイルベース88と同軸上に配置される。受信側コイル96は、受信側コイル取付部88Aに収容されて、コイルベース88に取り付けられる。これにより、受信側コイル96が、コイルベース88の軸の周囲に巻回して配置される。
以上の構成のコイルベース88は、図10に示すように、テーブル駆動部42のハウジング42Aの上端部に取り付けられ、加工テーブル22の回転軸と同軸上に配置される。これにより、受信側コイル96が、加工テーブル22の回転軸と同軸上に配置され、その周囲に巻回して配置される。また、受信側コイル96が、送信側コイル94と同一円周上に配置される。
以上の構成により、送信側コイル94と受信側コイル96とが、所定の隙間をもって互いに対向して配置され、両者が非接触の状態で磁気結合される。また、この構成により、AEセンサ92から出力される信号が、送信側コイル94と受信側コイル96との相互誘導によって、受信側コイル96に伝送される。
ブレード26が加工テーブル22に接触すると、その接触の際に生じる弾性波が、AEセンサ92で検出される。これにより、ブレード26の接触を検出できる。
(第2の実施の形態)
前述したように、ダイシング装置10に弾性波検出部90を備えることにより、ブレード26と加工テーブル22との接触を検出できる。これにより、ブレード26の種類に依らずに、接触式のカッターセットを実施できる。
弾性波検出部90を備えたダイシング装置10では、更に、加工中のブレード26から生じる弾性波を監視することで、ワークW及びブレード26の状態を推定できる。以下、弾性波を利用した、ワークW及びブレード26の状態の推定について説明する。
[ワークの状態の推定]
図13は、切削ラインを上面から見た模式図である。
通常、ワークWは、ストリートStの中心(ストリートセンタ)を切削される。図13は、ストリートセンタStCに対し、カーフ(Kerf;切溝)Kの中心(カーフセンタ)KCがずれて切削された場合の例を示している。ストリートセンタStCとカーフセンタKCとがずれると、センターズレが生じる。ストリートセンタStCとカーフセンタKCとのずれ量が、センターずれ量εである。
図14は、チッピングの発生の模式図である。図14は、ダイシングテープDTに張り付けられたウェーハ(ワークW)を切削しているときの状態を示している。図14の中の符号FBは、異物である。カーフエッジ(ストリートとの境界)には、チッピングCが生じる。チッピングとは、ワークのカーフラインの角や縁に生じる意図しない割れや欠けのことをいう。チッピングは、ブレードの目詰まり、切削液の液量の変動、ワーク材質の様相変質、オペレータの設定ミス等、種々の要因で発生し得る。
チッピングの発生時は、通常の切削とは異なる変形、破壊の様相となる場合があるため、安定時とは異なる弾性波が発生する。したがって、ブレードから発生する弾性波を監視することで、チッピング(許容値を超えるチッピング)の発生を検出できる。
図15は、加工中のAEセンサの出力の一例を示すグラフである。図15(A)は、安定切削時のAEセンサの出力の一例を示している。また、図15(B)は、チッピングが突発的に発生した場合のAEセンサの出力の一例を示している。図15(B)は、時刻T2及び時刻T3において、チッピングが発生した場合の例である。
同図(A)に示すように、加工(切削)が安定している場合、AEセンサ92の出力は、ほぼ一定の範囲内で推移する。すなわち、ほぼ一様の出力となる。
一方、同図(B)に示すように、突発的なチッピングが発生すると、AEセンサ92の出力が、安定傾向から大きく変動する。
図16は、加工中のAEセンサの出力の一例を示すグラフである。同図は、チッピングが継続して発生している場合のAEセンサの出力の一例を示している。
切削液の液量の違いや、オペレータの設定ミスなどによって、許容値を超えるチッピングが、継続して発生する場合がある。この場合、AEセンサ92の出力は、安定時とは異なる値を取り続ける。よって、安定時の出力(図15(A)参照)と比較することにより、異常を検出できる。
[ブレードの状態の推定]
図17は、加工中のブレードの模式図である。
ブレード26は、砥粒(切削粒子)ACと、砥粒ACを結合ずる結合剤(ボンド材)BOと、それらをどれだけ空間を開けて結合するかの密集度(チップポケット)CPとのバラスをとることにより、最適な加工(切削)が実現される。
ワークWの加工は、ブレード26に切削液CLを掛けながら行われる。ワークWを切削すると、いわゆる切粉(切削紛)SWが発生する。また、砥粒ACもブレード26から若干脱落する。この切粉SWや脱落した砥粒が、切削液CLと共にブレード26から適度に離脱すると、良好な切削となる。 その一方で、バランスが崩れると、ブレード26のチップポケットCPに異物が詰まる。この現象を「目詰まり」と呼ぶ。ブレード26に目詰まりが生じると、AEセンサ92の出力が変動する。
図18は、加工中のAEセンサの出力の一例を示すグラフである。図18において、太線で示すグラフG1は、ブレードに目詰まりが発生した場合のAEセンサ92の出力の一例を示すグラフである。一方、細線で示すグラフG2は、目詰まりのない安定時のAEセンサ92の出力の一例を示すグラフである。
図18に示すように、ブレード26に目詰まりが発生すると、AEセンサ92の出力が、安定時から段階的に変動する。したがって、安定時のAEセンサ92の出力と比較することで、目詰まりの発生状態を推定できる。
[装置構成]
本実施の形態のダイシング装置10は、ブレード26から発生する弾性波に基づいて、ワークWの状態を推定する機能、及び、ブレード26の状態を推定する機能を有する。この機能は、システムコントローラ100が実現する。
なお、装置構成は、実質的に第1の実施の形態のダイシング装置10と同じである。したがって、ここでは、システムコントローラ100が有する上記機能についてのみ説明する。
