JP2023138763A - 低温熱伝導率測定装置 - Google Patents
低温熱伝導率測定装置 Download PDFInfo
- Publication number
- JP2023138763A JP2023138763A JP2023130495A JP2023130495A JP2023138763A JP 2023138763 A JP2023138763 A JP 2023138763A JP 2023130495 A JP2023130495 A JP 2023130495A JP 2023130495 A JP2023130495 A JP 2023130495A JP 2023138763 A JP2023138763 A JP 2023138763A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- airtight container
- metal
- heat
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 claims abstract description 213
- 238000005259 measurement Methods 0.000 claims abstract description 37
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims description 119
- 239000002184 metal Substances 0.000 claims description 119
- 238000000034 method Methods 0.000 claims description 34
- 239000004020 conductor Substances 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 36
- 239000007788 liquid Substances 0.000 abstract description 32
- 239000001307 helium Substances 0.000 abstract description 22
- 229910052734 helium Inorganic materials 0.000 abstract description 22
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 abstract description 22
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 18
- 239000007789 gas Substances 0.000 description 30
- 230000005855 radiation Effects 0.000 description 21
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- 238000009413 insulation Methods 0.000 description 11
- 229910052802 copper Inorganic materials 0.000 description 10
- 239000010949 copper Substances 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 239000003507 refrigerant Substances 0.000 description 6
- 238000005057 refrigeration Methods 0.000 description 6
- 238000007710 freezing Methods 0.000 description 5
- 230000008014 freezing Effects 0.000 description 5
- 230000008016 vaporization Effects 0.000 description 5
- 238000009835 boiling Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- -1 aluminum Chemical compound 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
