JP2023097469A - 圧縮機のドレン混入防止構造 - Google Patents

圧縮機のドレン混入防止構造 Download PDF

Info

Publication number
JP2023097469A
JP2023097469A JP2021213597A JP2021213597A JP2023097469A JP 2023097469 A JP2023097469 A JP 2023097469A JP 2021213597 A JP2021213597 A JP 2021213597A JP 2021213597 A JP2021213597 A JP 2021213597A JP 2023097469 A JP2023097469 A JP 2023097469A
Authority
JP
Japan
Prior art keywords
compressed gas
flow velocity
drain
compressor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021213597A
Other languages
English (en)
Inventor
直幸 柳沼
Naoyuki Yaginuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP2021213597A priority Critical patent/JP2023097469A/ja
Publication of JP2023097469A publication Critical patent/JP2023097469A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pipe Accessories (AREA)
  • Compressor (AREA)

Abstract

【課題】除湿機器のドレンが圧縮気体と共に消費側に搬出されることを防止する。【解決手段】圧縮機1に設けたレシーバタンク20等の圧縮気体供給部に一端を連通し,他端を消費側に連通させた供給流路40にアフタクーラ61やドライヤ62等の除湿機器60を設けると共に,この除湿機器60の二次側で供給流路40にベンチュリ管などの絞り70を設ける。この絞り70は,供給流路40内における前記圧縮気体の流速が所定の上限流速に達したときにチョークする流路面積に形成する。前記上限流速を,実験等によって予め求めておいた,前記除湿機器60内に溜まったドレンの消費側への搬出が開始される前記供給流路40内の前記圧縮気体の流速に対し,所定の余裕分低い流速として設定する。【選択図】図1

