JP2008223077A - Ceramic/metal composite material and its manufacturing method - Google Patents

Ceramic/metal composite material and its manufacturing method Download PDF

Info

Publication number
JP2008223077A
JP2008223077A JP2007062294A JP2007062294A JP2008223077A JP 2008223077 A JP2008223077 A JP 2008223077A JP 2007062294 A JP2007062294 A JP 2007062294A JP 2007062294 A JP2007062294 A JP 2007062294A JP 2008223077 A JP2008223077 A JP 2008223077A
Authority
JP
Japan
Prior art keywords
temperature range
composite material
metal
temperature
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007062294A
Other languages
Japanese (ja)
Other versions
JP2008223077A5 (en
JP4332615B2 (en
Inventor
Masayuki Watanabe
雅幸 渡邉
Mamoru Ishii
守 石井
Hiromasa Shimojima
浩正 下嶋
Yasushi Takenaka
康司 竹中
Hidenori Takagi
英典 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
RIKEN Institute of Physical and Chemical Research
Original Assignee
Taiheiyo Cement Corp
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, RIKEN Institute of Physical and Chemical Research filed Critical Taiheiyo Cement Corp
Priority to JP2007062294A priority Critical patent/JP4332615B2/en
Priority to PCT/JP2008/000371 priority patent/WO2008111285A1/en
Publication of JP2008223077A publication Critical patent/JP2008223077A/en
Publication of JP2008223077A5 publication Critical patent/JP2008223077A5/ja
Application granted granted Critical
Publication of JP4332615B2 publication Critical patent/JP4332615B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/0081Casting in, on, or around objects which form part of the product pretreatment of the insert, e.g. for enhancing the bonding between insert and surrounding cast metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic/metal composite material exhibiting small linear thermal expansion in a wide temperature range and also to provide its manufacturing method. <P>SOLUTION: The ceramic/metal composite material can be obtained by compositing a light metal or a light metal alloy, such as aluminum or magnesium alloy, with interstitial manganese nitride. A temperature region having a temperature width of at least ≥20 degrees where a variation δ in linear thermal expansion ΔL/L becomes ≤1×10<SP>-4</SP>is within a temperature range between -30°C and 90°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は金属−セラミックス複合材料におよびその製造方法に関する。   The present invention relates to a metal-ceramic composite material and a method for producing the same.

例えば、半導体装置の分野では、近時、デザインルールの微細化が急速に進行し、微小寸法の管理が極めて重要になってきている。そのため、半導体製造装置の構成部材、特にシリコンウエハを保持したり搬送したりする部材には、使用環境において熱膨張による形状変化が起こり難い材料、究極的にはゼロ膨張材料が求められている。   For example, in the field of semiconductor devices, the miniaturization of design rules has recently progressed rapidly, and the management of minute dimensions has become extremely important. For this reason, materials that are difficult to change in shape due to thermal expansion in the use environment, and ultimately, zero-expansion materials are required for the components of semiconductor manufacturing apparatuses, particularly members that hold and transport silicon wafers.

一般的に、低熱膨張材料とは線膨張係数の絶対値が小さい材料を指すことは周知の通りである。このような低熱膨張材料としては、32Ni−5Co−Fe合金(所謂、スーパーインバー)が知られており、この合金に鋳造性を付与する目的で、C,Siを2%程度添加した材料が知られている。しかし、このような合金材料は比重が8程度あるために自重によって撓みやすく、微少寸法管理を重視するとその観点から、使用し難い材料である。また、このような高比重の材料を用いることによって、これを保持する等の関連部材に大きな機械的強度が要求されることになる等の問題が生じる。   As is well known, a low thermal expansion material generally refers to a material having a small absolute value of linear expansion coefficient. As such a low thermal expansion material, a 32Ni-5Co-Fe alloy (so-called Super Invar) is known, and a material to which about 2% of C and Si are added for the purpose of imparting castability to this alloy is known. It has been. However, since such an alloy material has a specific gravity of about 8, it is easily bent due to its own weight, and it is difficult to use from the viewpoint when the fine dimension management is emphasized. In addition, the use of such a material having a high specific gravity causes a problem in that a large mechanical strength is required for a related member for holding the material.

そこで、このような合金材料に代わる材料として、金属マトリックスとセラミックス強化相とからなる複合材料が注目されている。この複合材料は、強化相が有する剛性や耐摩耗性と、金属マトリックスが有する延性や靭性とを併せ持っており、種々の精密機械部品に用いられるようになってきている(例えば、特許文献1参照)。   Thus, a composite material comprising a metal matrix and a ceramic reinforced phase has attracted attention as a substitute for such an alloy material. This composite material has both the rigidity and wear resistance of the reinforcing phase and the ductility and toughness of the metal matrix, and has been used for various precision machine parts (for example, see Patent Document 1). ).

しかしながら、従来の金属−セラミックス複合材料の−50℃〜100℃程度の温度範囲における線膨張係数の値は4×10−6/℃程度以上あり、その絶対値は十分に小さいものではない。そのため、微少寸法管理の観点から許容される線熱膨張を示す温度範囲が狭いという問題がある。また、線熱膨張の小さい温度範囲は必ずしも使用環境の温度範囲と一致するとは限らず、材料選択の幅が狭いという問題もある。
特開平10−8164号公報(段落[0021]、[0022]、[0037]等)
However, the value of the linear expansion coefficient in the temperature range of about −50 ° C. to 100 ° C. of the conventional metal-ceramic composite material is about 4 × 10 −6 / ° C., and its absolute value is not sufficiently small. Therefore, there exists a problem that the temperature range which shows the linear thermal expansion permitted from a viewpoint of minute dimension management is narrow. Further, the temperature range where the linear thermal expansion is small does not always coincide with the temperature range of the usage environment, and there is a problem that the range of material selection is narrow.
Japanese Patent Laid-Open No. 10-8164 (paragraphs [0021], [0022], [0037], etc.)

本発明はかかる事情に鑑みてなされたものであり、広い温度範囲で小さな線熱膨張を示す金属−セラミックス複合材料およびその製造方法を提供することを目的とする。   This invention is made | formed in view of this situation, and it aims at providing the metal-ceramics composite material which shows small linear thermal expansion in a wide temperature range, and its manufacturing method.

上記課題を解決するために、発明者らは、線膨張係数の絶対値が小さいが故に線熱膨張が小さく抑えられた金属−セラミックス複合材料について検討するとともに、線熱膨張が小さく抑えられた材料は必ずしも線膨張係数が温度変化せずに一定の小さな値を示す材料に限定されないことに着目した。すなわち、線膨張係数が正の値から負の値へ、またはその逆に負の値から正の値へと変化させることによって、広い温度範囲において線熱膨張を一定の範囲に収めることができることに着目し、本発明を完成させるに至った。   In order to solve the above problems, the inventors examined a metal-ceramic composite material in which the linear thermal expansion was suppressed because the absolute value of the linear expansion coefficient was small, and a material in which the linear thermal expansion was suppressed small. Note that is not necessarily limited to a material whose linear expansion coefficient does not change in temperature and exhibits a constant small value. That is, by changing the linear expansion coefficient from a positive value to a negative value, or vice versa, from a negative value to a positive value, the linear thermal expansion can be kept within a certain range over a wide temperature range. Attention was paid to the completion of the present invention.

本発明の第1の観点によれば、軽金属または軽金属合金と侵入型窒化マンガンとを複合させてなる金属−セラミックス複合材料であって、線熱膨張の変化量が1×10−4以内となる少なくとも温度幅20度以上の温度領域が、−30℃以上90℃以下の温度範囲内にあることを特徴とする金属−セラミックス複合材料が提供される。 According to the first aspect of the present invention, a metal-ceramic composite material obtained by combining a light metal or a light metal alloy and interstitial manganese nitride, the amount of change in linear thermal expansion is within 1 × 10 −4. A metal-ceramic composite material is provided in which a temperature range of at least 20 ° C. or more is in a temperature range of −30 ° C. or more and 90 ° C. or less.