そこで、図5に示すように、液体ヘリウム(LHe)を気化させて真空断熱容器で形成された断熱性気密容器5内の雰囲気温度を、約-268℃以下の極低温領域まで低下させる装置が考えられているが、液体ヘリウムの気化によって断熱性気密容器5内の雰囲気温度を低下させるためには、液体ヘリウムを大量に消費しなければならず、しかも、液体ヘリウムは非常に気化しやすくその補給や保管のための手間が非常に多くかかり、その上多額の費用が掛かるという問題があった(尚、図面中5は断熱性気密容器、31は液体ヘリウムの貯留容器、4はGHP法測定装置を収容する測定部、33は断熱性気密容器の上部を開放してGHP法測定装置を取り出しできるようにするための断熱材を設けた開閉蓋部である)。
従って、被測定物平板の熱伝導率の測定精度を向上させることができる。
その上、GHP法測定装置を囲繞する金属製気密容器によって、例えば、断熱性気密容器と金属製気密容器との間の空間を真空にして外部からの熱の侵入を遮断しながら、金属製気密容器の内部空間に熱交換用冷媒ガスを充填すれば、その冷媒ガスを介してGHP法測定装置の冷却板を効率よく冷却できる。
さらに、金属製気密容器の内部空間を真空状態にしたり、任意の圧力でガス(窒素、酸素、ヘリウム、アルゴン、水素等)充填状態にして、各種雰囲気中における精度の高い熱伝導率の測定を可能とできる。
図1~図4に示すように、加熱板1の両面側に一対の被測定物平板2を配置し、一対の被測定物平板2の更に両外側夫々に一対の冷却板3を配置し、一対の被測定物平板2夫々の表裏両面部の温度を測定して、表裏両面部の計測温度差に基づいて被測定物平板2の熱伝導率を算出するGHP法測定装置4を、断熱性気密容器5の内側に収容し、冷却板3を0℃以下の低温に冷却する冷却手段を断熱性気密容器5内に設けてある。
前記冷却手段を構成するのに、断熱性気密容器5の内側空間内でGHP法測定装置4を囲繞する金属製気密容器6を設け、金属製気密容器6を熱伝導により冷却する冷凍機7を設け、金属製気密容器6と冷却板3とを直接熱接触させる第1金属製熱伝導部材8を設けてある。
支持フレーム15の接地部15Aは、10ミリ厚の銅製の第1底板17に取り付けてあり(図4(b)、図2)、その第1底板17に対して銅製の3ミリ厚のアンカー板(第1金属製熱伝導部材8)を立設取り付けするように設け(図4(c))、アンカー板には、冷却板3との連結部19(ボルト挿通孔)を上部に設けると共に、下端部8Aに第1底板17と連結可能なボルト挿通用の長孔20が冷却板3の移動方向に沿って設けてあり、その長孔20に対応してボルト挿通孔21が、第1底板17に複数設けてある(図4(a)、(b)、(c))。
容器底板24の下面部には、GM冷凍機をその2段冷却部23A(第2の放冷部23で2段膨張室が内部に設けてある)が接当する状態に取り付けてある。
従って、GM冷凍機からの冷熱は、冷凍機7の放冷部23から金属製気密容器6及び第1金属製熱伝導部材8を介して、冷却板3に直接伝熱される。
従って、輻射シールド容器25も1段冷却部23Bから熱伝導により冷却される。
前記金属製気密容器6及び、輻射シールド容器25の外側は、輻射断熱のための、例えば、ポリイミドフィルムにアルミを蒸着したシートを積層したスーパーインシュレーションと呼ばれるシールド層部材27で、それらの全周を覆ってある。
輻射シールド容器25、及び、外槽気密容器28によって、GHP法測定装置4を内側に収容する断熱性気密容器5を構成してある。
尚、外槽気密容器28の内部の第1空間S1及び輻射シールド容器25の内部の第2空間S2は、熱伝導率測定時には真空ポンプで減圧して真空断熱状態にすることで、外部からの熱の導入が極力抑えられ、且つ、冷凍能力を上げられる。
尚、金属製気密容器6の内部空間に、熱交換作用を有する特定のガスを充填した場合は、放冷部23からの冷熱が、その充填ガスの凝固点以上の温度であれば、その充填ガスが熱交換ガスとして働いて、冷却板3に冷熱が伝わり、より冷却効率が上がる効果がある。
ただし、冷凍機7の放冷部23の冷却能力を上げる必要のある場合、冷凍機7の周囲は、真空断熱などにより断熱能力を高く上げる必要がある。
前記冷却手段として、冷凍機7により冷却板3を冷却するのに、金属製気密容器6の第1底板17と冷却板3とを熱伝導可能に連結する第1金属製熱伝導部材8を設ける以外に、図6に示すように、第1底板17と冷却板3の上部とを直接熱接触させる8本の銅製のワイヤー(例えば、径1ミリの銅線が20本束ねてある)から成る第1金属製補助熱伝導部材29を設けてある。これにより、冷却板3の上部も効率よく冷却され、極低温領域での熱伝導率の測定が可能になる。
第1実施形態及び第2実施形態のように、冷凍機7の放冷部23を、金属製気密容器6の下面に接当させて取り付ける以外に、図7に示すように、金属製気密容器6の天井板部18に接当させて取り付けてあってもよい。尚、GHP法測定装置4は、金属製気密容器6の底板に載置固定されている。
図8に示すように、第1空間S1と第2空間S2を、真空断熱空間にして断熱性気密容器5の内側に、GHP法測定装置4を囲繞する金属製気密容器6を設けて、冷凍機7の放冷部23からの冷熱を直接冷却板3に熱伝導するように、冷凍機7を冷却板3の上方に配置して、冷凍機7の放冷部23と冷却板3の上端部とを直接熱接触する第2金属製熱伝導部材35を設けてあってもよい。