Description

本発明は圧縮機のドレン混入防止構造に関し,より詳細には,圧縮機本体が吐出した圧縮気体を消費側に供給する供給流路にアフタクーラやドライヤ,ドレンセパレータ,及びアフタウォーマ等の圧縮気体の除湿を行うための機器(本明細書において,これらを総称して「除湿機器」という。)を設けた圧縮機において,消費側に供給される圧縮気体に対し除湿機器内に溜まったドレンが混入することを防止するためのドレン混入防止構造に関する。
圧縮作用空間の潤滑,冷却及び密封に潤滑油を使用する油冷式のスクリュ圧縮機では,圧縮機本体が,吸気口より吸い込んだ被圧縮気体は潤滑油と共に圧縮されて気液混合流体として吐出される。
そのため,圧縮機本体が潤滑油と共に吐出した圧縮気体は,これを一旦レシーバタンク内に貯留して気液分離し,油分が分離された圧縮気体を消費側に供給することが行われている。
このような圧縮機において,消費側に接続される空気作業機の種類によっては,油分が除去されているだけでなく,更に水分についても除去された,乾燥した圧縮気体の供給が必要となる場合がある。
このような場合には,図4に示すように,レシーバタンク(図示せず)からの圧縮気体を,除湿機器160を通過させて除湿した後に消費側に供給することが行われる。
一例として図4に示した圧縮機100では,レシーバタンク(図示せず)に設けたオイルセパレータ121を通過した圧縮気体を消費側に供給する供給流路140中に,アフタクーラ161,ドレンセパレータ163,及び前記アフタクーラ161とドレンセパレータ163間を連通する配管等から成る除湿機器160を設けている。
そして,この除湿機器160を使用して,アフタクーラ161に導入して冷却することで圧縮気体中に水蒸気として存在する水分を結露させ,この結露によって生じたドレンをドレンセパレータ163で捕集して除去することで,乾燥させた圧縮気体を得,これを消費側に供給することができるように構成されている。
また,アフタクーラ161での冷却による結露で生じたドレンを捕集する前述のドレンセパレータ163には,フロートバルブ(図示せず)が設けられており,ドレンセパレータ163内に捕集されたドレンが所定の水位以上になると,このフロートバルブが開くことで,ドレンが,供給流路140内を流れる圧縮気体の圧力によってドレン配管163bを介して機外に排出され,これにより捕集されたドレンが消費側に搬出されないように構成されている(特許文献1の[図1]参照)。
特許第3771205号公報
前述した除湿機器160を備えた圧縮機100では,圧縮気体の冷却に伴う結露で生じたドレンは,除湿機器160に設けられたドレンセパレータ163内に落下して捕集されて機外に排出されることで,消費側に供給される圧縮気体中にドレンを混入させない構造となっている。
しかしながら,除湿機器160を通過する圧縮気体の流速が過度に高くなると,除湿機器160に溜まっているドレンが高速で通過する圧縮気体によって巻き上げられると共に圧縮気体の流れに乗って運ばれることで,本来ドレンセパレータ163内に落下して捕集されるべきドレンが,ドレンセパレータ163に捕集されることなく圧縮気体中に混入して消費側に搬出されてしまうという不都合が生じる。
特に,圧縮機100の始動直後でレシーバタンク(図示せず)及び供給流路140,除湿機器160内の圧力が十分に上昇していない状態では,供給流路140内を流れる圧縮気体の流速が上昇して圧縮気体に対するドレンの混入が生じ易くなる。
この点に関し,更に詳しく説明すると,圧縮機本体が吸入する被圧縮気体の温度や圧力が変化せずに一定で,かつ,定格回転速度で圧縮機本体が全負荷運転を継続している場合,圧縮機本体は,圧縮気体を単位時間毎に一定量(一定体積)ずつ吐出する。
すなわち,圧縮機本体は一定の「質量流量」で圧縮気体を吐出する。
一方,圧縮気体の「流速」は,測定位置を通過する圧縮気体の「体積流量」を,測定位置の流路面積で除算することにより求められる(流速=体積流量÷流路面積)。
ここで,「体積流量」は,「質量流量」を密度で除算したもの(体積流量=質量流量÷密度)であるから,「質量流量」が同一の圧縮気体であっても,圧力(密度)が高くなれば「体積流量」は減少し,圧力(密度)が低くなれば「体積流量」は増大する。
このことから,圧縮機本体が一定の「質量流量」で圧縮気体を吐出していたとしても,圧縮機本体が吐出した圧縮気体を,定格圧力に近い高圧(高密度)の状態で供給流路140を通過させる場合に比較して,低圧(低密度)の状態で供給流路140を通過させた場合の方が,供給流路140,従って,除湿機器160を通過する圧縮気体の「体積流量」が増大し,「流速」も増大する。
そのため,レシーバタンク及び供給流路140,除湿機器160内の圧力が低い圧縮機100の始動直後において,除湿機器160を通過する圧縮気体の流速が過度に高まる場合があり,その結果,除湿機器160内に溜まっているドレンが高速で通過する圧縮気体によって巻き上げられて消費側へ搬出され易くなる。
このように,供給流路140内を流れる圧縮気体の流速が過度に高まると,除湿機器160内に溜まっているドレンが消費側より搬出されて図示せざる空気作業機等に導入されてしまうことから,供給流路140内を通過する圧縮気体の流速の過度な上昇は,これを抑制する必要がある。
その一方で,除湿機器160内に溜まっているドレンが圧縮気体によって巻き上げられるおそれのない流速以下に,供給流路140内を通過する圧縮気体に速度を抑制するような抵抗を与えることは,圧縮機100の性能を低下させてしまうこととなる。
従って,このような流速を抑制する制御は,圧縮気体の流速が,除湿機器160に溜まっているドレンを巻き上げ得る速度にまで上昇した場合にのみ限定的に発動するように構成されていることが望ましい。
なお,以上の説明では,圧縮機本体が油冷式のスクリュ圧縮機である場合を例に挙げて説明したことから,供給流路に対する圧縮気体の供給を行う圧縮気体供給部がレシーバタンクである場合を例に挙げて説明した。
しかし,前述した問題点は,圧縮作用空間の潤滑や密封に潤滑油を必要としないオイルフリースクリュ圧縮機のように,装置構成中にレシーバタンクを設けることを要しない圧縮機においても同様に生じ得る問題であり,供給流路140に対し圧縮気体を供給する圧縮気体供給部は,前述したレシーバタンクに限定されず,圧縮機本体を供給流路に対する直接の圧縮気体供給部とする圧縮機の構成においても同様に生じ得る。
そこで本発明は,上記従来技術における欠点を解消するために成されたものであり,供給流路内の圧縮気体の流速が過度に上昇した場合に,更なる流速の上昇を抑制することで,除湿機器内に溜まったドレンが圧縮気体に混入すること,従って,このようにして混入したドレンが消費側に搬出されることを防止することができる,圧縮機のドレン混入防止構造を提供することを目的とする。
以下に,課題を解決するための手段を,発明を実施するための形態で使用する符号と共に記載する。この符号は,特許請求の範囲の記載と発明を実施するための形態の記載との対応を明らかにするために記載したものであり,言うまでもなく,本発明の技術的範囲の解釈に制限的に用いられるものではない。
上記目的を達成するために,本発明の圧縮機1のドレン混入防止構造は,
圧縮気体の除湿を行う,アフタクーラ61やドライヤ62,及びこれらの機器間を連通する流路等から成る除湿機器60を備えた供給流路40の一端をレシーバタンク20等の圧縮気体供給部に連通すると共に,他端を消費側に連通した構造を有する圧縮機1のドレン混入防止構造において,
前記除湿機器60内に溜まったドレンの消費側への搬出が開始される前記供給流路40内の前記圧縮気体の流速を実験等によって予め求めておくと共に,該流速に対し所定の余裕分低い流速を,上限流速として設定し,
前記除湿機器60の二次側で前記供給流路40内に絞り70を設けると共に,
前記絞り70を,前記供給流路40内における前記圧縮気体の流速が前記上限流速に達したときにチョークする流路面積で形成したことを特徴とする(請求項1)。
前記絞り70は,これをベンチュリ管(図3参照)とすることが好ましい(請求項2)。
更に,前記供給流路40の前記一端を,保圧弁30を介してレシーバタンク20などの前記圧縮気体供給部に連通することが好ましい(請求項3)。
以上で説明した本発明の構成により,本発明のドレン混入防止構造を備えた圧縮機1では以下の顕著な効果を得ることができた。
除湿機器60の二次側で供給流路40内に絞り70を設けると共に,この絞り70を,供給流路40内における圧縮気体の流速が上限流速に達したときにチョークする流路面積で形成したことで,供給流路40内の圧縮気体の流速が前述した上限流速未満の範囲では,絞り70を通過する圧縮気体の体積流量が可変で,絞り70は供給流路40内を流れる圧縮気体の流速を抑制する抵抗とはならない。
一方,供給流路40内の圧縮気体の流速が前述の上限流速に達すると,絞り70を通過する圧縮気体の流速は音速となってチョークすることで,絞り70を通過する圧縮気体の流速,従って,絞り70を通過する圧縮気体の体積流量が頭打ちとなってそれ以上,増加しなくなる。
その結果,絞り70の一次側にある除湿機器60を通過する圧縮気体の流速についても,前述した上限流速を超えて上昇することが抑制できた。
ここで,前述した「上限流速」は,実験等によって予め求めておいた,除湿機器60内に溜まったドレンの巻き上げが開始される供給流路40内の圧縮気体の流速に対し,所定の余裕分低い流速として設定されたものであることから,絞り70で生じたチョークによって供給流路40内の圧縮気体がこの「上限流速」を越えないようにその流速が抑制されたことで,除湿機器60内に溜まったドレンが圧縮気体に混入して消費側より搬出されることを好適に防止することができた。
前述の絞り70をベンチュリ管とした構成では,絞りをオリフィス(図示せず)等で構成する場合に比較して,絞り(ベンチュリ管)70を通過する際に生じる圧縮気体の圧力損失の発生を大幅に低減することができた。
また,供給流路40の一端を,保圧弁30を介してレシーバタンク20等の圧縮気体供給部に連通した構成では,保圧弁30は逆止弁としても機能することから,圧縮機の停止に伴いレシーバタンク20等の圧縮気体供給部の圧力が低下した場合であっても,供給流路40内の圧縮気体が圧縮気体供給部側に逆流して,この逆流する圧縮気体と共に除湿機器60のドレンが圧縮気体供給部側に導入されることも防止することができた。
本発明のドレン混入防止構造を備えた圧縮機の説明図。 本発明のドレン混入防止構造を備えた圧縮機の変形例の説明図。 絞り(ベンチュリ管)の断面説明図。 除湿機器を備えた従来の圧縮機の説明図。
次に,本発明の実施形態につき添付図面を参照しながら説明する。
〔圧縮機の全体構成〕
図1中の符号1は本発明のドレン混入防止構造を備えた圧縮機であり,この圧縮機1は,圧縮機本体10,前記圧縮機本体10を駆動するエンジンやモータ等の駆動源(図示せず),前記圧縮機本体10より吐出された圧縮気体を貯留するレシーバタンク20を備え,圧縮機本体10より吐出された圧縮気体を,レシーバタンク20内に貯留した後,保圧弁30,及び供給流路40を介して,消費側に接続された図示せざる空気作業機等に供給することができるように構成されている。
本実施形態において,前述の圧縮機本体10は潤滑,冷却及び密封のための潤滑油と共に被圧縮気体を圧縮する油冷式のスクリュ型の圧縮機本体10であり,レシーバタンク20内には,圧縮機本体10が潤滑油との気液混合流体として吐出した圧縮気体が吐出流路12を介して導入され,このレシーバタンク20内で潤滑油を分離することができるように構成されていると共に,レシーバタンク20内に回収された潤滑油を,給油流路22を介して圧縮機本体10に設けた給油口13を介して圧縮作用空間に給油することができるように構成されている。
なお,本発明で対象とする圧縮機1に設ける圧縮機本体10は,このような油冷式のものに限定されず,被圧縮気体の圧縮に潤滑油を必要としない,オイルフリー式の圧縮機本体を設けたものであっても良く,この場合,前述のレシーバタンク20や,レシーバタンク20内に回収された潤滑油を圧縮機本体10に供給するための給油流路22等は省略することができる。
〔吸気調整装置〕
以上のように構成された圧縮機1の圧縮機本体10には,吸気口を開閉制御する吸気制御弁51を設け,圧縮機本体10の二次側圧力,本実施形態にあってはレシーバタンク20内の圧力が所定の定格圧力に近付くよう,レシーバタンク20内の圧力が所定の定格圧力以上になるとこの吸気制御弁51を絞り又は閉じると共に,定格圧力未満になると全開にする吸気調整を行う吸気調整装置50を設けている。
図示の実施形態では,レシーバタンク20と吸気制御弁51の閉弁受圧室間を連通する制御流路52を設けると共に,この制御流路52を開閉する,電磁制御弁である開閉弁53を設け,吸気制御弁51と制御流路52,及び開閉弁53によって構成される前述の吸気調整装置50が設けられている。
本実施形態において,レシーバタンク20には,レシーバタンク20内の圧力を検出する図示せざる圧力検出手段が設けられており,この圧力検出手段がレシーバタンク20内の圧力が前述した定格圧力になったことを検出すると開閉弁53を開いて吸気制御弁51の閉弁受圧室にレシーバタンク20内の圧縮気体を導入して吸気制御弁51を絞り又は閉じると共に,レシーバタンク20内の圧力が定格圧力未満になったことが検出されると,前述の開閉弁53が閉じて吸気制御弁51の閉弁受圧室に対する圧縮気体の導入が停止されることで,吸気制御弁51が閉じるように構成することで,レシーバタンク20内の圧力が前述の定格圧力に近付くように制御されている。
なお,圧縮機1に設ける吸気調整装置50は,図示の例に限定されず既知の各種構成の吸気調整装置を採用することが可能である。
〔供給流路〕
以上で説明した圧縮機1のレシーバタンク20には,オイルセパレータ21及び保圧弁30を介して供給流路40の一端が連通されていると共に,この供給流路40の他端が消費側に連通されている。
これにより,圧縮機本体10によって生成され,レシーバタンク20に導入された圧縮気体が,オイルセパレータ21で油分が除去された後,保圧弁30及び供給流路40を介して消費側に接続された図示せざる空気作業機等に供給できるように構成されている。
この供給流路40には,除湿機器60を設けて供給流路40を通過する圧縮気体中に含まれる水分を除去できるようにすることで,消費側に対し乾燥した圧縮気体を供給することができるように構成されている。
前述の保圧弁30は,保圧弁30の一次側圧力,図示の例ではレシーバタンク20内の圧力が保圧弁30の作動開始圧力(本実施形態では一例として0.4MPa)以上になると開弁を開始して供給流路40に対する圧縮気体の導入を開始すると共に,前述の作動開始圧力未満では閉弁して供給流路40に対する圧縮気体の導入を停止するものであり,これにより,供給流路40や除湿機器60に対し保圧弁30の作動開始圧力以上の圧縮気体を導入できるように構成されていると共に,レシーバタンク20内の圧力が保圧弁30の作動開始圧力以上に保持されることで,レシーバタンク20内の圧力を利用してレシーバタンク20内の潤滑油を圧縮機本体10に給油することができるように構成されている。
また,この保圧弁30は,供給流路40からレシーバタンク20側に向かう圧縮気体の逆流を防止する逆止弁としても機能することで,圧縮機1の停止時にレシーバタンク20内の圧縮気体を放気するパージを行った際,供給流路40内の圧縮気体が,供給流路40に設けた後述の除湿機器60内に溜まったドレンと共に逆流してレシーバタンク20内に導入されることが防止できる。
前述の除湿機器60としては,図示の組み合わせに限定されず,既知の各種の除湿機器を組み合わせて採用することができる。
一例として,図1に示した実施形態では,除湿機器60は,レシーバタンク20からの圧縮空気を冷却するアフタクーラ61と,このアフタクーラ61を通過した後の圧縮空気をさらに冷却して圧縮空気中の水分を結露させて除去するドライヤ(冷凍式ドライヤ)62,及び,前記アフタクーラ61とドライヤ62間を連通する流路により構成されている。
本実施形態では,アフタクーラ61による冷却の際に結露によって生じたドレンは,圧縮気体と共にドライヤ62に導入され,ドライヤ62における冷却の際に生じたドレンと共にドライヤ62に設けたドレントラップ(図示せず)で同時に捕集するように構成している。
このドライヤ62のドレントラップ(図示せず)に捕集されたドレンは,ドレントラップに一端を連結されたドレン配管621を介してドレンドライヤ等のドレン処理装置625に導入され,このドレン処理装置625内でドレン中に含まれる油分が除去された後,清浄な水(ドレン水)として機外へ排出されるように構成されている。
ドライヤ62のドレントラップ(図示せず)とドレン処理装置625を連通する,前述のドレン配管621には,ドレン配管621を開閉するストップバルブ622が設けられていると共に,ストップバルブ622の二次側に,ストレーナ623と電磁開閉弁624が設けられている。
ドライヤ62用のドレン配管621をこのように構成することで,ストップバルブ622を開いた状態で電磁開閉弁624を開くと,ドライヤ62のドレントラップに溜まったドレンは,供給流路40内の圧縮空気の圧力に押されてドレン配管621を介してドレン処理装置625に送られる。
なお,図示の実施形態では,アフタクーラ61で生じたドレンをドライヤ62において併せて捕集するものとして説明したが,アフタクーラ61にもアフタクーラ61で生じたドレンを捕集するドレントラップを別途設け,このドレントラップとドレン処理装置625を連通する,前述したドライヤ62用のドレン配管621と同様の構造を備えたドレン配管を別途設けるものとしても良い。
また,図1に示した実施形態では,前述の除湿機器60をアフタクーラ61とドライヤ62,及びこれらを連通する流路により構成する例を示したが,除湿機器60としては,図1に示した構成の他,図2に示したように,アフタクーラ61と,アフタクーラ61による冷却による結露で生じたドレンを捕集するドレンセパレータ63,ドレンセパレータ63でドレンが除去された後の圧縮気体を加熱して相対湿度を低下させるアフタウォーマ64,及びこれらの各機器間を連通する流路によって構成するものとしても良い。
図2に示した実施形態では,ドレンセパレータ63に捕集されたドレンの水位が一定以上に上昇すると,フロートバルブ632が開き,ドレンセパレータ63に溜まったドレンが供給流路40内の圧縮気体の圧力によってドレン配管631と該ドレン配管631の先端に取り付けたサイレンサ633を介して機外の排出することができるように構成されている。
なお,図1及び図2に示した実施形態では,除湿機器60として,アフタクーラ61の他に,ドライヤ62(図1参照)又はアフタウォーマ64(図2参照)を選択的に設ける構成を採用しているが,図1に示す除湿機器60の構成に,更に,ドライヤ62を通過した後の圧縮気体を加熱するアフタウォーマ64を設ける等しても良く,除湿機器60の構成は,図示の構成に限定されず既知の各種の構成を採用可能である。
〔ドレン混入防止構造〕
前述した供給流路40には,更に,前述した除湿機器60の二次側に絞り70が設けられており,これにより供給流路40内の圧縮気体の流速が所定の上限速度を越えて上昇することが抑制されている。
前述の除湿機器60における冷却の際に結露したドレンは,図1の実施形態ではアフタクーラ61の二次側に設けたドライヤ62に設けた図示せざるドレンセパレータ(図1参照)や,図2の実施形態ではアフタクーラ61の二次側に設けたドレンセパレータ63(図2参照)内に落下して捕集されることで,消費側に供給される圧縮気体に対するドレンの混入が防止されている。
しかしながら,供給流路40内の圧縮気体の流速,従って,除湿機器60(特に図1の例ではドライヤ62,図2の例ではドレンセパレータ63)を通過する圧縮気体の流速が過度に上昇すると,この圧縮気体の流れが,図1の例ではドライヤ61に設けたドレンセパレータ(図示せず),図2の例ではドレンセパレータ63内に落下しようとするドレンを巻き上げてしまうことにより,ドレンセパレータ内に回収されずに,圧縮気体の流れに乗って圧縮気体と共に消費側に搬出されてしまうドレンが発生する。
そのため,本発明では,供給流路40内の圧縮気体の流速がどの程度まで上昇した時に消費側に対するドレンの搬出が生じるかを予め実験等によって求めておき,このようなドレンの搬出が生じる流速に対し,所定の余裕分,低い流速である「上限流速」を設定している。
そして,供給流路40内の圧縮気体の流速が,この「上限流速」に到達すると,除湿機器60の二次側に設けた絞り70を通過する圧縮気体の流速が音速となってチョークするように前述の絞り70の流路面積を設計することで,供給流路40内の流速が前述した上限流速を超えて上昇できないようにしている。
この絞り70としては,比較的簡単に製造することができるオリフィス(図示せず)を設けるものとしても良いが,好ましくは,図3に示すベンチュリ管を絞り70として採用することが好ましい。
このベンチュリ管70は,図3に示すように,流路を一旦絞り込んだあと,再度,緩やかに拡大した形状に形成したものであり,オリフィスに比較して構造が複雑で高価となるものの,オリフィスに比較して圧力損失を低く抑えることができるものである点で好ましい。
〔作用等〕
以上のように構成された圧縮機1を始動すると,始動時のレシーバタンク20,供給流路40,及び除湿機器60内の圧力は大気圧まで低下していることから,圧縮機本体10は吸気制御弁51を全開とした全負荷運転を行って,レシーバタンク20に対し一定の「質量流量」で圧縮気体を吐出する。
その後,レシーバタンク20内の圧力が保圧弁30の作動開始圧力(一例として0.4MPa)に達すると,保圧弁30が開弁動作を開始して供給流路40や除湿機器60に対する圧縮気体の導入が開始される。
このように,圧縮機1の始動初期では,供給流路40や除湿機器60に導入される圧縮気体の圧力は,保圧弁30の作動開始圧力(一例として0.4MPa)又はこれを僅かに上回る圧力であり,定格圧力(一例として0.8MPa)に対し十分に低い圧力となっている。
そのため,圧縮機本体10が吐出する圧縮気体の「質量流量」が一定であったとしても,定格圧力(一例として0.8MPa)で供給流路40や除湿機器60を通過する場合に比較して,保圧弁30の作動開始圧力(一例として0.4MPa)付近の圧力で供給流路40や除湿機器60を通過する場合の方が,圧縮気体の「体積流量」及び「流速」は大幅に高いものとなる。
しかし,供給流路40や除湿機器60内の圧縮気体の流速が上昇したとしても,この流速が予め設定された上限流速に達すると,除湿機器60の二次側に設けた絞り70を通過する圧縮気体の流速が音速に達してチョークする。
このチョークの発生により,絞り70を通過する圧縮気体の流速及び体積流量は,それ以上,上昇することができず頭打ちとなることで,絞り70の一次側に設けた除湿機器60を通過する圧縮気体の流速及び体積流量も頭打ちとなる。
前述したように,上限流速は,除湿機器60内のドレンの巻き上げが開始される供給流路40内の圧縮気体の流速に対し,所定の余裕分,低い流速に設定されていることから,前述した条件でチョークする絞り70を設けたことで,供給流路40内の圧縮気体の流速は上限流速以下に抑制されることから,除湿機器60内に溜まったドレンが消費側より搬出されることが防止されている。
一方,圧縮機本体10による圧縮気体の吐出が継続して行われることにより,レシーバタンク20内の圧力が上昇すると,供給流路40や除湿機器60を介して消費側に導入される圧縮気体の圧力も上昇する。
そのため,全負荷運転を継続する圧縮機本体10が始動時より継続して一定の質量流量で圧縮気体の吐出を行っていたとしても,供給流路40や除湿機器60を通過する圧縮気体の体積流量が減少するため,流速も低下する。
このような流速の低下によって,供給流路40内を通過する圧縮気体の流速が,前述した上限流速未満に低下すると,絞り70を通過する圧縮流体の流速は亜音速以下の速度に低下して,チョークの状態が解除されることで,絞り70は,供給流路40内の圧縮気体の流速を抑制する抵抗として機能しなくなる。
このようにして,レシーバタンク20より供給流路40に導入された圧縮気体は,除湿機器60を通過して除湿された後,除湿機器60で生じたドレンが確実に除去され,ドレンの混入がない乾燥した圧縮気体が消費側に供給される。
1 圧縮機
10 圧縮機本体
12 吐出流路
13 給油口
20 レシーバタンク(圧縮気体供給部)
21 オイルセパレータ
22 給油流路
30 保圧弁
40 供給流路
50 吸気調整装置
51 吸気制御弁
52 制御流路
53 開閉弁(電磁開閉弁)
60 除湿機器
61 アフタクーラ
62 ドライヤ(冷凍式ドライヤ)
621 ドレン配管
622 ストップバルブ
623 ストレーナ
624 電磁開閉弁
625 ドレン処理装置
63 ドレンセパレータ
631 ドレン配管
632 フロートバルブ
633 サイレンサ
64 アフタウォーマ
70 絞り(ベンチュリ管)
100圧縮機
121 オイルセパレータ
140 供給流路
160 除湿機器
161 アフタクーラ
163 ドレンセパレータ
163b ドレン配管

Claims (3)

  1. 圧縮気体の除湿を行う除湿機器を備えた供給流路の一端を圧縮気体供給部に連通すると共に,他端を消費側に連通した構造を有する圧縮機のドレン混入防止構造において,
    前記除湿機器内に溜まったドレンの消費側への搬出が開始される前記供給流路内の前記圧縮気体の流速を予め求めておくと共に,該流速に対し所定の余裕分低い流速を,上限流速として設定し,
    前記除湿機器の二次側で前記供給流路内に絞りを設けると共に,
    前記絞りを,前記供給流路内における前記圧縮気体の流速が前記上限流速に達したときにチョークする流路面積で形成したことを特徴とする圧縮機のドレン混入防止構造。
  2. 前記絞りが,ベンチュリ管であることを特徴とする請求項1記載の圧縮機のドレン混入防止構造。
  3. 前記供給流路の前記一端を,保圧弁を介して前記圧縮気体供給部に連通したことを特徴とする請求項1又は2記載の圧縮機のドレン混入防止構造。

JP2021213597A 2021-12-28 2021-12-28 圧縮機のドレン混入防止構造 Pending JP2023097469A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021213597A JP2023097469A (ja) 2021-12-28 2021-12-28 圧縮機のドレン混入防止構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021213597A JP2023097469A (ja) 2021-12-28 2021-12-28 圧縮機のドレン混入防止構造

Publications (1)

Publication Number Publication Date
JP2023097469A true JP2023097469A (ja) 2023-07-10

Family

ID=87071784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021213597A Pending JP2023097469A (ja) 2021-12-28 2021-12-28 圧縮機のドレン混入防止構造

Country Status (1)

Country Link
JP (1) JP2023097469A (ja)

Similar Documents

Publication Publication Date Title
US3191854A (en) Compressor units
EP3315780B1 (en) Oil-injected screw air compressor
EP3315778B2 (en) Oil-injected screw air compressor
JPH04228889A (ja) 油冷式圧縮機の運転方法
CN209261826U (zh) 入口阀和压缩机
JP2003322421A (ja) 超臨界蒸気圧縮回路における高圧側圧力制御方法と回路装置
JP5084460B2 (ja) 油冷式空気圧縮機
US2741424A (en) Refrigeration
WO2015052981A1 (ja) 給油式圧縮機
CN109072920B (zh) 从冷却剂流体中分离流体,特别是润滑剂的分离器装置
JP6932324B2 (ja) 圧縮空気圧回路におけるドレン排出構造
JP2023097469A (ja) 圧縮機のドレン混入防止構造
US20040112679A1 (en) System and method for lubricant flow control in a variable speed compressor package
EP1407146B1 (en) Water-injected screw compressor
JPH10323529A (ja) 圧縮空気の乾燥装置
CN107606264B (zh) 医用气量调节装置
CN107560205B (zh) 一种冰箱的开机方法和装置
JP5980754B2 (ja) 油冷式空気圧縮機及びその制御方法
US11480169B2 (en) Compressor valve and filter arrangement
CN107084116B (zh) 一种水润滑无油压缩机
US2818210A (en) Refrigerating apparatus
JP3771205B2 (ja) 圧縮機におけるアフタクーラドレンの排出方法及びアフタクーラドレン排出部の配管構造
JP2602100Y2 (ja) 圧縮機のアフタクーラドレン自動排出装置
US7607905B2 (en) Fluid compressing system having oil-releasing port being between oil chamber and oil-adjusting tank for returning oil
JP2873779B2 (ja) 消防ポンプにおける呼び水構造