JP2023105763A - 研削砥石の作用砥粒判定装置および方法 - Google Patents

研削砥石の作用砥粒判定装置および方法 Download PDF

Info

Publication number
JP2023105763A
JP2023105763A JP2022006781A JP2022006781A JP2023105763A JP 2023105763 A JP2023105763 A JP 2023105763A JP 2022006781 A JP2022006781 A JP 2022006781A JP 2022006781 A JP2022006781 A JP 2022006781A JP 2023105763 A JP2023105763 A JP 2023105763A
Authority
JP
Japan
Prior art keywords
grinding
abrasive grains
action
working
dimensional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022006781A
Other languages
English (en)
Inventor
智 五十君
Satoshi Isogimi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2022006781A priority Critical patent/JP2023105763A/ja
Publication of JP2023105763A publication Critical patent/JP2023105763A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】研削砥石の研削面の表面状態から前記研削面に存在する砥粒のうち、研削に寄与する作用砥粒の作用点を判定する作用砥粒判定装置を提供する。【解決手段】切込深さ算出部44により算出された単位長さ当たりの砥粒の切込深さg/aと、三次元データ取得部46により取得された三次元形状データとから、作用砥粒の作用点を判定する作用点判定部48が、備えられる。これにより、作用点判定部48は、単位長さ当たりの砥粒の切込深さg/aと三次元形状データとから、研削に寄与する前記作用砥粒の作用点を判定するので、研削砥石18の研削面18aの表面状態から研削面18aに存在する砥粒のうち、専ら研削に寄与する作用砥粒の作用点を判定することができる。したがって、研削砥石18の研削性能の評価精度が十分に得られる。【選択図】図1

Description

本発明は、研削砥石の研削面から突き出す砥粒のうち、切削に寄与する作用砥粒を、単位長さ当たりの砥粒の切込深さと三次元形状データとから判定する研削砥石の作用砥粒判定装置および方法に関するものである。
研削加工に際して、研削面における砥粒の突出し量は、切れ味や研削量などの研削性能に影響する。突出し量が砥粒径に対して適切な突出し量よりも大きい場合は、砥粒の脱落や破砕が多くなって工具寿命が得られない。突出し量が砥粒径に対して適切な突出し量よりも小さい場合は、チップポケットが不足することによって研削焼けなどの加工不良が発生する。良好な研削を継続的に得られるようにするためには、研削面の三次元形状から、研削砥石の研削性能が評価されることが望まれる。たとえば、ドレッシングに際しては、研削性能が高いと評価される三次元形状とするために、評価値が目標範囲内となるように研削面の表面形状が加工される。
これに対して、特許文献1では、研削砥石の砥粒突出し量が、研削性能を安定させる砥粒の突出し量であるか否かを評価するために、研削砥石の砥粒突出し量を計測する方法が、開示されている。この砥粒突出し量を計測する方法では、砥石車外周面である研削面の表面形状を取得する表面形状取得部と、砥石車の径方向において、研削面から最も突き出した砥粒の先端を基準とし、その基準から砥石車の径方向に所定距離毎に分割する表面形状部と、分割された所定距離毎に砥石車の切れ刃である砥粒のみ、砥粒及び砥粒に結合したボンド部、又は、複数の砥粒及び複数の砥粒を結合するボンドを切れ刃領域として抽出することにより、切れ刃領域の数を計数する領域計数部と、計数された切れ刃領域の数が増加から減少に転じる場合の所定距離を砥粒の突出し量として決定する突出し量決定部とが、備えられる。
特開2021-171887号公報
引用文献1の砥粒突出し量計測方法によれば、自然気孔による砥粒の突出し量と区別して、ボンドが削り取られることにより砥粒の突出し量が計測されるので、その砥粒の突出し量を管理することで、砥粒の脱落や、破砕を抑制して、研削性能を安定させることができるとされている。
ところで、特許文献1に記載された研削砥石の砥粒突出し量を計測する方法では、計測された突出し量を有する砥粒が研削に作用するという作用砥粒であるとするのが前提である。しかし、作用砥粒の判定は、相互の作用砥粒の切れ刃の砥石車の周方向の間隔の違いによる砥粒軌跡の径方向深さの差を加味していない。このため、最大切込深さが上流側に隣接する砥粒の先端軌跡よりも内側にある砥粒は研削に寄与していないにもかかわらず、研削に寄与する作用砥粒として含まれるので、砥石の研削性能の評価精度が十分に得られないという問題があった。
本発明は以上の事情を背景として為されたものであり、その目的とするところは、研削砥石の研削面の表面状態から前記研削面に存在する砥粒のうち、研削に寄与する作用砥粒の作用点を判定する作用砥粒判定方法および装置を提供することにある。
第1発明の要旨とするところは、(a)研削砥石の研削面の表面状態から前記研削面に存在する砥粒のうち研削に寄与する作用砥粒を判定する研削砥石の作用砥粒判定装置であって、(b)前記研削砥石の被削材に対する研削加工の設定条件から、単位長さ当たりの砥粒の切込深さを算出する切込深さ算出部と、(c)前記研削面の三次元形状データを取得する三次元形状データ取得部と、(d)前記切込深さ算出部により算出された単位長さ当たりの砥粒の切込深さと、前記三次元形状データ取得工程により取得された三次元形状データとから、前記作用砥粒の作用点を判定する作用点判定部とを、含むことにある。
第2発明の要旨とするところは、第1発明において、(e)前記作用砥粒の作用点における前記作用砥粒の最大切込深さを算出する最大切込深さ算出部を、さらに含むことにある。
第3発明の要旨とするところは、第1発明又は第2発明において、(f)前記三次元形状データ取得部は、前記研削面からの反射光に基づいて前記研削面の研削方向に垂直な幅方向における研削面の二次元データを時系列的に出力する光学式測位計を、備えることにある。
第4発明の要旨とするところは、第1発明から第3発明の何れか1の発明において、(g)前記作用点判定部は、前記三次元形状データのうち、前記研削面の幅方向における前記作用砥粒の作用点の合計の前記研削方向の累積値を、前記研削面の研削方向を示す座標上に順次プロットしたときの傾きが一定値に収束した点以後の三次元形状データに基づいて、前記作用砥粒の作用点を判定することにある。
第5発明の要旨とするところは、第4発明において、前記作用点判定部は、前記三次元形状データのうち、前記研削面の幅方向における前記作用砥粒の作用点の合計の前記研削方向の累積値を、前記研削面の研削方向を示す座標上に順次プロットしたときの、一定区間毎の相関係数が、予め設定された閾値を超えた点以後の三次元形状データに基づいて、前記作用砥粒の作用点を判定することにある。
第6発明の要旨とするところは、(a)研削砥石の研削面の表面状態から前記研削面に存在する砥粒のうち研削に寄与する作用砥粒を判定する研削砥石の作用砥粒判定方法であって、(b)前記研削砥石の被削材に対する研削加工の設定条件から、単位長さ当たりの砥粒の切込深さを算出する切込深さ算出工程と、(c)前記研削面の三次元形状データを取得する三次元形状データ取得工程と、(d)前記切込深さ算出工程により算出された単位長さ当たりの砥粒の切込深さと、前記三次元形状データ取得工程により取得された三次元形状データとから、前記作用砥粒の作用点を判定する作用点判定工程とを、含むことにある。
第1発明の研削砥石の作用砥粒判定装置によれば、前記切込深さ算出部により算出された単位長さ当たりの砥粒の切込深さと、前記三次元形状データ取得部により取得された三次元形状データとから、前記作用砥粒の作用点を判定する作用点判定部が、備えられる。これにより、作用点判定部は、前記切込深さ算出部により算出された単位長さ当たりの砥粒の切込深さと、前記三次元形状データ取得部により取得された三次元形状データとから、研削に寄与する前記作用砥粒の作用点を判定するので、研削砥石の研削面の表面状態から前記研削面に存在する砥粒のうち、専ら研削に寄与する作用砥粒の作用点を判定することができる。したがって、研削砥石の研削性能の評価精度が十分に得られる。
第2発明の研削砥石の作用砥粒判定装置によれば、前記作用砥粒の作用点における前記作用砥粒の最大切込深さを算出する最大切込深さ算出部が、備えられる。これにより、前記最大切込深さ算出部において、前記作用砥粒の作用点における前記作用砥粒の最大切込深さが算出されるので、研削に寄与する前記作用砥粒の作用点と、作用砥粒の最大切込深さとにより、研削砥石の研削性能の評価精度が十分に得られる。
第3発明の研削砥石の作用砥粒判定装置によれば、前記三次元形状データ取得部は、前記研削面からの反射光に基づいて前記研削面の研削方向に垂直な幅方向における研削面の二次元データを時系列的に出力する光学式測位計を、備える。これにより、研削砥石が研削砥石車である場合において、その研削砥石車の回転中において、研削砥石車の外周面である研削面の三次元形状データを取得することができる。
第4発明の作用砥粒判定装置によれば、前記作用点判定部は、前記三次元形状データのうち、前記研削面の幅方向における前記作用砥粒の作用点の合計の前記研削方向の累積値を、前記研削面の研削方向を示す座標上に順次プロットしたときの傾きが一定値に収束した点以後の三次元形状データに基づいて、前記作用砥粒の作用点を判定する。これにより、研削初期区間の三次元形状データが除かれることで、前記作用砥粒の作用点の合計の前記研削方向の累積値を前記研削面の研削方向を示す座標上に順次プロットしたときの傾きが一定値に収束した点以後の安定区間の三次元形状データから、前記作用砥粒の作用点が判定される。
第5発明の作用砥粒判定装置によれば、前記作用点判定部は、前記三次元形状データのうち、前記研削面の幅方向における前記作用砥粒の作用点の合計の前記研削方向の累積値を、前記研削面の研削方向を示す座標上に順次プロットしたときの、一定区間毎の相関係数が、予め設定された閾値を超えた点以後の三次元形状データに基づいて、前記作用砥粒の作用点を判定する。これにより、研削初期区間の三次元形状データが除かれることで、前記一定区間毎の相関係数が予め設定された閾値を超えた点以後の安定区間の三次元形状データから、前記作用砥粒の作用点が判定される。
第6発明の作用砥粒判定装置によれば、前記切込深さ算出工程により算出された単位長さ当たりの砥粒の切込深さと、前記三次元形状データ取得工程により取得された三次元形状データとから、前記作用砥粒の作用点を判定する作用点判定工程が、備えられる。これにより、作用点判定工程は、前記切込深さ算出工程により算出された単位長さ当たりの砥粒の切込深さと、前記三次元形状データ取得工程により取得された三次元形状データとから、研削に寄与する前記作用砥粒の作用点を判定するので、研削砥石の研削面の表面状態から前記研削面に存在する砥粒のうち、専ら研削に寄与する作用砥粒の作用点を判定することができる。したがって、研削砥石の研削性能の評価精度が十分に得られる。
本発明の一実施例の作用砥粒判定装置が適用された、平面研削盤の構成を説明する図である。 図1の研削砥石の研削面における作用砥粒および作用点を説明する模式図である。 図1の作用点判定部および最大切込深さ算出部により算出された作用点最大切込深さを三次元形状データに対応する位置に示すマップを表す図である。 図1の三次元データ取得部により取得された三次元形状データの、データラインに対する累計作用点数および相関係数を示す図である。 図4と同様の研削試験条件に用いた研削砥石において、作用砥粒の切込み深さgのヒストグラムを示す図である。 図1の平面研削盤の電子制御装置の作動の要部を、図7のフローチャートと共に説明するフローチャートである。 図1の平面研削盤の電子制御装置の作動の要部を、図6のフローチャートと共に説明するフローチャートを示している。
以下、本発明の一実施例を図面に基づいて詳細に説明する。なお、以下の実施例において図は発明に関連する要部を説明するものであり、寸法及び形状等は必ずしも正確に描かれていない
図1は、本発明の一実施例の作用砥粒判定装置10が適用された平面研削盤12を示す正面図である。平面研削盤12は、基台14と、基台14上に立設されたガイドロッド16に沿って上下方向に移動可能に設けられ、研削砥石18を回転中心線CLまわりに回転可能に支持するとともに、研削砥石18を回転駆動する図示しない砥石駆動モータを収容する砥石駆動ボックス20と、砥石駆動ボックス20を上下方向に移動させるねじ軸22を回転駆動する上下方向駆動モータ24と、基台14上において被削材26の載置台28を、回転中心線CLに直交する方向および回転中心線CLに平行な方向にそれぞれ移動させる被削材移動モータ30および32とを、備えている。
砥石駆動ボックス20には、回転中の研削砥石18の円筒状外周面である研削面18aの三次元形状を非接触で検出する光学式の測位計34が、測位計34を回転中心線CLに平行な方向に移動可能に支持するブラケット36を介して設けられている。測位計34としては、たとえばレーザ二次元変位計が好適に用いられる。測位計34は、研削面18aからの反射光に基づいて研削面18aの研削方向に垂直な幅方向における二次元データを時系列的に示す三次元形状データを前記出力する。三次元形状データは研削砥石18の研削面18aの凹凸を示す。
電子制御装置40は、入力装置42を用いた制御モードの切替操作にしたがって、被削材26の平面研削を実行する平面研削制御モード、および研削砥石18の研削面18aにおける砥粒の作用点を判定(検出)する作用点判定制御モードとが、選択されるようになっている。
電子制御装置40は、平面研削制御モードが選択された場合には、入力装置42からの入力操作により設定された平面研削加工の設定条件を記憶し、その平面研削加工の設定条件にしたがって、研削砥石18を設定された周速(m/min)で回転駆動するとともに、上下方向駆動モータ24を用いて被削材26の切込量(mm)を設定値とした上で、被削材移動モータ30および32を用いて載置台28上の被削材26を研削砥石18に対して設定されたテーブル移動速度(m/min)で水平移動させることで、被削材26の上面に対して平面研削加工を行なう。
電子制御装置40は、作用点判定制御モードが選択された場合には、切込深さ算出部44、三次元データ取得部46、作用点判定部48、および最大切込み深さ算出部50を、機能的に備え、研削面18aにおいて判定された作用点の数値およびマップや、最大切込み深さgmax等を、表示装置52に表示させる。
切込深さ算出部44は、切込深さ算出工程に対応するものであり、研削砥石18の被削材26に対する平面研削加工の前記設定条件から、単位長さ当たりの砥粒の切込深さg/aを、次式(1)から算出する。式(1)において、gは砥粒の切込深さ(mm)、aは砥粒切れ刃間隔(mm)、vは被削材26の速度(m/min)、Vは研削砥石18の周速(m/min)、Dは研削砥石18の直径(mm)、tは研削砥石18の切込深さ(mm)である。
g/a=2×(v/V)×√(t/D) ・・・(1)
三次元データ取得部46は、三次元形状データ取得工程に対応するものであり、測位計34から出力された信号から、研削面18aの凹凸を示す三次元形状データを取得して、記憶する。この三次元形状データは、研削面18aの幅(厚み)方向において凹凸高さを示す高さデータZ1、Z2、Z3、・・・Znの連なりのラインデータが、研削砥石18の周方向の距離Δa毎に含まれる。
作用点判定部48は、作用砥粒判定工程に対応するものであり、切込深さ算出部44により平面加工の設定条件から算出された上記単位長さ当たりの砥粒の切込深さg/aと、上記三次元形状データとから、研削面18a内の作用砥粒の作用点を算出する。たとえば、図2の研削面18aの模式図において、研削面18aの研削方向とは反対向きのx方向に沿って複数の砥粒GP1、GP2、GP3およびGP4が位置していると仮定し、単位長さ当たりの砥粒の切込深さg/aを示す斜線L1を、砥粒GP1の先端の軌跡を示すものとして、砥粒GP1の頂点から引いたとき、2番目の砥粒GP2および3番目の砥粒GP3のz方向の高さ(頂点)はその斜線L1の下側に位置するので、2番目の砥粒GP2および3番目の砥粒GP3は研削に寄与せず、作用砥粒として機能しない。これに対して、4番目の砥粒GP4のz方向の高さ(頂点)は単位長さ当たりの砥粒の切込深さg/aを示す斜線L1よりも高いので、作用点判定部48は4番目の砥粒GP4を、研削に寄与する作用砥粒として判定し、砥粒GP4の研削方向側(x方向とは反対方向側)の斜面のうちの斜線L1と交差する部分(斜面の局所領域)が作用点として判定される。作用砥粒とは、作用点を有する砥粒である。
最大切込み深さ算出部50は、最大切込み深さ算出工程に対応するものであり、作用点判定部48により作用砥粒として判定された砥粒、図2では4番目の砥粒GP4の研削方向側斜面において、作用点が連なる領域に対応するz方向の距離を、最大切込深さgmaxとして作用砥粒毎に算出する。
図3は、作用点判定部48および最大切込み深さ算出部50により算出された、作用砥粒の判定結果および最大切込深さgmaxを示す数値データを、セル毎に示すマップで示し、作用砥粒を模式的に対応させている。図3において、x方向は、研削面18aに対する被削材26の相対移動方向すなわち研削面18aの被削材26に対する研削方向とは反対方向を示し、y方向は、研削面18aの回転中心線CLに平行な軸幅方向を示している。x-y面内において、研削に関与しないセル領域には「n」印を表示し、研削に関与するセル領域には「-」印を表示し、作用砥粒の頂点に対応するセル領域には「最大切込深さgmaxを示す数値(μm)」を示している。
作用点判定部48は、三次元データ取得部46により取得された三次元形状データのうち、研削面18aの幅方向における作用砥粒の作用点の合計の研削方向とは反対方向xの累積値(累計作用点数)Ncpが、研削面18aの研削方向を示す座標上に順次プロットしたときの傾きが一定値に収束した点以後の三次元形状データに基づいて、前記作用砥粒の作用点を判定する。
また、作用点判定部48は、三次元データ取得部46により取得された三次元形状データのうち、研削面18aの幅方向すなわちy方向における作用砥粒の作用点の合計の研削方向とは反対方向xの累積値Ncpを、研削面18aの研削方向Ncpとは反対方向xを示す座標上に順次プロットしたときの、一定区間毎の相関係数が、安定した信頼性のあるデータ区間を判定するために予め設定された閾値たとえば4000を超えた点以後の三次元形状データに基づいて、前記作用砥粒の作用点を判定する。
図4は、本発明者が以下の研削試験条件下で求めた、三次元形状データのうちの信頼データ区間を示している。
(研削試験条件)
研削方式:平面研削
切込量t:0.02mm
研削砥石:電着CB230PA5
砥石周速:2000m/min
ワーク送り速度:20m/min
砥石直径:205φmm
図4は、ラインデータの数を示す横軸と累計作用点数及び相関係数を示す縦軸との二次元座標において、累計作用点数を示す曲線を1点鎖線で示し、相関係数を示す曲線を実線で示している。累計作用点数を示す曲線はラインデータが1000ラインを超えると、その傾きが一定値に収束し、且つ回帰直線の傾きに相関係数を示す曲線が累計作用点数が40000を超えると、或いは、はラインデータが4700ラインを超えると、予め設定された閾値を超える。
図5は、本発明者が上記の研削試験条件下で求めた、切込み深さ(μm)を示す横軸と度数を示す縦軸との二次元座標における、研削砥石の切込み深さ(μm)のヒストグラムを示している。
前述の作用砥粒判定装置10は、測位計34、切込深さ算出部44、三次元データ取得部46、作用点判定部48、および最大切込み深さ算出部50を、含む。
図6および図7は、作用点判定制御モードが選択された場合における電子制御装置40の制御作動の要部を説明するフローチャートを示している。図6において、先ず、切込深算出部44に対応するステップS1( 以下、ステップを省略する)では、たとえば入力装置42の操作により予め設定された切削条件から、たとえば式(1)を用いて、単位長さ当たりの砥粒の切込深さg/aが算出される。
次いで、三次元データ取得部46に対応するS2、S3、S4では、三次元形状データを構成する、研削面18aの幅(厚み)方向において凹凸高さを示す高さデータZ1、Z2、Z3、・・・Znが含まれるラインデータが逐次読み込まれる。先ず、S2では、最初のラインデータが読み込まれ、そのラインデータに含まれるデータZ1、Z2、Z3、・・・Znが読み込まれる。次に、S3では、ラインデータに含まれる高さデータZ1、Z2、Z3、・・・Znに対応して、1組(セット)の作用点候補P(P1=Z1、P2=Z2、P3=Z3、・・・Pn=Zn)が設定される。そして、S4では、x方向に隣接する次のラインデータが読み込まれるデータZ1、Z2、Z3、・・・Znが読み込まれる。
次に、作用点判定部48に対応するS5、S6-S7、S9-S15が実行される。先ず、S5では、新たに読み込まれたラインデータの読み込み開始位置からの移動距離である累積距離ピッチat(=at+Δa)が算出される。次いで、S6では、砥粒軌跡最下点L(=Z-g/a×at)が、新たに読み込まれたラインデータの位置atにおいて砥粒の高さが研削に寄与する作用点であるか否かを判定するための判定値として、初期に読み込まれたラインデータの高さデータZ(Z1、Z2、Z3、・・・Zn)が示すピーク毎に算出される。次に、S7では、新たに読み込まれたラインデータの高さデータZ(Z1、Z2、Z3、・・・Zn)が、砥粒軌跡最下点L以上であるか否かが判定される。
S7において、新たに読み込まれたラインデータの高さデータZが砥粒軌跡最下点Lを超えない(Z<L)と判定された場合には、S8以下が実行される。S8では、前回に読み込まれたラインデータの判定結果が、ラインデータの高さデータZが砥粒軌跡最下点L以上である(Z≧L)という判定であったか否かが判定される。このS8の判定が否定された(Z<L)場合は、後述のS16が実行され、S16において次のラインデータがあると判定された場合は、S4以下が実行されるが、S16において次のラインデータがないと判定された場合は、本ルーチンが終了させられる。
S8の判定が肯定された(Z≧L)場合は、最大切込深さ算出部50に対応するS17において、最大砥粒切込深さgmax(=(g/a)×at×N)が算出される。続くS17では、連続作用点判定回数Nの内容が零にリセットされた後、後述のS11以下が実行される。
S7において、新たに読み込まれたラインデータの高さデータZが砥粒軌跡最下点L以上である(Z≧L)と判定された場合には、S9において、作用点であると判定され、新たに読み込まれたラインデータの高さデータZのうちの該当する位置が作用砥粒の作用点としてセットされ、記憶される。
S10では、S9による作用点判定に基づいて、連続作用点判定回数N(=N+1)が算出される。続くS11では、累計作用点数Pn(=Pn+Pl)が算出される。Plは、新たに読み込まれたラインデータ中の作用点判定位置の数である。
S12では、ラインデータが新たに読み込まれるに伴って増加するた累計作用点数Pnの傾き(増加率)が、一定の傾きに収束したこと、および、累計高さデータ(ラインデータ)取得回数が、予め実験的に設定された第1信頼データ取得判定値(相関係数計算ライン数、たとえば4000ライン)を超えたか否かが判定される。S12の判断が否定された場合は、前述のS4以下が実行されるが、肯定された場合は、S13以下が実行される。
S13では、ラインデータの4000ライン幅の移動区間における回帰直線の傾きの相関係数が、算出される。S14では、S13において算出された予め設定された閾値たとえば第2信頼データ取得判定値(たとえば相関係数が0.96)を超えたか否かが判断される。このS14の判定が否定された場合は、前述のS4以下が実行されるが、肯定された場合は、S15において、S7において判定され且つS9において記憶された作用点と、S17において算出された最大砥粒切込深さgmaxとが、作用点判定結果として出力される。この作用点判定結果として、たとえば図3に示すマップが含まれる。
そして、S16では、次のラインデータが有るか否かが判断される。このS16の判断が否定される場合は、S4以下の実行が繰り替えされるが、S16の判断が肯定される場合は、本ルーチンが終了させられる。
上述のように、本実施例の作用砥粒判定装置10によれば、切込深さ算出部44により算出された単位長さ当たりの砥粒の切込深さg/aと、三次元データ取得部46により取得された三次元形状データとから、作用砥粒の作用点を判定する作用点判定部48が、備えられる。これにより、作用点判定部48は、単位長さ当たりの砥粒の切込深さg/aと三次元形状データとから、研削に寄与する前記作用砥粒の作用点を判定するので、研削砥石18の研削面18aの表面状態から研削面18aに存在する砥粒のうち、専ら研削に寄与する作用砥粒の作用点を判定することができる。したがって、研削砥石18の研削性能の評価精度が十分に得られる。
また、本実施例の作用砥粒判定装置10によれば、作用砥粒の作用点における前記作用砥粒の最大切込深さを算出する最大切込深さ算出部50が、備えられる。これにより、前記最大切込深さ算出部50において、作用砥粒の作用点における前記作用砥粒の最大切込深さgmaxが算出されるので、研削に寄与する前記作用砥粒の作用点と、作用砥粒の最大切込深さgmaxとにより、研削砥石18の研削性能の評価精度が十分に得られる。
また、本実施例の作用砥粒判定装置10によれば、三次元データ取得部46は、研削面18aからの反射光に基づいて研削面18aの研削方向に垂直な幅方向における研削面の二次元データを時系列的に出力する光学式測位計を、備える。これにより、研削砥石18が研削砥石車である場合において、その研削砥石車の回転中において、研削砥石車の外周面である研削面18aの三次元形状データを取得することができる。
また、本実施例の作用砥粒判定装置10によれば、作用点判定部48は、前記三次元形状データのうち、研削面18aの幅方向における作用砥粒の作用点の合計の前記研削方向の累積値を、研削面18aの研削方向を示す座標上に順次プロットしたときの傾きが一定値に収束した点以後の三次元形状データに基づいて、作用砥粒の作用点を判定する。これにより、研削初期区間の不安定な三次元形状データが除かれることで、作用砥粒の作用点の合計の研削方向の累積値を研削面18aの研削方向を示す座標上に順次プロットしたときの傾きが一定値に収束した点以後の安定区間の三次元形状データから、作用砥粒の作用点が判定される。
本実施例の作用砥粒判定装置10によれば、作用点判定部48は、三次元形状データのうち、研削面18aの幅方向における作用砥粒の作用点の合計の研削方向の累積値を、研削面18aの研削方向を示す座標上に順次プロットしたときの、一定区間毎の相関係数が、予め設定された閾値を超えた点以後の三次元形状データに基づいて、作用砥粒の作用点を判定する。これにより、研削初期区間の不安定な三次元形状データが除かれることで、前記一定区間毎の相関係数が予め設定された閾値を超えた点以後の安定区間の三次元形状データから、前記作用砥粒の作用点が判定される。
本実施例の作用砥粒判定方法によれば、切込深さ算出工程により算出された単位長さ当たりの砥粒の切込深さと、前記三次元形状データ取得工程により取得された三次元形状データとから、前記作用砥粒の作用点を判定する作用点判定工程が、備えられる。これにより、作用点判定工程は、前記切込深さ算出部により算出された単位長さ当たりの砥粒の切込深さと、前記三次元形状データ取得工程により取得された三次元形状データとから、研削に寄与する前記作用砥粒の作用点を判定するので、研削砥石の研削面の表面状態から前記研削面に存在する砥粒のうち、専ら研削に寄与する作用砥粒の作用点を判定することができる。したがって、研削砥石18の研削性能の評価精度が十分に得られる。
以上、本発明の一実施例を図面を用いて説明したが、本発明はその他の態様においても適用される。
たとえば、前述の実施例では、平面研削盤12に適用された作用砥粒判定装置10が説明されていたが、作用砥粒判定装置10は、円筒研削盤や内面研削盤等の研削盤にも適用される。円筒研削盤の場合には、切込み深さ算出部44において次式(2)が用いられ、内面研削盤の場合には、切込み深さ算出部44において次式(3)が用いられる。
g/a=2×(v/V)×√(1/D+1/d)×√t ・・・(2)
g/a=2×(v/V)×√(1/D-1/d)×√t ・・・(3)
また、前述の実施例の作用砥粒判定装置10は、最大切込深さ算出部50を備えるものであった。しかし、研削面18a内の作用点の分布だけでも研削砥石18の研削性能の評価が可能であるので、最大切込深さ算出部50を必ずしも備えていなくてもよい。
また、研削砥石18は、砥粒がビトリファイドボンドにより結合されたビトリファイド砥石、砥粒がレジノイドボンドにより結合されたレジノイド砥石、砥粒が電着メタルにより結合された電着砥石等であってもよい。
また、研削砥石18の砥粒は、溶融アルミナ質の砥粒、炭化珪素質の砥粒、ダイヤモンド砥粒、CBN砥粒などのいずれであってもよい。
なお、上述したのはあくまでも本発明の一実施例であり、本発明はその主旨を逸脱しない範囲において種々の変更が加えられ得るものである。
10:作用砥粒判定装置
12:平面研削盤
18:研削砥石
18a:研削面
40:電子制御装置
44:切込深さ算出部
46:三次元データ取得部
48:作用点判定部
50:最大切込深さ算出部

Claims (6)

  1. 研削砥石の研削面の表面状態から前記研削面に存在する砥粒のうち研削に寄与する作用砥粒を判定する研削砥石の作用砥粒判定装置であって、
    前記研削砥石の被削材に対する研削加工の設定条件から、単位長さ当たりの砥粒の切込深さを算出する切込深さ算出部と、
    前記研削面の三次元形状データを取得する三次元形状データ取得部と、
    前記切込深さ算出部により算出された単位長さ当たりの砥粒の切込深さと、前記三次元形状データ取得工程により取得された三次元形状データとから、前記作用砥粒の作用点を判定する作用点判定部とを、含む
    ことを特徴とする研削砥石の作用砥粒判定装置。
  2. 前記作用砥粒の作用点における前記作用砥粒の最大切込深さを算出する最大切込深さ算出部を、さらに含む
    ことを特徴とする請求項1の研削砥石の作用砥粒判定装置。
  3. 前記三次元データ取得部は、前記研削面からの反射光に基づいて前記研削面の研削方向に垂直な幅方向における研削面の二次元データを時系列的に出力する光学式測位計を、備える
    ことを特徴とする請求項1又は2の研削砥石の作用砥粒判定装置。
  4. 前記作用点判定部は、前記三次元形状データのうち、前記研削面の幅方向における前記作用砥粒の作用点の合計の前記研削方向の累積値を、前記研削面の研削方向を示す座標上に順次プロットしたときの傾きが一定値に収束した点以後の三次元形状データに基づいて、前記作用砥粒の作用点を判定する
    ことを特徴とする請求項1から3のいずれか1の研削砥石の作用砥粒判定装置。
  5. 前記作用点判定部は、前記三次元形状データのうち、前記研削面の幅方向における前記作用砥粒の作用点の合計の前記研削方向の累積値を、前記研削面の研削方向を示す座標上に順次プロットしたときの、一定区間毎の相関係数が、予め設定された閾値を超えた点以後の三次元形状データに基づいて、前記作用砥粒の作用点を判定する
    ことを特徴とする請求項4の研削砥石の作用砥粒判定装置。
  6. 研削砥石の研削面の表面状態から前記研削面に存在する砥粒のうち研削に寄与する作用砥粒を判定する研削砥石の作用砥粒判定方法であって、
    前記研削砥石の被削材に対する研削加工の設定条件から、単位長さ当たりの砥粒の切込深さを算出する切込深さ算出工程と、
    前記研削面の三次元形状データを取得する三次元形状データ取得工程と、
    前記切込深さ算出工程により算出された単位長さ当たりの砥粒の切込深さと、前記三次元形状データ取得工程により取得された三次元形状データとから、前記作用砥粒の作用点を判定する作用点判定工程とを、含む
    ことを特徴とする研削砥石の作用砥粒判定方法。
JP2022006781A 2022-01-19 2022-01-19 研削砥石の作用砥粒判定装置および方法 Pending JP2023105763A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022006781A JP2023105763A (ja) 2022-01-19 2022-01-19 研削砥石の作用砥粒判定装置および方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022006781A JP2023105763A (ja) 2022-01-19 2022-01-19 研削砥石の作用砥粒判定装置および方法

Publications (1)

Publication Number Publication Date
JP2023105763A true JP2023105763A (ja) 2023-07-31

Family

ID=87468802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022006781A Pending JP2023105763A (ja) 2022-01-19 2022-01-19 研削砥石の作用砥粒判定装置および方法

Country Status (1)

Country Link
JP (1) JP2023105763A (ja)

Similar Documents

Publication Publication Date Title
JP4913517B2 (ja) ウエーハの研削加工方法
CN106378668B (zh) 一种五轴双端面磨床的控制方法
US10898983B2 (en) Dressing method of cutting blade
JP7481518B2 (ja) ツルーイング方法及び面取り装置
JP5132970B2 (ja) 加工工具寿命検出方法及び加工工具寿命検出装置
JP2023105763A (ja) 研削砥石の作用砥粒判定装置および方法
JP4615242B2 (ja) 回転ブレード交換時期判定方法および切削装置
JP2000042887A (ja) ウェーハ面取り方法
JP6700101B2 (ja) 切削装置
CN109015123B (zh) 自动打磨装置及方法
JP6768185B2 (ja) ダイシング方法及び装置
Young et al. Online dressing of profile grinding wheels
JP7348037B2 (ja) 加工装置
JP4901428B2 (ja) ウエーハの砥石工具、研削加工方法および研削加工装置
JP2843488B2 (ja) 工作機械の制御方法および制御装置
JP2020185626A (ja) 砥石表面の砥粒分布を測定するための測定システムとこれを備えた研削盤
JP2020069639A (ja) 研削面状態評価装置および研削加工装置
JPH09239631A (ja) 工具成形機能付き数値制御工作機械
JP2009105194A (ja) 加工装置
JP3690994B2 (ja) 電着工具の製造方法
JP2020114615A (ja) 工作機械のメンテナンス支援装置および工作機械システム
CN112857271B (zh) 一种激光熔覆过程稳定性的判别方法
JP2010162661A (ja) 面取り加工方法及び面取り加工装置
JP2003053664A (ja) 工作機械及び加工方法
JP2020069638A (ja) ドレッシング面評価装置、ドレッシング装置、および、研削加工装置