図19は、推定に関するシステムコントローラが有する機能のブロック図である。
図19に示すように、推定の処理に関して、システムコントローラ100は、ワークWの状態を推定するワーク状態推定部120、及び、ブレード26の状態を推定するブレード状態推定部122を有する。各部は、プロセッサが所定のプログラムを実行することにより、プロセッサにより実現される。プログラムは、メモリ又は記憶部102に格納される。
ワーク状態推定部120は、弾性波検出部90から出力される信号(AEセンサ92の出力信号)を取得し、ワークWの状態、特に、チッピングの発生の有無を推定する。本実施の形態では、安定切削時に得られる信号との比較により、ワークWの状態を推定する。
上記のように、許容値を超えるチッピングが突発的に発生すると、AEセンサ92の出力が安定傾向から大きく変動する(図15(B)参照)。また、許容値を超えるチッピングが、継続して発生すると、AEセンサ92の出力は、安定時とは異なる値を取り続ける(図16参照)。
そこで、ワーク状態推定部120は、加工中に得られるAEセンサ92の出力信号を、安定切削時にAEセンサ92から得られる出力信号と比較して、チッピングの発生を検出(推定)する。たとえば、安定切削時に得られる出力信号に基づいて閾値を設定し、閾値を超える信号を検出して、突発的なチッピングを検出(推定)する。また、たとえば、安定切削時に得られる出力信号に基づいて閾値を設定し、規定時間内に閾値を超える信号が規定回数以上検出された場合に、継続的なチッピングを検出(推定)する。
ブレード状態推定部122は、弾性波検出部90から出力される信号を取得し、ブレード26の状態、特に、目詰まりの発生状態を推定する。本実施の形態では、安定切削時に得られる信号との比較により、目詰まりの発生状態を推定する。
上記のように、ブレード26に目詰まりが発生すると、AEセンサ92の出力が、安定時から段階的に変動する。したがって、安定時のAEセンサ92の出力信号と比較することで、目詰まりの発生状態を推定できる。
ブレード状態推定部122は、たとえば、統計的手法により、AEセンサ92の出力信号の変動傾向を算出し、安定時に得られる出力信号の変動傾向との比較により、目詰まりの発生を推定する。すなわち、算出した変動傾向が、安定時の変動傾向と異なる場合(特に、出力信号が、安定時の出力信号から経時的に離れる場合)に、許容量を超える目詰まりが発生したと推定する。
安定切削時に得られるAEセンサ92の出力信号の情報は、事前に取得し、記憶部102に記憶される。なお、安定切削時に得られるAEセンサ92の出力信号は、加工条件(使用するブレードの種類等)により異なるので、加工条件ごとに用意される。
以上説明したように、本実施の形態のダイシング装置10によれば、弾性波検出部90を利用して、ワークW及びブレード26の状態を推定できる。
なお、推定結果は、表示部(図示せず)に表示される。また、許容値を超えるチッピング及び目詰まりが検出(推定)された場合は、警告が発せられる。
本実施の形態では、ワークW及びブレード26の双方の状態を推定する構成としているが、いずれか一方の状態についてのみ推定する構成とすることもできる。
上記実施の形態では、ブレード26を切り込み送りする際、加工テーブル22に対し、加工ユニット50の側を移動させる構成としているが、加工テーブル22の側を移動させる構成としてもよい。あるいは、双方を移動させる構成としてもよい。すなわち、スピンドル24と加工テーブル22との移動は、相対的であってよい。
10…ダイシング装置、12…供給回収部、14…加工部、16…洗浄部、18…搬送部、20…ロードポート、22…加工テーブル、22A…ワーク保持面、24…スピンドル、24A…スピンドル本体、24B…スピンドルのフランジ装着部、24C…スピンドルのネジ穴、24D…スピンドルの孔、26…ブレード、26A…ブレードの装着穴、28…洗浄テーブル、30…ロボットアーム、32…サドル、34…門型コラム、36…X軸テーブル、38…X軸ガイドレール、40…テーブルユニット、42…テーブル駆動部、42A…テーブル駆動部のハウジング、44…Y軸テーブル、46…Y軸ガイドレール、48…Z軸テーブル、48M…Z軸モータ、48S…Z軸センサ、50…加工ユニット、52…スピンドル駆動部、52A…スピンドル駆動部のハウジング、60…ブレード装着部、70…後フランジ、70A…後フランジ本体、70B…後フランジのフランジ部、70C…後フランジのブレード嵌合部、70D…後フランジの雄ネジ部、70E…後フランジのAEセンサ取付部、70F…後フランジのバランスウェイト取付部、70G…後フランジの送信側コイル取付部、72…固定用ネジ、74…前フランジ、74A…前フランジの穴、76…固定用ナット、80…スピンドル駆動部のハウジングの先端カバー、80A…開口部、80B…受信側コイル取付部、82…ボルト、84…エンドキャップ、86…センサベース、86A…センサベースのAEセンサ取付部、86B…センサベースのバランスウェイト取付部、86C…センサベースの送信側コイル取付部、88…コイルベース、88A…コイルベースの受信側コイル取付部、90…弾性波検出部、92…AEセンサ、93…導線、94…送信側コイル、94A…送信側ボビン、96…受信側コイル、96A…受信側ボビン、98…バランスウェイト、100…システムコントローラ、102…記憶部、110…スピンドル回転制御部、112…切り込み送り制御部、114…接触検出部、116…基準位置設定部、120…ワーク状態推定部、122…ブレード状態推定部、AC…砥粒、C…チッピング、CL…切削液、CP…チップポケット、DT…ダイシングテープ、KC…カーフセンタ、SW…切粉、St…ストリート、StC…ストリートセンタ、W…ワーク、ε…センターずれ量

Claims (13)

  1. ワークを保持するテーブルと、
    前記テーブルに対し相対的に移動するスピンドルと、
    前記スピンドルに一体的に取り付けられるブレード装着部と、
    前記ブレード装着部に装着されるブレードと、
    弾性波を検出する弾性波検出部と、
    備え、
    前記弾性波検出部は、
    前記スピンドル、前記ブレード装着部、及び前記テーブルの少なくとも1つに取り付けられるAEセンサと、
    前記スピンドル、前記ブレード装着部、及び前記テーブルの少なくとも1つに取り付けられ、前記AEセンサと接続される送信側コイルと、
    前記送信側コイルと対向して配置され、前記送信側コイルと磁気結合される受信側コイルと、
    を備え、
    前記AEセンサから出力される信号が、前記送信側コイルを介して、前記送信側コイルと前記受信側コイルとの相互誘導によって、前記受信側コイルに伝送される、
    ダイシング装置。
  2. 前記テーブル、前記スピンドル、及び前記ブレード装着部は、回転体である、請求項1に記載のダイシング装置。
  3. 前記弾性波検出部から出力される信号に基づいて、前記ブレードと前記テーブルとの接触を検出する接触検出部と、
    前記ブレードの基準位置を設定する基準位置設定部と、
    を備え、
    前記基準位置設定部は、前記ブレードと前記テーブルとが離間した位置から前記スピンドルを前記テーブルに向けて移動させ、前記接触検出部で接触が検出される位置を前記ブレードの前記基準位置に設定する、
    請求項1又は2に記載のダイシング装置。
  4. 前記ワークの加工中に前記弾性波検出部から出力される信号に基づいて、前記ブレード及び/又はワークの状態を推定する推定部を更に備える、
    請求項1乃至3のいずれか1項に記載のダイシング装置。
  5. 前記推定部が、前記弾性波検出部から出力される信号に基づいて、チッピングの発生を推定する、
    請求項4に記載のダイシング装置。
  6. 前記推定部が、前記弾性波検出部から出力される信号に基づいて、前記ブレードの目詰まりの状態を推定する、
    請求項4に記載のダイシング装置。
  7. 前記推定部が、安定切削時に前記弾性波検出部から出力される信号との比較で前記ブレード及び/又はワークの状態を推定する、
    請求項4乃至6のいずれか1項に記載のダイシング装置。
  8. 前記AEセンサ及び前記送信側コイルが、前記ブレード装着部に取り付けられる、
    請求項1乃至7のいずれか1項に記載のダイシング装置。
  9. 前記AEセンサ及び前記送信側コイルが、前記スピンドルに取り付けられる、
    請求項1乃至7のいずれか1項に記載のダイシング装置。
  10. 前記ブレード装着部が、前記スピンドルの先端部に備えられ、
    前記AEセンサが、前記スピンドルの先端部に内蔵され、
    前記送信側コイルが、前記スピンドルの基端部に取り付けられる、
    請求項9に記載のダイシング装置。
  11. 前記AEセンサ及び前記送信側コイルが、前記テーブルに取り付けられる、
    請求項1乃至7のいずれか1項に記載のダイシング装置。
  12. 前記受信側コイル及び前記送信側コイルが、前記スピンドル、前記ブレード装着部、及び前記テーブルの少なくとも1つの回転軸の周囲に巻回して配置される、
    請求項1乃至11のいずれか1項に記載のダイシング装置。
  13. 前記スピンドル、前記ブレード装着部、及び前記テーブルの少なくとも1つにバランスウェイトが備えられる、
    請求項1乃至12のいずれか1項に記載のダイシング装置。
JP2022050564A 2022-03-25 2022-03-25 ダイシング装置 Pending JP2023143278A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022050564A JP2023143278A (ja) 2022-03-25 2022-03-25 ダイシング装置
CN202310273269.6A CN116803580A (zh) 2022-03-25 2023-03-20 切割装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022050564A JP2023143278A (ja) 2022-03-25 2022-03-25 ダイシング装置