図9に示すように、GHP法測定装置4を囲繞する図1に示すような金属製気密容器6を設けずに、冷凍機7の放冷部23からの冷熱を直接冷却板3に熱伝導するように、例えば、前述の銅製のアンカー板のような第1金属製熱伝導部材8を、放冷部23と連結した第1底板17(GHP法測定装置4の支持フレーム15の接地部15Aを取り付ける)と冷却板3の下部とに亘って連結してもよい。
尚、GHP法測定装置4は、真空層を設けた断熱性気密容器5の内側に収容されている。
以下にその他の実施の形態を説明する。
なお、以下の他の実施形態において、上記実施形態と同様の部材には同一の符号を附してある。
〈1〉 GHP法測定装置4を囲繞する金属製気密容器6は、冷凍機7により直接冷却されるように構成されているが、冷却板3に対する冷却は、金属製熱伝導部材を設けずに、金属製気密容器6に充填する熱交換作用を有するガスにより冷却する(間接冷却)ものでもよい。
〈2〉 前記GM冷凍機に代えて、他の機械式冷凍機(例えばパルスチューブ冷凍機等)が使用できる。
〈3〉 第1金属製熱伝導部材8、第1金属製補助熱伝導部材29は、熱伝導の良いものであれば銅以外の例えば、アルミニウム等の他の金属から成るものでもよく、それらの形態も板状やワイヤー以外の形状でもよい。
〈4〉 断熱性気密容器5の内側で、図10に示すように、GHP法測定装置4に冷凍機7を取り付け、且つ、冷凍機7の放冷部23から、第2金属製熱伝導部材35を介して直接冷却板3に冷熱を熱伝導するようにして、断熱性気密容器5の内部空間に従来のように液体窒素や液体ヘリウムを気化させる貯留容器31を設けて、雰囲気温度を低下させるようにして、冷凍機7との併用する装置であってもよく、この場合、従来装置よりも、液体窒素やヘリウムの使用量を減量できる利点が期待でき、また、併用により運用できる時間が延び、寒剤継ぎ足しの手間が少なくなる等の利点も期待できる。
〈5〉 図11に示すように、外槽気密容器28と金属製気密容器6の間の第1空間S1を、真空断熱空間に形成した断熱性気密容器5の内側にGHP法測定装置4を設けてあってもよい。尚、この場合、冷凍機は、単段の冷凍機を設ければよい。また、2段のGM冷凍機で図1における容器25がないパターンでもよい。
2 被測定物平板
3 冷却板
4 GHP法測定装置
5 断熱性気密容器
6 金属製気密容器
7 機械式冷凍機
8 第1金属製熱伝導部材
23 放冷部
29 第1金属製補助熱伝導部材
35 第2金属製熱伝導部材
そこで、図5に示すように、液体ヘリウム(LHe)を気化させて真空断熱容器で形成された断熱性気密容器5内の雰囲気温度を、約-268℃以下の極低温領域まで低下させる装置が考えられているが、液体ヘリウムの気化によって断熱性気密容器5内の雰囲気温度を低下させるためには、液体ヘリウムを大量に消費しなければならず、しかも、液体ヘリウムは非常に気化しやすくその補給や保管のための手間が非常に多くかかり、その上多額の費用が掛かるという問題があった(尚、図面中5は断熱性気密容器、31は液体ヘリウムの貯留容器、4はGHP法測定装置を収容する測定部、33は断熱性気密容器の上部を開放してGHP法測定装置を取り出しできるようにするための断熱材を設けた開閉蓋部である)。
図1~図4に示すように、加熱板1の両面側に一対の被測定物平板2を配置し、一対の被測定物平板2の更に両外側夫々に一対の冷却板3を配置し、一対の被測定物平板2夫々の表裏両面部の温度を測定して、表裏両面部の計測温度差に基づいて被測定物平板2の熱伝導率を算出するGHP法測定装置4を、断熱性気密容器5の内側に収容し、冷却板3を0℃以下の低温に冷却する冷却手段を断熱性気密容器5内に設けてある。
前記冷却手段を構成するのに、断熱性気密容器5の内側空間内でGHP法測定装置4を囲繞する金属製気密容器6を設け、金属製気密容器6を熱伝導により冷却する冷凍機7を設け、金属製気密容器6と冷却板3とを直接熱接触させる第1金属製熱伝導部材8を設けてある。
支持フレーム15の接地部15Aは、10ミリ厚の銅製の第1底板17に取り付けてあり(図4(b)、図2)、その第1底板17に対して銅製の3ミリ厚のアンカー板(第1金属製熱伝導部材8)を立設取り付けするように設け(図4(c))、アンカー板には、冷却板3との連結部19(ボルト挿通孔)を上部に設けると共に、下端部8Aに第1底板17と連結可能なボルト挿通用の長孔20が冷却板3の移動方向に沿って設けてあり、その長孔20に対応してボルト挿通孔21が、第1底板17に複数設けてある(図4(a)、(b)、(c))。
容器底板24の下面部には、GM冷凍機をその2段冷却部23A(第2の放冷部23で2段膨張室が内部に設けてある)が接当する状態に取り付けてある。
従って、GM冷凍機からの冷熱は、冷凍機7の放冷部23から金属製気密容器6及び第1金属製熱伝導部材8を介して、冷却板3に直接伝熱される。