本発明の第2の観点によれば、軽金属または軽金属合金と侵入型窒化マンガンとを複合させてなる金属−セラミックス複合材料であって、0℃〜40℃の温度範囲内の温度幅20度以上の領域における線膨張係数の絶対値が、常に、1.5×10−6/℃以下であることを特徴とする金属−セラミックス複合材料が提供される。 According to a second aspect of the present invention, there is provided a metal-ceramic composite material obtained by combining a light metal or light metal alloy and interstitial manganese nitride, and having a temperature range of 20 ° C. or more within a temperature range of 0 ° C. to 40 ° C. The metal-ceramic composite material is characterized in that the absolute value of the linear expansion coefficient in the region is always 1.5 × 10 −6 / ° C. or less.

本発明の第3の観点によれば、このような金属−セラミックス複合材料の製造方法、すなわち、軽金属または軽金属合金と侵入型窒化マンガンとを複合させてなる金属−セラミックス複合材料の製造方法であって、前記侵入型窒化マンガンを含む充填体または成形体に、溶融させた軽金属または軽金属合金を加圧浸透させ、その際の処理温度を600℃〜1000℃とすることを特徴とする金属−セラミックス複合材料の製造方法が提供される。   According to a third aspect of the present invention, there is provided a method for producing such a metal-ceramic composite material, that is, a method for producing a metal-ceramic composite material obtained by combining a light metal or light metal alloy and interstitial manganese nitride. Then, a melted light metal or light metal alloy is pressed and infiltrated into the filler or molded body containing the interstitial manganese nitride, and the processing temperature at that time is set to 600 ° C. to 1000 ° C. A method of manufacturing a composite material is provided.

なお、国際公開公報WO2006/011590に、侵入型窒化マンガンは組成に応じて所定の温度域において負の線膨張係数を有することが示されており、また、このような侵入型窒化マンガンを用いることで熱膨張を抑制した材料を作製することが可能である旨が示唆されている。   International publication WO 2006/011590 shows that interstitial manganese nitride has a negative coefficient of linear expansion in a predetermined temperature range depending on the composition, and that such interstitial manganese nitride is used. It is suggested that it is possible to produce a material with suppressed thermal expansion.

しかしながら、当該公報には、実際に熱膨張を抑制した複合材料についての実施例は何ら記載されていない。また、侵入型窒化マンガンは線熱膨張の変化が大きいために、例えば、室温近傍において線熱膨張を許容される範囲に収めることは決して容易なことではない。さらに、実際に熱膨張が一定の温度範囲で小さく抑制された複合材料を得るためには、複合材料の構造均一性や、製造過程における材料特性の維持等、種々の問題がある。本発明は、このような先行技術では解決されていない課題を解決するものでもある。   However, this publication does not describe any examples of the composite material that actually suppresses thermal expansion. In addition, since interstitial manganese nitride has a large change in linear thermal expansion, for example, it is not easy to keep linear thermal expansion within an allowable range in the vicinity of room temperature. Furthermore, in order to obtain a composite material in which the thermal expansion is actually suppressed to be small within a certain temperature range, there are various problems such as the structural uniformity of the composite material and the maintenance of material properties during the manufacturing process. The present invention also solves such problems that have not been solved by the prior art.

本発明に係る金属−セラミックス複合材料は、所望の温度領域、特に室温近傍における線熱膨張が小さく抑えられているので、そのような温度環境下で用いられる寸法精度に極めて厳重な管理が必要とされる部品として優れた特性を示す。また、侵入型窒化マンガンの構成元素と組成比、侵入型窒化マンガンと金属マトリックスとの比率を調節することによって線熱膨張の小さい温度域を調整することができるので、種々の用途に対応することができる。このような金属−セラミックス複合材料を製造装置の部品、特に使用時において厳しい寸法管理が要求される部品に用いることにより、製造される製品の品質、歩留まりを高めることができる。   Since the metal-ceramic composite material according to the present invention has a low linear thermal expansion in a desired temperature range, particularly in the vicinity of room temperature, extremely strict management is required for dimensional accuracy used in such a temperature environment. Excellent properties as a part to be used. In addition, the temperature range with low linear thermal expansion can be adjusted by adjusting the constituent elements and composition ratio of interstitial manganese nitride and the ratio of interstitial manganese nitride and metal matrix. Can do. By using such a metal-ceramic composite material as a part of a manufacturing apparatus, particularly a part that requires strict dimensional control at the time of use, the quality and yield of the manufactured product can be improved.

本発明に係る金属−セラミックス複合材料(以下「複合材料」という)は、基材としての軽金属または軽金属合金(以下「軽金属等」という)と、強化材および熱膨張制御材としてのセラミックスたる侵入型窒化マンガンから構成され、その線熱膨張ΔL/Lの変化量δが1×10−4以内(δ≦1×10−4)となる少なくとも温度幅20度以上の温度領域が、−30℃以上90℃以下の温度範囲内にあるという特性を有している。 The metal-ceramic composite material (hereinafter referred to as “composite material”) according to the present invention includes a light metal or light metal alloy (hereinafter referred to as “light metal”) as a base material, and an interstitial ceramic as a reinforcing material and a thermal expansion control material. A temperature region of at least a temperature range of 20 degrees or more where the variation δ of the linear thermal expansion ΔL / L is within 1 × 10 −4 (δ ≦ 1 × 10 −4 ) is made of manganese nitride, and is −30 ° C. or more It has the characteristic that it exists in the temperature range below 90 degreeC.

なお、「L」は基準温度における複合材料の長さであり、基準温度は、例えば、室温や複合材料の使用環境温度等とすることができる。「ΔL」は複合材料の所定温度における長さと基準温度における長さの差(長さの変化量)である。線熱膨張ΔL/Lの変化量δとは、ある温度領域における線熱膨張ΔL/Lの最大値と最小値との差であり、必ずしもその温度領域の最低温度における線熱膨張ΔL/Lと最高温度における線熱膨張ΔL/Lの差ではない。また、δは常にゼロ以上の値として定義されるものである。線熱膨張ΔL/Lの温度微分(傾き)すなわちd(ΔL/L)/dTが線膨張係数と定義され、通常αと表記される。   Note that “L” is the length of the composite material at the reference temperature, and the reference temperature can be, for example, room temperature or the use environment temperature of the composite material. “ΔL” is the difference (length change) between the length of the composite material at a predetermined temperature and the length at the reference temperature. The change amount δ of the linear thermal expansion ΔL / L is a difference between the maximum value and the minimum value of the linear thermal expansion ΔL / L in a certain temperature range, and is not necessarily limited to the linear thermal expansion ΔL / L at the minimum temperature in the temperature range. It is not the difference in linear thermal expansion ΔL / L at the highest temperature. Also, δ is always defined as a value greater than or equal to zero. The temperature differential (slope) of linear thermal expansion ΔL / L, that is, d (ΔL / L) / dT is defined as the linear expansion coefficient, and is usually expressed as α.

