WO2017033669A1 - 血流計測装置 - Google Patents

血流計測装置 Download PDF

Info

Publication number
WO2017033669A1
WO2017033669A1 PCT/JP2016/072434 JP2016072434W WO2017033669A1 WO 2017033669 A1 WO2017033669 A1 WO 2017033669A1 JP 2016072434 W JP2016072434 W JP 2016072434W WO 2017033669 A1 WO2017033669 A1 WO 2017033669A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
section
unit
blood vessel
blood flow
Prior art date
Application number
PCT/JP2016/072434
Other languages
English (en)
French (fr)
Inventor
俊輔 中村
酒井 潤
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2017033669A1 publication Critical patent/WO2017033669A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves

Definitions

  • This invention relates to a blood flow measuring device.
  • Optical coherence tomography is used not only for measurement of the target form but also for measurement of its function.
  • OCT Optical Coherence Tomography
  • an apparatus for measuring blood flow of a living body using OCT is known. Blood flow measurement using OCT is applied to fundus blood vessels and the like.
  • the estimation of the direction of the blood vessel is used not only to calculate the Doppler OCT but also to determine whether the designated blood vessel (candidate blood vessel) is arranged in a direction suitable for blood flow measurement. It is desirable that the candidate blood vessels be determined quickly in real time, which requires processing efficiency.
  • An object of the present invention is to improve the efficiency and reproducibility of processing for estimating the direction of a blood vessel.
  • the embodiment is a blood flow measurement device that acquires blood flow information of the fundus blood vessel, and includes a data acquisition unit, a layer region specifying unit, and an inclination calculation unit.
  • the data acquisition unit acquires image data by scanning a fundus region including a cross section along the blood vessel using optical coherence tomography.
  • the layer region specifying unit specifies the layer region in the image data by analyzing the acquired image data.
  • the inclination calculation unit calculates the inclination of the common area between the layer area and the cross section.
  • the blood flow measurement device forms a tomographic image or a three-dimensional image of a living eye using OCT.
  • the contents of the cited references described in this specification can be incorporated into the embodiments.
  • a blood flow measurement device that performs OCT of the fundus using Fourier domain OCT (particularly, spectral domain OCT) will be described.
  • OCT is not limited to the spectral domain, and may be, for example, a swept source OCT.
  • the blood flow measurement device according to the embodiment is a combined machine of an OCT device and a fundus camera. You may combine an apparatus. Note that the blood flow measurement device is sufficient if it has an OCT function, and does not need to have a fundus imaging function.
  • the blood flow measurement device 1 includes a fundus camera unit 2, an OCT unit 100, and an arithmetic control unit 200.
  • the fundus camera unit 2 includes an optical system that is almost the same as that of a conventional fundus camera.
  • the OCT unit 100 includes an optical system for acquiring an OCT image of the fundus.
  • the arithmetic control unit 200 includes a computer that executes various calculations and controls.
  • the fundus camera unit 2 shown in FIG. 1 is provided with an optical system for obtaining a two-dimensional image (fundus image) representing the surface form of the fundus oculi Ef of the eye E to be examined.
  • the fundus image includes an observation image and a captured image.
  • the observation image is, for example, a monochrome moving image formed at a predetermined frame rate using near infrared light.
  • the captured image may be, for example, a color image obtained by flashing visible light, or a monochrome still image using near infrared light or visible light as illumination light.
  • the fundus camera unit 2 may be configured to be able to acquire images other than these, for example, a fluorescein fluorescent image, an indocyanine green fluorescent image, a spontaneous fluorescent image, and the like.
  • the fundus camera unit 2 is provided with a chin rest and a forehead for supporting the subject's face. Further, the fundus camera unit 2 is provided with an illumination optical system 10 and a photographing optical system 30.
  • the illumination optical system 10 irradiates the fundus oculi Ef with illumination light.
  • the photographing optical system 30 guides the fundus reflection light of the illumination light to an imaging device (CCD image sensor (sometimes simply referred to as a CCD) 35, 38).
  • the imaging optical system 30 guides the measurement light from the OCT unit 100 to the fundus oculi Ef and guides the return light of the measurement light from the fundus oculi Ef to the OCT unit 100.
  • the observation light source 11 of the illumination optical system 10 includes, for example, a halogen lamp or an LED (Light Emitting Diode).
  • the light (observation illumination light) output from the observation light source 11 is reflected by the reflection mirror 12 having a curved reflection surface, passes through the condensing lens 13, passes through the visible cut filter 14, and is converted into near infrared light. Become. Further, the observation illumination light is once converged in the vicinity of the photographing light source 15, reflected by the mirror 16, and passes through the relay lenses 17 and 18, the diaphragm 19 and the relay lens 20. Then, the observation illumination light is reflected at the peripheral portion (region around the hole portion) of the aperture mirror 21, passes through the dichroic mirror 46, and is refracted by the objective lens 22 to illuminate the fundus oculi Ef.
  • the fundus reflection light of the observation illumination light is refracted by the objective lens 22, passes through the dichroic mirror 46, passes through the hole formed in the central region of the perforated mirror 21, passes through the dichroic mirror 55, and is a focusing lens. 31, reflected by the mirror 32, transmitted through the half mirror 40, reflected by the dichroic mirror 33, and imaged on the light receiving surface of the CCD image sensor 35 by the condenser lens 34.
  • the CCD image sensor 35 detects fundus reflected light at a predetermined frame rate.
  • an image (observation image) based on fundus reflection light detected by the CCD image sensor 35 is displayed.
  • an observation image of the anterior segment of the eye E is displayed.
  • the imaging light source 15 includes, for example, a xenon lamp or an LED.
  • the light (imaging illumination light) output from the imaging light source 15 is applied to the fundus oculi Ef through the same path as the observation illumination light.
  • the fundus reflection light of the imaging illumination light is guided to the dichroic mirror 33 through the same path as that of the observation illumination light, passes through the dichroic mirror 33, is reflected by the mirror 36, and is reflected by the condenser lens 37 of the CCD image sensor 38.
  • An image is formed on the light receiving surface.
  • On the display device 3 an image (captured image) based on fundus reflection light detected by the CCD image sensor 38 is displayed.
  • the LCD (Liquid Crystal Display) 39 displays a fixation target and an eyesight measurement index.
  • the fixation target is an index for fixing the eye E to be examined, and is used at the time of fundus photographing or OCT. By changing the display position of the fixation target on the screen of the LCD 39, the fixation position of the eye E can be changed.
  • a part of the light output from the LCD 39 is reflected by the half mirror 40, reflected by the mirror 32, passes through the focusing lens 31 and the dichroic mirror 55, passes through the hole of the perforated mirror 21, and is dichroic.
  • the light passes through the mirror 46, is refracted by the objective lens 22, and is projected onto the fundus oculi Ef.
  • the fundus camera unit 2 is provided with an alignment optical system 50 and a focus optical system 60 as in the conventional fundus camera.
  • the alignment optical system 50 generates an index (alignment index) for performing alignment (alignment) of the apparatus optical system with respect to the eye E.
  • the focus optical system 60 generates an index (split index) for focusing on the fundus oculi Ef.
  • the light (alignment light) output from the LED 51 of the alignment optical system 50 is reflected by the dichroic mirror 55 via the apertures 52 and 53 and the relay lens 54, passes through the hole of the aperture mirror 21, and reaches the dichroic mirror 46. And is projected onto the eye E by the objective lens 22.
  • the return light of the alignment light is detected by the CCD image sensor 35.
  • the light reception image (alignment index image) by the CCD image sensor 35 is displayed together with the observation image.
  • the user can perform the alignment while referring to the alignment index image, similarly to the conventional fundus camera.
  • the arithmetic control unit 200 can also perform alignment by analyzing the position of the alignment index image and moving the optical system (auto alignment function).
  • the reflecting surface of the reflecting rod 67 is obliquely provided on the optical path of the illumination optical system 10.
  • the light (focus light) output from the LED 61 of the focus optical system 60 passes through the relay lens 62, is separated into two light beams by the split indicator plate 63, passes through the two-hole aperture 64, and is reflected by the mirror 65, The light is focused on the reflecting surface of the reflecting bar 67 by the condenser lens 66 and reflected. Further, the focus light passes through the relay lens 20, is reflected by the perforated mirror 21, passes through the dichroic mirror 46, is refracted by the objective lens 22, and is projected onto the fundus oculi Ef.
  • the return light of the focus light is detected by the CCD image sensor 35.
  • the light reception image (split index image) by the CCD image sensor 35 is displayed together with the observation image and the alignment index image.
  • the arithmetic control unit 200 can perform focusing by analyzing the position of the split index and moving the focusing lens 31 and the focus optical system 60 in the same manner as in the past (autofocus function). Further, manual focusing may be performed while referring to the position of the split index image.
  • the dichroic mirror 46 synthesizes an optical path for OCT (OCT optical path) with an optical path for fundus imaging. That is, the fundus imaging optical path and the OCT optical path are configured coaxially by the dichroic mirror 46 and share the optical path on the eye E side with respect to the dichroic mirror 46.
  • the dichroic mirror 46 reflects light in a wavelength band used for OCT and transmits light for fundus photographing.
  • a collimator lens unit 40, an optical path length changing unit 41, a galvano scanner 42, a focusing lens 43, a mirror 44, and a relay lens 45 are provided in this order from the OCT unit 100 side.
  • the optical path length changing unit 41 is movable in the direction of the arrow shown in FIG. 1, and changes the length of the OCT optical path. This change in the optical path length is used for correcting the optical path length according to the axial length of the eye E or adjusting the interference state.
  • the optical path length changing unit 41 includes, for example, a corner cube and a mechanism for moving the corner cube.
  • the galvano scanner 42 changes the traveling direction of the measurement light LS passing through the OCT optical path. Thereby, the fundus oculi Ef can be scanned with the measurement light LS.
  • the galvano scanner 42 includes, for example, a galvanometer mirror that scans the measurement light LS in the x direction, a galvanometer mirror that scans in the y direction, and a mechanism that drives these independently. Thereby, the measurement light LS can be scanned in an arbitrary direction on the xy plane.
  • the OCT unit 100 is provided with an optical system for acquiring an OCT image of the fundus oculi Ef.
  • This optical system divides the low-coherence light into reference light and measurement light, and causes the measurement light passing through the fundus Ef and the reference light passing through the reference optical path to interfere with each other as in the conventional spectral domain type OCT apparatus.
  • An interference light is generated and a spectral component of the interference light is detected. This detection result (detection signal) is sent to the arithmetic control unit 200.
  • a wavelength swept light source is provided instead of a low-coherence light source, and a balanced photodiode is provided instead of a device (spectrometer) for detecting a spectral component.
  • the OCT unit 100 may have a known configuration corresponding to the type of OCT.
  • the light source unit 101 outputs low coherence light L0 (broadband light).
  • the low coherence light L0 includes, for example, a near-infrared wavelength band (approximately 800 nm to 900 nm) and has a temporal coherence length of approximately several tens of micrometers.
  • near infrared light having a center wavelength of 1040 to 1060 nm may be used as the low coherence light L0.
  • the light source unit 101 includes a super luminescent diode (Super Luminescent Diode: SLD), an LED, and an optical output device such as an SOA (Semiconductor Optical Amplifier).
  • SLD Super Luminescent Diode
  • LED an LED
  • SOA semiconductor Optical Amplifier
  • the low coherence light L0 output from the light source unit 101 is guided to the fiber coupler 103 by the optical fiber 102 and is divided into the measurement light LS and the reference light LR.
  • the reference light LR is guided by the optical fiber 104 and reaches an optical attenuator (attenuator) 105.
  • the optical attenuator 105 changes the amount of the reference light LR guided to the optical fiber 104 under the control of the arithmetic control unit 200 or by manual operation.
  • the reference light LR whose light amount has been adjusted by the optical attenuator 105 is guided by the optical fiber 104 and reaches the polarization adjuster (polarization controller) 106.
  • the polarization adjuster 106 changes the polarization state of the reference light LR guided through the optical fiber 104.
  • the reference light LR whose polarization state is adjusted by the polarization adjuster 106 reaches the fiber coupler 109.
  • the measurement light LS generated by the fiber coupler 103 is guided by the optical fiber 107 and converted into a parallel light beam by the collimator lens unit 105. Further, the measurement light LS reaches the dichroic mirror 46 via the optical path length changing unit 41, the galvano scanner 42, the focusing lens 43, the mirror 44, and the relay lens 45. Then, the measurement light LS is reflected by the dichroic mirror 46, is refracted by the objective lens 11, and enters the eye E to be examined. The measurement light LS is reflected and scattered at various depth positions of the fundus oculi Ef.
  • the return light (backscattered light, reflected light, fluorescence, etc.) of the measurement light LS from the fundus oculi Ef travels in the same direction as the forward path in the reverse direction and is guided to the fiber coupler 103, and passes through the optical fiber 108 to the fiber coupler. 109 is reached.
  • the fiber coupler 109 causes the return light of the measurement light LS to interfere with the reference light LR. Thereby, the interference light LC is generated.
  • the interference light LC is guided by the optical fiber 110 and is emitted from the emission end 111. Further, the interference light LC is converted into a parallel light beam by the collimator lens 112, spectrally resolved by the diffraction grating 113, condensed by the condenser lens 114, and projected onto the light receiving surface of the CCD image sensor 115.
  • the diffraction grating 118 shown in FIG. 2 is a transmission type, but other types of spectroscopic elements such as a reflection type diffraction grating can also be used.
  • the CCD image sensor 115 is a line sensor, for example, and detects each spectral component of the interference light LC and converts it into electric charges.
  • the CCD image sensor 115 accumulates this electric charge, generates a detection signal, and sends it to the arithmetic control unit 200.
  • another image sensor for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor may be used.
  • CMOS Complementary Metal Oxide Semiconductor
  • the arithmetic control unit 200 analyzes the detection signal input from the CCD image sensor 115 and forms an OCT image of the fundus oculi Ef.
  • the arithmetic processing for that is the same as the conventional spectral domain OCT.
  • the arithmetic control unit 200 controls the fundus camera unit 2, the display device 3, and the OCT unit 100.
  • the fundus camera unit 2 is controlled by controlling the operation of the observation light source 11, the imaging light source 15, the LCD 39, the galvano scanner 42, and the LEDs 51 and 61, the focusing lenses 31 and 43, the optical path length changing unit 41, and the focus optical system. 60, as well as the movement control of each of the reflecting bars 67.
  • Control of the OCT unit 100 includes operation control of the light source unit 101, the optical attenuator 105, the polarization adjuster 106, and the CCD image sensor 120.
  • the arithmetic control unit 200 includes a processor, RAM, ROM, hard disk drive, communication interface, and the like.
  • the arithmetic control unit 200 may include an operation device (input device) such as a keyboard and a mouse, and a display device such as an LCD.
  • operation device input device
  • display device such as an LCD.
  • processor means, for example, CPU (Central Processing Unit), GPU (Graphics Processing Unit), ASIC (Application Specific Integrated Circuit), programmable logic device (for example, SPLD (SimpleDLD). (Complex Programmable Logic Device), FPGA (Field Programmable Gate Array)) and the like.
  • the arithmetic control unit 200 implements the functions according to the embodiment by reading and executing a program stored in a storage circuit or a storage device, for example.
  • Control system The configuration of the control system of the blood flow measurement device 1 will be described with reference to FIGS. 3 and 4.
  • the control unit 210 includes, for example, the aforementioned processor, RAM, ROM, hard disk drive, communication interface, and the like.
  • the control unit 210 is provided with a main control unit 211 and a storage unit 212.
  • the storage unit 212 stores various data and computer programs.
  • the main control unit 211 performs various controls. For example, as shown in FIG. 3, the main control unit 211 controls the CCDs 35 and 38, the focus driving unit 31A, the optical path length changing unit 41, the galvano scanner 42, and the focus driving unit 43A of the fundus camera unit 2. . Further, the main control unit 211 controls the light source unit 101, the optical attenuator 105, the polarization adjuster 106, and the CCD 115 of the OCT unit 100.
  • the focusing drive unit 31A moves the focusing lens 31 in the optical axis direction. Thereby, the focus position of the photographic optical system 30 changes.
  • the focusing drive unit 43A moves the focusing lens 43 in the optical axis direction.
  • the focus position of the measurement light LS OCCT measurement focus position
  • the main control unit 211 can move an optical system provided in the fundus camera unit 2 three-dimensionally by controlling an optical system driving unit (not shown). This movement control of the optical system is used in alignment and tracking.
  • the tracking is a process of moving the apparatus optical system in accordance with the eye movement of the eye E. Prior to tracking, alignment and focus adjustment are performed. Tracking is a function that maintains the state of alignment and focus by causing the position of the apparatus optical system to follow the eye movement.
  • the image forming unit 220 forms tomographic image data and phase image data of the fundus oculi Ef based on the detection signal from the CCD image sensor 115.
  • the image forming unit 220 includes a processor. In this specification, “image data” and “image” based thereon may be identified.
  • the image forming unit 220 includes a tomographic image forming unit 221 and a phase image forming unit 222.
  • first scanning and second scanning are performed on the fundus oculi Ef.
  • first scan two or more cross sections intersecting the target blood vessel of the fundus oculi Ef are scanned with the measurement light LS.
  • second scan the cross section of interest intersecting the blood vessel of interest is repeatedly scanned with the measurement light LS.
  • the cross section in which the first scan is performed is arranged in the vicinity of the target cross section. Data acquired by the first scan is used to obtain the inclination (orientation) of the blood vessel of interest in the cross section of interest.
  • the second scan is Doppler measurement using OCT.
  • the target cross sections of the first scan and the second scan are oriented so as to be orthogonal to the traveling direction of the blood vessel of interest on the xy plane.
  • the fundus oculi image D of FIG. 5 in this embodiment, for example, in the vicinity of the optic disc Da, there are two cross sections C11 and C12 in which the first scan is performed, and an attention cross section C2 in which the second scan is performed. It is set so as to intersect the target blood vessel Db.
  • One of the two cross sections C11 and C12 is positioned upstream of the target blood vessel Db with respect to the target cross section C2, and the other is positioned downstream.
  • the distances (inter-section distances) of the sections C11 and C12 with respect to the target section C2 are determined in advance. One example thereof will be described later in the description of the cross-section setting unit 231.
  • the second scan is preferably performed over at least one cardiac cycle of the patient's heart. Thereby, blood flow information in all time phases of the heart is obtained.
  • the execution time of the second scan may be a predetermined time set in advance, or may be a time set for each patient or for each examination.
  • the tomographic image forming unit 221 forms a tomographic image representing the form of the cross section C11 and a tomographic image representing the form of the cross section C12 based on the detection result of the interference light LC obtained by the first scanning with respect to the cross sections C11 and C12. To do.
  • the cross section C11 can be scanned once to form one tomographic image
  • the cross section C12 can be scanned once to form one tomographic image.
  • one tomographic image is acquired based on a plurality of tomographic images obtained by scanning the section C11 a plurality of times, and one sheet is obtained based on a plurality of tomographic images obtained by scanning the section C12 a plurality of times.
  • a tomographic image can be acquired.
  • processing for acquiring one tomographic image from a plurality of tomographic images there are processing for improving the image quality by averaging a plurality of tomographic images and processing for selecting an optimal one from a plurality of tomographic images.
  • the tomographic image forming unit 221 forms a tomographic image group representing a time-series change in the form of the cross section of interest C2 based on the detection result of the interference light LC obtained by the second scanning with respect to the cross section of interest C2. This process will be described in more detail.
  • the target section C2 is repeatedly scanned as described above.
  • Detection signals are sequentially input from the CCD 115 of the OCT unit 100 to the tomographic image forming unit 221 in accordance with the second scan.
  • the tomographic image forming unit 221 forms one tomographic image of the cross section of interest C2 based on a detection signal group corresponding to one scan of the cross section of interest C2.
  • the tomographic image forming unit 221 forms a series of tomographic images along a time series by repeating this process as many times as the second scanning is repeated.
  • these tomographic images may be divided into a plurality of groups, and the tomographic images of each group may be averaged to improve the image quality.
  • preliminary scanning scanning for setting a target blood vessel and a target cross section is performed (hereinafter referred to as preliminary scanning).
  • the preliminary scanning is performed to determine whether the designated blood vessel (candidate blood vessel) is arranged in a direction suitable for blood flow measurement.
  • the tomographic image forming unit 221 forms image data based on the detection result of the interference light LC acquired by the preliminary scanning.
  • the process executed by the tomographic image forming unit 221 includes noise removal (noise reduction), filter processing, FFT (Fast Fourier Transform), and the like, as in the conventional spectral domain OCT.
  • noise removal noise reduction
  • filter processing filter processing
  • FFT Fast Fourier Transform
  • the tomographic image forming unit 221 executes a known process according to the type.
  • phase image forming unit 222 forms a phase image representing the time-series change of the phase difference in the target cross section C2 based on the detection result of the interference light LS obtained by the second scanning with respect to the target cross section C2.
  • the data used for this processing is the same as the data used by the tomographic image forming unit 221 to form a tomographic image of the cross section of interest C2. Therefore, the tomographic image and the phase image of the cross section of interest C2 can be aligned. That is, it is possible to naturally associate the pixels of the tomographic image of the cross section of interest C2 with the pixels of the phase image.
  • phase image in this example is obtained by calculating the phase difference between adjacent A-line complex signals (signals corresponding to adjacent scanning points).
  • the phase image of this example is formed based on the time-series change of the pixel value (luminance value) of each pixel of the tomographic image of the target cross section C2.
  • the phase image forming unit 222 considers a graph of a time-series change in luminance value.
  • the phase difference ⁇ is defined as the phase difference ⁇ (t1) at the time point t1 (more generally, any time point between the two time points t1 and t2).
  • the phase image represents the value of the phase difference at each time point of each pixel as an image.
  • This imaging process can be realized, for example, by expressing the value of the phase difference with the display color or brightness.
  • a color indicating that the phase has increased along the time series for example, red
  • a color indicating that the phase has decreased for example, blue
  • the magnitude of the phase change amount can be expressed by the darkness of the display color.
  • the time-series change of the phase difference can be obtained by ensuring the phase correlation by sufficiently reducing the time interval ⁇ t.
  • oversampling in which the time interval ⁇ t is set to a value less than the time corresponding to the resolution of the tomographic image in the scanning of the measurement light LS is executed.
  • the data processing unit 230 executes various data processing.
  • the data processing unit 230 performs image processing and analysis processing on the image formed by the image forming unit 220. Specific examples thereof include various correction processes such as luminance correction and dispersion correction. Further, the data processing unit 230 performs image processing and analysis processing on an image (fundus image, anterior eye image, etc.) obtained by the fundus camera unit 2.
  • the data processing unit 230 includes a cross-section setting unit 231, a layer region specifying unit 232, a blood vessel region specifying unit 233, an inclination calculating unit 234, and a blood flow information generating unit 235.
  • the blood flow information generation unit 235 is provided with a blood flow velocity calculation unit 2351, a blood vessel diameter calculation unit 2352, and a blood flow rate calculation unit 2353.
  • the main control unit 211 causes the display unit 241 to display a fundus image.
  • This fundus image may be an observation image or a captured image. Further, the fundus image may be an image constituting a captured image.
  • the user operates the operation unit 242 to designate a cross section of interest to be scanned on the displayed fundus image.
  • the designated cross section of interest is the cross section of interest C2 to be subjected to the second scan or the cross section of interest to be subjected to the preliminary scan.
  • the cross section setting unit 231 selects the two cross sections C11 and C12 to which the first scan is applied based on the designated target cross section C2 and the fundus image. Set. As described above, the target cross section C2 is specified so as to cross the desired target blood vessel Db.
  • the cross section setting unit 231 sets a cross section along the target blood vessel so as to be orthogonal to the designated target cross section.
  • the area to be subjected to the preliminary scanning may include only the cross section (two-dimensional area) set in this way, or may be a three-dimensional area including the cross section.
  • the operation for designating the cross section of interest for the second scan or the preliminary scan as the fundus image is performed using, for example, a pointing device.
  • the display unit 241 is a touch panel
  • the user designates a cross section of interest by a touch operation on a desired position of the displayed fundus image.
  • the parameters (direction, length, etc.) of the cross section of interest are set manually or automatically.
  • an interface for setting parameters can be used.
  • This interface may be hardware such as a switch or software such as a graphical user interface (GUI).
  • GUI graphical user interface
  • the cross-section setting unit 231 can set parameters based on the position designated by the user for the fundus image.
  • a predetermined value may be applied, or the designated position and the position of a blood vessel in the vicinity thereof may be considered.
  • the former value is designated based on, for example, a general distance between a predetermined blood vessel of interest and a blood vessel in the vicinity thereof. This distance information can be generated based on clinical data. The same applies to the latter case.
  • a predetermined orientation may be applied, or the orientation of the blood vessel of interest may be considered.
  • information indicating the inclination at each position of the target blood vessel is generated in advance and referred to. This information can be generated based on clinical data.
  • the traveling direction of the target blood vessel at the designated position is obtained and set based on the traveling direction.
  • the process for obtaining the traveling direction is performed using, for example, a thinning process for the blood vessel of interest.
  • it is desirable that the direction of the cross section of interest is set to be orthogonal to the traveling direction on the xy plane.
  • the cross-section setting unit 231 sets the cross-sections C11 and C12 at positions separated from the target cross-section C2 to which the second scanning is applied by a predetermined distance. This distance is set to 100 ⁇ m, for example. This distance is specified as described above, for example. Further, the lengths and / or orientations of the cross sections C11 and C12 are set in the same manner as in the case of the cross section of interest C2.
  • the layer region specifying unit 232 specifies the layer region in the image data by analyzing the image data based on the detection result of the interference light LC acquired by the preliminary scanning (or the first scanning).
  • the layer region is, for example, an image region corresponding to an arbitrary tissue of the fundus oculi Ef or an image region corresponding to a boundary between adjacent tissues.
  • the layer region may be an image region corresponding to a tissue constituting the retina.
  • a specific example is an inner boundary membrane (ILM).
  • segmentation is performed based on pixel values (luminance values) of a two-dimensional tomographic image or a three-dimensional image.
  • Each layer structure of the fundus oculi Ef has a characteristic reflectance, and an image region of the layer structure also has a characteristic luminance value.
  • a target image area is specified based on such characteristic luminance values.
  • the blood vessel region specifying unit 233 specifies a blood vessel region corresponding to the target blood vessel in the tomographic image (image data) formed by the tomographic image forming unit 221. Further, the blood vessel region specifying unit 233 specifies a blood vessel region corresponding to the target blood vessel in the phase image formed by the phase image forming unit 222.
  • the blood vessel region is specified by analyzing the pixel value of each image (for example, threshold processing). For the phase image, for example, the blood vessel region of the phase image may be specified with reference to the blood vessel region in the tomographic image of the cross section of interest.
  • the inclination calculation unit 234 calculates the inclination of the target blood vessel Db in the target cross section C2 based on the data acquired by the first scan. At this time, it is possible to further use data obtained by the second scanning.
  • the inclination calculation unit 234 calculates the inclination of the target blood vessel Db in the target cross section C2 based on the distance between cross sections and the result of specifying the blood vessel region.
  • the distance between cross sections may include a distance between the cross section C11 and the cross section C12. Further, the distance between the cross sections may include a distance between the cross section C11 and the target cross section C2, and a distance between the cross section C12 and the target cross section C2.
  • the tomographic images G11 and G12 are a tomographic image representing the cross section C11 to which the first scan is applied and a tomographic image representing the cross section C12, respectively.
  • the tomographic image G2 is a tomographic image representing the cross section of interest C2 to which the second scanning is applied.
  • Reference numerals V11, V12, and V2 indicate a blood vessel region in the tomographic image G11, a blood vessel region in the tomographic image G12, and a blood vessel region in the tomographic image G2, respectively. These blood vessel regions correspond to the cross section of the target blood vessel Db.
  • the z coordinate axis is directed downward in the drawing sheet, and this substantially coincides with the irradiation direction of the measurement light LS (the optical axis of the optical path of the measurement light LS). Also, let L be the interval between adjacent tomographic images (cross sections).
  • the inclination calculating unit 234 calculates the inclination A of the target blood vessel Db in the target cross section C2 based on the positional relationship between the three blood vessel regions V11, V12, and V2. This positional relationship is obtained, for example, by connecting three blood vessel regions V11, V12, and V2. Specifically, the inclination calculation unit 234 identifies the feature points of the three blood vessel regions V11, V12, and V2, and connects these feature points. As the feature points, there are a center position, a center of gravity position, an uppermost portion (a position having the smallest z coordinate value), a lowermost portion (a position having the largest z coordinate value), and the like. In addition, as a method of connecting these feature points, there are a method of connecting with a line segment, a method of connecting with an approximate curve (spline curve, Bezier curve, etc.), and the like.
  • the inclination calculation unit 234 calculates the inclination A based on a line connecting these feature points.
  • the line segment is used, for example, the slope of the first line segment connecting the feature point of the blood vessel region V2 in the cross section of interest C2 and the feature point of the blood vessel region V11 in the cross section C11, and the feature point of the blood vessel region V2
  • the inclination A is calculated based on the inclination of the second line segment connecting the characteristic points of the blood vessel region V12 in the cross section C12.
  • the average value of the slopes of two line segments can be obtained.
  • the slope of the approximate curve at the intersection position of the approximate curve and the target cross section C2 can be obtained.
  • the cross-sectional distance L is used when embedding these tomographic images G11, G12, and G2 in the xyz coordinate system in the process of obtaining line segments and approximate curves.
  • the blood vessel region in the three cross sections is considered, but the inclination can be obtained in consideration of the blood vessel region in the two cross sections.
  • the inclination A of the target blood vessel Db in the target cross section C2 can be obtained based on the blood vessel region V11 in the cross section C11 and the blood vessel region V12 in the cross section C12.
  • the slope of the first line segment or the second line segment can be used as the slope A.
  • This example may be applied at least to image data acquired by preliminary scanning, and may be applied to image data acquired by first scanning.
  • OCT is performed on a cross section (two-dimensional area) along a candidate blood vessel or a three-dimensional area including the cross section.
  • FIG. 7 shows an example of a cross section applied in the preliminary scanning (or first scanning).
  • the user or the blood flow measuring device 1 designates the attention cross section 310 for the candidate blood vessel 300.
  • the cross section of interest 310 is designated to be substantially orthogonal to the candidate blood vessel 300 at the cross section position.
  • the cross section setting unit 231 sets the cross section 320 so as to be orthogonal to the designated target cross section 310.
  • the cross section 320 is set along the candidate blood vessel 300.
  • the setting of the cross section 320 is executed based on the position of the target cross section 310, for example.
  • the cross section 310 of interest is designated such that its center is arranged on the candidate blood vessel 300.
  • the cross-section setting unit 231 sets a cross-section 320 for preliminary scanning so that it passes through the center of the candidate blood vessel 310 and is orthogonal to the target cross-section 310.
  • the length of the cross section 320 may be a predetermined value (default value).
  • the length of the cross section 320 may be set by the user.
  • the blood flow measurement device 1 can be configured to set the length of the cross section 320 based on the bent state or diameter of the candidate blood vessel 300.
  • the cross section 320 is set so that the center thereof matches the center of the target cross section 310.
  • the setting of the cross section 320 is performed by analyzing the candidate blood vessel 300.
  • the cross-section setting unit 231 obtains the axis of the candidate blood vessel 300, obtains the intersection of this axis and the target cross-section 310, and sets the cross-section 320 so as to pass through this cross-point and be orthogonal to the target cross-section 310.
  • FIG. 8 shows an example of a tomographic image obtained by OCT scanning such a cross section 320.
  • the tomographic image 400 depicts various layers of the fundus oculi Ef.
  • the layer region specifying unit 232 specifies an image region (layer region) corresponding to a predetermined tissue of the eye E by performing segmentation of the tomographic image 400 (image data).
  • a layer region (ILM region) 410 corresponding to the inner boundary film is specified.
  • the inner limiting membrane is a retinal tissue that defines the boundary between the retina and the vitreous body and is relatively clearly depicted.
  • the inclination calculating unit 234 obtains a line segment that approximates the shape of the layer region specified by the layer region specifying unit 232.
  • the method for obtaining this approximate line segment is arbitrary. Two examples will be described below.
  • the inclination calculation unit 234 can obtain a line segment 420 connecting both ends 410a and 410b of the ILM region 410 as an approximate line segment, as shown in FIG. 9A.
  • the feature points used for calculating the approximate line segment are not limited to the points at both ends of the layer region. For example, it is possible to use a point having the maximum and minimum z coordinate values in the layer region, a point corresponding to the maximum or minimum value of the approximate curve of the layer region, an inflection point of the approximate curve, or the like.
  • the slope calculation unit 234 obtains a line segment 430 by applying the least square method to the ILM region 410 (such as a graph representing it) as shown in FIG. 9B, and approximates the line segment 430. It can be adopted as a line segment.
  • the case where a single cross section (320) along the candidate blood vessel is considered has been described.
  • the three-dimensional region of the fundus oculi Ef including this cross section (320) is scanned by OCT. Is possible.
  • image data volume data or stack data
  • the layer region specifying unit 232 specifies a two-dimensional region or a three-dimensional region corresponding to a predetermined tissue (such as ILM) as a layer region.
  • the inclination calculation unit 234 obtains a common region between the two-dimensional or three-dimensional layer region and the cross section (320).
  • the inclination calculating unit 234 may obtain a common region between a part of the layer region (for example, the upper surface or the lower surface) and the cross section (320). Furthermore, the inclination calculation unit 234 can obtain a line segment that approximates the shape of the common region.
  • the inclination of the layer area in the cross section that is, the inclination of the approximate line segment of the layer area
  • the inclination of the common area between the layer area and the cross section is the inclination of the common area between the layer area and the cross section. (That is, the inclination of the approximate line segment of the common area).
  • the inclination of the approximate line segment obtained as described above is expressed, for example, as an angle with respect to the z coordinate axis or as an angle with respect to the xy plane (that is, a plane orthogonal to the z coordinate axis).
  • the blood flow information generation unit 235 generates blood flow information of the eye E based on data acquired by OCT measurement of the fundus oculi Ef. More specifically, the blood flow information generation unit 235 includes the data (phase image) acquired by the second scan (Doppler OCT), and the inclination of the attention blood vessel Db in the attention section C2 calculated by the inclination calculation section 234. Based on the above, blood flow information related to the target blood vessel Db is generated. As described above, the blood flow information generation unit 235 is provided with the blood flow velocity calculation unit 2351, the blood vessel diameter calculation unit 2352, and the blood flow rate calculation unit 2353.
  • the blood flow velocity calculation unit 2351 calculates the blood flow velocity in the target section C2 of the blood flowing in the target blood vessel Db based on the time-series change of the phase difference obtained as the phase image.
  • This calculation target may be a blood flow velocity at a certain point in time, or a time-series change (blood flow velocity change information) of this blood flow velocity.
  • the time range in the latter is the entire time or arbitrary part of the time when the target cross section C2 is scanned.
  • the blood flow velocity calculator 2351 can calculate the statistical value of the blood flow velocity in the time range.
  • the statistical values include an average value, standard deviation, variance, median value, maximum value, minimum value, maximum value, minimum value, and the like. It is also possible to create a histogram for blood flow velocity values.
  • the blood flow velocity calculation unit 2351 calculates the blood flow velocity using the Doppler OCT method as described above. At this time, the inclination A of the target blood vessel Db in the target section C2 calculated by the inclination calculation unit 234 is considered. Specifically, the inclination calculation unit 234 uses the following equation.
  • ⁇ f represents the Doppler shift received by the scattered light of the measurement light LS
  • n represents the refractive index of the medium (blood)
  • v represents the flow velocity (blood flow velocity) of the medium
  • represents an angle formed by the incident direction of the measurement light LS and the direction of the medium flow (inclination A);
  • represents the center wavelength of the measurement light LS.
  • n and ⁇ are known, ⁇ f is obtained from the time-series change of the phase difference, and ⁇ is obtained from the slope A (or ⁇ is obtained as the slope A).
  • the blood vessel diameter calculator 2352 calculates the diameter of the target blood vessel Db in the target cross section C2. Examples of this calculation method include a first calculation method using a fundus image and a second calculation method using a tomographic image.
  • the fundus image obtained thereby may be an observation image (frame) or a captured image.
  • the captured image is a color image
  • an image constituting the image for example, a red free image
  • the blood vessel diameter calculation unit 2352 is based on various factors that determine the relationship between the scale on the image and the scale in the real space, such as information on the field of view (imaging magnification), working distance, and eyeball optical system.
  • the blood vessel diameter calculating unit 2352 calculates the diameter of the target blood vessel Db in the target cross section C2, that is, the diameter of the blood vessel region V2, based on this scale and the pixels included in the blood vessel region V2. As a specific example, the blood vessel diameter calculating unit 2352 obtains the maximum value and the average value of the diameters of the blood vessel region V2 in various directions. Further, the blood vessel region 235 can approximate the outline of the blood vessel region V2 in a circle or an ellipse, and obtain the diameter of the circle or the ellipse. If the blood vessel diameter is determined, the area of the blood vessel region V2 can be (substantially) determined, so that the area may be calculated instead of obtaining the blood vessel diameter.
  • the second calculation method will be described.
  • a tomographic image of the fundus oculi Ef at the cross section of interest C2 is used.
  • This tomographic image may be a tomographic image based on the second scanning, or may be acquired separately.
  • the scale in this tomographic image is determined according to the scanning mode of the measurement light LS.
  • the length of the cross section of interest C2 is various factors that determine the relationship between the scale on the image and the scale in real space, such as working distance and information on the eyeball optical system. To be determined.
  • the blood vessel diameter calculation unit 2352 calculates an interval between adjacent pixels based on this length, and calculates the diameter of the target blood vessel Db in the target cross section C2 in the same manner as in the first calculation method.
  • the blood flow rate calculation unit 2353 calculates the flow rate of the blood flowing in the target blood vessel Db based on the blood flow velocity calculation result and the blood vessel diameter calculation result. An example of this process will be described below.
  • the blood flow in the blood vessel is a Hagen-Poiseuille flow.
  • the blood flow rate Q is expressed by the following equation.
  • the blood flow rate calculation unit 2353 substitutes the calculation result w of the blood vessel diameter by the blood vessel diameter calculation unit 2352 and the maximum value Vm based on the calculation result of the blood flow velocity by the blood flow velocity calculation unit 2351 into Expression (4).
  • the blood flow rate Q is calculated.
  • the data processing unit 230 that functions as described above includes, for example, a processor, a RAM, a ROM, a hard disk drive, a circuit board, and the like.
  • a storage device such as a hard disk drive stores in advance a computer program that causes the processor to execute the above functions.
  • the user interface 240 includes a display unit 241 and an operation unit 242.
  • the display unit 241 includes the display device of the arithmetic control unit 200 and the display device 3.
  • the operation unit 242 includes an operation device of the arithmetic control unit 200.
  • the user interface 240 may include a device having a display function and an operation function, such as a touch panel.
  • FIG. 10 illustrates an example of the operation of the blood flow measurement device 1.
  • a patient for blood flow measurement is selected. Selection of a patient is performed by inputting a patient ID, for example.
  • the user designates a position for photographing the eye E by adjusting the position of the apparatus optical system.
  • alignment of the apparatus optical system with respect to the eye E is performed.
  • the alignment is performed using, for example, an alignment index.
  • two or more anterior eye cameras described in Japanese Patent Application Laid-Open No. 2013-248376 by the present applicant are provided, two or more obtained by photographing the anterior eye part substantially simultaneously from different directions Alignment can be performed based on the image. In this step, focus adjustment or the like may be further performed.
  • the user observes an image (for example, an observation image or a captured image) of the fundus oculi Ef displayed on the display unit 241, and determines a blood vessel candidate (candidate blood vessel) to be subjected to blood flow measurement and its attention cross section.
  • an image for example, an observation image or a captured image
  • a blood vessel candidate candidate blood vessel
  • the control unit 210 and the data processing unit 230 analyze the image of the fundus oculi Ef and designate candidate blood vessels and a target cross section based on predetermined conditions. This condition includes, for example, the distance from the optic disc, the thickness of the blood vessel, and the positional relationship with other blood vessels.
  • the cross section setting unit 231 sets a cross section (320) for preliminary scanning based on the candidate blood vessel (300) and the target cross section (310) specified in step S4.
  • the blood flow measurement device 1 performs preliminary scanning on the cross section (320) set in step S5.
  • the preliminary scanning is performed so as to scan the section (320) once, and a tomographic image (400) is formed from the collected data.
  • the pre-scan is performed so that the cross section (320) is scanned a plurality of times, and a plurality of tomographic images are formed from the collected data, and the tomographic images are averaged to obtain one tomographic image ( 400) is formed.
  • the layer region specifying unit 232 specifies the layer region (ILM region 410) by analyzing the tomographic image (400) obtained by the preliminary scanning in step S6.
  • the inclination calculation unit 234 calculates the inclination of the layer region (ILM region 410) specified in step S7.
  • the calculation result of the inclination of the layer region is used as an estimated value of the inclination of the candidate blood vessel (300) in the cross section of interest (310) designated in step S4.
  • the user or blood flow measurement device 1 determines whether the inclination of the candidate blood vessel (300) calculated in step S8 is included in a predetermined allowable range.
  • This allowable range is set, for example, as an allowable range of an angle formed by the z coordinate axis and the direction of the candidate blood vessel (300).
  • the angle formed by the z coordinate axis and the direction of the candidate blood vessel (300) is an approximate value (estimated value) of the angle ⁇ formed by the incident direction of the measurement light LS and the direction of the medium flow (tilt A).
  • the allowable range is a range including 80 degrees and is set to have a width of about 10 degrees.
  • the main control unit 211 causes the display unit 241 to display the value of the inclination of the candidate blood vessel (300) calculated in step S8. At this time, information indicating an allowable range may be displayed. The user inputs the determination result using the user interface 240.
  • the main control unit 211 (or the data processing unit 230) refers to information indicating the allowable range stored in advance in the storage unit 212 or the like, and the candidate calculated in step S8 It is determined whether the inclination of the blood vessel (300) is within the allowable range.
  • step S4 When it is determined that the inclination of the candidate blood vessel (300) calculated in step S8 is not included in the allowable range (S10: No), the processing from step S4 is executed again. In response to the determination of “No” in step S9 for the predetermined number of times, at least a part of the processing after step S4 may be changed. For example, the processing in step S4 can be switched from automatic processing to manual processing.
  • step S8 when it is determined that the inclination of the candidate blood vessel (300) calculated in step S8 is included in the allowable range (S10: Yes), the process proceeds to step S11.
  • Step S11 First scanning section setting
  • the blood flow measurement device 1 adopts the candidate blood vessel (300) and the target cross section (310) designated in Step S4 as the target blood vessel Db and the target cross section C2, respectively.
  • the cross section setting unit 231 sets two cross sections C11 and C12 for the first scan based on the target blood vessel Db and the target cross section C2 employed here.
  • the blood flow measurement device 1 executes OCT scans of the two cross sections C11 and C12 set in step S11 (first scan).
  • the tomographic image forming unit 221 forms tomographic images G11 and G12 corresponding to the cross sections C11 and C12 based on the data acquired by the first scanning.
  • the data processing unit 230 calculates the inclination A of the target blood vessel Db in the target cross section C2. Note that when the inclination A is calculated in consideration of data acquired by the second scan, the inclination A is calculated after the second scan.
  • the blood flow measurement device 1 executes repetitive OCT scans of the cross section of interest C2 (second scan).
  • the phase image forming unit 222 forms a phase image representing a time-series change of the phase difference in the cross section of interest C2 based on the data acquired by the second scan.
  • the tomographic image forming unit 221 forms a tomographic image of the cross section of interest C2 based on the data.
  • the data processing unit 230 (blood vessel region specifying unit 233, blood vessel diameter calculating unit 2352, etc.) obtains the diameter of the target blood vessel Db in the target cross section C2.
  • the blood flow velocity calculation unit 2351 calculates the blood flow velocity in the cross section of interest C2 based on the slope A calculated based on the first scan in step S12 and the phase image acquired by the second scan in step S13. . Furthermore, the blood flow rate calculation unit 2353 calculates the flow rate of blood flowing in the target blood vessel Db based on the calculation result of the blood flow velocity and the calculation result of the blood vessel diameter obtained in step S13.
  • the main control unit 211 causes the display unit 241 to display blood flow information including a blood flow velocity calculation result, a blood flow calculation result, and the like. Further, the main control unit 211 stores blood flow information in the storage unit 212 in association with the patient ID input in step S1. This is the end of the process related to blood flow measurement in this example.
  • the embodiment is a blood flow measurement device that acquires blood flow information of the fundus blood vessel, and includes a data acquisition unit, a layer region specifying unit, and an inclination calculation unit.
  • the data acquisition unit acquires image data by scanning a fundus region including a cross section along the blood vessel using optical coherence tomography.
  • the layer region specifying unit specifies the layer region in the image data by analyzing the acquired image data.
  • the inclination calculation unit calculates the inclination of the common area between the identified layer area and the cross section.
  • the data acquisition unit includes the optical system for OCT and the image forming unit 220
  • the layer region specifying unit includes the layer region specifying unit 232
  • the tilt calculating unit includes the tilt calculating unit 234. Including.
  • the inclination calculation unit can obtain a line segment that approximates the shape of the common area between the layer area and the cross section, and can calculate the inclination of the line segment as the inclination of the common area.
  • the inclination calculation unit may be configured to obtain a first line segment connecting two points in the common area.
  • the inclination calculation unit may be configured to obtain the second line segment by applying a least square method to the common region.
  • the blood flow measurement device includes a user interface (240) for designating a cross section of interest so as to be substantially orthogonal to the blood vessel of interest at the fundus, and a cross section along the blood vessel of interest so as to be orthogonal to the cross section of interest.
  • a cross-section setting section (231) to be set may be provided.
  • the data acquisition unit may be configured to acquire image data by scanning an area including a cross section set by the cross section setting unit.
  • the layer region specifying unit may be configured to specify an image region corresponding to the inner retina (ILM) of the retina as a layer region.
  • ILM inner retina

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Hematology (AREA)
  • Physiology (AREA)
  • Pathology (AREA)
  • Cardiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Eye Examination Apparatus (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

実施形態は、眼底血管の血流情報を取得する血流計測装置であって、データ取得部と、層領域特定部と、傾き算出部とを備える。データ取得部は、血管に沿う断面を含む眼底の領域を光コヒーレンストモグラフィを用いて走査することにより画像データを取得する。層領域特定部は、取得された画像データを解析することにより、この画像データ内の層領域を特定する。傾き算出部は、層領域と上記断面との共通領域の傾きを算出する。

Description

血流計測装置
 この発明は血流計測装置に関する。
 光コヒーレンストモグラフィ(Optical Coherence Tomography:OCT)は、対象の形態の計測だけでなく、その機能の計測にも利用される。例えば、OCTを用いて生体の血流計測を行うための装置が知られている。OCTを用いた血流計測は、眼底血管などに応用されている。
特開2013-184018号公報 特開2009-165710号公報 特表2010-523286号公報
 一般に、OCTを用いて血流情報を取得するには、計測対象である血管の向きを推定することが必要である。これは、血管に対する測定光の入射方向と血流方向(血管の向き)との間の角度に応じて変化するドップラー周波数シフトに基づいて血流情報を求めるからである。
 血管の向きの推定は、ドップラーOCTの演算だけでなく、指定された血管(候補血管)が血流計測に好適な向きに配置されているか判定するためにも利用される。候補血管の判定はリアルタイムで迅速に行われることが望ましく、それには処理の効率化が求められる。
 また、経過観察や術前術後観察においては血流計測が繰り返し行われるため、再現性が確保されている必要がある。血管の向きを推定するための従来の技術では、同一血管の同一断面を同一条件で測定しても、被検眼の動き(眼球運動、拍動等)や装置の揺れなどにより再現性を確保することが困難であった。
 この発明の目的は、血管の向きを推定する処理の効率化及び再現性の向上を図ることにある。
 実施形態は、眼底血管の血流情報を取得する血流計測装置であって、データ取得部と、層領域特定部と、傾き算出部とを備える。データ取得部は、血管に沿う断面を含む眼底の領域を光コヒーレンストモグラフィを用いて走査することにより画像データを取得する。層領域特定部は、取得された画像データを解析することにより、この画像データ内の層領域を特定する。傾き算出部は、層領域と上記断面との共通領域の傾きを算出する。
 この発明によれば、血管の向きを推定する処理の効率化及び再現性の向上を図ることができる。
実施形態に係る血流計測装置の構成の一例を表す概略図である。 実施形態に係る血流計測装置の構成の一例を表す概略図である。 実施形態に係る血流計測装置の構成の一例を表す概略図である。 実施形態に係る血流計測装置の構成の一例を表す概略図である。 実施形態に係る血流計測装置の動作の一例を説明するための概略図である。 実施形態に係る血流計測装置の動作の一例を説明するための概略図である。 実施形態に係る血流計測装置の動作の一例を説明するための概略図である。 実施形態に係る血流計測装置の動作の一例を説明するための概略図である。 実施形態に係る血流計測装置の動作の一例を説明するための概略図である。 実施形態に係る血流計測装置の動作の一例を説明するための概略図である。 実施形態に係る血流計測装置の動作の一例を表すフローチャートである。
 実施形態に係る血流計測装置について図面を参照しながら詳細に説明する。実施形態に係る血流計測装置は、OCTを用いて生体眼の断層像や3次元画像を形成する。この明細書に記載の引用文献の内容を実施形態に援用することができる。
 以下の実施形態では、フーリエドメインOCT(特にスペクトラルドメインOCT)を用いて眼底のOCTを行う血流計測装置について説明する。なお、OCTのタイプはスペクトラルドメインには限定されず、例えばスウェプトソースOCTであってよい。また、実施形態に係る血流計測装置はOCT装置と眼底カメラとの複合機であるが、眼底カメラ以外の眼底撮影装置、例えばSLO(Scanning Laser Ophthalmoscope)、スリットランプ、眼科手術用顕微鏡などにOCT装置を組み合わせてもよい。なお、血流計測装置は、OCT機能を具備していれば十分であり、眼底撮影機能を備える必要はない。
[構成]
 図1に示すように、血流計測装置1は、眼底カメラユニット2、OCTユニット100及び演算制御ユニット200を含む。眼底カメラユニット2は、従来の眼底カメラとほぼ同様の光学系を備える。OCTユニット100は、眼底のOCT画像を取得するための光学系を備える。演算制御ユニット200は、各種の演算や制御を実行するコンピュータを備える。
(眼底カメラユニット2)
 図1に示す眼底カメラユニット2には、被検眼Eの眼底Efの表面形態を表す2次元画像(眼底像)を取得するための光学系が設けられている。眼底像には、観察画像や撮影画像などが含まれる。観察画像は、例えば、近赤外光を用いて所定のフレームレートで形成されるモノクロの動画像である。撮影画像は、例えば、可視光をフラッシュ発光して得られるカラー画像、又は近赤外光若しくは可視光を照明光として用いたモノクロの静止画像であってもよい。眼底カメラユニット2は、これら以外の画像、例えばフルオレセイン蛍光画像やインドシアニングリーン蛍光画像や自発蛍光画像などを取得可能に構成されていてもよい。
 眼底カメラユニット2には、被検者の顔を支持するための顎受けや額当てが設けられている。更に、眼底カメラユニット2には、照明光学系10と撮影光学系30が設けられている。照明光学系10は眼底Efに照明光を照射する。撮影光学系30は、この照明光の眼底反射光を撮像装置(CCDイメージセンサ(単にCCDと呼ぶことがある)35、38)に導く。また、撮影光学系30は、OCTユニット100からの測定光を眼底Efに導くとともに、眼底Efからの測定光の戻り光をOCTユニット100に導く。
 照明光学系10の観察光源11は、例えばハロゲンランプ又はLED(Light Emitting Diode)を含む。観察光源11から出力された光(観察照明光)は、曲面状の反射面を有する反射ミラー12により反射され、集光レンズ13を経由し、可視カットフィルタ14を透過して近赤外光となる。更に、観察照明光は、撮影光源15の近傍にて一旦集束し、ミラー16により反射され、リレーレンズ17、18、絞り19及びリレーレンズ20を経由する。そして、観察照明光は、孔開きミラー21の周辺部(孔部の周囲の領域)にて反射され、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efを照明する。
 観察照明光の眼底反射光は、対物レンズ22により屈折され、ダイクロイックミラー46を透過し、孔開きミラー21の中心領域に形成された孔部を通過し、ダイクロイックミラー55を透過し、合焦レンズ31を経由し、ミラー32により反射され、ハーフミラー40を透過し、ダイクロイックミラー33により反射され、集光レンズ34によりCCDイメージセンサ35の受光面に結像される。CCDイメージセンサ35は、所定のフレームレートで眼底反射光を検出する。表示装置3には、CCDイメージセンサ35により検出された眼底反射光に基づく画像(観察画像)が表示される。なお、撮影光学系30のピントが前眼部に合わせられている場合、被検眼Eの前眼部の観察画像が表示される。
 撮影光源15は、例えばキセノンランプ又はLEDを含む。撮影光源15から出力された光(撮影照明光)は、観察照明光と同様の経路を通って眼底Efに照射される。撮影照明光の眼底反射光は、観察照明光のそれと同様の経路を通ってダイクロイックミラー33まで導かれ、ダイクロイックミラー33を透過し、ミラー36により反射され、集光レンズ37によりCCDイメージセンサ38の受光面に結像される。表示装置3には、CCDイメージセンサ38により検出された眼底反射光に基づく画像(撮影画像)が表示される。
 LCD(Liquid Crystal Display)39は、固視標や視力測定用指標を表示する。固視標は被検眼Eを固視させるための指標であり、眼底撮影時やOCT時などに使用される。LCD39の画面上における固視標の表示位置を変更することにより、被検眼Eの固視位置を変更できる。
 LCD39から出力された光は、その一部がハーフミラー40にて反射され、ミラー32に反射され、合焦レンズ31及びダイクロイックミラー55を経由し、孔開きミラー21の孔部を通過し、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efに投影される。
 更に、眼底カメラユニット2には、従来の眼底カメラと同様にアライメント光学系50とフォーカス光学系60が設けられている。アライメント光学系50は、被検眼Eに対する装置光学系の位置合わせ(アライメント)を行うための指標(アライメント指標)を生成する。フォーカス光学系60は、眼底Efに対してフォーカス(ピント)を合わせるための指標(スプリット指標)を生成する。
 アライメント光学系50のLED51から出力された光(アライメント光)は、絞り52、53及びリレーレンズ54を経由してダイクロイックミラー55により反射され、孔開きミラー21の孔部を通過し、ダイクロイックミラー46を透過し、対物レンズ22により被検眼Eに投影される。
 アライメント光の戻り光はCCDイメージセンサ35により検出される。CCDイメージセンサ35による受光像(アライメント指標像)は、観察画像とともに表示される。ユーザは、従来の眼底カメラと同様に、アライメント指標像を参照しつつアライメントを実施することができる。また、演算制御ユニット200がアライメント指標像の位置を解析して光学系を移動させることによりアライメントを行うこともできる(オートアライメント機能)。
 フォーカス調整を行う際には、照明光学系10の光路上に反射棒67の反射面が斜設される。フォーカス光学系60のLED61から出力された光(フォーカス光)は、リレーレンズ62を通過し、スプリット指標板63により2つの光束に分離され、二孔絞り64を通過し、ミラー65に反射され、集光レンズ66により反射棒67の反射面に一旦結像されて反射される。更に、フォーカス光は、リレーレンズ20を経由し、孔開きミラー21に反射され、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efに投影される。
 フォーカス光の戻り光はCCDイメージセンサ35により検出される。CCDイメージセンサ35による受光像(スプリット指標像)は、観察画像及びアライメント指標像とともに表示される。演算制御ユニット200は、従来と同様に、スプリット指標の位置を解析して合焦レンズ31及びフォーカス光学系60を移動させてピント合わせを行うことができる(オートフォーカス機能)。また、スプリット指標像の位置を参照しつつ手動でピント合わせを行ってもよい。
 ダイクロイックミラー46は、眼底撮影用の光路にOCT用の光路(OCT光路)を合成する。つまり、眼底撮影用の光路とOCT光路とは、ダイクロイックミラー46により同軸に構成され、ダイクロイックミラー46よりも被検眼E側の光路を共有している。ダイクロイックミラー46は、OCTに用いられる波長帯の光を反射し、眼底撮影用の光を透過させる。OCT光路には、OCTユニット100側から順に、コリメータレンズユニット40と、光路長変更部41と、ガルバノスキャナ42と、合焦レンズ43と、ミラー44と、リレーレンズ45とが設けられている。
 光路長変更部41は、図1に示す矢印の方向に移動可能とされ、OCT光路の長さを変更する。この光路長の変更は、被検眼Eの眼軸長に応じた光路長の補正や、干渉状態の調整などに利用される。光路長変更部41は、例えばコーナーキューブと、これを移動する機構とを含んで構成される。
 ガルバノスキャナ42は、OCT光路を通過する測定光LSの進行方向を変化させる。それにより、眼底Efを測定光LSで走査することができる。ガルバノスキャナ42は、例えば、測定光LSをx方向に走査するガルバノミラーと、y方向に走査するガルバノミラーと、これらを独立に駆動する機構とを含んで構成される。それにより、測定光LSをxy平面上の任意の方向に走査することができる。
(OCTユニット100)
 図2を参照しつつOCTユニット100の構成例を説明する。OCTユニット100には、眼底EfのOCT画像を取得するための光学系が設けられている。この光学系は、従来のスペクトラルドメインタイプのOCT装置と同様に、低コヒーレンス光を参照光と測定光に分割し、眼底Efを経由した測定光と参照光路を経由した参照光とを干渉させて干渉光を生成し、この干渉光のスペクトル成分を検出するよう構成されている。この検出結果(検出信号)は演算制御ユニット200に送られる。
 なお、スウェプトソースタイプのOCT装置が適用される場合、低コヒーレンス光源の代わりに波長掃引光源が設けられるとともに、スペクトル成分を検出するデバイス(分光器)の代わりにバランスドフォトダイオードが設けられる。一般に、OCTユニット100は、OCTのタイプに応じた公知の構成を備えていてよい。
 光源ユニット101は低コヒーレンス光L0(広帯域光)を出力する。低コヒーレンス光L0は、例えば、近赤外領域の波長帯(800nm~900nm程度)を含み、数十マイクロメートル程度の時間的コヒーレンス長を有する。或いは、1040~1060nmの中心波長を有する近赤外光を低コヒーレンス光L0として用いてもよい。
 光源ユニット101は、スーパールミネセントダイオード(Super Luminescent Diode:SLD)や、LEDや、SOA(Semiconductor Optical Amplifier)等の光出力デバイスを含んで構成される。
 光源ユニット101から出力された低コヒーレンス光L0は、光ファイバ102によりファイバカプラ103に導かれて測定光LSと参照光LRに分割される。
 参照光LRは、光ファイバ104により導かれて光減衰器(アッテネータ)105に到達する。光減衰器105は、演算制御ユニット200の制御の下、或いは手動操作により、光ファイバ104に導かれる参照光LRの光量を変更する。光減衰器105により光量が調整された参照光LRは、光ファイバ104により導かれて偏波調整器(偏波コントローラ)106に到達する。偏波調整器106は、光ファイバ104内を導かれる参照光LRの偏光状態を変化させる。偏波調整器106により偏光状態が調整された参照光LRは、ファイバカプラ109に到達する。
 ファイバカプラ103により生成された測定光LSは、光ファイバ107により導かれ、コリメータレンズユニット105により平行光束とされる。更に、測定光LSは、光路長変更部41、ガルバノスキャナ42、合焦レンズ43、ミラー44、及びリレーレンズ45を経由してダイクロイックミラー46に到達する。そして、測定光LSは、ダイクロイックミラー46により反射され、対物レンズ11により屈折されて被検眼Eに入射する。測定光LSは、眼底Efの様々な深さ位置において反射・散乱される。眼底Efからの測定光LSの戻り光(後方散乱光、反射光、蛍光等)は、往路と同じ経路を逆向きに進行してファイバカプラ103に導かれ、光ファイバ108を経由してファイバカプラ109に到達する。
 ファイバカプラ109は、測定光LSの戻り光と参照光LRとを干渉させる。これにより干渉光LCが生成される。干渉光LCは、光ファイバ110により導かれて出射端111から出射される。更に、干渉光LCは、コリメータレンズ112により平行光束とされ、回折格子113によりスペクトル分解され、集光レンズ114により集光されてCCDイメージセンサ115の受光面に投影される。なお、図2に示す回折格子118は透過型であるが、例えば反射型の回折格子など、他の形態の分光素子を用いることも可能である。
 CCDイメージセンサ115は、例えばラインセンサであり、干渉光LCの各スペクトル成分を検出して電荷に変換する。CCDイメージセンサ115は、この電荷を蓄積して検出信号を生成し、これを演算制御ユニット200に送る。なお、CCDイメージセンサに代えて、他のイメージセンサ、例えばCMOS(Complementary Metal Oxide Semiconductor)イメージセンサを用いてよい。
(演算制御ユニット200)
 演算制御ユニット200は、CCDイメージセンサ115から入力される検出信号を解析して眼底EfのOCT画像を形成する。そのための演算処理は、従来のスペクトラルドメインOCTと同様である。
 また、演算制御ユニット200は、眼底カメラユニット2、表示装置3及びOCTユニット100を制御する。眼底カメラユニット2の制御には、観察光源11、撮影光源15、LCD39、ガルバノスキャナ42、並びにLED51及び61のそれぞれの動作制御や、合焦レンズ31及び43、光路長変更部41、フォーカス光学系60、並びに反射棒67、のそれぞれの移動制御などがある。OCTユニット100の制御には、光源ユニット101、光減衰器105、偏波調整器106、及びCCDイメージセンサ120のそれぞれの動作制御などがある。
 演算制御ユニット200は、プロセッサ、RAM、ROM、ハードディスクドライブ、通信インターフェイスなどを含む。また、演算制御ユニット200は、キーボードやマウス等の操作デバイス(入力デバイス)や、LCD等の表示デバイスを備えていてもよい。なお、本明細書において「プロセッサ」は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路を意味する。演算制御ユニット200は、例えば、記憶回路や記憶装置に格納されているプログラムを読み出し実行することで、実施形態に係る機能を実現する。
[制御系]
 血流計測装置1の制御系の構成について図3及び図4を参照しつつ説明する。
(制御部210)
 制御部210は、例えば、前述のプロセッサ、RAM、ROM、ハードディスクドライブ、通信インターフェイス等を含む。制御部210には、主制御部211と記憶部212が設けられている。記憶部212は、各種のデータやコンピュータプログラムを記憶する。
 主制御部211は各種制御を行う。例えば、図3に示すように、主制御部211は、眼底カメラユニット2のCCD35及び38、合焦駆動部31A、光路長変更部41、ガルバノスキャナ42、並びに合焦駆動部43Aの制御を行う。更に、主制御部211は、OCTユニット100の光源ユニット101、光減衰器105、偏波調整器106及びCCD115の制御を行う。
 合焦駆動部31Aは、合焦レンズ31を光軸方向に移動させる。それにより、撮影光学系30の合焦位置が変化する。また、合焦駆動部43Aは、合焦レンズ43を光軸方向に移動させる。それにより、測定光LSの合焦位置(OCT計測の合焦位置)が変化する。主制御部211は、図示しない光学系駆動部を制御して、眼底カメラユニット2に設けられた光学系を3次元的に移動することができる。この光学系の移動制御は、アライメントやトラッキングにおいて用いられる。トラッキングとは、被検眼Eの眼球運動に合わせて装置光学系を移動する処理である。トラッキングの前にはアライメントとフォーカス調整が実行される。トラッキングは、装置光学系の位置を眼球運動に追従させることにより、アライメントとピントが合った状態を維持する機能である。
(画像形成部220)
 画像形成部220は、CCDイメージセンサ115からの検出信号に基づいて、眼底Efの断層像の画像データと位相画像の画像データとを形成する。画像形成部220はプロセッサを含む。なお、この明細書では、「画像データ」と、それに基づく「画像」とを同一視することがある。画像形成部220は、断層像形成部221と位相画像形成部222を有する。
 この実施形態では、眼底Efに対して2種類の走査(第1走査及び第2走査)を行う。第1走査では、眼底Efの注目血管に交差する2以上の断面を測定光LSで走査する。第2走査は、この注目血管に交差する注目断面を測定光LSで反復的に走査する。第1走査が行われる断面は、注目断面の近傍に配置される。第1走査により取得されたデータは、注目断面における注目血管の傾き(向き)を求めるために用いられる。第2走査は、OCTを用いたドップラー計測である。
 第1走査及び第2走査の対象断面は、xy平面において、注目血管の走行方向に対して直交するように向き付けられることが望ましい。図5の眼底像Dに示すように、この実施形態では、例えば、視神経乳頭Daの近傍に、第1走査が行われる2つの断面C11及びC12と、第2走査が行われる注目断面C2とが注目血管Dbに交差するように設定される。2つの断面C11及びC12の一方は注目断面C2に対して注目血管Dbの上流側に位置し、他方は下流側に位置する。注目断面C2に対する各断面C11及びC12の距離(断面間距離)は、事前に決定される。その一例は、断面設定部231の説明において後述される。
 第2走査は、患者の心臓の少なくとも1心周期の間にわたって実行されることが望ましい。それにより、心臓の全ての時相における血流情報が得られる。第2走査の実行時間は、あらかじめ設定された一定の時間であってもよいし、患者ごとに又は検査毎に設定された時間であってもよい。
(断層像形成部221)
 断層像形成部221は、断面C11及びC12に対する第1走査により得られた干渉光LCの検出結果に基づいて、断面C11の形態を表す断層像と、断面C12の形態を表す断層像とを形成する。このとき、断面C11を1回走査して1枚の断層像を形成し、かつ、断面C12を1回走査して1枚の断層像を形成することができる。或いは、断面C11を複数回走査して得られた複数の断層像に基づき1枚の断層像を取得し、かつ、断面C12を複数回走査して得られた複数の断層像に基づき1枚の断層像を取得することができる。複数の断層像から1枚の断層像を取得する処理の例として、複数の断層像を平均して画質向上を図る処理や、複数の断層像から最適な1枚を選択する処理がある。
 また、断層像形成部221は、注目断面C2に対する第2走査により得られた干渉光LCの検出結果に基づいて、注目断面C2の形態の時系列変化を表す断層像群を形成する。この処理についてより詳しく説明する。第2走査では、上記のように注目断面C2が繰り返し走査される。断層像形成部221には、第2走査に応じて、OCTユニット100のCCD115から検出信号が逐次入力される。断層像形成部221は、注目断面C2の1回分の走査に対応する検出信号群に基づいて、注目断面C2の1枚の断層像を形成する。断層像形成部221は、この処理を第2走査の反復回数だけ繰り返すことで、時系列に沿った一連の断層像を形成する。ここで、これら断層像を複数の群に分割し、各群の断層像を平均して画質の向上を図ってもよい。
 この実施形態では、注目血管及び注目断面を設定するための走査が行われる(以下、予備走査と呼ぶ)。詳細については後述するが、予備走査は、指定された血管(候補血管)が血流計測に好適な向きに配置されているか判定するために行われる。断層像形成部221は、予備走査により取得された干渉光LCの検出結果に基づいて画像データを形成する。
 断層像形成部221が実行する処理は、従来のスペクトラルドメインOCTと同様に、ノイズ除去(ノイズ低減)、フィルタ処理、FFT(Fast Fourier Transform)などを含む。他のタイプのOCTが適用される場合、断層像形成部221は、そのタイプに応じた公知の処理を実行する。
(位相画像形成部222)
 位相画像形成部222は、注目断面C2に対する第2走査により得られた干渉光LSの検出結果に基づいて、注目断面C2における位相差の時系列変化を表す位相画像を形成する。この処理に用いられるデータは、断層像形成部221が注目断面C2の断層像を形成するために用いられるデータと同じである。よって、注目断面C2の断層像と位相画像とを位置合わせすることができる。つまり、注目断面C2の断層像の画素と位相画像の画素とを自然に対応付けることが可能である。
 位相画像の形成方法の例を説明する。この例の位相画像は、隣り合うAライン複素信号(隣接する走査点に対応する信号)の位相差を算出することにより得られる。換言すると、この例の位相画像は、注目断面C2の断層像の各画素について、その画素の画素値(輝度値)の時系列変化に基づき形成される。任意の画素について、位相画像形成部222は、その輝度値の時系列変化のグラフを考慮する。位相画像形成部222は、このグラフにおいて所定の時間間隔Δtだけ離れた2つの時点t1及びt2(t2=t1+Δt)の間における位相差Δφを求める。そして、この位相差Δφを時点t1(より一般に2つの時点t1及びt2の間の任意の時点)における位相差Δφ(t1)として定義する。あらかじめ設定された多数の時点のそれぞれについてこの処理を実行することで、当該画素における位相差の時系列変化が得られる。
 位相画像は、各画素の各時点における位相差の値を画像として表現したものである。この画像化処理は、例えば、位相差の値を表示色や輝度で表現することで実現できる。このとき、時系列に沿って位相が増加したことを表す色(例えば赤)と、減少したことを表す色(例えば青)とを違えることができる。また、位相の変化量の大きさを表示色の濃さで表現することもできる。このような表現方法を採用することで、血流の向きや大きさを色や濃度で提示することが可能となる。以上の処理を各画素について実行することにより位相画像が形成される。
 なお、位相差の時系列変化は、上記の時間間隔Δtを十分に小さくして位相の相関を確保することにより得られる。このとき、測定光LSの走査において断層像の分解能に相当する時間未満の値に時間間隔Δtを設定したオーバーサンプリングが実行される。
(データ処理部230)
 データ処理部230は、各種のデータ処理を実行する。例えば、データ処理部230は、画像形成部220により形成された画像に対して画像処理や解析処理を施す。その具体例として、輝度補正や分散補正等の各種補正処理がある。また、データ処理部230は、眼底カメラユニット2により得られた画像(眼底像、前眼部像等)に対して画像処理や解析処理を施す。
 データ処理部230は、断面設定部231と、層領域特定部232と、血管領域特定部233と、傾き算出部234と、血流情報生成部235とを備える。血流情報生成部235には、血流速度算出部2351と、血管径算出部2352と、血流量算出部2353とが設けられている。
(断面設定部231)
 主制御部211は、表示部241に眼底像を表示させる。この眼底像は観察画像でも撮影画像でもよい。また、この眼底像は撮影画像を構成する画像であってもよい。ユーザは、操作部242を操作することで、表示された眼底像に、走査の対象となる注目断面を指定する。指定される注目断面は、第2走査の対象となる注目断面C2、又は予備走査の対象となる注目断面である。
 第2走査の対象となる注目断面C2が指定された場合、断面設定部231は、指定された注目断面C2と眼底像とに基づいて、第1走査が適用される2つの断面C11及びC12を設定する。なお、前述のように、注目断面C2は所望の注目血管Dbを横切るように指定される。
 予備走査の対象となる注目断面が(注目血管に直交するように)指定された場合、断面設定部231は、指定された注目断面に直交するように、注目血管に沿う断面を設定する。予備走査の対象となる領域は、このように設定された断面(2次元領域)のみを含んでもよいし、当該断面を含む3次元領域であってよい。
 第2走査又は予備走査のための注目断面を眼底像に指定するための操作は、例えばポインティングデバイスを用いて行われる。また、表示部241がタッチパネルの場合、ユーザは、表示された眼底像の所望の位置に対するタッチ操作により注目断面の指定を行う。なお、注目断面のパラメータ(向き、長さ等)は、手動又は自動で設定される。
 手動の場合の例として、パラメータを設定するためのインターフェイスを用いることができる。このインターフェイスは、スイッチ等のハードウェアでもよいし、グラフィカルユーザインターフェイス(GUI)等のソフトウェアでもよい。
 自動の場合の例として、断面設定部231は、ユーザが眼底像に指定した位置に基づいてパラメータを設定することができる。長さの自動設定は、あらかじめ決められた値を適用してもよいし、指定位置及びその近傍の血管の位置を考慮してもよい。前者の値は、例えば、所定の注目血管とその近傍の血管との間の一般的な距離に基づいて指定される。この距離の情報は、臨床データに基づいて生成できる。後者の場合も同様である。
 注目断面の向きの自動設定については、あらかじめ決められた向きを適用してもよいし、注目血管の向きを考慮してもよい。前者の場合、注目血管の各位置における傾きを表す情報をあらかじめ生成し、これを参照する。この情報は、臨床データに基づき生成できる。後者の場合、指定位置における注目血管の走行方向を求め、この走行方向に基づいて設定される。この走行方向を求める処理は、例えば注目血管の細線化処理を用いて行われる。なお、いずれの場合においても、注目断面の向きは、xy平面において、走行方向に直交するように設定されることが望ましい。
 次に、第1走査が適用される断面C11及びC12を設定する処理について説明する。断面設定部231は、第2走査が適用される注目断面C2から所定距離だけ離れた位置にこれら断面C11及びC12を設定する。この距離は、例えば100μmに設定される。この距離の特定は、例えば前述のようにして行われる。また、これら断面C11及びC12の長さ及び/又は向きは、注目断面C2の場合と同様にして設定される。
(層領域特定部232)
 層領域特定部232は、予備走査(又は第1走査)により取得された干渉光LCの検出結果に基づく画像データを解析することにより、この画像データ内の層領域を特定する。層領域は、例えば、眼底Efの任意の組織に相当する画像領域、又は隣接する組織の境界に相当する画像領域である。例えば、層領域は、網膜を構成する組織に相当する画像領域であってよい。その具体例として、内境界膜(ILM)がある。
 層領域を特定する処理はセグメンテーションと呼ばれる。セグメンテーションは、2次元断層像又は3次元画像の画素値(輝度値)に基づいて行われる。眼底Efの層組織はそれぞれ特徴的な反射率を有し、その層組織の画像領域も特徴的な輝度値を有する。セグメンテーションにおいては、そのような特徴的な輝度値に基づいて目的の画像領域が特定される。
(血管領域特定部233)
 血管領域特定部233は、断層像形成部221により形成された断層像(画像データ)において、注目血管に対応する血管領域を特定する。更に、血管領域特定部233は、位相画像形成部222により形成された位相画像において、注目血管に対応する血管領域を特定する。血管領域の特定は、各画像の画素値を解析することにより行われる(例えば閾値処理)。なお、位相画像については、例えば、注目断面の断層像内の血管領域を参照して位相画像の血管領域を特定するようにしてよい。
(傾き算出部234)
 傾き算出部234は、第1走査により取得されたデータに基づいて注目断面C2における注目血管Dbの傾きを算出する。このとき、第2走査により得られたデータを更に用いることも可能である。傾き算出部234は、断面間距離と血管領域の特定結果とに基づいて、注目断面C2における注目血管Dbの傾きを算出する。断面間距離は、断面C11と断面C12との間の距離を含んでよい。また、断面間距離は、断面C11と注目断面C2との間の距離と、断面C12と注目断面C2との間の距離とを含んでよい。
 注目血管Dbの傾きの算出方法の例を、図6を参照しつつ説明する。断層像G11及びG12は、それぞれ、第1走査が適用される断面C11を表す断層像及び断面C12を表す断層像である。また、断層像G2は、第2走査が適用される注目断面C2を表す断層像である。符号V11、V12及びV2は、それぞれ、断層像G11内の血管領域、断層像G12内の血管領域、及び断層像G2内の血管領域を示す。なお、これら血管領域は注目血管Dbの断面に相当する。図6において、z座標軸は紙面下方向を向いており、これは測定光LSの照射方向(測定光LSの光路の光軸)と実質的に一致するものとする。また、隣接する断層像(断面)の間隔をLとする。
 1つの例において、傾き算出部234は、3つの血管領域V11、V12及びV2の位置関係に基づいて、注目断面C2における注目血管Dbの傾きAを算出する。この位置関係は、例えば、3つの血管領域V11、V12及びV2を結ぶことによって得られる。具体的には、傾き算出部234は、3つの血管領域V11、V12及びV2のそれぞれの特徴点を特定し、これら特徴点を結ぶ。この特徴点としては、中心位置、重心位置、最上部(z座標値が最小の位置)、最下部(z座標値が最大の位置)などがある。また、これら特徴点の結び方としては、線分で結ぶ方法、近似曲線(スプライン曲線、ベジェ曲線等)で結ぶ方法などがある。
 更に、傾き算出部234は、これら特徴点を結ぶ線に基づいて傾きAを算出する。線分が用いられる場合、例えば、注目断面C2内の血管領域V2の特徴点と断面C11内の血管領域V11の特徴点とを結ぶ第1線分の傾きと、血管領域V2の当該特徴点と断面C12内の血管領域V12の特徴点とを結ぶ第2線分の傾きとに基づいて、傾きAが算出される。この算出処理の例として、2つの線分の傾きの平均値を求めることができる。また、近似曲線で結ぶ場合の例として、近似曲線と注目断面C2との交差位置における近似曲線の傾きを求めることができる。なお、断面間距離Lは、線分や近似曲線を求める処理において、これら断層像G11、G12及びG2をxyz座標系に埋め込むときに用いられる。
 この例では、3つの断面における血管領域を考慮しているが、2つの断面の血管領域を考慮して傾きを求めることも可能である。具体例として、断面C11内の血管領域V11と断面C12内の血管領域V12とに基づいて、注目断面C2における注目血管Dbの傾きAを求めるよう構成できる。或いは、上記第1線分又は第2線分の傾きを傾きAとして用いることも可能である。
 血管の傾きを求めるための他の処理について説明する。この例は少なくとも予備走査により取得された画像データに適用され、更に第1走査により取得された画像データに適用されてもよい。前述のように、予備走査では、候補血管に沿う断面(2次元領域)又は当該断面を含む3次元領域に対してOCTが行われる。
 図7は、予備走査(又は第1走査)において適用される断面の例を表す。ユーザ又は血流計測装置1は、候補血管300に注目断面310を指定する。注目断面310は、その断面位置において候補血管300に実質的に直交するように指定される。断面設定部231は、指定された注目断面310に直交するように断面320を設定する。断面320は、候補血管300に沿うように設定される。
 断面320の設定は、例えば、注目断面310の位置に基づき実行される。具体例として、注目断面310は、その中心が候補血管300上に配置されるように指定される。断面設定部231は、候補血管310の中心を通過し、かつ注目断面310に直交するように、予備走査のための断面320を設定する。ここで、断面320の長さは、既定値(デフォルト値)であってよい。或いは、断面320の長さをユーザが設定できるようにしてよい。或いは、候補血管300の屈曲状態や径などに基づいて、血流計測装置1が断面320の長さを設定するよう構成することもできる。また、断面320は、その中心と注目断面310の中心とが一致するように設定される。
 他の例として、断面320の設定は、候補血管300を解析して実行される。具体例として、断面設定部231は、候補血管300の軸線を求め、この軸線と注目断面310との交点を求め、この交点を通過しかつ注目断面310に直交するように断面320を設定する。
 このような断面320をOCTスキャンして得られた断層像の例を図8に示す。断層像400は、眼底Efの様々な層を描出している。層領域特定部232は、断層像400(画像データ)のセグメンテーションを行うことにより、被検眼Eの所定の組織に相当する画像領域(層領域)を特定する。図8に示す例では、内境界膜に相当する層領域(ILM領域)410が特定される。内境界膜は、網膜と硝子体との境界を規定する網膜の組織であり、比較的明瞭に描出される。
 傾き算出部234は、層領域特定部232により特定された層領域の形状を近似する線分を求める。この近似線分を求める方法は任意である。その例を以下に2つ説明する。第1の方法では、傾き算出部234は、図9Aに示すように、ILM領域410の両端410a及び410bを結ぶ線分420を近似線分として求めることができる。なお、近似線分の算出に用いられる特徴点は層領域の両端の点に限定されない。例えば、層領域においてz座標値が最大の点と最小の点、層領域の近似曲線の極大値や極小値に相当する点、この近似曲線の変曲点などを用いることが可能である。
 第2の方法では、傾き算出部234は、図9Bに示すように、ILM領域410(それを表すグラフ等)に最小二乗法を適用することにより線分430を求め、この線分430を近似線分として採用することができる。
 なお、本例では、候補血管に沿う単一の断面(320)を考慮する場合について説明したが、前述したように、この断面(320)を含む眼底Efの3次元領域をOCTでスキャンすることが可能である。この場合、スキャンされた3次元領域を表す画像データ(ボリュームデータ又はスタックデータ)が得られる。このような3次元画像データが得られた場合、層領域特定部232は、所定の組織(ILM等)に相当する2次元領域又は3次元領域を層領域として特定する。傾き算出部234は、この2次元又は3次元の層領域と上記断面(320)との共通領域を求める。このとき、傾き算出部234は、層領域の一部(例えば上面又は下面)と上記断面(320)との共通領域を求めるようにしてもよい。更に、傾き算出部234は、この共通領域の形状を近似する線分を求めることができる。なお、候補血管に沿う単一の断面のみが設定された場合、当該断面内の層領域の傾き(つまり層領域の近似線分の傾き)が、当該層領域と当該断面との共通領域の傾き(つまり当該共通領域の近似線分の傾き)に相当する。
 上記のようにして得られる近似線分の傾きは、例えば、z座標軸に対する角度として、又は、xy平面(つまりz座標軸に直交する平面)に対する角度として表現される。
(血流情報生成部235)
 血流情報生成部235は、眼底EfのOCT計測により取得されたデータに基づいて、被検眼Eの血流情報を生成する。より具体的には、血流情報生成部235は、第2走査(ドップラーOCT)により取得されたデータ(位相画像)と、傾き算出部234により算出された注目断面C2における注目血管Dbの傾きとに基づいて、注目血管Dbに関する血流情報を生成する。前述のように、血流情報生成部235には、血流速度算出部2351と、血管径算出部2352と、血流量算出部2353とが設けられている。
(血流速度算出部2351)
 血流速度算出部2351は、位相画像として得られる位相差の時系列変化に基づいて、注目血管Db内を流れる血液の注目断面C2における血流速度を算出する。この算出対象は、或る時点における血流速度でもよいし、この血流速度の時系列変化(血流速度変化情報)でもよい。前者の場合、例えば心電図の所定の時相(例えばR波の時相)における血流速度を選択的に取得することが可能である。また、後者における時間の範囲は、注目断面C2を走査した時間の全体又は任意の一部である。
 血流速度変化情報が得られた場合、血流速度算出部2351は、当該時間の範囲における血流速度の統計値を算出することができる。この統計値としては、平均値、標準偏差、分散、中央値、最大値、最小値、極大値、極小値などがある。また、血流速度の値についてのヒストグラムを作成することもできる。
 血流速度算出部2351は、前述のようにドップラーOCTの手法を用いて血流速度を算出する。このとき、傾き算出部234により算出された注目断面C2における注目血管Dbの傾きAが考慮される。具体的には、傾き算出部234は次式を用いる。
Figure JPOXMLDOC01-appb-M000001
 ここで:
 Δfは、測定光LSの散乱光が受けるドップラーシフトを表す;
 nは、媒質(血液)の屈折率を表す;
 vは、媒質の流速(血流速度)を表す;
 θは、測定光LSの入射方向と媒質の流れの方向(傾きA)とが成す角度を表す;
 λは、測定光LSの中心波長を表す。
 この実施形態では、nとλは既知であり、Δfは位相差の時系列変化から得られ、θは傾きAから得られる(又はθは傾きAとして得られる)。これらの値を式(1)に代入することにより、血流速度vが算出される。
(血管径算出部2352)
 血管径算出部2352は、注目断面C2における注目血管Dbの径を算出する。この算出方法の例として、眼底像を用いた第1の算出方法と、断層像を用いた第2の算出方法がある。
 第1の算出方法が適用される場合、注目断面C2の位置を含む眼底Efの部位の撮影があらかじめ行われる。それにより得られる眼底像は、観察画像(のフレーム)でもよいし、撮影画像でもよい。撮影画像がカラー画像である場合には、これを構成する画像(例えばレッドフリー画像)を用いてもよい。
 血管径算出部2352は、撮影画角(撮影倍率)、ワーキングディスタンス、眼球光学系の情報など、画像上のスケールと実空間でのスケールとの関係を決定する各種ファクターに基づいて、眼底像におけるスケールを設定する。このスケールは実空間における長さを表す。具体例として、このスケールは、隣接する画素の間隔と、実空間におけるスケールとを対応付けたものである(例えば画素の間隔=10μm)。なお、上記ファクターの様々な値と、実空間でのスケールとの関係をあらかじめ算出し、この関係をテーブル形式やグラフ形式で表現した情報を記憶しておくことも可能である。この場合、血管径算出部2352は、上記ファクターに対応するスケールを選択的に適用する。
 更に、血管径算出部2352は、このスケールと血管領域V2に含まれる画素とに基づいて、注目断面C2における注目血管Dbの径、つまり血管領域V2の径を算出する。具体例として、血管径算出部2352は、血管領域V2の様々な方向の径の最大値や平均値を求める。また、血管領域235は、血管領域V2の輪郭を円近似又は楕円近似し、その円又は楕円の径を求めることができる。なお、血管径が決まれば血管領域V2の面積を(実質的に)決定することができるので、血管径を求める代わりに当該面積を算出するようにしてもよい。
 第2の算出方法について説明する。第2の算出方法では、注目断面C2における眼底Efの断層像が用いられる。この断層像は、第2走査に基づく断層像でもよいし、これとは別に取得されたものでもよい。この断層像におけるスケールは、測定光LSの走査態様に応じて決定される。図5に示すように注目断面C2を走査する場合、注目断面C2の長さは、ワーキングディスタンス、眼球光学系の情報など、画像上のスケールと実空間でのスケールとの関係を決定する各種ファクターに基づいて決定される。血管径算出部2352は、例えば、この長さに基づいて隣接する画素の間隔を求め、第1の算出方法と同様にして注目断面C2における注目血管Dbの径を算出する。
(血流量算出部2353)
 血流量算出部2353は、血流速度の算出結果と血管径の算出結果とに基づいて、注目血管Db内を流れる血液の流量を算出する。この処理の一例を以下に説明する。
 血管内における血流がハーゲン・ポアズイユ流(Hagen-Poiseuille flow)と仮定する。また、血管径をwとし、血流速度の最大値をVmとすると、血流量Qは次式で表される。
Figure JPOXMLDOC01-appb-M000002
 血流量算出部2353は、血管径算出部2352による血管径の算出結果wと、血流速度算出部2351による血流速度の算出結果に基づく最大値Vmとを式(4)に代入することにより、血流量Qを算出する。
 以上のように機能するデータ処理部230は、例えば、プロセッサ、RAM、ROM、ハードディスクドライブ、回路基板等を含んで構成される。ハードディスクドライブ等の記憶装置には、上記機能をプロセッサに実行させるコンピュータプログラムがあらかじめ格納されている。
(ユーザインターフェイス240)
 ユーザインターフェイス240には、表示部241と操作部242とが含まれる。表示部241は、演算制御ユニット200の表示デバイスや表示装置3を含む。操作部242は、演算制御ユニット200の操作デバイスを含む。ユーザインターフェイス240は、例えばタッチパネルのように、表示機能と操作機能とを備えるデバイスを含んでよい。
[動作]
 血流計測装置1の動作について説明する。図10は、血流計測装置1の動作の一例を表す。
(S1:患者の選択)
 まず、血流計測の対象となる患者を選択する。患者の選択は、例えば患者IDを入力することにより行われる。
(S2:撮影位置の指定)
 ユーザは、装置光学系の位置を調整するなどして被検眼Eの撮影を行う位置を指定する。
(S3:アライメント)
 次に、被検眼Eに対する装置光学系の位置合わせ(アライメント)が行われる。アライメントは、例えばアライメント指標を用いて行われる。或いは、本出願人による特開2013-248376号公報に記載された2以上の前眼部カメラが設けられている場合、前眼部を異なる方向から実質的に同時に撮影して得られる2以上の画像に基づいてアライメントを行うことができる。本ステップにおいて、フォーカス調整等を更に行ってもよい。
(S4:候補血管及び注目断面の指定)
 続いて、ユーザは、表示部241に表示される眼底Efの画像(例えば観察画像又は撮影画像)を観察し、血流計測の対象となる血管の候補(候補血管)と、その注目断面を決定し、ユーザインターフェイス240を用いてこれらを指定する。或いは、制御部210及びデータ処理部230は、眼底Efの画像を解析し、所定の条件に基づいて候補血管及び注目断面を指定する。この条件は、例えば、視神経乳頭からの距離、血管の太さ、他の血管との位置関係などがある。
(S5:断面の設定)
 断面設定部231は、ステップS4で指定された候補血管(300)及び注目断面(310)に基づいて、予備走査のための断面(320)を設定する。
(S6:予備走査)
 血流計測装置1は、ステップS5で設定された断面(320)に対して予備走査を行う。予備走査は、例えば、この断面(320)を1回走査するように実行され、それにより収集されたデータから1枚の断層像(400)が形成される。或いは、予備走査は、この断面(320)を複数回走査するように実行され、それにより収集されたデータから複数枚の断層像が形成され、これら断層像を平均して1枚の断層像(400)が形成される。
(S7:層領域の特定)
 層領域特定部232は、ステップS6の予備走査により得られた断層像(400)を解析することにより層領域(ILM領域410)を特定する。
(S8:候補血管の傾きの算出)
 傾き算出部234は、ステップS7で特定された層領域(ILM領域410)の傾きを算出する。層領域の傾きの算出結果は、ステップS4で指定された注目断面(310)における候補血管(300)の傾きの推定値として用いられる。
(S9:傾きの適否判定)
 ユーザ又は血流計測装置1は、ステップS8で算出された候補血管(300)の傾きが所定の許容範囲に含まれるか判定する。この許容範囲は、例えば、z座標軸と候補血管(300)の向きとが成す角度の許容範囲として設定される。z座標軸と候補血管(300)の向きとが成す角度は、測定光LSの入射方向と媒質の流れの方向(傾きA)とが成す角度θの近似値(推定値)である。許容範囲は、例えば、80度を含む範囲であって10度程度の幅を有するように設定される。
 ユーザが上記判定を行う場合、主制御部211は、ステップS8で算出された候補血管(300)の傾きの値を表示部241に表示させる。このとき、許容範囲を表す情報も表示させてよい。ユーザは、ユーザインターフェイス240を用いて判定結果を入力する。血流計測装置1が上記判定を行う場合、主制御部211(又はデータ処理部230)は、記憶部212等にあらかじめ記憶された許容範囲を表す情報を参照し、ステップS8で算出された候補血管(300)の傾きが許容範囲に含まれるか判定する。
(S10:許容範囲内?)
 ステップS8で算出された候補血管(300)の傾きが許容範囲に含まれないと判定された場合(S10:No)、ステップS4からの処理が再度実行される。なお、所定回数目のステップS9において「No」と判定されたことに対応して、ステップS4以降の処理の少なくとも一部を変更するように構成してよい。例えば、ステップS4の処理を自動処理から手動処理に切り替えることができる。
 一方、ステップS8で算出された候補血管(300)の傾きが許容範囲に含まれると判定された場合(S10:Yes)、処理はステップS11に移行する。
(S11:第1走査用断面の設定)
 ステップS10で「Yes」と判定された場合、血流計測装置1は、ステップS4で指定された候補血管(300)及び注目断面(310)をそれぞれ注目血管Db及び注目断面C2として採用する。更に、断面設定部231は、ここで採用された注目血管Db及び注目断面C2に基づいて、第1走査のための2つの断面C11及びC12を設定する。
(S12:第1走査)
 血流計測装置1は、ステップS11で設定された2つの断面C11及びC12のOCTスキャンを実行する(第1走査)。断層像形成部221は、第1走査により取得されたデータに基づいて、断面C11及びC12に対応する断層像G11及びG12を形成する。データ処理部230(血管領域特定部233及び傾き算出部234)は、注目断面C2における注目血管Dbの傾きAを算出する。なお、第2走査により取得されたデータを加味して傾きAを算出する場合、傾きAの算出は、第2走査より後に実行される。
(S13:第2走査)
 血流計測装置1は、注目断面C2の反復的なOCTスキャンを実行する(第2走査)。位相画像形成部222は、第2走査により取得されたデータに基づいて、注目断面C2における位相差の時系列変化を表す位相画像を形成する。更に、断層像形成部221は、当該データに基づいて注目断面C2の断層像を形成する。データ処理部230(血管領域特定部233、血管径算出部2352等)は、注目断面C2における注目血管Dbの径を求める。
(S14:血流情報の生成)
 血流速度算出部2351は、ステップS12の第1走査に基づき算出された傾きAと、ステップS13の第2走査により取得された位相画像とに基づいて、注目断面C2における血流速度を算出する。更に、血流量算出部2353は、この血流速度の算出結果と、ステップS13で得られた血管径の算出結果とに基づいて、注目血管Db内を流れる血液の流量を算出する。
 主制御部211は、血流速度の算出結果、血流量の算出結果等を含む血流情報を表示部241に表示させる。また、主制御部211は、ステップS1で入力された患者IDに関連付けて血流情報を記憶部212に記憶させる。以上で、本例の血流計測に関する処理は終了となる。
[作用・効果]
 実施形態に係る血流計測装置の作用及び効果について説明する。
 実施形態は、眼底血管の血流情報を取得する血流計測装置であって、データ取得部と、層領域特定部と、傾き算出部とを備える。データ取得部は、血管に沿う断面を含む眼底の領域を光コヒーレンストモグラフィを用いて走査することにより画像データを取得する。層領域特定部は、取得された画像データを解析することにより、この画像データ内の層領域を特定する。傾き算出部は、特定された層領域と上記断面との共通領域の傾きを算出する。一例として、上記実施形態において、データ取得部は、OCTのための光学系と画像形成部220とを含み、層領域特定部は層領域特定部232を含み、傾き算出部は傾き算出部234を含む。
 実施形態において、傾き算出部は、層領域と断面との共通領域の形状を近似する線分を求め、この共通領域の傾きとして当該線分の傾きを算出することができる。その第1の例として、傾き算出部は、当該共通領域における2点を結ぶ第1線分を求めるよう構成されてよい。第2の例として、傾き算出部は、当該共通領域に最小二乗法を適用することにより第2線分を求めるよう構成されてよい。
 実施形態の血流計測装置は、眼底の注目血管に実質的に直交するように注目断面を指定するためのユーザインターフェイス(240)と、注目断面に対して直交するように注目血管に沿う断面を設定する断面設定部(231)とを備えてよい。この場合、データ取得部は、断面設定部により設定された断面を含む領域を走査することにより画像データを取得するよう構成されてよい。
 実施形態において、層領域特定部は、網膜の内境界膜(ILM)に相当する画像領域を層領域として特定するよう構成されてよい。
 このような実施形態によれば、断層像や位相画像内の血管領域を特定して血管の傾きを算出する場合よりも効率的な処理で傾きの推定値を求めることができる。よって、血管の傾きの算出やその適否判定をリアルタイムで迅速に行うことができる。更に、断層像に明瞭に描出される層領域に基づいて血管の向きを推定することができるので、血流計測の再現性の向上を図ることができる。
 以上に説明した構成は、この発明の実施態様の一例に過ぎない。よって、この発明の要旨の範囲内における任意の変形(省略、置換、付加等)を施すことが可能である。
1 血流計測装置
100 OCTユニット
220 画像形成部
230 データ処理部
231 断面設定部
232 層領域特定部
234 傾き算出部
235 血流情報生成部

Claims (6)

  1.  眼底血管の血流情報を取得する血流計測装置であって、
     血管に沿う断面を含む眼底の領域を光コヒーレンストモグラフィを用いて走査することにより画像データを取得するデータ取得部と、
     前記画像データを解析することにより前記画像データ内の層領域を特定する層領域特定部と、
     前記層領域と前記断面との共通領域の傾きを算出する傾き算出部と
     を備える血流計測装置。
  2.  前記傾き算出部は、前記共通領域の形状を近似する線分を求め、前記共通領域の傾きとして前記線分の傾きを算出する
     ことを特徴とする請求項1に記載の血流計測装置。
  3.  前記傾き算出部は、前記共通領域における2点を結ぶ第1線分を前記線分として求める
     ことを特徴とする請求項2に記載の血流計測装置。
  4.  前記傾き算出部は、前記共通領域に最小二乗法を適用することにより前記線分としての第2線分を求める
     ことを特徴とする請求項2に記載の血流計測装置。
  5.  前記眼底の注目血管に実質的に直交するように注目断面を指定するためのユーザインターフェイスと、
     前記注目断面に対して直交するように前記注目血管に沿う断面を設定する断面設定部と
     を備え、
     前記データ取得部は、前記断面設定部により設定された前記断面を含む領域を走査することにより前記画像データを取得する
     ことを特徴とする請求項1~請求項4のいずれか一項に記載の血流計測装置。
  6.  前記層領域は、網膜の内境界膜に相当する画像領域である
     ことを特徴とする請求項1~請求項5のいずれか一項に記載の血流計測装置。
PCT/JP2016/072434 2015-08-26 2016-07-29 血流計測装置 WO2017033669A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-166719 2015-08-26
JP2015166719A JP6502790B2 (ja) 2015-08-26 2015-08-26 血流計測装置

Publications (1)

Publication Number Publication Date
WO2017033669A1 true WO2017033669A1 (ja) 2017-03-02

Family

ID=58099893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072434 WO2017033669A1 (ja) 2015-08-26 2016-07-29 血流計測装置

Country Status (2)

Country Link
JP (1) JP6502790B2 (ja)
WO (1) WO2017033669A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020039480A (ja) * 2018-09-07 2020-03-19 株式会社エクォス・リサーチ 脈波検出装置、車両装置、及び脈波検出プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054993A (ja) * 2017-09-21 2019-04-11 株式会社トプコン 血流計測装置
WO2019172043A1 (ja) * 2018-03-05 2019-09-12 キヤノン株式会社 画像処理装置およびその制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165710A (ja) * 2008-01-17 2009-07-30 Univ Of Tsukuba 眼底血流量の定量測定装置
JP2010523286A (ja) * 2007-04-10 2010-07-15 ユニヴァーシティー オブ サザン カリフォルニア ドップラー光コヒーレンス・トモグラフィを用いた血流測定のための方法とシステム
JP2013184018A (ja) * 2012-03-12 2013-09-19 Topcon Corp 光画像計測装置
JP2013208158A (ja) * 2012-03-30 2013-10-10 Topcon Corp 画像表示装置、画像表示方法、及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523286A (ja) * 2007-04-10 2010-07-15 ユニヴァーシティー オブ サザン カリフォルニア ドップラー光コヒーレンス・トモグラフィを用いた血流測定のための方法とシステム
JP2009165710A (ja) * 2008-01-17 2009-07-30 Univ Of Tsukuba 眼底血流量の定量測定装置
JP2013184018A (ja) * 2012-03-12 2013-09-19 Topcon Corp 光画像計測装置
JP2013208158A (ja) * 2012-03-30 2013-10-10 Topcon Corp 画像表示装置、画像表示方法、及びプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020039480A (ja) * 2018-09-07 2020-03-19 株式会社エクォス・リサーチ 脈波検出装置、車両装置、及び脈波検出プログラム
JP7204077B2 (ja) 2018-09-07 2023-01-16 株式会社アイシン 脈波検出装置、車両装置、及び脈波検出プログラム

Also Published As

Publication number Publication date
JP2017042337A (ja) 2017-03-02
JP6502790B2 (ja) 2019-04-17

Similar Documents

Publication Publication Date Title
JP5867719B2 (ja) 光画像計測装置
US9545201B2 (en) Fundus observation apparatus
US10980416B2 (en) Blood flow measurement apparatus
JP5916110B2 (ja) 画像表示装置、画像表示方法、及びプログラム
JP5941761B2 (ja) 眼科撮影装置及び眼科画像処理装置
JP6580448B2 (ja) 眼科撮影装置及び眼科情報処理装置
US11678796B2 (en) Blood flow measurement apparatus
JP6633468B2 (ja) 血流計測装置
WO2017033669A1 (ja) 血流計測装置
WO2017069019A1 (ja) 血流計測装置
JP6646021B2 (ja) 眼科画像処理装置
JP2019171221A (ja) 眼科撮影装置及び眼科情報処理装置
US10905323B2 (en) Blood flow measurement apparatus
JP6099782B2 (ja) 眼科撮影装置
WO2017033671A1 (ja) 血流計測装置
WO2020138224A1 (ja) 血流計測装置、その制御方法、プログラム、及び記録媒体
JP7068366B2 (ja) 血流計測装置
JP6021289B2 (ja) 血流情報生成装置、血流情報生成方法、及びプログラム
WO2017033670A1 (ja) 血流計測装置
JP6453191B2 (ja) 血流計測装置
JP6106299B2 (ja) 眼科撮影装置及び眼科画像処理装置
JP6106300B2 (ja) 眼科撮影装置
JP2019054990A (ja) 眼科撮影装置、その制御方法、プログラム、及び記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839016

Country of ref document: EP

Kind code of ref document: A1