Publications (1)

Publication Number Publication Date
JP2023143278A true JP2023143278A (ja) 2023-10-06

Family

ID=88078848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022050564A Pending JP2023143278A (ja) 2022-03-25 2022-03-25 ダイシング装置

Country Status (2)

Country Link
JP (1) JP2023143278A (ja)
CN (1) CN116803580A (ja)

Also Published As

Publication number Publication date
CN116803580A (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
JP6695102B2 (ja) 加工システム
KR102407413B1 (ko) 절삭 장치
TWI732977B (zh) 切削裝置
CN108724492B (zh) 切削装置
TW200950922A (en) Blade breakage and abrasion detecting device
KR102422909B1 (ko) 가공 장치
JP2008049445A (ja) 加工装置
TWI772361B (zh) 被加工物的切割方法
CN108858834B (zh) 切削装置
JP2008062353A (ja) 研削加工方法および研削加工装置
JP7379064B2 (ja) 切削装置
JP2023143278A (ja) ダイシング装置
JP5815422B2 (ja) 研削装置
KR20200101836A (ko) 연삭 장치
JP7148233B2 (ja) 被加工物の切削方法及び切削装置
KR20220141744A (ko) 가공 장치
JP6808292B2 (ja) 加工装置の診断方法
JP2017185599A (ja) 切削装置
JP2024054363A (ja) ワーク加工装置及びワーク加工方法
US20220168918A1 (en) Processing apparatus
JP6489429B2 (ja) ウェーハチャックの目詰まり検査装置及び検査方法
JP6800774B2 (ja) 切削装置
TW202027909A (zh) 切削裝置
JPS61230017A (ja) 工具位置検出装置
JPS60259360A (ja) ダイシング