従って、輻射シールド容器25も1段冷却部23Bから熱伝導により冷却される。
前記金属製気密容器6及び、輻射シールド容器25の外側は、輻射断熱のための、例えば、ポリイミドフィルムにアルミを蒸着したシートを積層したスーパーインシュレーションと呼ばれるシールド層部材27で、それらの全周を覆ってある。
輻射シールド容器25、及び、外槽気密容器28によって、GHP法測定装置4を内側に収容する断熱性気密容器5を構成してある。
尚、外槽気密容器28の内部の第1空間S1及び輻射シールド容器25の内部の第2空間S2は、熱伝導率測定時には真空ポンプで減圧して真空断熱状態にすることで、外部からの熱の導入が極力抑えられ、且つ、冷凍能力を上げられる。
尚、金属製気密容器6の内部空間に、熱交換作用を有する特定のガスを充填した場合は、放冷部23からの冷熱が、その充填ガスの凝固点以上の温度であれば、その充填ガスが熱交換ガスとして働いて、冷却板3に冷熱が伝わり、より冷却効率が上がる効果がある。
ただし、冷凍機7の放冷部23の冷却能力を上げる必要のある場合、冷凍機7の周囲は、真空断熱などにより断熱能力を高く上げる必要がある。
前記冷却手段として、冷凍機7により冷却板3を冷却するのに、金属製気密容器6の第1底板17と冷却板3とを熱伝導可能に連結する第1金属製熱伝導部材8を設ける以外に、図6に示すように、第1底板17と冷却板3の上部とを直接熱接触させる8本の銅製のワイヤー(例えば、径1ミリの銅線が20本束ねてある)から成る第1金属製補助熱伝導部材29を設けてある。
これにより、冷却板3の上部も効率よく冷却され、極低温領域での熱伝導率の測定が可能になる。
第1実施形態及び第2実施形態のように、冷凍機7の放冷部23を、金属製気密容器6の下面に接当させて取り付ける以外に、図7に示すように、金属製気密容器6の天井板部18に接当させて取り付けてあってもよい。
尚、GHP法測定装置4は、金属製気密容器6の底板に載置固定されている。
図8に示すように、第1空間S1と第2空間S2を、真空断熱空間にして断熱性気密容器5の内側に、GHP法測定装置4を囲繞する金属製気密容器6を設けて、冷凍機7の放冷部23からの冷熱を直接冷却板3に熱伝導するように、冷凍機7を冷却板3の上方に配置して、冷凍機7の放冷部23と冷却板3の上端部とを直接熱接触する第2金属製熱伝導部材35を設けてあってもよい。
図9に示すように、GHP法測定装置4を囲繞する図1に示すような金属製気密容器6を設けずに、冷凍機7の放冷部23からの冷熱を直接冷却板3に熱伝導するように、例えば、前述の銅製のアンカー板のような第1金属製熱伝導部材8を、放冷部23と連結した第1底板17(GHP法測定装置4の支持フレーム15の接地部15Aを取り付ける)と冷却板3の下部とに亘って連結してもよい。
尚、GHP法測定装置4は、真空層を設けた断熱性気密容器5の内側に収容されている。
以下にその他の実施の形態を説明する。
なお、以下の他の実施形態において、上記実施形態と同様の部材には同一の符号を附してある。
〈1〉 GHP法測定装置4を囲繞する金属製気密容器6は、冷凍機7により直接冷却されるように構成されているが、冷却板3に対する冷却は、金属製熱伝導部材を設けずに、金属製気密容器6に充填する熱交換作用を有するガスにより冷却する(間接冷却)ものでもよい。
〈2〉 前記GM冷凍機に代えて、他の機械式冷凍機(例えばパルスチューブ冷凍機等)が使用できる。
〈3〉 第1金属製熱伝導部材8、第1金属製補助熱伝導部材29は、熱伝導の良いものであれば銅以外の例えば、アルミニウム等の他の金属から成るものでもよく、それらの形態も板状やワイヤー以外の形状でもよい。
〈4〉 断熱性気密容器5の内側で、図10に示すように、GHP法測定装置4に冷凍機7を取り付け、且つ、冷凍機7の放冷部23から、第2金属製熱伝導部材35を介して直接冷却板3に冷熱を熱伝導するようにして、断熱性気密容器5の内部空間に従来のように液体窒素や液体ヘリウムを気化させる貯留容器31を設けて、雰囲気温度を低下させるようにして、冷凍機7との併用する装置であってもよく、この場合、従来装置よりも、液体窒素やヘリウムの使用量を減量できる利点が期待でき、また、併用により運用できる時間が延び、寒剤継ぎ足しの手間が少なくなる等の利点も期待できる。
〈5〉 図11に示すように、外槽気密容器28と金属製気密容器6の間の第1空間S1を、真空断熱空間に形成した断熱性気密容器5の内側にGHP法測定装置4を設けてあってもよい。尚、この場合、冷凍機は、単段の冷凍機を設ければよい。また、2段のGM冷凍機で図1における容器25がないパターンでもよい。
2 被測定物平板
3 冷却板
4 GHP法測定装置
5 断熱性気密容器
6 金属製気密容器
7 機械式冷凍機
8 第1金属製熱伝導部材
23 放冷部
29 第1金属製補助熱伝導部材
35 第2金属製熱伝導部材
Claims (7)
- 加熱板の両面側に一対の被測定物平板を配置し、
前記一対の被測定物平板の更に両外側夫々に一対の冷却板を配置し、
前記一対の被測定物平板夫々の表裏両面部の温度を測定して、与えた熱量と前記表裏両面部の計測温度差に基づいて被測定物平板の熱伝導率を算出するGHP法測定装置を、断熱性気密容器の内側に収容し、前記冷却板を0℃以下の低温に冷却する冷却手段を前記断熱性気密容器内に設けてある低温熱伝導率測定装置であって、
前記冷却手段を構成するのに、前記断熱性気密容器の内側空間内で前記GHP法測定装置の前記冷却板を冷却する機械式冷凍機を設け、前記機械式冷凍機の放冷部から熱伝導部材を介して前記冷却板に直接熱接触させてある低温熱伝導率測定装置。 - 前記機械式冷凍機を前記冷却板の下方に配置すると共に、前記機械式冷凍機の放冷部と前記冷却板とを前記熱伝導部材として第1金属製熱伝導部材を介して直接熱接触可能に構成してある請求項1に記載の低温熱伝導率測定装置。
- 前記冷却板の上部と前記放冷部とを直接熱接触させる前記熱伝導部材として第1金属製補助熱伝導部材を設けてある請求項2に記載の低温熱伝導率測定装置。
- 前記機械式冷凍機を前記冷却板の上方に配置して、前記機械式冷凍機の放冷部と前記冷却板の上端部とを熱接触させる前記熱伝導部材として第2金属製熱伝導部材を設けてある請求項1に記載の低温熱伝導率測定装置。
- 前記冷却手段を構成するのに、前記断熱性気密容器の内側空間内で前記GHP法測定装置を囲繞する金属製気密容器を設け、
前記金属製気密容器を熱伝導により冷却する機械式冷凍機を設け、
前記熱伝導部材として前記金属製気密容器と前記冷却板とを直接熱接触させる第1金属製熱伝導部材を設けてある請求項1に記載の低温熱伝導率測定装置。 - 前記機械式冷凍機の放冷部を前記金属製気密容器の下面に接当させて取り付け、前記金属製気密容器の底板と前記冷却板の上部とを直接熱接触させる第1金属製補助熱伝導部材を設けてある請求項5に記載の低温熱伝導率測定装置。
- 前記機械式冷凍機の放冷部を前記金属製気密容器の天井板部に接当させて取り付けてある請求項5に記載の低温熱伝導率測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023130495A JP7470851B2 (ja) | 2019-09-27 | 2023-08-09 | 低温熱伝導率測定装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019177327A JP7332413B2 (ja) | 2019-09-27 | 2019-09-27 | 低温熱伝導率測定装置 |
JP2023130495A JP7470851B2 (ja) | 2019-09-27 | 2023-08-09 | 低温熱伝導率測定装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019177327A Division JP7332413B2 (ja) | 2019-09-27 | 2019-09-27 | 低温熱伝導率測定装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023138763A true JP2023138763A (ja) | 2023-10-02 |
JP7470851B2 JP7470851B2 (ja) | 2024-04-18 |
Family
ID=75273073
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019177327A Active JP7332413B2 (ja) | 2019-09-27 | 2019-09-27 | 低温熱伝導率測定装置 |
JP2023130495A Active JP7470851B2 (ja) | 2019-09-27 | 2023-08-09 | 低温熱伝導率測定装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019177327A Active JP7332413B2 (ja) | 2019-09-27 | 2019-09-27 | 低温熱伝導率測定装置 |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7332413B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230162606A (ko) | 2021-03-29 | 2023-11-28 | 스미토모 겐키 가부시키가이샤 | 쇼벨 |
CN113340940B (zh) * | 2021-06-28 | 2022-07-12 | 江苏省建筑工程质量检测中心有限公司 | 一体化混凝土组合外墙板热工检测方法及其检测装置 |
CN115266814B (zh) * | 2022-06-21 | 2023-06-27 | 安徽万瑞冷电科技有限公司 | 一种低温热导率测量装置和测量方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2614062B2 (ja) * | 1987-12-25 | 1997-05-28 | 財団法人建材試験センター | 平板直接法に依る熱伝導率測定装置 |
JP3303490B2 (ja) * | 1993-12-22 | 2002-07-22 | 日産自動車株式会社 | 自動車の小物入れボックス構造 |
JP4550375B2 (ja) | 2003-05-30 | 2010-09-22 | 独立行政法人理化学研究所 | ビーム電流計 |
JP2011102768A (ja) | 2009-11-11 | 2011-05-26 | Canon Inc | 熱特性の測定方法 |
-
2019
- 2019-09-27 JP JP2019177327A patent/JP7332413B2/ja active Active
-
2023
- 2023-08-09 JP JP2023130495A patent/JP7470851B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2021056036A (ja) | 2021-04-08 |
JP7470851B2 (ja) | 2024-04-18 |
JP7332413B2 (ja) | 2023-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2023138763A (ja) | 低温熱伝導率測定装置 | |
JP3996935B2 (ja) | クライオスタット構造 | |
US20070051115A1 (en) | Cryostat configuration with cryocooler and gas gap heat transfer device | |
US10203068B2 (en) | Method and device for precooling a cryostat | |
JP5972368B2 (ja) | 冷却容器 | |
EP2085720B1 (en) | Cryogenic container with built-in refrigerator | |
JP4763656B2 (ja) | 極低温格納容器冷却システム及びその運用方法 | |
CA2158520A1 (en) | Mechanical cooling system | |
JPS6195585A (ja) | 冷凍機付きクライオスタツト | |
JPS62261866A (ja) | ヘリウム冷却装置 | |
JP5030064B2 (ja) | 極低温冷凍機 | |
JP3881675B2 (ja) | 多段式冷凍機 | |
CN112763951A (zh) | 一种干式冷却型低温超导材料的性能测试装置 | |
JP2977809B1 (ja) | 冷凍装置 | |
US3436926A (en) | Refrigerating structure for cryostats | |
JP2008267635A (ja) | 極低温冷却装置及び極低温冷却方法 | |
CN114684506B (zh) | 一种用于储存低温液体的卧式容器 | |
KR102716054B1 (ko) | 액화수소밸브용 시험장치 | |
KR102639944B1 (ko) | 액화수소밸브용 시험장치 | |
JPS63207958A (ja) | 冷凍機 | |
Uhlig | Alumina shunt for precooling a cryogen-free 4He or 3He refrigerator | |
JPH068782B2 (ja) | 極低温用材料試験装置 | |
JP2005030646A (ja) | 超低温フリーザ | |
Pavese et al. | Cryostats for Thermometry and Gas-Based Temperature Control | |
JPS63299180A (ja) | 超電導装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230905 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230905 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240319 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240408 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7470851 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |