JP2023142656A - Magnetostrictive material and method for producing the same - Google Patents

Magnetostrictive material and method for producing the same Download PDF

Info

Publication number
JP2023142656A
JP2023142656A JP2022049660A JP2022049660A JP2023142656A JP 2023142656 A JP2023142656 A JP 2023142656A JP 2022049660 A JP2022049660 A JP 2022049660A JP 2022049660 A JP2022049660 A JP 2022049660A JP 2023142656 A JP2023142656 A JP 2023142656A
Authority
JP
Japan
Prior art keywords
phase
alloy
less
atomic
magnetostrictive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022049660A
Other languages
Japanese (ja)
Inventor
亮介 貝沼
Ryosuke Kainuma
俊洋 大森
Toshihiro Omori
▲キョウ▼ 許
Xiao Xu
達矢 伊東
Tatsuya Ito
智仁 槙
Tomohito Maki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Proterial Ltd
Original Assignee
Tohoku University NUC
Proterial Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Proterial Ltd filed Critical Tohoku University NUC
Priority to JP2022049660A priority Critical patent/JP2023142656A/en
Publication of JP2023142656A publication Critical patent/JP2023142656A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a magnetostrictive material that does not use the elements that are expensive and involve a high resource risk and can be produced at a low cost and a method for producing the same.SOLUTION: A magnetostrictive material disclosed herein contains Mn: 44 atom% or more and 53 atom% or less, Al: 46 atom% or more and 52 atom% or less, and Cu: 0.5 atom% or more and 6 atom% or less, with a stable phase with a tetragonal structure constituting 55% or more.SELECTED DRAWING: Figure 1

Description

本開示は、磁歪材料及びその製造方法に関する。 The present disclosure relates to magnetostrictive materials and methods of manufacturing the same.

磁歪効果は磁性体に外部磁界を印加したときに磁性体に変形が起こる現象である。磁歪材料は超音波発生用振動子やアクチュエータ、射出成型用金型の型締装置などに用いられるほか、外力によって磁界が変化する逆磁歪効果を利用した振動発電やトルクセンサなど、多岐にわたって利用されている。磁歪量は、磁界未印加時の試料長さをL0、磁界印加時の磁界方向(L0方向)の試料長さをLとしたとき、長さの変化量ΔL=L-L0とL0との比率(ΔL/L0)をppm表記で表すことが多い。 The magnetostrictive effect is a phenomenon in which a magnetic material is deformed when an external magnetic field is applied to the material. Magnetostrictive materials are used in a wide variety of applications, including ultrasonic generators, actuators, mold clamping devices for injection molds, and vibration power generation and torque sensors that utilize the inverse magnetostriction effect in which the magnetic field changes with external force. ing. The amount of magnetostriction is determined by the amount of change in length ΔL = L - ratio of L0 to L0, where L0 is the sample length when no magnetic field is applied, and L is the sample length in the magnetic field direction (L0 direction) when a magnetic field is applied. (ΔL/L0) is often expressed in ppm.

古くから知られる磁歪材料として、NiやFe-Al合金、Fe-Co-V合金があり、非特許文献1ではそれぞれの飽和磁歪量は35ppm、40ppm、70ppmと報告されている。また、大きな磁歪現象を示す磁歪材料として、非特許文献2ではFe-Ga合金が開示されており、単結晶の場合に200ppmの飽和磁歪量が得られているほか、特許文献1では(Dy,Tb)-Fe合金やLa-(Fe,Si)-H合金が開示されており、(Dy,Tb)-Fe合金では1000ppm以上、La-(Fe,Si)-H合金では印加磁界10Tにおいて2000ppm以上の飽和磁歪量が得られている。 Magnetostrictive materials that have been known for a long time include Ni, Fe--Al alloy, and Fe--Co--V alloy, and Non-Patent Document 1 reports that the saturation magnetostriction amount of each is 35 ppm, 40 ppm, and 70 ppm. In addition, as a magnetostrictive material exhibiting a large magnetostriction phenomenon, Fe-Ga alloy is disclosed in Non-Patent Document 2, and a saturation magnetostriction of 200 ppm is obtained in the case of a single crystal, and in Patent Document 1 (Dy, Tb)-Fe alloys and La-(Fe,Si)-H alloys have been disclosed, with the (Dy,Tb)-Fe alloy having a concentration of 1000 ppm or more, and the La-(Fe,Si)-H alloy having a concentration of 2000 ppm at an applied magnetic field of 10T. The above saturation magnetostriction amount was obtained.

特開2002-69596号公報Japanese Patent Application Publication No. 2002-69596

荒井賢一、津屋昇、日本金属学会会報、17(1978)、963-968Kenichi Arai, Noboru Tsuya, Bulletin of the Japan Institute of Metals, 17 (1978), 963-968 A.E.Clark,J.B.Restorff,M.Wun-Fogle,T.A.Lograsso,D.L. Schlagel,IEEE Trans. Magn.,36(2000),3238-3240A. E. Clark, J. B. Restorff, M. Wun-Fogle, T. A. Lograsso, D. L. Schlagel, IEEE Trans. Magn. , 36 (2000), 3238-3240

従来の磁歪材料では、より大きな磁歪量を得ようとすると、CoやGa、希土類元素など供給量が少なく高価な元素を使う必要があった。特にDyやTbなどの希土類元素は産出地が限定されているなどの理由から供給が安定しておらず、将来的な資源リスク及び価格高騰リスクが高かった。 In conventional magnetostrictive materials, in order to obtain a larger amount of magnetostriction, it was necessary to use elements that are scarce and expensive, such as Co, Ga, and rare earth elements. In particular, the supply of rare earth elements such as Dy and Tb is unstable due to limited production areas, and there is a high risk of future resource risks and price increases.

またFe-Ga合金や(Dy,Tb)-Fe合金は磁歪効果に結晶方位依存性があり、より大きな磁歪量を得ようとすると単結晶を製造する必要があるため、製造コストが高くなるといった課題があった。そして、La-(Fe,Si)-H合金は溶解および鋳造時に相分離が生じやすいため磁歪効果を示す所望の化合物を高い比率で得るのが難しく、大量生産に向かないため製造コストが高くなるといった課題があった。 In addition, the magnetostrictive effect of Fe-Ga alloys and (Dy,Tb)-Fe alloys is dependent on crystal orientation, and in order to obtain a larger amount of magnetostriction, it is necessary to manufacture a single crystal, which increases manufacturing costs. There was an issue. La-(Fe,Si)-H alloys tend to undergo phase separation during melting and casting, making it difficult to obtain a high proportion of the desired compound that exhibits the magnetostrictive effect, making them unsuitable for mass production and increasing manufacturing costs. There were such issues.

本開示は、価格が高く資源リスクの高い元素を使用せず、低コストで製造可能な磁歪材料及びその製造方法を提供する。 The present disclosure provides a magnetostrictive material that can be manufactured at low cost without using elements that are expensive and have a high resource risk, and a method for manufacturing the same.

本開示の磁歪材料は、限定的でない例示的な実施形態において、Mn:44原子%以上53原子%以下、Al:46原子%以上52原子%以下、Cu:0.5原子%以上6原子%以下、を含み、正方晶構造を有する安定相の比率が55%以上である。 In a non-limiting exemplary embodiment, the magnetostrictive material of the present disclosure includes Mn: 44 atomic % or more and 53 atomic % or less, Al: 46 atomic % or more and 52 atomic % or less, Cu: 0.5 atomic % or more and 6 atomic % The ratio of the stable phase having a tetragonal structure is 55% or more.

ある実施形態において、Mn、Al、Cuの含有量が合計で100原子%(但し、不可避的不純物は含有してもよい)である。 In one embodiment, the total content of Mn, Al, and Cu is 100 atomic % (however, unavoidable impurities may be included).

ある実施形態において、室温における磁歪量の絶対値が50ppm以上600ppm以下である。 In one embodiment, the absolute value of the amount of magnetostriction at room temperature is 50 ppm or more and 600 ppm or less.

本開示の磁歪材料の製造方法は、限定的でない例示的な実施形態において、Mn:44原子%以上53原子%以下、Al:46原子%以上52原子%以下、Cu:0.5原子%以上6原子%以下、を含む合金となるように第一合金を準備する第一工程と、前記第一合金を300℃以上、750℃以下で熱処理し第二合金を得る第二工程と、を含む。 In a non-limiting exemplary embodiment, the method for producing a magnetostrictive material of the present disclosure includes Mn: 44 atomic % or more and 53 atomic % or less, Al: 46 atomic % or more and 52 atomic % or less, Cu: 0.5 atomic % or more a first step of preparing a first alloy to obtain an alloy containing 6 atomic % or less, and a second step of heat-treating the first alloy at a temperature of 300° C. or higher and 750° C. or lower to obtain a second alloy. .

ある実施形態において、Mn、Al、Cuの含有量が合計で100原子%(但し、不可避的不純物は含有してもよい)の合金となるように前記第一合金を準備する。 In one embodiment, the first alloy is prepared such that the total content of Mn, Al, and Cu is 100 atomic % (however, unavoidable impurities may be included).

本開示によれば、価格が高く資源リスクの高い元素を使用せず、低コストで製造可能な磁歪材料及びその製造方法を提供できる。 According to the present disclosure, it is possible to provide a magnetostrictive material that can be manufactured at low cost without using elements that are expensive and have a high resource risk, and a method for manufacturing the same.

図1は、磁歪量の測定方法を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing a method for measuring the amount of magnetostriction.

本発明者らは、Mn、Al、Cuの各元素を適正な組成範囲に限定し、かつ適正な熱処理を行うことによって、正方晶構造を有する相が安定相として55%以上の高い比率で得られ、室温で50ppm以上の大きな磁歪量が結晶方位に依存せず等方的に得られることを見出した。なお、本開示における安定相とは、正方晶構造を有し、500℃以上750℃以下の熱処理温度の範囲内で24時間以上等温保持した後でも存在する正方晶相をいう。また、本開示における磁歪量は室温を300Kとし、磁界未印加時の試料長さをL0、8.9Tの磁界印加時における磁界方向(L0方向)の試料長さをLとしたとき、長さの変化量ΔL=L-L0とL0との比率(ΔL/L0)の絶対値をppm表記で表したものである。 The present inventors have determined that by limiting each element of Mn, Al, and Cu to an appropriate composition range and performing appropriate heat treatment, a phase with a tetragonal structure can be obtained as a stable phase at a high ratio of 55% or more. It was found that a large amount of magnetostriction of 50 ppm or more can be obtained isotropically at room temperature without depending on the crystal orientation. Note that the stable phase in the present disclosure refers to a tetragonal phase that has a tetragonal structure and exists even after isothermally maintained within a heat treatment temperature range of 500° C. or more and 750° C. or less for 24 hours or more. In addition, the amount of magnetostriction in the present disclosure is defined as the length when the room temperature is 300K, the sample length when no magnetic field is applied is L0, and the sample length in the magnetic field direction (L0 direction) when a magnetic field of 8.9T is applied is L0. The absolute value of the ratio (ΔL/L0) between the amount of change ΔL=L−L0 and L0 is expressed in ppm.

<磁歪材料>
磁歪材料の組成等の限定理由について以下に説明する。
Mnの含有量は44原子%以上53原子%以下である。Mnの含有量が44原子%未満又は53原子%を超えると、異相(γ-MnAl相やβ-Mn相、κ-MnAlCu相)の比率が大きくなり正方晶構造を有する安定相の比率が55%以上得られず、50ppm以上の十分な磁歪量が得られない。
<Magnetostrictive material>
The reasons for limiting the composition of the magnetostrictive material will be explained below.
The content of Mn is 44 atomic % or more and 53 atomic % or less. When the Mn content is less than 44 atomic % or more than 53 atomic %, the ratio of different phases (γ 2 -Mn 5 Al 8 phase, β-Mn phase, κ-MnAlCu phase) increases, resulting in a stable phase with a tetragonal structure. A ratio of 55% or more cannot be obtained, and a sufficient amount of magnetostriction of 50 ppm or more cannot be obtained.

Alの含有量は46原子%以上52原子%以下である。Alの含有量が46原子%未満又は52原子%を超えると、異相(γ-MnAl相やβ-Mn相、κ-MnAlCu相)の比率が大きくなり正方晶構造を有する安定相の比率が55%以上得られず、50ppm以上の十分な磁歪量が得られない。 The content of Al is 46 atomic % or more and 52 atomic % or less. When the Al content is less than 46 atomic % or more than 52 atomic %, the ratio of different phases (γ 2 -Mn 5 Al 8 phase, β-Mn phase, κ-MnAlCu phase) increases, resulting in a stable phase with a tetragonal structure. A ratio of 55% or more cannot be obtained, and a sufficient amount of magnetostriction of 50 ppm or more cannot be obtained.

Cuの含有量は0.5原子%以上6原子%以下である。Cuの含有量が0.5原子%未満又は6原子%を超えると、異相(γ-MnAl相やβ-Mn相、κ-MnAlCu相)の比率が大きくなって正方晶構造を有する安定相の比率が55%以上得られず、50ppm以上の十分な磁歪量が得られない。 The content of Cu is 0.5 atomic % or more and 6 atomic % or less. When the Cu content is less than 0.5 atomic % or more than 6 atomic %, the ratio of different phases (γ 2 -Mn 5 Al 8 phase, β-Mn phase, κ-MnAlCu phase) becomes large, resulting in a tetragonal structure. The ratio of the stable phase in the magnet cannot be obtained to be 55% or more, and a sufficient amount of magnetostriction of 50 ppm or more cannot be obtained.

Mn、Al及びCuの一部を他の元素で置換してもよいが、原子%で示すMn、Al及びCuの含有量が合計で100%(但し、不可避的不純物は含有してもよい)であることが好ましい。 Although some of Mn, Al and Cu may be replaced with other elements, the total content of Mn, Al and Cu expressed in atomic % is 100% (however, unavoidable impurities may be included) It is preferable that

磁歪材料の形態は塊(バルク)の形態に限定されず、棒状、膜状、また粉末粒子状の形態等をとり得る。 The form of the magnetostrictive material is not limited to the form of a lump (bulk), but may take the form of a rod, a film, a powder particle, or the like.

<磁歪材料の製造方法>
本開示における磁歪材料の製造方法の実施形態を以下に説明する。
<Method for manufacturing magnetostrictive material>
Embodiments of the method for manufacturing a magnetostrictive material in the present disclosure will be described below.

(第一工程)
本開示において、上述した磁歪材料の組成範囲に含まれる組成を有する第一合金を得ることを第一工程という。第一合金の組成に関しては、上述した磁歪材料と同じであるため説明を省略する。
(First step)
In the present disclosure, obtaining a first alloy having a composition within the composition range of the magnetostrictive material described above is referred to as a first step. The composition of the first alloy is the same as that of the magnetostrictive material described above, so a description thereof will be omitted.

はじめに、第一合金の組成が上述した組成範囲内になるように原料を溶解、鋳造する。本開示において、磁歪量は正方晶相の結晶方位に依存しないことから、合金の組織は製造の容易な多結晶組織でよく、溶解、鋳造は任意の方法で行うことができる。例えば高周波溶解やアーク溶解、ストリップキャスト、液体超急冷などの方法により鋳造を行う。鋳造後、組織均質化のために800℃以上の温度で熱処理を行ってもよい。 First, raw materials are melted and cast so that the composition of the first alloy falls within the above-mentioned composition range. In the present disclosure, since the amount of magnetostriction does not depend on the crystal orientation of the tetragonal phase, the structure of the alloy may be a polycrystalline structure that is easy to manufacture, and melting and casting can be performed by any method. For example, casting is performed by methods such as high frequency melting, arc melting, strip casting, and liquid ultra-quenching. After casting, heat treatment may be performed at a temperature of 800° C. or higher to homogenize the structure.

(第二工程)
本開示において、前記第一合金に対して熱処理を実施し、正方晶構造を有する安定相の比率が55%以上である第二合金を得ることを第二工程という。
(Second process)
In the present disclosure, the process of heat-treating the first alloy to obtain a second alloy having a stable phase ratio of 55% or more having a tetragonal structure is referred to as a second step.

前記第一合金には異相や鋳造過程で生成する高温相(γ-MnAl相やε-MnAl相)が残存する場合があり、正方晶構造を有する安定相を高い比率で得ることができない。上述した組成範囲内の第一合金を熱処理することにより、第一合金内で正方晶構造への相変化が起こり、正方晶構造を有する安定相を高い比率で得ることができる。 In the first alloy, foreign phases and high-temperature phases (γ-MnAl phase and ε-MnAl phase) generated during the casting process may remain, making it impossible to obtain a high proportion of stable phases having a tetragonal structure. By heat-treating the first alloy within the composition range described above, a phase change to a tetragonal structure occurs within the first alloy, and a stable phase having a tetragonal structure can be obtained in a high proportion.

熱処理時の雰囲気は真空中又はアルゴンガスなどの不活性ガス中が好ましい。熱処理温度は300℃以上750℃以下であることが好ましい。300℃未満では正方晶相への変化に非常に長時間を要し量産化することが困難になる恐れがある。750℃を超えると高温相が生成する領域となり、正方晶構造を有する安定相を高い比率で得ることができない。 The atmosphere during the heat treatment is preferably a vacuum or an inert gas such as argon gas. The heat treatment temperature is preferably 300°C or higher and 750°C or lower. If the temperature is less than 300° C., it may take a very long time to change to the tetragonal phase, making it difficult to mass produce. When the temperature exceeds 750° C., a high temperature phase is generated, and a stable phase having a tetragonal structure cannot be obtained in a high proportion.

熱処理の保持時間については、正方晶構造を有する安定相の比率が55%以上となるように組成及び熱処理温度によって適切な時間を設定すればよい。熱処理の保持時間は、例えば1時間から336時間である。なお、第二合金を公知の方法で粉砕してもよく、さらに粉砕による歪みを取り除くための熱処理を750℃以下で行ってもよい。 Regarding the holding time of the heat treatment, an appropriate time may be set depending on the composition and the heat treatment temperature so that the ratio of the stable phase having a tetragonal structure is 55% or more. The holding time of the heat treatment is, for example, 1 hour to 336 hours. Note that the second alloy may be pulverized by a known method, and may be further heat-treated at 750° C. or lower to remove distortion caused by pulverization.

正方晶構造を有する相が安定相であるかどうかは、例えば、上記第二工程において長時間熱処理(24時間以上)を実施した後も存在する相であるかどうかによって確認できる。また、例えば、第二工程後に追加で長時間熱処理(24時間以上)を実施した後も存在する相であるかどうかによっても確認できる。 Whether the phase having a tetragonal structure is a stable phase can be confirmed by, for example, whether the phase remains even after long-term heat treatment (24 hours or more) in the second step. It can also be confirmed, for example, by determining whether the phase still exists after additional long-term heat treatment (24 hours or more) after the second step.

上述したように、本開示において、正方晶構造を有し、500℃以上750℃以下の熱処理温度の範囲内で24時間以上等温保持した後でも存在する正方晶相を安定相という。 As described above, in the present disclosure, a tetragonal phase that has a tetragonal structure and exists even after isothermally maintained within a heat treatment temperature range of 500° C. to 750° C. for 24 hours or more is referred to as a stable phase.

正方晶相の結晶構造は、X線回折や電子線回折を用いて確認することができる。具体的には、X線回折や電子線回折によって得られた回折パターンが公知の正方晶構造の回折パターンと一致すれば正方晶構造であると確認することできる。同様に、正方晶相以外のβ-Mn相やγ-MnAl相、κ-MnAlCu相であるかどうかの確認も、それぞれの公知の回折パターンと一致するかどうかによって確認することができる。 The crystal structure of the tetragonal phase can be confirmed using X-ray diffraction or electron beam diffraction. Specifically, if the diffraction pattern obtained by X-ray diffraction or electron beam diffraction matches the diffraction pattern of a known tetragonal structure, it can be confirmed that the structure is a tetragonal structure. Similarly, it is possible to confirm whether the phase is a β-Mn phase, a γ 2 -Mn 5 Al 8 phase, or a κ-MnAlCu phase other than the tetragonal phase by checking whether it matches the known diffraction pattern of each phase. can.

正方晶相の比率は、走査型電子顕微鏡などを用いて確認することができる。具体的には、断面組織の組成差によるコントラストの違いから正方晶相と正方晶相以外の相を見分け、正方晶相の面積比率を求めることで確認できる。 The ratio of the tetragonal phase can be confirmed using a scanning electron microscope or the like. Specifically, this can be confirmed by distinguishing between the tetragonal phase and phases other than the tetragonal phase based on contrast differences due to compositional differences in the cross-sectional structure, and determining the area ratio of the tetragonal phase.

また、正方晶相の比率は、X線回折のリートベルト解析によって確認することもできる。具体的には、X線回折によって得られた回折パターンに対し、正方晶相及び正方晶相以外の相の結晶構造のモデルから計算される回折パターンを用いて最小二乗法にてフィッティングを行い、各相の強度比から相比率を求めることで確認できる。 Further, the ratio of the tetragonal phase can also be confirmed by Rietveld analysis of X-ray diffraction. Specifically, the diffraction pattern obtained by X-ray diffraction is fitted by the least squares method using a diffraction pattern calculated from a crystal structure model of a tetragonal phase and a phase other than the tetragonal phase. This can be confirmed by determining the phase ratio from the intensity ratio of each phase.

本開示を実施例によりさらに詳細に説明するが、本発明は、それらに限定されるものではない。 The present disclosure will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1~9及び比較例1~3
Mn、Al、Cuの各元素を秤量し、高周波誘導溶解炉を用いて溶解及び鋳造を行い、表1に示す組成のインゴットを得た。得られたインゴットをアルゴンガス雰囲気の石英管に封入し、加熱炉にて900℃で24時間保持する均質化処理を実施し第一合金を得た(第一工程)。引き続き、得られた第一合金に600℃で168時間保持する熱処理を実施し第二合金を得た(第二工程)。
Examples 1 to 9 and Comparative Examples 1 to 3
Each element of Mn, Al, and Cu was weighed and melted and cast using a high frequency induction melting furnace to obtain an ingot having the composition shown in Table 1. The obtained ingot was sealed in a quartz tube in an argon gas atmosphere, and subjected to homogenization treatment in which it was maintained at 900° C. for 24 hours in a heating furnace to obtain a first alloy (first step). Subsequently, the obtained first alloy was heat treated at 600° C. for 168 hours to obtain a second alloy (second step).

第二工程後に得られた第二合金のインゴットの結晶構造を、X線回折装置を用いて測定した。実施例1~9の第二合金の回折パターンに現れる主なピークは公知の正方晶構造の回折パターンと一致した。600℃で168時間保持後も存在する正方晶相であり、安定相であると確認できた。一方、比較例1~3では正方晶構造の回折パターンが確認できなかった。残りの第二合金のインゴットの一部の断面組織を走査型電子顕微鏡により観察した。反射電子像の組成コントラスト差から正方晶相と正方晶相以外の相を区別し、正方晶相の面積比率を求めたところ表1に示すように実施例1~9ではいずれも55%以上であった。一方、比較例1~3では正方晶相に対応する相は見られなかったか、非常にわずかであった。 The crystal structure of the second alloy ingot obtained after the second step was measured using an X-ray diffraction device. The main peaks appearing in the diffraction patterns of the second alloys of Examples 1 to 9 matched the diffraction patterns of known tetragonal structures. It was confirmed that the tetragonal phase remained even after being held at 600° C. for 168 hours, and that it was a stable phase. On the other hand, in Comparative Examples 1 to 3, no tetragonal structure diffraction pattern could be observed. The cross-sectional structure of a portion of the remaining second alloy ingot was observed using a scanning electron microscope. The tetragonal phase and phases other than the tetragonal phase were distinguished from the compositional contrast difference in the backscattered electron images, and the area ratio of the tetragonal phase was determined. there were. On the other hand, in Comparative Examples 1 to 3, the phase corresponding to the tetragonal phase was not observed or was very small.

残りの第二合金のインゴットから磁歪量を測定するための試料を放電加工機でそれぞれ切り出した。切り出した試料の表面を600番の研磨紙で研磨し、縦(L0)7~12mm、横(L1)4~10mm、厚さ(L2)1~2.5mmの板状の試料を作成した。作成した試料の表面をアセトンで清浄し、図1のようにL0-L1面にひずみゲージを貼り付けた。この際、ひずみの測定方向がL0方向となるようにひずみゲージを貼り付けた。測定はカンタムデザイン社製物理特性測定システム(PPMS)を用いて試料のL0方向に磁界を印加させ、磁歪量を測定した。なお、試料と同じL0~L2の寸法範囲に形成し、試料と同じひずみゲージを貼り付けた純Cuをダミーゲージとして用いる、2ゲージのアクティブダミー法により測定を行った。また、温度は300K、最大印加磁界は8.9Tとし、磁歪量は磁界未印加時のL0の長さと8.9Tの磁界印加時における磁界方向(L0方向)の長さLの変位量ΔL=L-L0とL0との比率(ΔL/L0)の絶対値から求めた。表1に示すように実施例1~9において50ppm以上の磁歪量が得られた。一方、比較例1~3では十分な磁歪量が得られなかった。 Samples for measuring the amount of magnetostriction were cut out from the remaining ingots of the second alloy using an electrical discharge machine. The surface of the cut sample was polished with No. 600 abrasive paper to create a plate-shaped sample with length (L0) of 7 to 12 mm, width (L1) of 4 to 10 mm, and thickness (L2) of 1 to 2.5 mm. The surface of the prepared sample was cleaned with acetone, and a strain gauge was attached to the L0-L1 plane as shown in FIG. At this time, a strain gauge was attached so that the strain measurement direction was in the L0 direction. In the measurement, a magnetic field was applied in the L0 direction of the sample using a physical property measurement system (PPMS) manufactured by Quantum Design, and the amount of magnetostriction was measured. Note that the measurement was carried out by a two-gauge active dummy method using pure Cu as a dummy gauge formed in the same size range of L0 to L2 as the sample and attached with the same strain gauge as the sample. In addition, the temperature is 300K, the maximum applied magnetic field is 8.9T, and the amount of magnetostriction is the displacement amount ΔL of the length L0 when no magnetic field is applied and the length L in the magnetic field direction (L0 direction) when a magnetic field of 8.9T is applied. It was determined from the absolute value of the ratio between L-L0 and L0 (ΔL/L0). As shown in Table 1, in Examples 1 to 9, magnetostriction amounts of 50 ppm or more were obtained. On the other hand, in Comparative Examples 1 to 3, a sufficient amount of magnetostriction was not obtained.

Figure 2023142656000002
Figure 2023142656000002

本開示により得られた磁歪材料は、超音波振動子やアクチュエータ、射出成型用金型の型締装置、振動発電、トルクセンサなどに好適に利用できる可能性がある。 The magnetostrictive material obtained according to the present disclosure may be suitably used for ultrasonic vibrators, actuators, mold clamping devices for injection molds, vibration power generation, torque sensors, and the like.

Claims (5)

Mn:44原子%以上53原子%以下、
Al:46原子%以上52原子%以下、
Cu:0.5原子%以上6原子%以下、
を含み、正方晶構造を有する安定相の比率が55%以上である、磁歪材料。
Mn: 44 at% or more and 53 at% or less,
Al: 46 at% or more and 52 at% or less,
Cu: 0.5 at% or more and 6 at% or less,
A magnetostrictive material containing 55% or more of a stable phase having a tetragonal structure.
Mn、Al、Cuの含有量が合計で100原子%(但し、不可避的不純物は含有してもよい)である、請求項1に記載の磁歪材料。 The magnetostrictive material according to claim 1, wherein the total content of Mn, Al, and Cu is 100 atomic % (however, unavoidable impurities may be included). 室温における磁歪量の絶対値が50ppm以上600ppm以下である、請求項1又は請求項2に記載の磁歪材料。 The magnetostrictive material according to claim 1 or 2, wherein the absolute value of magnetostriction amount at room temperature is 50 ppm or more and 600 ppm or less. Mn:44原子%以上53原子%以下、
Al:46原子%以上52原子%以下、
Cu:0.5原子%以上6原子%以下、
を含む合金となるように第一合金を準備する第一工程と、
前記第一合金を300℃以上、750℃以下で熱処理し第二合金を得る第二工程と、
を含む、磁歪材料の製造方法。
Mn: 44 at% or more and 53 at% or less,
Al: 46 at% or more and 52 at% or less,
Cu: 0.5 at% or more and 6 at% or less,
a first step of preparing a first alloy to become an alloy containing;
a second step of heat-treating the first alloy at a temperature of 300° C. or higher and 750° C. or lower to obtain a second alloy;
A method of manufacturing a magnetostrictive material, including:
Mn、Al、Cuの含有量が合計で100原子%(但し、不可避的不純物は含有してもよい)の合金となるように前記第一合金を準備する、請求項4に記載の磁歪材料の製造方法。
The magnetostrictive material according to claim 4, wherein the first alloy is prepared so that the total content of Mn, Al, and Cu is 100 atomic % (however, unavoidable impurities may be included). Production method.
JP2022049660A 2022-03-25 2022-03-25 Magnetostrictive material and method for producing the same Pending JP2023142656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022049660A JP2023142656A (en) 2022-03-25 2022-03-25 Magnetostrictive material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022049660A JP2023142656A (en) 2022-03-25 2022-03-25 Magnetostrictive material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2023142656A true JP2023142656A (en) 2023-10-05

Family

ID=88206671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022049660A Pending JP2023142656A (en) 2022-03-25 2022-03-25 Magnetostrictive material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2023142656A (en)

Similar Documents

Publication Publication Date Title
JP2009108415A (en) Amorphous alloy composition
JP5543970B2 (en) Magnetostrictive material and method for preparing the same
JP2016160532A (en) Magnetic phase transformation material, manufacturing method of magnetic phase transformation material and use of magnetic phase transformation material
US20030010405A1 (en) Magnetostrictive devices and methods using high magnetostriction, high strength fega alloys
JP5059035B2 (en) Highly elastic / constant elastic alloy, its manufacturing method and precision instrument
JP3947066B2 (en) Magnetic alloy material
JP3452210B2 (en) Manufacturing method of magnetostrictive material
JP5486050B2 (en) Highly elastic / constant elastic alloy, its manufacturing method and precision instrument
JP2006213985A (en) Method for producing magnetostriction element
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
WO2003085151A1 (en) SOFT MAGNETIC Co-BASED METALLIC GLASS ALLOY
JP5787499B2 (en) Amorphous magnetic alloy, related articles and methods
JP2023142656A (en) Magnetostrictive material and method for producing the same
JP2007092096A (en) Amorphous magnetic alloy
CN100356603C (en) Novel rareearth super magnetostrictive material and preparation method thereof
JP2017057489A (en) FeGa ALLOY-BASED MAGNETOSTRICTIVE MATERIAL AND MANUFACTURING METHOD THEREFOR
JP6662438B2 (en) Soft magnetic alloys and magnetic components
Emdadi Microstructure of polycrystalline Fe 82 Ga 18 sample with solidification texture
JP2008223077A (en) Ceramic/metal composite material and its manufacturing method
JP2022022948A (en) Ferromagnetic compound and ferromagnetic alloy containing ferromagnetic compound
JP2005226124A (en) Magnetic alloy and its manufacturing method
JP2023142657A (en) Magnetic resistive material and method for producing the same
JP3976467B2 (en) Method for producing giant magnetostrictive alloy
JP3313386B2 (en) Giant magnetostrictive alloy and magneto-mechanical mutation conversion device
JP4146120B2 (en) Magnetostrictive material