この複合材料は、より好ましくは、線熱膨張ΔL/Lの変化量δが5×10−5以内(δ≦1×10−5)となる少なくとも温度幅10度以上の温度領域が、−20℃以上70℃以下の温度範囲内にあるという特性を有している。例えば、このような温度範囲を使用環境として線熱膨張ΔL/Lが小さく抑えられた複合材料を製造装置部材として用いると、寸法精度を極めて厳しく管理することができるため、製品の品質を高め、維持することができる。 More preferably, this composite material has a temperature range of at least 10 ° C. in which the variation δ of the linear thermal expansion ΔL / L is within 5 × 10 −5 (δ ≦ 1 × 10 −5 ). It has the characteristic that it exists in the temperature range of 70 degreeC or more. For example, when a composite material in which the linear thermal expansion ΔL / L is kept small is used as a manufacturing apparatus member in such a temperature range as a use environment, dimensional accuracy can be managed extremely strictly, so that the quality of the product is improved, Can be maintained.

軽金属等としては、金属アルミニウム、アルミニウム合金、金属マグネシウム、マグネシウム合金が好適に用いられる。これらの軽金属等の線膨張係数αは、種々の製造装置の一般的な使用環境、具体的には、−100℃以上において常に正の値を示す。   As the light metal, metal aluminum, aluminum alloy, metal magnesium, magnesium alloy is preferably used. The linear expansion coefficient α of these light metals or the like always shows a positive value in a general use environment of various manufacturing apparatuses, specifically, −100 ° C. or higher.

そのため、複合材料の線熱膨張ΔL/Lの変化量δが、所定の温度領域において上述した特性の通りの所定の範囲に収まるように、侵入型窒化マンガンとしては、その温度領域において、温度上昇にしたがって線熱膨張ΔL/Lが小さくなるという特性を示すもの、つまり線膨張係数αの値が負となる領域を有するものが好適に用いられる。   Therefore, the interstitial manganese nitride has a temperature increase in the temperature region so that the change amount δ of the linear thermal expansion ΔL / L of the composite material is within the predetermined range as described above in the predetermined temperature region. Accordingly, those having a characteristic that the linear thermal expansion ΔL / L becomes smaller, that is, those having a region where the value of the linear expansion coefficient α is negative are preferably used.

侵入型窒化マンガンは、逆ペロブスカイト型マンガン窒化物と呼ばれているものと同じであり、立方晶系または立方晶系がわずかに歪んだもの(例えば、六方晶系,単斜晶系,斜方晶系,正方晶系,三方晶系等)のいずれであってもよいが、立方晶系であることが好ましい。   Interstitial manganese nitride is the same as what is called reverse perovskite manganese nitride, which is cubic or slightly distorted cubic (eg hexagonal, monoclinic, orthorhombic) Crystal system, tetragonal system, trigonal system, etc.), but cubic system is preferable.

侵入型窒化マンガンの負熱膨張性は、マンガン窒化物のもつ磁気体積効果に由来する。磁気体積効果とは、磁気モーメントの変化に伴って体積が変化する現象をいい、侵入型窒化マンガンでは、低温磁気秩序相で磁気モーメントが大きくなり、それに伴って温度が低下すると体積が増大する。この磁性に由来する効果が通常の正の熱膨張に打ち勝つことで、侵入型窒化マンガンの正味の負熱膨張が実現される。したがって、侵入型窒化マンガンを複合材料における熱膨張制御に用いる場合、線膨張係数αを小さく抑えることができる温度範囲は、侵入型窒化マンガンの磁気転移温度程度およびそれより低い温度となる。   The negative thermal expansibility of interstitial manganese nitride is derived from the magnetovolume effect of manganese nitride. The magnetic volume effect refers to a phenomenon in which the volume changes as the magnetic moment changes. In the interstitial manganese nitride, the magnetic moment increases in the low-temperature magnetic ordered phase, and the volume increases as the temperature decreases accordingly. The effect derived from this magnetism overcomes the normal positive thermal expansion, thereby realizing the net negative thermal expansion of interstitial manganese nitride. Therefore, when interstitial manganese nitride is used for thermal expansion control in a composite material, the temperature range in which the linear expansion coefficient α can be kept small is about the magnetic transition temperature of interstitial manganese nitride and lower.

侵入型窒化マンガンの一般化学式は“Mn4−xN”で表される。元素Aは、Co,Ni,Cu,Zn,Ga,Rh,Pd,Ag,CdおよびInの中から選ばれる1種の元素であり、0<x<4(但し、xは整数ではない)である。または、元素Aは、Mg,Al,Si,Scおよび周期表第4〜6周期の4〜15族の原子のいずれか2種以上の元素であって、少なくとも1種はCo,Ni,Cu,Zn,Ga,Rh,Pd,Ag,CdおよびInのいずれかであり、かつ、0<x<4である。さらに、窒素Nの一部は、水素H,ホウ素B,炭素C,酸素Oのいずれかで置換されていてもよく、好ましくはホウ素B,炭素Cであり、より好ましくは炭素Cである。 The general chemical formula of interstitial manganese nitride is represented by “Mn 4-x A x N”. The element A is one element selected from Co, Ni, Cu, Zn, Ga, Rh, Pd, Ag, Cd, and In, and 0 <x <4 (where x is not an integer). is there. Alternatively, the element A is Mg, Al, Si, Sc and any two or more elements of Group 4 to 15 atoms in the 4th to 6th periods of the periodic table, at least one of which is Co, Ni, Cu, Any of Zn, Ga, Rh, Pd, Ag, Cd, and In, and 0 <x <4. Furthermore, a part of nitrogen N may be substituted with any of hydrogen H, boron B, carbon C, and oxygen O, preferably boron B and carbon C, more preferably carbon C.

なお、侵入型窒化マンガンの一般化学式“Mn4−xN”は、原子の欠陥や過剰がないことを前提とした式であるが、侵入型窒化マンガンは、結晶格子において通常生じうる欠陥や過剰があっても、上述の通り、負の線膨張係数αを示す温度範囲がある限りにおいて、何ら支障なく、複合材料に用いることができる。 The general chemical formula “Mn 4-x A x N” of interstitial manganese nitride is a formula based on the assumption that there are no atomic defects or excess, but interstitial manganese nitride is a defect that can normally occur in the crystal lattice. Even if there is an excess, as described above, as long as there is a temperature range exhibiting a negative linear expansion coefficient α, the composite material can be used without any problem.

侵入型窒化マンガンの具体的な組成としては、MnCu0.5Sn0.5N,Mn3.1Cu0.4Sn0.5N,MnCu0.5Sn0.50.90.1,Mn3.1Cu0.4Sn0.50.90.1,Mn2.88Fe0.12Cu0.4Sn0.6N,MnZn0.5Sn0.5N,Mn3.1Zn0.4Sn0.5N,MnZn0.5Sn0.50.90.1,Mn3.1Zn0.4Sn0.50.90.1,Mn2.88Fe0.12Zn0.4Sn0.6N等が挙げられる。 As a specific composition of the interstitial manganese nitride, Mn 3 Cu 0.5 Sn 0.5 N, Mn 3.1 Cu 0.4 Sn 0.5 N, Mn 3 Cu 0.5 Sn 0.5 N 0 .9 C 0.1 , Mn 3.1 Cu 0.4 Sn 0.5 N 0.9 C 0.1 , Mn 2.88 Fe 0.12 Cu 0.4 Sn 0.6 N, Mn 3 Zn 0 .5 Sn 0.5 N, Mn 3.1 Zn 0.4 Sn 0.5 N, Mn 3 Zn 0.5 Sn 0.5 N 0.9 C 0.1 , Mn 3.1 Zn 0.4 Sn 0.5 N 0.9 C 0.1 , Mn 2.88 Fe 0.12 Zn 0.4 Sn 0.6 N and the like can be mentioned.

図1にMnCu0.5Sn0.5Nの線熱膨張ΔL/Lと、その温度微分(傾き)に相当する線膨張係数αとの関係を示す。この線熱膨張ΔL/Lの測定は、株式会社リガク製の[ThermoPlus2 TMA8310]を用いて、室温から2℃/分の昇温速度で行った。この測定に供したMnCu0.5Sn0.5Nは、3mm×3mm×10mmの直方体形状を有している。この試料は、所定量のMnNとSnとCuを計量して均一混合し、1t/cm(=98MPa)で一軸成形後、窒素雰囲気中で加熱し、このときの加熱最高温度を900℃として同温度で5時間保持して得られた焼結体から切り出したものである。 FIG. 1 shows the relationship between the linear thermal expansion ΔL / L of Mn 3 Cu 0.5 Sn 0.5 N and the linear expansion coefficient α corresponding to the temperature differentiation (gradient). The linear thermal expansion ΔL / L was measured at a temperature increase rate of 2 ° C./min from room temperature using [ThermoPlus2 TMA8310] manufactured by Rigaku Corporation. Mn 3 Cu 0.5 Sn 0.5 N used for this measurement has a rectangular parallelepiped shape of 3 mm × 3 mm × 10 mm. In this sample, a predetermined amount of Mn 3 N, Sn, and Cu are weighed and uniformly mixed, uniaxially molded at 1 t / cm 2 (= 98 MPa), and then heated in a nitrogen atmosphere. It was cut out from a sintered body obtained by maintaining at the same temperature for 5 hours as ° C.

図1に示されるように、室温〜約50℃の間では、線熱膨張ΔL/Lは温度の上昇にしたがって大きくなっている。このとき、線膨張係数αは温度上昇にしたがって小さくなっているが、この温度範囲では、線膨張係数αは正の値を示している。換言すれば、線膨張係数αは温度上昇にしたがって小さくなっているものの、その絶対値が正の値であるために、昇温にしたがって試料は伸張し、これによって線熱膨張ΔL/Lが徐々に大きくなっている。   As shown in FIG. 1, between room temperature and about 50 ° C., the linear thermal expansion ΔL / L increases as the temperature increases. At this time, the linear expansion coefficient α decreases as the temperature rises, but in this temperature range, the linear expansion coefficient α shows a positive value. In other words, although the linear expansion coefficient α decreases as the temperature rises, the absolute value thereof is a positive value. Therefore, the sample expands as the temperature rises, and as a result, the linear thermal expansion ΔL / L gradually increases. Is getting bigger.

しかし、試料の線熱膨張ΔL/Lは約50℃〜90℃の温度領域においては、温度上昇にしたがって徐々に小さくなっており、試料が温度上昇にしたがって収縮を始めていることがわかる。つまり、試料の線膨張係数αが約50℃で0/℃となり、約75℃で最も小さな値(=負の値で絶対値が大きいことを指す)である約−5×10−6/℃を示し、その後上昇して約90℃で再び0/℃を示すというように変化し、その間の約50℃〜約90℃の温度領域において、線膨張係数αが常に負の値を示しているために、この温度領域において試料は昇温にしたがって収縮する。こうして、試料の線熱膨張ΔL/Lが徐々に小さくなるという負熱膨張と呼ばれる現象(つまり、線熱膨張ΔL/Lの温度に対する勾配が負となる現象)が現れる。 However, it can be seen that the linear thermal expansion ΔL / L of the sample gradually decreases as the temperature rises in the temperature range of about 50 ° C. to 90 ° C., and the sample starts to shrink as the temperature rises. That is, the linear expansion coefficient α of the sample becomes 0 / ° C. at about 50 ° C., and is about −5 × 10 −6 / ° C., which is the smallest value (= a negative value indicating a large absolute value) at about 75 ° C. And then increased to about 90 ° C. and again to show 0 / ° C., and in the temperature range of about 50 ° C. to about 90 ° C., the linear expansion coefficient α always shows a negative value. Therefore, in this temperature region, the sample shrinks as the temperature rises. Thus, a phenomenon called negative thermal expansion in which the linear thermal expansion ΔL / L of the sample gradually decreases (that is, a phenomenon in which the gradient of the linear thermal expansion ΔL / L with respect to the temperature becomes negative) appears.

約90℃を超えると、試料の線熱膨張ΔL/Lは上昇を始め、試料が温度上昇にしたがって伸張していることがわかる。つまり、試料の線膨張係数αが約90℃を超えると再び正の値を示すために、温度が上昇するにつれて線熱膨張ΔL/Lが大きくなる。   It can be seen that when the temperature exceeds about 90 ° C., the linear thermal expansion ΔL / L of the sample starts to increase, and the sample expands as the temperature increases. That is, when the linear expansion coefficient α of the sample exceeds about 90 ° C., it shows a positive value again, so that the linear thermal expansion ΔL / L increases as the temperature rises.

このようにMnCu0.5Sn0.5Nは、約50℃〜約90℃の間で、温度上昇にしたがって収縮するという特徴的な挙動を示す。これに対して、複合材料を構成する軽金属等におけるこの温度領域での線膨張係数αは常に正の値を示す、つまり、温度上昇にしたがって膨張するという挙動を示す。 Thus, Mn 3 Cu 0.5 Sn 0.5 N exhibits a characteristic behavior of shrinking with increasing temperature between about 50 ° C. and about 90 ° C. On the other hand, the linear expansion coefficient α in this temperature region of the light metal or the like constituting the composite material always shows a positive value, that is, shows a behavior of expanding as the temperature rises.

したがって、MnCu0.5Sn0.5Nと軽金属等とからなる複合材料では、この温度領域において、温度上昇時にはMnCu0.5Sn0.5Nの体積減少と軽金属等の体積増加とを相殺させ、温度降下時にはMnCu0.5Sn0.5Nの体積増加と軽金属等の体積減少とを相殺させることができる。 Therefore, in the composite material composed of Mn 3 Cu 0.5 Sn 0.5 N and light metal or the like, in this temperature region, when the temperature rises, the volume decrease of Mn 3 Cu 0.5 Sn 0.5 N and the volume of light metal or the like The increase can be offset, and the volume increase of Mn 3 Cu 0.5 Sn 0.5 N and the volume decrease of light metal or the like can be offset when the temperature drops.

つまり、MnCu0.5Sn0.5Nと軽金属等とを所定の割合で複合させることにより、一定の温度領域において複合材料としての線熱膨張ΔL/Lの変化量δを小さく保つことができる。また、線膨張係数αの絶対値を、所定の温度範囲において、極めて小さい値に保つことも可能となり、後述する実施例3に示すように、0℃〜40℃の温度範囲内の温度幅20度以上の領域における線膨張係数αの絶対値が常に1.5×10−6/℃以下となる複合材料を得ることができる。 That is, the amount of change δ of the linear thermal expansion ΔL / L as a composite material can be kept small in a certain temperature range by combining Mn 3 Cu 0.5 Sn 0.5 N and light metal etc. at a predetermined ratio. Can do. In addition, the absolute value of the linear expansion coefficient α can be kept at a very small value within a predetermined temperature range. As shown in Example 3 to be described later, a temperature range 20 within a temperature range of 0 ° C. to 40 ° C. Thus, it is possible to obtain a composite material in which the absolute value of the linear expansion coefficient α is always 1.5 × 10 −6 / ° C. or less in a region of more than 1 degree.

MnCu0.5Sn0.5Nは上述の通りの熱的特性を示すが、侵入型窒化マンガンの構成元素と組成比、侵入型窒化マンガンと軽金属等との比率を調節することによって、線膨張係数αが負の値を示す温度領域を低温側または高温側にシフトさせることができ、また、その温度領域の幅を狭めたり拡げたりすることができ、さらに線膨張係数αの絶対値を変化させることができる。 Mn 3 Cu 0.5 Sn 0.5 N exhibits the thermal characteristics as described above, but by adjusting the constituent elements and composition ratio of interstitial manganese nitride, the ratio of interstitial manganese nitride and light metal, etc. The temperature range where the linear expansion coefficient α is negative can be shifted to the low temperature side or the high temperature side, the width of the temperature range can be narrowed or expanded, and the absolute value of the linear expansion coefficient α can be increased. Can be changed.

したがって、軽金属等の熱膨張特性に侵入型窒化マンガンの負膨張性を適合させたり、これらの複合比率を調節したりすることにより、用途および使用条件に適した複合材料、すなわち、線熱膨張ΔL/Lの変化量δを小さく抑えながら、そのような特性が得られる温度領域を所望の温度に調整した複合材料を得ることができる。   Therefore, by adjusting the negative expansion property of interstitial manganese nitride to the thermal expansion characteristics of light metals and the like, or adjusting the composite ratio thereof, a composite material suitable for the application and use conditions, that is, linear thermal expansion ΔL It is possible to obtain a composite material in which the temperature range in which such characteristics can be obtained is adjusted to a desired temperature while suppressing the change amount δ of / L.

次に、複合材料の製造方法について説明する。複合材料の製造には、侵入型窒化マンガン粉末の充填体または成形体に軽金属等を溶融させて浸透させる方法が好適に用いられるが、侵入型窒化マンガンは高温で容易に変質・酸化・分解されやすいため、溶融金属の浸透過程において、充填体または成形体に、このような変質等が起こらないようにすることが重要となる。なお、充填体とは容器に充填された状態にあるものをいう。単に「成形体」というときには、プレス成形法の他、セラミックス粉末の成形方法として一般的に用いられている方法により作製される成形体、その成形体の仮焼体および焼結体を含む。   Next, the manufacturing method of a composite material is demonstrated. For the production of composite materials, a method in which light metal or the like is melted and infiltrated into a filler or molded body of interstitial manganese nitride powder is suitably used, but interstitial manganese nitride is easily altered, oxidized and decomposed at high temperatures. Therefore, it is important to prevent such alteration or the like from occurring in the filling body or the molded body during the molten metal infiltration process. In addition, a filling body means the thing in the state with which the container was filled. The simple “molded body” includes, in addition to the press molding method, a molded body produced by a method generally used as a ceramic powder molding method, a calcined body and a sintered body of the molded body.

そこで、複合材料の製造では、最初に、侵入型窒化マンガン粉末を鉄またはカーボン等の容器に充填し、侵入型窒化マンガン粉末に圧力を加えるか、または容器に振動を加えることによって、侵入型窒化マンガン粉末の充填体を作製する。または、侵入型窒化マンガン粉末に無機バインダあるいは有機バインダを添加してプレス成形する方法や、侵入型窒化マンガン粉末と溶媒と無機バインダとを混合し、フィルタープレス等の方法によって、侵入型窒化マンガン粉末のプレス成形体を作製することができる。   Therefore, in the manufacture of composite materials, first, interstitial manganese nitride powder is filled into a container such as iron or carbon, and pressure is applied to the interstitial manganese nitride powder, or vibration is applied to the container, so Manganese powder filler is prepared. Alternatively, the interstitial manganese nitride powder may be pressed by adding an inorganic binder or an organic binder to the interstitial manganese nitride powder, or by mixing the interstitial manganese nitride powder, a solvent and an inorganic binder, and using a method such as filter press. The press-molded body can be produced.

その他、侵入型窒化マンガンの合成と仮焼結とを連続して行うことによって、その仮焼体を作製することができる。例えば、侵入型窒化マンガンがMnCu0.5Sn0.5Nである場合、MnNとSnとCuを所定量、計量して均一混合し、その粉末を一軸成形し、得られたプレス成形体を窒素雰囲気中にて所定温度に加熱することにより、合成反応を進行させるとともに焼結を一部進行させることで、仮焼体を得ることができる。 In addition, the calcined body can be produced by continuously performing the synthesis of interstitial manganese nitride and preliminary sintering. For example, when the interstitial manganese nitride is Mn 3 Cu 0.5 Sn 0.5 N, a predetermined amount of Mn 3 N, Sn and Cu are weighed and uniformly mixed, and the powder is obtained by uniaxial molding. By heating the press-molded body to a predetermined temperature in a nitrogen atmosphere, a calcined body can be obtained by advancing the synthesis reaction and partly sintering.

また、所定量のMnNとSnを計量,混合した後、窒素雰囲気中で加熱することによってMnSnNを合成し、一方で所定量のMnNとCuを計量,混合した後、窒素雰囲気中で加熱することによってMnCuNを合成し、こうして得られた2種類の合成粉末を所定量計量し、混合した粉末を一軸成形し、得られたプレス成形体を窒素雰囲気中で所定温度に加熱することにより、MnCu0.5Sn0.5Nを合成するとともに焼結を一部進行させることで、仮焼体または焼結体を得るという方法を用いることもできる。 Also, a predetermined amount of Mn 3 N and Sn are weighed and mixed, and then heated in a nitrogen atmosphere to synthesize Mn 3 SnN, while a predetermined amount of Mn 3 N and Cu are weighed and mixed, and then nitrogen is added. Mn 3 CuN is synthesized by heating in an atmosphere, the two types of synthetic powders thus obtained are weighed in predetermined amounts, the mixed powder is uniaxially molded, and the resulting press-molded body is heated to a predetermined temperature in a nitrogen atmosphere. It is also possible to use a method of obtaining a calcined body or a sintered body by synthesizing Mn 3 Cu 0.5 Sn 0.5 N and partially advancing sintering.

このようにして作製した充填体または成形体に、軽金属等を加圧浸透させることにより、両者を複合化させる。すなわち、充填体または成形体を500℃〜1000℃に予熱(加熱)し、これを鋳造用金型内にセットする。一方、軽金属等をその融点以上の温度で溶融し、その溶融金属を先の鋳造用金型に注入して所定の圧力を加えることにより、溶融金属を充填体または成形体内に浸透させることができる。この場合の溶湯温度は600〜1000℃であることが好ましい。600℃未満では浸透不良が生じ易く、1000℃以上では溶湯が酸化され酸化物が混入しやすく、酸化物の影響で線膨張係数αが大きくなるため好ましくない。また、軽金属等がマグネシウムあるいはマグネシウム合金である場合には、発火を防止するため、CO,窒素ガス,アルゴンガス,アルゴンガスと窒素ガスの混合ガス、減圧(1気圧以下)窒素ガス等のガスを、溶解炉および鋳造用金型内に導入することが好ましい。 The filling body or the molded body thus produced is combined with both by combining light metal and the like under pressure. That is, the filler or molded body is preheated (heated) to 500 ° C. to 1000 ° C., and this is set in a casting mold. On the other hand, by melting a light metal or the like at a temperature equal to or higher than its melting point, injecting the molten metal into the casting mold and applying a predetermined pressure, the molten metal can be infiltrated into the filler or molded body. . In this case, the molten metal temperature is preferably 600 to 1000 ° C. If the temperature is lower than 600 ° C., poor penetration tends to occur, and if the temperature is 1000 ° C. or higher, the molten metal is easily oxidized and oxides are mixed therein. When the light metal is magnesium or a magnesium alloy, in order to prevent ignition, gas such as CO 2 , nitrogen gas, argon gas, mixed gas of argon gas and nitrogen gas, reduced pressure (1 atm or less) nitrogen gas, etc. Is preferably introduced into the melting furnace and the casting mold.

このような浸透処理が終了したら、鋳造用金型から固形物を取り出す。この固形物の周囲には軽金属等のみからなる層が形成されているために、この部分を機械加工により除去し、こうして複合材料を得ることができる。   When such a permeation process is completed, the solid matter is taken out from the casting mold. Since a layer made only of a light metal or the like is formed around the solid material, this portion can be removed by machining, and thus a composite material can be obtained.

[実施例1]
所定量のMnNとSnとCuを計量してこれらを均一混合し、1t/cm(=98MPa)で一軸成形後、窒素雰囲気中で加熱した。このときの加熱最高温度を800℃とし、同温度で5時間保持した後、室温へ冷却した。こうして得られた仮焼体を解砕し、MnCu0.5Sn0.5N粉末を得た。
[Example 1]
A predetermined amount of Mn 3 N, Sn and Cu were weighed and uniformly mixed, uniaxially molded at 1 t / cm 2 (= 98 MPa), and then heated in a nitrogen atmosphere. The maximum heating temperature at this time was set to 800 ° C., held at the same temperature for 5 hours, and then cooled to room temperature. The calcined body thus obtained was crushed to obtain Mn 3 Cu 0.5 Sn 0.5 N powder.

得られたMnCu0.5Sn0.5N粉末に、その100重量部に対して、5重量部のコロイダルシリカと、バインダとしての5重量部のポリビニルブチラール(PVB)を添加して均一に混合し、プレス成形法により、150mm×100mm×50mmのプレス成形体を作製した。この成形体のセラミックス含有率は40体積%であった。 To the obtained Mn 3 Cu 0.5 Sn 0.5 N powder, 5 parts by weight of colloidal silica and 5 parts by weight of polyvinyl butyral (PVB) as a binder are uniformly added to 100 parts by weight of the powder. And a press-molded body of 150 mm × 100 mm × 50 mm was produced by a press molding method. The ceramic content of this compact was 40% by volume.

電気炉を用いてこの成形体を400℃で予熱してアルミニウム鋳造用金型内にセットした。アルミニウム合金(JIS AC8A)を750℃に加熱して溶融させ、この溶融合金を先の鋳造用金型に注入し、60MPaで10分間加圧し、溶融合金を成形体に浸透させた。鋳造用金型の温度を室温まで下げた後に、鋳造用金型内の固形物を取り出し、さらにその固形物の表面の合金層を除去して、MnCu0.5Sn0.5Nとアルミニウム合金とからなる複合材料を得た。 This compact was preheated at 400 ° C. using an electric furnace and set in an aluminum casting mold. An aluminum alloy (JIS AC8A) was heated to 750 ° C. and melted, and this molten alloy was poured into the previous casting mold and pressurized at 60 MPa for 10 minutes to allow the molten alloy to penetrate into the compact. After lowering the temperature of the casting mold to room temperature, the solid in the casting mold is taken out, and the alloy layer on the surface of the solid is removed to obtain Mn 3 Cu 0.5 Sn 0.5 N and A composite material composed of an aluminum alloy was obtained.

この複合材料から4mm×4mm×15mmの試験片を切り出し、熱膨張計(アルバック理工製:LIX−I)で、20℃〜300℃の線熱膨張ΔL/Lを、昇温速度2℃/分で測定した。   A test piece of 4 mm × 4 mm × 15 mm was cut out from this composite material, and a linear thermal expansion ΔL / L of 20 ° C. to 300 ° C. with a thermal dilatometer (manufactured by ULVAC-RIKO: LIX-I) was increased at a rate of temperature increase of 2 ° C./min Measured with

その結果を図2に示す。ここでは線熱膨張ΔL/Lの基準温度を27℃としている。この実施例1では、線熱膨張ΔL/Lの変化量δは、約25℃〜57℃の温度範囲内で常にδ≦1×10−4となっている。約25℃〜52℃の温度範囲内における温度幅10度の温度領域で常にδ≦5×10−5となっており、δ≦5×10−5となる最も広い温度領域は、約25℃〜42℃,約36℃〜53℃であった。なお、35℃〜45℃の範囲における線膨張係数αは、−7.4×10−6/℃の値を示した。 The result is shown in FIG. Here, the reference temperature of the linear thermal expansion ΔL / L is set to 27 ° C. In Example 1, the change amount δ of the linear thermal expansion ΔL / L is always δ ≦ 1 × 10 −4 within a temperature range of about 25 ° C. to 57 ° C. About is always a δ ≦ 5 × 10 -5 at a temperature region of the temperature range 10 ° within the temperature range of 25 ° C. to 52 ° C., the broadest temperature range becomes δ ≦ 5 × 10 -5 is about 25 ° C. It was -42 degreeC and about 36 to 53 degreeC. The linear expansion coefficient α in the range of 35 ° C. to 45 ° C. showed a value of −7.4 × 10 −6 / ° C.

[実施例2]
MnNとSnとCuの加熱温度を900℃とし、成形体のセラミックス含有率を64体積%に変えたこと以外は、上述した実施例1に係る複合材料の製造方法および評価方法にしたがって複合材料を作製し、その特性を評価した。窒化マンガンの組成は実施例1と同様、MnCu0.5Sn0.5Nとした。その結果を図3に示す。ここでは線熱膨張ΔL/Lの基準温度を65℃としている。
[Example 2]
Except that the heating temperature of Mn 3 N, Sn, and Cu was set to 900 ° C. and the ceramic content of the formed body was changed to 64% by volume, the composite was produced according to the method for producing and evaluating the composite material according to Example 1 described above. Materials were prepared and their properties were evaluated. The composition of manganese nitride was Mn 3 Cu 0.5 Sn 0.5 N as in Example 1. The result is shown in FIG. Here, the reference temperature of the linear thermal expansion ΔL / L is set to 65 ° C.

この実施例2では、線熱膨張ΔL/Lの変化量δは、約45℃〜80℃の温度範囲内における温度幅20度の温度領域で常にδ≦1×10−4となっており、δ≦1×10−4となる最も広い温度領域は約53℃〜77℃となった。約52℃〜78℃の温度範囲内における温度幅10度の温度領域で常にδ≦5×10−5となっており、δ≦5×10−5となる最も広い温度領域は約58℃〜72℃となった。なお、65℃〜80℃における線膨張係数αは、3.5×10−6/℃であった。 In Example 2, the change amount δ of the linear thermal expansion ΔL / L is always δ ≦ 1 × 10 −4 in a temperature range of 20 degrees in a temperature range of about 45 ° C. to 80 ° C., The widest temperature range where δ ≦ 1 × 10 −4 was about 53 ° C. to 77 ° C. Δ ≦ 5 × 10 −5 is always established in the temperature range of 10 ° C. within the temperature range of about 52 ° C. to 78 ° C., and the widest temperature range satisfying δ ≦ 5 × 10 −5 is about 58 ° C. It became 72 degreeC. The linear expansion coefficient α at 65 ° C. to 80 ° C. was 3.5 × 10 −6 / ° C.

[実施例3]
窒化マンガンの組成をMn3.226Sn0.387Cu0.387N、とし、加熱温度を900℃とし、成形体のセラミックス含有率を51体積%に変えたこと以外は、上述した実施例1に係る複合材料の製造方法および評価方法にしたがって、複合材料を作製し、その特性を評価した。その結果を図4に示す。ここでは線熱膨張ΔL/Lの基準温度を23℃としている。
[Example 3]
Example 1 described above except that the composition of manganese nitride was Mn 3.226 Sn 0.387 Cu 0.387 N, the heating temperature was 900 ° C., and the ceramic content of the compact was changed to 51% by volume. According to the composite material manufacturing method and evaluation method according to the present invention, composite materials were produced and their characteristics were evaluated. The result is shown in FIG. Here, the reference temperature of the linear thermal expansion ΔL / L is 23 ° C.

この実施例3では、線熱膨張ΔL/Lの変化量δは、約−22℃〜40℃の温度範囲内における温度幅20度の温度領域で常にδ≦1×10−4となっており、δ≦1×10−4となる最も広い温度領域は約−15℃〜33℃となった。約−15℃〜33℃の温度範囲内における温度幅10度の温度領域で常にδ≦5×10−5となっており、δ≦5×10−5となる最も広い温度領域は約−10℃〜31℃となった。さらに、実施例3は、約−8℃〜28℃の温度領域において、δ≦2×10−5となるという特性を示している。このように、実施例3は、線熱膨張ΔL/Lの小さい温度範囲が極めて広いという優れた特性を示した。 In Example 3, the change amount δ of the linear thermal expansion ΔL / L is always δ ≦ 1 × 10 −4 in the temperature range of 20 degrees in the temperature range of about −22 ° C. to 40 ° C. The widest temperature range where δ ≦ 1 × 10 −4 is about −15 ° C. to 33 ° C. In the temperature range of about −15 ° C. to 33 ° C. within the temperature range of 10 ° C., δ ≦ 5 × 10 −5 is always satisfied, and the widest temperature range where δ ≦ 5 × 10 −5 is about −10 C. to 31.degree. Further, Example 3 shows a characteristic that δ ≦ 2 × 10 −5 in a temperature range of about −8 ° C. to 28 ° C. As described above, Example 3 exhibited excellent characteristics that the temperature range in which the linear thermal expansion ΔL / L is small is extremely wide.

また、実施例3の0℃〜20℃における線膨張係数αは、−1.4×10−6/℃であり、広い温度範囲でその絶対値が極めて小さく、優れた低熱膨張性を示すことが確認された。 Further, the linear expansion coefficient α at 0 ° C. to 20 ° C. of Example 3 is −1.4 × 10 −6 / ° C., and its absolute value is extremely small over a wide temperature range, and exhibits excellent low thermal expansion. Was confirmed.

[実施例4]
窒化マンガンの組成をMn3.209Sn0.396Cu0.396N、とし、加熱温度を900℃とし、成形体のセラミックス含有率を54体積%に変えたこと以外は、上述した実施例1に係る複合材料の製造方法および評価方法にしたがって、複合材料を作製し、その特性を評価した。その結果を図5に示す。ここでは線熱膨張ΔL/Lの基準温度を23℃としている。
[Example 4]
Example 1 described above except that the composition of manganese nitride is Mn 3.209 Sn 0.396 Cu 0.396 N, the heating temperature is 900 ° C., and the ceramic content of the compact is changed to 54% by volume. According to the composite material manufacturing method and evaluation method according to the present invention, composite materials were produced and their characteristics were evaluated. The result is shown in FIG. Here, the reference temperature of the linear thermal expansion ΔL / L is 23 ° C.

この実施例4では、線熱膨張ΔL/Lの変化量δは、約−14℃〜48℃の温度範囲内における温度幅20度の温度領域で常にδ≦1×10−4となっており、δ≦1×10−4となる最も広い温度領域は約−10℃〜46℃となった。約−8℃〜44℃の温度範囲内における温度幅10度の温度領域で常にδ≦5×10−5となっており、δ≦5×10−5となる最も広い温度領域は約−5℃〜43℃となり、この実施例4も幅広い温度範囲で線熱膨張ΔL/Lが小さい値を示した。なお、この実施例4の10℃〜30℃の範囲における線膨張係数αは、−2.5×10−6/℃の値を示した。 In Example 4, the change amount δ of the linear thermal expansion ΔL / L is always δ ≦ 1 × 10 −4 in the temperature range of 20 degrees in the temperature range of about −14 ° C. to 48 ° C. The widest temperature range where δ ≦ 1 × 10 −4 is about −10 ° C. to 46 ° C. Δ ≦ 5 × 10 −5 is always satisfied in the temperature range of 10 ° C. within the temperature range of about −8 ° C. to 44 ° C., and the widest temperature range where δ ≦ 5 × 10 −5 is about −5. It became 45 degreeC-43 degreeC, and also this Example 4 showed the value with small linear thermal expansion (DELTA) L / L in the wide temperature range. In addition, the linear expansion coefficient α in the range of 10 ° C. to 30 ° C. of Example 4 showed a value of −2.5 × 10 −6 / ° C.

[実施例5]
窒化マンガンの組成をMn3.191Sn0.404Cu0.404N、とし、加熱温度を900℃とし、成形体のセラミックス含有率を59体積%に変えたこと以外は、上述した実施例1に係る複合材料の製造方法および評価方法にしたがって、複合材料を作製し、その特性を評価した。その結果を図6に示す。ここでは線熱膨張ΔL/Lの基準温度を23℃としている。
[Example 5]
Example 1 described above except that the composition of manganese nitride was Mn 3.191 Sn 0.404 Cu 0.404 N, the heating temperature was 900 ° C., and the ceramic content of the compact was changed to 59% by volume. According to the composite material manufacturing method and evaluation method according to the present invention, composite materials were produced and their characteristics were evaluated. The result is shown in FIG. Here, the reference temperature of the linear thermal expansion ΔL / L is 23 ° C.

この実施例5では、線熱膨張ΔL/Lの変化量δは、約−12℃〜55℃の温度範囲内における温度幅20度の温度領域で常にδ≦1×10−4となっており、δ≦1×10−4となる最も広い温度領域は約−10℃〜53℃となった。約−8℃〜54℃の温度範囲内における温度幅10度の温度領域で常にδ≦5×10−5となっており、δ≦5×10−5となる最も広い温度領域は約−5〜30℃となり、幅広い温度範囲で線熱膨張ΔL/Lが小さい値を示した。なお、15℃〜35℃の範囲における線膨張係数αは、−3.8×10−6/℃の値を示した。 In Example 5, the change amount δ of the linear thermal expansion ΔL / L is always δ ≦ 1 × 10 −4 in a temperature range of 20 ° C. within a temperature range of about −12 ° C. to 55 ° C. The widest temperature range where δ ≦ 1 × 10 −4 is about −10 ° C. to 53 ° C. Δ ≦ 5 × 10 −5 is always established in the temperature range of 10 ° C. within the temperature range of about −8 ° C. to 54 ° C., and the widest temperature range where δ ≦ 5 × 10 −5 is about −5. The linear thermal expansion ΔL / L was small over a wide temperature range. The linear expansion coefficient α in the range of 15 ° C. to 35 ° C. showed a value of −3.8 × 10 −6 / ° C.

MnCu0.5Sn0.5Nの線熱膨張ΔL/Lおよび線膨張係数αを示すグラフ。Mn 3 Cu 0.5 Sn 0.5 N graph showing the linear thermal expansion [Delta] L / L and the linear expansion coefficient α of. 実施例1の線熱膨張ΔL/Lと線膨張係数αを示すグラフ。2 is a graph showing the linear thermal expansion ΔL / L and the linear expansion coefficient α of Example 1. 実施例2の線熱膨張ΔL/Lと線膨張係数αを示すグラフ。The graph which shows linear thermal expansion (DELTA) L / L and linear expansion coefficient (alpha) of Example 2. FIG. 実施例3の線熱膨張ΔL/Lと線膨張係数αを示すグラフ。6 is a graph showing the linear thermal expansion ΔL / L and the linear expansion coefficient α of Example 3. 実施例4の線熱膨張ΔL/Lと線膨張係数αを示すグラフ。The graph which shows linear thermal expansion (DELTA) L / L and the linear expansion coefficient (alpha) of Example 4. FIG. 実施例5の線熱膨張ΔL/Lと線膨張係数αを示すグラフ。10 is a graph showing the linear thermal expansion ΔL / L and the linear expansion coefficient α of Example 5.

Claims (7)

軽金属または軽金属合金と侵入型窒化マンガンとを複合させてなる金属−セラミックス複合材料であって、
線熱膨張の変化量が1×10−4以内となる少なくとも温度幅20度以上の温度領域が、−30℃以上90℃以下の温度範囲内にあることを特徴とする金属−セラミックス複合材料。
A metal-ceramic composite material obtained by combining light metal or light metal alloy and interstitial manganese nitride,
A metal-ceramic composite material, characterized in that a temperature range of at least a temperature range of 20 ° C. or more within which a change in linear thermal expansion is within 1 × 10 −4 is within a temperature range of −30 ° C. to 90 ° C.
線熱膨張の変化量が5×10−5以内となる少なくとも温度幅10度以上の温度領域が、−20℃以上70℃以下の温度範囲内にあることを特徴とする請求項1に記載の金属−セラミックス複合材料。 2. The temperature range of at least a temperature range of 10 degrees or more where the change amount of linear thermal expansion is within 5 × 10 −5 is within a temperature range of −20 ° C. or more and 70 ° C. or less. Metal-ceramic composite material. 軽金属または軽金属合金と侵入型窒化マンガンとを複合させてなる金属−セラミックス複合材料であって、
0℃〜40℃の温度範囲内の温度幅20度以上の領域における線膨張係数の絶対値が、常に、1.5×10−6/℃以下であることを特徴とする金属−セラミックス複合材料。
A metal-ceramic composite material obtained by combining light metal or light metal alloy and interstitial manganese nitride,
Metal-ceramic composite material, characterized in that the absolute value of the linear expansion coefficient in a temperature range of 20 ° C. or more within a temperature range of 0 ° C. to 40 ° C. is always 1.5 × 10 −6 / ° C. or less. .
前記温度幅20度以上の領域において、前記侵入型窒化マンガンの線膨張係数は負の値を有することを特徴とする請求項3に記載の金属−セラミックス複合材料。   4. The metal-ceramic composite material according to claim 3, wherein the interstitial manganese nitride has a negative linear expansion coefficient in the temperature range of 20 degrees or more. 5. 前記温度領域内において、前記侵入型窒化マンガンの線膨張係数は負の値を有することを特徴とする請求項1から請求項4のいずれか1項に記載の金属−セラミックス複合材料。   5. The metal-ceramic composite material according to claim 1, wherein a linear expansion coefficient of the interstitial manganese nitride has a negative value in the temperature region. 前記基材は、金属アルミニウム、アルミニウム合金、金属マグネシウム、マグネシウム合金のいずれかであることを特徴とする請求項1から請求項5のいずれか1項に記載の金属−セラミックス複合材料。   The metal-ceramic composite material according to any one of claims 1 to 5, wherein the base material is any one of metallic aluminum, an aluminum alloy, metallic magnesium, and a magnesium alloy. 軽金属または軽金属合金と侵入型窒化マンガンとを複合させてなる金属−セラミックス複合材料の製造方法であって、
前記侵入型窒化マンガンを含む充填体または成形体に、溶融させた軽金属または軽金属合金を加圧浸透させ、その際の処理温度を600℃〜1000℃とすることを特徴とする金属−セラミックス複合材料の製造方法。
A method for producing a metal-ceramic composite material comprising a composite of light metal or light metal alloy and interstitial manganese nitride,
A metal-ceramic composite material, characterized in that a melted light metal or light metal alloy is pressed and infiltrated into the filler or molded body containing the interstitial manganese nitride, and the treatment temperature at that time is 600 ° C. to 1000 ° C. Manufacturing method.
JP2007062294A 2007-03-12 2007-03-12 Metal-ceramic composite material and manufacturing method thereof Expired - Fee Related JP4332615B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007062294A JP4332615B2 (en) 2007-03-12 2007-03-12 Metal-ceramic composite material and manufacturing method thereof
PCT/JP2008/000371 WO2008111285A1 (en) 2007-03-12 2008-02-27 Metal/ceramic composite material and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062294A JP4332615B2 (en) 2007-03-12 2007-03-12 Metal-ceramic composite material and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2008223077A true JP2008223077A (en) 2008-09-25
JP2008223077A5 JP2008223077A5 (en) 2009-02-19
JP4332615B2 JP4332615B2 (en) 2009-09-16

Family

ID=39759229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062294A Expired - Fee Related JP4332615B2 (en) 2007-03-12 2007-03-12 Metal-ceramic composite material and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4332615B2 (en)
WO (1) WO2008111285A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228945A (en) * 2009-03-26 2010-10-14 Taiheiyo Cement Corp Resin-ceramic composite material and production method of the same
JP2010228944A (en) * 2009-03-26 2010-10-14 Taiheiyo Cement Corp Resin-ceramic composite material and production method of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5935258B2 (en) * 2011-08-02 2016-06-15 国立研究開発法人理化学研究所 Thermal expansion control metal composite material and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07818B2 (en) * 1985-11-20 1995-01-11 株式会社日立製作所 Method for producing metal matrix-fiber composite material
JP2006009088A (en) * 2004-06-25 2006-01-12 Hitachi Metals Ltd Method for producing composite material with low thermal expansion, tabular composite, and parts for electronic equipment
US7632480B2 (en) * 2004-07-30 2009-12-15 Riken Thermal expansion inhibitor, zero thermal expansion material, negative thermal expansion material, method for inhibiting thermal expansion, and method for producing thermal expansion inhibitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228945A (en) * 2009-03-26 2010-10-14 Taiheiyo Cement Corp Resin-ceramic composite material and production method of the same
JP2010228944A (en) * 2009-03-26 2010-10-14 Taiheiyo Cement Corp Resin-ceramic composite material and production method of the same

Also Published As

Publication number Publication date
WO2008111285A1 (en) 2008-09-18
JP4332615B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
JP5477282B2 (en) R-T-B system sintered magnet and manufacturing method thereof
US7833361B2 (en) Alloy and method for producing magnetic refrigeration material particles using same
JP6561117B2 (en) Rare earth permanent magnet and manufacturing method thereof
JP5935258B2 (en) Thermal expansion control metal composite material and manufacturing method thereof
JP5447743B1 (en) Fe-Co alloy sputtering target material and method for producing the same
JP2009293099A (en) Highly corrosion-resistant amorphous alloy
EP2857547A1 (en) Sputtering target for rare-earth magnet and production method therefor
JP4332615B2 (en) Metal-ceramic composite material and manufacturing method thereof
JP7287220B2 (en) Rare earth magnet and manufacturing method thereof
JP4970003B2 (en) Co-B target material and method for producing the same
JP6094848B2 (en) Method for producing Fe-Co alloy soft magnetic film for perpendicular magnetic recording medium
JP2010095794A (en) METHOD FOR PRODUCING Co-Fe-Ni-BASED ALLOY SPUTTERING TARGET MATERIAL
JP5117085B2 (en) Metal-ceramic composite material and manufacturing method thereof
JP6156734B2 (en) Fe-Co alloy sputtering target material and method for producing the same
JP2011181140A (en) Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR MAGNETIC RECORDING MEDIUM
JPH01246342A (en) Supermagnetostrictive material and its manufacture
JP7238504B2 (en) Bulk body for rare earth magnet
JP5435705B2 (en) Resin-ceramic composite material and method for producing the same
WO2014017381A1 (en) Target material and method for producing same
TW201638351A (en) Soft magnetic film and sputtering target for forming soft magnetic film
JP5435704B2 (en) Resin-ceramic composite material and method for producing the same
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JP2003089857A (en) Negative magnetostrictive material and its manufacturing method
JP2015222792A (en) Permanent magnet material and method for manufacturing the same
JP2006144101A (en) Magnetostrictive material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090106

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090106

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees