JP2023137302A - 画像標準化方法および観察装置 - Google Patents

画像標準化方法および観察装置 Download PDF

Info

Publication number
JP2023137302A
JP2023137302A JP2022043442A JP2022043442A JP2023137302A JP 2023137302 A JP2023137302 A JP 2023137302A JP 2022043442 A JP2022043442 A JP 2022043442A JP 2022043442 A JP2022043442 A JP 2022043442A JP 2023137302 A JP2023137302 A JP 2023137302A
Authority
JP
Japan
Prior art keywords
image
biological sample
value
observation target
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022043442A
Other languages
English (en)
Inventor
涼 長谷部
Ryo HASEBE
靖 黒見
Yasushi Kuromi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2022043442A priority Critical patent/JP2023137302A/ja
Priority to PCT/JP2022/046875 priority patent/WO2023176081A1/ja
Publication of JP2023137302A publication Critical patent/JP2023137302A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Urology & Nephrology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

【課題】複数の細胞により構成される生体試料の画像について、観察対象領域の輝度値の差を小さくすることができる技術を提供する。【解決手段】まず、画像中の生体試料の全体または一部分に相当する領域を、観察対象領域として抽出する。次に、複数の観察対象領域のそれぞれについて、輝度値の集約値を算出する。その後、集約値の差が小さくなるように、複数の観察対象領域の輝度値を調整する。これにより、複数の観察対象領域の明暗のばらつきが小さくなる。これにより、複数の生体試料を公平に観察・評価することができる。【選択図】図4

Description

本発明は、複数の細胞により構成される生体試料の画像の輝度値を標準化する技術に関する。
従来、複数の細胞により構成される生体試料を光干渉断層撮影(Optical Coherence Tomography;OCT)により撮影し、得られた断層画像に基づいて、生体試料を観察する観察装置が知られている。従来の観察装置については、例えば特許文献1に記載されている。この種の観察装置を使用すれば、生体試料の立体構造を非侵襲的に観察することができる。
特開2018-105683号公報
上記の観察装置において、光干渉断層撮影を行うときは、ウェルプレート等の試料容器内に培養液とともに保持された生体試料に向けて、近赤外光を照射する。その際、近赤外光は、生体試料に照射される前に、試料容器や培養液を通過する。このため、生体試料に照射される近赤外光の量は、試料容器の材質、厚さ、形状、表面コーティング、培養液の量などの影響を受ける。このため、これらの要素にばらつきがあると、得られる断層画像の輝度にもばらつきが生じる。
また、複数の細胞により構成されるスフェロイドやオルガノイド等の生体試料は、1つ1つ形状や大きさが異なる。このため、仮に、試料容器や培養液等の環境要因が一定であったとしても、生体試料自体の形状・大きさの違いによって、生体試料の内部に到達する近赤外光の量にばらつきが生じる。その結果、断層画像の輝度値にばらつきが生じる場合がある。
本発明は、このような事情に鑑みなされたものであり、複数の細胞により構成される生体試料の画像について、観察対象領域の輝度値の差を小さくすることができる技術を提供することを目的とする。
上記課題を解決するため、本願の第1発明は、複数の細胞により構成される生体試料の画像の輝度値を標準化する画像標準化方法であって、a)前記画像中の前記生体試料の全体または一部分に相当する領域を、観察対象領域として抽出する工程と、b)複数の前記観察対象領域のそれぞれについて、輝度値の集約値を算出する工程と、c)前記集約値の差が小さくなるように、複数の前記観察対象領域の輝度値を調整する工程と、を有する。
本願の第2発明は、第1発明の画像標準化方法であって、前記集約値は、前記観察対象領域に含まれる複数の輝度値の平均値である。
本願の第3発明は、第1発明の画像標準化方法であって、前記集約値は、前記観察対象領域に含まれる複数の輝度値の中央値である。
本願の第4発明は、第1発明から第3発明までのいずれか1発明の画像標準化方法であって、前記画像中の前記生体試料に相当する領域は、輝度値が異なる複数の領域を含み、前記工程a)では、前記複数の領域のうちの1つを、前記観察対象領域として抽出する。
本願の第5発明は、第1発明から第4発明までのいずれか1発明の画像標準化方法であって、前記画像は、光干渉断層撮影により得られた前記生体試料の断層画像または三次元画像である。
本願の第6発明は、複数の細胞により構成される生体試料を観察する観察装置であって、前記生体試料の画像を取得する画像取得部と、前記画像中の前記生体試料の全体または一部分に相当する領域を、観察対象領域として抽出する領域抽出部と、複数の前記観察対象領域のそれぞれについて、輝度値の集約値を算出する集約値算出部と、前記集約値の差が小さくなるように、複数の前記観察対象領域の輝度値を調整する輝度値調整部と、を有する。
本願の第7発明は、第6発明の観察装置であって、前記集約値は、前記観察対象領域に含まれる複数の輝度値の平均値である。
本願の第8発明は、第6発明の観察装置であって、前記集約値は、前記観察対象領域に含まれる複数の輝度値の中央値である。
本願の第9発明は、第6発明から第8発明までのいずれか1発明の観察装置であって、前記画像中の前記生体試料に相当する領域は、輝度値が異なる複数の領域を含み、前記領域抽出部は、前記複数の領域のうちの1つを、前記観察対象領域として抽出する。
本願の第10発明は、第6発明から第9発明までのいずれか1発明の観察装置であって、前記画像取得部は、光干渉断層撮影により、前記生体試料の断層画像または三次元画像を取得する。
本願の第11発明は、第6発明から第10発明までのいずれか1発明の観察装置であって、前記輝度値調整部により輝度値が調整された画像に基づいて、前記生体試料の評価値を出力する評価値出力部をさらに備える。
本願の第1発明~第11発明によれば、複数の観察対象領域の明暗のばらつきが小さくなる。これにより、複数の生体試料を公平に観察・評価することができる。
特に、本願の第3発明および第8発明によれば、観察対象領域中に、輝度値が極端に異なる外れ値の画素が存在する場合でも、外れ値の影響を抑えて、観察対象領域の全体的な明るさを反映した集約値を算出できる。
特に、本願の第5発明および第10発明によれば、光干渉断層撮影において特に生じやすい生体試料毎の輝度値のばらつきを抑制できる。
観察装置の構成を示した図である。 観察装置の制御ブロック図である。 コンピュータの機能を、概念的に示したブロック図である。 撮影・評価処理の流れを示したフローチャートである。 複数の断層画像を、模式的に示した図である。 断層画像から観察対象領域を抽出した結果を、模式的に示した図である。 標準化後の複数の断層画像を、模式的に示した図である。 輝度値が異なる複数の領域を含む断層画像の例を、模式的に示した図である。
以下、本発明の実施形態について、図面を参照しつつ説明する。
<1.観察装置の構成>
図1は、本発明の一実施形態に係る観察装置1の構成を示した図である。この観察装置1は、試料容器90内に保持された生体試料9を撮影し、得られた画像に基づいて、生体試料9の状態を評価する装置である。生体試料9は、複数の細胞により構成されるスフェロイドやオルガノイド等の細胞集塊である。生体試料9は、例えば、再生医療用の幹細胞から得られる細胞集塊であってもよく、受精卵が卵割を行うことにより形成される胚であってもよい。また、生体試料9は、創薬時のスクリーニングに使用される腫瘍組織などであってもよい。
図1に示すように、観察装置1は、ステージ10、撮像部20、およびコンピュータ30を備えている。
ステージ10は、試料容器90を支持する支持台である。試料容器90には、例えば、ウェルプレートが使用される。ウェルプレートは、複数のウェル(凹部)91を有する。各ウェル91は、U字状またはV字状の底部を有する。生体試料9は、各ウェル91の底部付近に、培養液とともに保持される。試料容器90の材料には、光を透過する透明な樹脂またはガラスが使用される。
ステージ10は、上下方向に貫通する開口部11を有する。試料容器90は、ステージ10の当該開口部11に嵌め込まれた状態で、水平に支持される。したがって、試料容器90の下面は、ステージ10に覆われることなく、撮像部20へ向けて露出する。
撮像部20は、試料容器90内の生体試料9を撮影するユニットである。撮像部20は、ステージ10に支持された試料容器90の下方に配置されている。本実施形態の撮像部20は、生体試料9の断層画像および三次元画像を撮影することが可能な、光干渉断層撮影(Optical Coherence Tomography;OCT)装置である。
図1に示すように、撮像部20は、光源21、物体光学系22、参照光学系23、検出部24、および光ファイバカプラ25を有する。光ファイバカプラ25は、第1光ファイバ251~第4光ファイバ254が、接続部255において連結されたものである。光源21、物体光学系22、参照光学系23、および検出部24は、光ファイバカプラ25により構成される光路を介して、互いに接続されている。
光源21は、LED等の発光素子を有する。光源21は、広帯域の波長成分を含む低コヒーレンス光を出射する。生体試料9を侵襲することなく、生体試料9の内部まで光を到達させるために、光源21から出射される光は、近赤外線であることが望ましい。光源21は、第1光ファイバ251に接続されている。光源21から出射される光は、第1光ファイバ251へ入射し、接続部255において、第2光ファイバ252へ入射する光と、第3光ファイバ253へ入射する光とに、分岐される。
第2光ファイバ252は、物体光学系22に接続されている。接続部255から第2光ファイバ252へ進む光は、物体光学系22へ入射する。物体光学系22は、コリメータレンズ221および対物レンズ222を含む複数の光学部品を有する。第2光ファイバ252から出射された光は、コリメータレンズ221および対物レンズ222を通って、試料容器90内の生体試料9へ照射される。このとき、対物レンズ222により、光が生体試料9へ向けて収束する。そして、生体試料9において反射した光(以下「観察光」と称する)は、対物レンズ222およびコリメータレンズ221を通って、再び第2光ファイバ252へ入射する。
図1に示すように、物体光学系22は、走査機構223に接続されている。走査機構223は、コンピュータ30からの指令に従って、物体光学系22を、鉛直方向および水平方向に微小移動させる。これにより、生体試料9に対する光の入射位置を、鉛直方向および水平方向に微小移動させることができる。
また、撮像部20は、図示を省略した移動機構により、水平方向に移動可能となっている。これにより、撮像部20の視野を、複数のウェル91の間で切り替えることができる。
第3光ファイバ253は、参照光学系23に接続されている。接続部255から第3光ファイバ253へ進む光は、参照光学系23へ入射する。参照光学系23は、コリメータレンズ231およびミラー232を有する。第3光ファイバ253から出射された光は、コリメータレンズ231を通って、ミラー232へ入射する。そして、ミラー232により反射された光(以下「参照光」と称する)は、コリメータレンズ231を通って、再び第3光ファイバ253へ入射する。
図1に示すように、ミラー232は、進退機構233に接続されている。進退機構233は、コンピュータ30からの指令に従って、ミラー232を、光軸方向に微小移動させる。これにより、参照光の光路長を変化させることができる。
第4光ファイバ254は、検出部24に接続されている。物体光学系22から第2光ファイバ252へ入射した観察光と、参照光学系23から第3光ファイバ253へ入射した参照光とは、接続部255において合流して、第4光ファイバ254へ入射する。そして、第4光ファイバ254から出射された光は、検出部24へ入射する。このとき、観察光と参照光との間で、位相差に起因する干渉が生じる。この干渉光の分光スペクトルは、観察光の反射位置の高さによって異なる。
検出部24は、分光器241および光検出器242を有する。第4光ファイバ254から出射された干渉光は、分光器241において波長成分ごとに分光されて、光検出器242へ入射する。光検出器242は、分光された干渉光を検出し、その検出信号を、コンピュータ30へ出力する。
コンピュータ30の後述する画像取得部41は、光検出器242から得られる検出信号をフーリエ変換することで、観察光の鉛直方向の光強度分布を求める。また、走査機構223により、物体光学系22を水平方向に移動させつつ、上記の光強度分布の算出を繰り返すことにより、三次元空間の各座標における観察光の光強度分布を求めることができる。その結果、コンピュータ30は、生体試料9の断層画像および三次元画像を得ることができる。
断層画像は、二次元座標上に配列された複数の画素(ピクセル)により構成され、画素毎に輝度値が規定されたデータである。三次元画像は、三次元座標上に配列された複数の画素(ボクセル)により構成され、画素毎に輝度値が規定されたデータである。
コンピュータ30は、撮像部20を動作制御する制御部としての機能を有する。また、コンピュータ30は、撮像部20から入力される検出信号に基づいて断層画像および三次元画像を作成し、得られた断層画像および三次元画像に基づいて、生体試料9の状態を評価する評価処理部としての機能を有する。
図2は、観察装置1の制御ブロック図である。図2中に概念的に示したように、コンピュータ30は、CPU等のプロセッサ31、RAM等のメモリ32、およびハードディスクドライブ等の記憶部33を有する。記憶部33内には、観察装置1内の各部を動作制御するための制御プログラムP1と、断層画像および三次元画像を作成して、生体試料9の状態を評価するための評価プログラムP2とが、記憶されている。
また、図3に示すように、コンピュータ30は、上述した光源21、走査機構223、進退機構233、光検出器242、および後述する表示部70と、それぞれ通信可能に接続されている。コンピュータ30は、制御プログラムP1に従って、上記の各部を動作制御する。これにより、試料容器90に保持された生体試料9の撮影処理が進行する。
<2.撮影・評価処理について>
続いて、上記の観察装置1における生体試料9の撮影・評価処理について、説明する。
図3は、撮影・評価処理を実現するためのコンピュータ30の機能を、概念的に示したブロック図である。図3に示すように、コンピュータ30は、画像取得部41、領域抽出部42、集約値算出部43、輝度値調整部44、および評価値出力部45を有する。画像取得部41、領域抽出部42、集約値算出部43、輝度値調整部44、および評価値出力部45の各機能は、コンピュータ30のプロセッサ31が、上述した評価プログラムP2に従って動作することにより、実現される。
図4は、撮影・評価処理の流れを示したフローチャートである。観察装置1において生体試料9を撮影・評価するときには、まず、ステージ10に試料容器90をセットする(ステップS1)。試料容器90内には、培養液とともに生体試料9が保持されている。
次に、観察装置1は、撮像部20により、生体試料9の撮影を行う(ステップS2)。本実施形態では、撮像部20が、光干渉断層撮影を行う。具体的には、光源21から光を出射し、走査機構223により物体光学系22を微少移動させながら、観察光および参照光の干渉光を、波長成分ごとに、光検出器242で検出する。コンピュータ30の画像取得部41は、光検出器242から出力される検出信号に基づいて、生体試料9の各座標位置における光強度分布を算出する。これにより、生体試料9の断層画像D1および三次元画像D2が得られる。
観察装置1は、1つの生体試料9について、複数の断層画像D1と、1つの三次元画像D2とを取得する。また、観察装置1は、撮影対象となるウェル91を変更しながら、ステップS2の処理を繰り返すことにより、複数の生体試料9の断層画像D1および三次元画像D2を取得する。得られた断層画像D1および三次元画像D2は、コンピュータ30の記憶部33に記憶される。また、コンピュータ30は、得られた断層画像D1および三次元画像D2を、表示部70に表示する。
図5は、複数の断層画像D1を模式的に示した図である。試料容器90の材質、厚さ、形状、表面コーティング、培養液の量などにばらつきがあると、生体試料9に照射される近赤外線の量に差が生じる。その場合、図5のように、光干渉断層撮影により得られる複数の断層画像D1に、相対的に明るい画像と暗い画像とが、混在する。コンピュータ30は、このような複数の断層画像D1に対して、輝度値の標準化を行う。輝度値の標準化は、図4に示すステップS3~S5の処理により、実現される。
まず、コンピュータ30の領域抽出部42が、複数の断層画像D1のそれぞれについて、観察対象領域Aの抽出を行う(ステップS3)。領域抽出部42は、各断層画像D1中の生体試料9に相当する領域を、観察対象領域Aとして抽出する。図6は、複数の断層画像D1のそれぞれについて、観察対象領域Aを抽出した結果を、模式的に示した図である。
このステップS3では、例えば、断層画像D1のうち、輝度値が予め設定された閾値よりも大きい領域を、観察対象領域Aとして抽出する。また、深層学習を利用して、断層画像D1から観察対象領域Aを抽出するための学習モデルを予め作成しておき、当該学習モデルを使用して、観察対象領域Aを抽出してもよい。
次に、コンピュータ30の集約値算出部43が、ステップS3で抽出された複数の観察対象領域Aのそれぞれについて、輝度値の集約値Vを算出する(ステップS4)。集約値Vは、1つの観察対象領域Aの全体的な明るさを表す指標である。本実施形態では、集約値算出部43は、観察対象領域Aに含まれる複数の画素の輝度値の平均値を、集約値Vとする。集約値算出部43は、1つの観察対象領域Aに対して、1つの集約値Vを算出する。
次に、コンピュータ30の輝度値調整部44が、ステップS4で算出された集約値Vに基づいて、複数の観察対象領域Aの輝度値を調整する(ステップS5)。輝度値調整部44は、複数の観察対象領域Aの間で、集約値Vの差が小さくなるように、各断層画像D1の観察対象領域Aの輝度値を調整する。例えば、輝度値の集約値Vが所定の基準値よりも大きい観察対象領域Aについては、各画素の輝度値を下げる。また、輝度値の集約値Vが所定の基準値よりも小さい観察対象領域Aについては、各画素の輝度値を上げる。
また、輝度値調整部44は、観察対象領域Aの各画素の輝度値を、その観察対象領域Aの輝度値の集約値Vで除算することにより、調整後の各画素の輝度値を算出してもよい。このようにすれば、各観察対象領域Aの輝度値の集約値Vを、同一とすることができる。以上のステップS3~S5の処理により、複数の断層画像D1の輝度値が標準化される。
標準化後の断層画像D1は、記憶部33に記憶される。また、コンピュータ30は、標準化後の断層画像D1を、表示部70に表示する。図7は、標準化後の複数の断層画像D1を、模式的に示した図である。図7のように、標準化後の複数の断層画像D1は、観察対象領域Aの明るさが均一となる。
その後、コンピュータ30の評価値出力部45は、ステップS5で輝度値が調整された観察対象領域Aに基づいて、生体試料9の評価値Rを出力する(ステップS6)。評価値Rは、生体試料9の状態を表す指標値である。具体的には、生体試料9の2点間距離、断層面積、体積、真球度、面粗度、内部空洞体積などが、評価値Rとして算出される。算出された評価値Rは、記憶部33に記憶される。また、評価値出力部45は、算出された評価値Rを、表示部70に表示する。上述した輝度値の標準化により、複数の観察対象領域Aの明暗のばらつきが低減されている。このため、複数の生体試料9について、評価値Rを公平に算出することができる。
立体構造を有するスフェロイド等の生体試料9は、生体試料9自体の形状・大きさの違いによって、生体試料9の内部に到達する近赤外光の量にばらつきが生じやすい。また、光干渉断層撮影では、光検出器242の検出信号に基づいて、コンピュータ30が、各座標に相対的な輝度値を割り当てる。このため、立体構造を有する生体試料9を光干渉断層撮影により撮影するときには、特に、生体試料9毎に、輝度値のばらつきが生じやすいという問題がある。しかしながら、本実施形態の観察装置1では、上記のように、複数の観察対象領域Aの輝度値を標準化することによって、生体試料9毎の輝度値のばらつきを抑制できる。したがって、複数の生体試料9の内部の状態を公平に評価できる。
<3.変形例>
以上、本発明の一実施形態について説明したが、本発明は、上記の実施形態に限定されるものではない。
<3-1.第1変形例>
上記の実施形態では、集約値Vとして、観察対象領域Aに含まれる複数の輝度値の平均値を算出していた。しかしながら、平均値を使用すると、観察対象領域A中に、輝度値が極端に異なる外れ値の画素が存在する場合に、当該外れ値の影響で、集約値Vが、観察対象領域Aの全体的な明るさと整合しない場合がある。そのような場合には、集約値Vとして、観察対象領域Aに含まれる複数の輝度値の中央値を使用してもよい。中央値を使用すれば、観察対象領域A中に、輝度値が極端に異なる外れ値の画素が存在する場合でも、当該外れ値の影響を抑えて、観察対象領域Aの全体的な明るさを反映した集約値Vを算出できる。
<3-2.第2変形例>
上記の実施形態では、断層画像D1中の生体試料9に相当する領域の全体を、観察対象領域Aとしていた。しかしながら、断層画像D1中の生体試料9に相当する領域の一部分を、観察対象領域Aとしてもよい。
例えば、培養の過程でスフェロイドの内部が壊死したような場合には、生体試料9の外表面付近と内部とで、細胞の構造が異なる。また、複数種類の細胞を組み合わせてスフェロイドを作成したときには、種類毎に細胞が局在する場合がある。これらの場合には、図8のように、断層画像D1中の生体試料9に相当する領域の中に、輝度値が異なる複数の領域A1,A2が含まれることとなる。
このような場合において、コンピュータ30の領域抽出部42は、複数の領域A1,A2のうちの1つを、観察対象領域Aとして抽出してもよい。具体的には、上述したステップS3において、領域抽出部42が、所望の輝度値の範囲に属する領域のみを抽出することにより、複数の領域A1,A2のうち、評価したい領域のみを、観察対象領域Aとすればよい。また、深層学習を利用して、複数の領域A1,A2のうちの1つを、観察対象領域Aとして抽出してもよい。
仮に、ステップS3において、領域A1,A2の全体を観察対象領域Aとして抽出すると、ステップS4において算出される集約値Vは、領域A1,A2の全体の平均的な明るさを反映したものとなる。その場合、ステップS5において調整される輝度が、一部分の領域のみの評価に適した輝度とならない場合がある。このため、一部分の領域のみを評価したい場合には、ステップS3において、当該領域のみを観察対象領域Aとして抽出することが望ましい。
<3-3.第3変形例>
上記の実施形態では、断層画像D1を標準化する場合について説明した。しかしながら、標準化の対象は、三次元画像D2であってもよい。三次元画像D2を対象とする場合、上述したステップS3において、三次元画像D2を構成する三次元座標のうち、生体試料9の全体または一部分に相当する三次元領域を、観察対象領域Aとして抽出する。そして、ステップS4において、複数の観察対象領域Aのそれぞれについて、輝度値の集約値Vを算出する。その後、集約値Vの差が小さくなるように、三次元の観察対象領域Aの各画素の輝度値を調整すればよい。
<3-4.他の変形例>
また、上記の実施形態では、撮像部20が、光干渉断層撮影(OCT)を行うものであった。しかしながら、撮像部は、他の撮影方法により、生体試料の断層画像または三次元画像を取得するものであってもよい。
また、上記の実施形態では、試料容器90が、複数のウェル(凹部)91を有するウェルプレートであった。そして、各ウェル91に、1つの生体試料9が保持されていた。しかしながら、1つのウェルの中に、複数の生体試料が保持されていてもよい。その場合、1つの画像の中に、複数の生体試料に相当する領域が含まれていてもよい。また、生体試料を保持する試料容器は、1つの凹部のみを有するディッシュであってもよい。
また、上記の実施形態や変形例に登場した各要素を、矛盾が生じない範囲で、適宜に組み合わせてもよい。
1 観察装置
9 生体試料
10 ステージ
20 撮像部
21 光源
22 物体光学系
23 参照光学系
24 検出部
25 光ファイバカプラ
30 コンピュータ
41 画像取得部
42 領域抽出部
43 集約値算出部
44 輝度値調整部
45 評価値出力部
70 表示部
90 試料容器
91 ウェル
A 観察対象領域
D1 断層画像
R 評価値
V 集約値

Claims (11)

  1. 複数の細胞により構成される生体試料の画像の輝度値を標準化する画像標準化方法であって、
    a)前記画像中の前記生体試料の全体または一部分に相当する領域を、観察対象領域として抽出する工程と、
    b)複数の前記観察対象領域のそれぞれについて、輝度値の集約値を算出する工程と、
    c)前記集約値の差が小さくなるように、複数の前記観察対象領域の輝度値を調整する工程と、
    を有する、画像標準化方法。
  2. 請求項1に記載の画像標準化方法であって、
    前記集約値は、前記観察対象領域に含まれる複数の輝度値の平均値である、画像標準化方法。
  3. 請求項1に記載の画像標準化方法であって、
    前記集約値は、前記観察対象領域に含まれる複数の輝度値の中央値である、画像標準化方法。
  4. 請求項1から請求項3までのいずれか1項に記載の画像標準化方法であって、
    前記画像中の前記生体試料に相当する領域は、輝度値が異なる複数の領域を含み、
    前記工程a)では、前記複数の領域のうちの1つを、前記観察対象領域として抽出する、画像標準化方法。
  5. 請求項1から請求項4までのいずれか1項に記載の画像標準化方法であって、
    前記画像は、光干渉断層撮影により得られた前記生体試料の断層画像または三次元画像である、画像標準化方法。
  6. 複数の細胞により構成される生体試料を観察する観察装置であって、
    前記生体試料の画像を取得する画像取得部と、
    前記画像中の前記生体試料の全体または一部分に相当する領域を、観察対象領域として抽出する領域抽出部と、
    複数の前記観察対象領域のそれぞれについて、輝度値の集約値を算出する集約値算出部と、
    前記集約値の差が小さくなるように、複数の前記観察対象領域の輝度値を調整する輝度値調整部と、
    を有する、観察装置。
  7. 請求項6に記載の観察装置であって、
    前記集約値は、前記観察対象領域に含まれる複数の輝度値の平均値である、観察装置。
  8. 請求項6に記載の観察装置であって、
    前記集約値は、前記観察対象領域に含まれる複数の輝度値の中央値である、観察装置。
  9. 請求項6から請求項8までのいずれか1項に記載の観察装置であって、
    前記画像中の前記生体試料に相当する領域は、輝度値が異なる複数の領域を含み、
    前記領域抽出部は、前記複数の領域のうちの1つを、前記観察対象領域として抽出する、観察装置。
  10. 請求項6から請求項9までのいずれか1項に記載の観察装置であって、
    前記画像取得部は、光干渉断層撮影により、前記生体試料の断層画像または三次元画像を取得する、観察装置。
  11. 請求項6から請求項10までのいずれか1項に記載の観察装置であって、
    前記輝度値調整部により輝度値が調整された画像に基づいて、前記生体試料の評価値を出力する評価値出力部
    をさらに備える、観察装置。
JP2022043442A 2022-03-18 2022-03-18 画像標準化方法および観察装置 Pending JP2023137302A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022043442A JP2023137302A (ja) 2022-03-18 2022-03-18 画像標準化方法および観察装置
PCT/JP2022/046875 WO2023176081A1 (ja) 2022-03-18 2022-12-20 画像標準化方法および観察装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022043442A JP2023137302A (ja) 2022-03-18 2022-03-18 画像標準化方法および観察装置

Publications (1)

Publication Number Publication Date
JP2023137302A true JP2023137302A (ja) 2023-09-29

Family

ID=88022726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022043442A Pending JP2023137302A (ja) 2022-03-18 2022-03-18 画像標準化方法および観察装置

Country Status (2)

Country Link
JP (1) JP2023137302A (ja)
WO (1) WO2023176081A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291088A (ja) * 2000-04-07 2001-10-19 Ge Yokogawa Medical Systems Ltd 医用画像表示装置
EP1565873B1 (en) * 2002-11-18 2013-06-05 International Remote Imaging Systems, Inc. Particle extraction for automatic flow microscope
JP6931579B2 (ja) * 2017-09-20 2021-09-08 株式会社Screenホールディングス 生細胞検出方法、プログラムおよび記録媒体
JP7147974B2 (ja) * 2020-01-29 2022-10-05 Jfeスチール株式会社 金属組織の相の分類方法、金属組織の相の分類装置、金属材料の材料特性予測方法および金属材料の材料特性予測装置

Also Published As

Publication number Publication date
WO2023176081A1 (ja) 2023-09-21

Similar Documents

Publication Publication Date Title
JP6226510B2 (ja) 画像処理システム、処理方法及びプログラム
KR101496669B1 (ko) 정보처리장치, 방법, 시스템, 및 기억매체
US8684528B2 (en) Fundus analyzing appartus and fundus analyzing method
JP5932369B2 (ja) 画像処理システム、処理方法及びプログラム
US10561311B2 (en) Ophthalmic imaging apparatus and ophthalmic information processing apparatus
US10165939B2 (en) Ophthalmologic apparatus and ophthalmologic apparatus control method
KR102580984B1 (ko) 화상 처리 방법, 프로그램 및 기록 매체
US9427147B2 (en) Directional optical coherence tomography systems and methods
US11243386B2 (en) Microscope apparatus, observation method, and microscope apparatus-control program
US20230314782A1 (en) Sample observation device and sample observation method
JP2018020192A (ja) 画像処理システム、処理方法及びプログラム
Harris et al. A pulse coupled neural network segmentation algorithm for reflectance confocal images of epithelial tissue
CN109844606A (zh) 试样观察装置及试样观察方法
WO2023176081A1 (ja) 画像標準化方法および観察装置
JP2022143662A (ja) 受精卵の発生ステージ判定方法、プログラム、記録媒体、撮像方法および撮像装置
WO2017033669A1 (ja) 血流計測装置
JP7382289B2 (ja) 画像処理方法、プログラムおよび記録媒体
JP2021505925A (ja) カラーモニタ設定の更新
JP6882242B2 (ja) 眼科装置およびその制御方法
JP2022052328A (ja) 細胞シートの厚さ評価方法
WO2024106231A1 (ja) 胚分類方法、コンピュータプログラム、および胚分類装置
WO2024070655A1 (ja) 分類方法およびコンピュータプログラム
WO2023189236A1 (ja) 撮影方法および撮影装置
US11010633B2 (en) Image processing method and shading reference data generation method
JP7382290B2 (ja) 画像処理方法、プログラムおよび記録媒体