JP2023087852A - 硬化性樹脂、硬化性樹脂組成物、及び、硬化物 - Google Patents

硬化性樹脂、硬化性樹脂組成物、及び、硬化物 Download PDF

Info

Publication number
JP2023087852A
JP2023087852A JP2021202369A JP2021202369A JP2023087852A JP 2023087852 A JP2023087852 A JP 2023087852A JP 2021202369 A JP2021202369 A JP 2021202369A JP 2021202369 A JP2021202369 A JP 2021202369A JP 2023087852 A JP2023087852 A JP 2023087852A
Authority
JP
Japan
Prior art keywords
curable resin
group
resin composition
cured product
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021202369A
Other languages
English (en)
Inventor
龍一 松岡
Ryuichi Matsuoka
立宸 楊
Lichen Yang
広義 神成
Hiroyoshi Kaminari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2021202369A priority Critical patent/JP2023087852A/ja
Publication of JP2023087852A publication Critical patent/JP2023087852A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】耐熱性(高ガラス転移温度)、および、誘電特性(低誘電特性)に優れるものとしうる硬化性樹脂および該樹脂組成物、その硬化物を提供する。【解決手段】下記一般式(1)で表される繰り返し単位と、(メタ)アクリロイルオキシ基、ビニルベンジルエーテル基、及び、アリルエーテル基からなる群より選択される少なくとも1種以上の反応性基を末端構造として有することを特徴とする硬化性樹脂。[化1]TIFF2023087852000018.tif33101(式中に表される置換基、及び、置換基数の詳細は、本文記載の通りである。)【選択図】なし

Description

本発明は、特定構造を有する硬化性樹脂、前記硬化性樹脂を含有する硬化性樹脂組成物、及び、前記硬化性樹脂組成物により得られる硬化物に関する。
近年の情報通信量の増加に伴い、高周波数帯域での情報通信が盛んに行われるようになり、より優れた電気特性、なかでも高周波数帯域での伝送損失を低減させるため、低誘電率と低誘電正接を有する電気絶縁材料が求められてきている。
さらにそれら電気絶縁材料が使われているプリント基板あるいは電子部品は、実装時に高温のハンダリフローに曝されるため、耐熱性に優れた高いガラス転移温度を示す材料が求められ、特に最近は、環境問題の観点から、融点の高い鉛フリーのハンダが使われるため、より耐熱性の高い電気絶縁材料の要求が高まってきている。
これらの要求に対して、従来より、種々の化学構造を持つビニル基含有の硬化性樹脂が提案されている。このような硬化性樹脂としては、例えば、ビスフェノールのジビニルベンジルエーテル、あるいはノボラックのポリビニルベンジルエーテルなどの硬化性樹脂、脂肪族不飽和を含有するポリフェニレンエーテル樹脂が提案されている(例えば、特許文献1及び2参照)。
しかし、これらのビニルベンジルエーテルは、誘電特性が十分に小さい硬化物を与えることができず、得られる硬化物は高周波数帯域で安定して使用するには問題があり、さらにビスフェノールのジビニルベンジルエーテルは耐熱性においても十分に高いとはいえないものであった。
上記特性を向上させたビニルベンジルエーテルに対して、誘電特性等の向上を図るため、特定構造のポリビニルベンジルエーテルがいくつか提案されている(例えば、特許文献3~5参照)。しかし、誘電正接を抑える試みや、耐熱性を向上させる試みがなされているが、これらの特性の向上は、未だ十分とは言えず、さらなる特性改善が望まれている。
このように、従来のポリビニルベンジルエーテルを含めビニル基含有の硬化性樹脂は、電気絶縁材料用途、特に高周波数対応の電気絶縁材料用途として必要な低い誘電正接と、鉛フリーのハンダ加工に耐えうる耐熱性とを兼備する硬化物を与えるものではなかった。
特開昭63-68537号公報 特開昭64-65110号公報 特表平1-503238号公報 特開平9-31006号公報 特開2005-314556号公報
従って、本発明が解決しようとする課題は、特定構造を有する硬化性樹脂を使用することで、耐熱性(高ガラス転移温度)、及び、誘電特性(低誘電特性)に優れた硬化物を提供することにある。
そこで、本発明者らは、上記課題を解決するため、鋭意検討した結果、耐熱性、及び、低誘電特性に寄与できる硬化性樹脂、及び、前記硬化性樹脂を含有する硬化性樹脂組成物により得られる硬化物が、耐熱性、及び、低誘電特性に優れることを見出し、本発明を完成するに至った。
即ち、本発明は、下記一般式(1)で表される繰り返し単位と、(メタ)アクリロイルオキシ基、ビニルベンジルエーテル基、及び、アリルエーテル基からなる群より選択される少なくとも1種以上の反応性基を末端構造として有することを特徴とする硬化性樹脂に関する。
Figure 2023087852000001
(式中、Ra及びRbは、それぞれ独立に、炭素数1~12のアルキル基、アリール基、アラルキル基、または、シクロアルキル基を表す。kは、0~3の整数を示す。Xは、炭化水素基を表す。Yは、脂環式基、芳香族基、または、複素環基を表す。)
本発明の硬化性樹脂は、上記一般式(1)が、下記一般式(1A)で表される繰り返し単位であることが好ましい。
Figure 2023087852000002
本発明の硬化性樹脂は、前記Yが、ベンゼン環であることが好ましい。
本発明の硬化性樹脂は、前記反応性基が、メタクリロイルオキシ基であることが好ましい。
本発明の硬化性樹脂は、前記硬化性樹脂の重量平均分子量が、500~50000であることが好ましい。
本発明は、前記硬化性樹脂を含有する硬化性樹脂組成物に関する。
本発明は、前記硬化性樹脂組成物を硬化反応させて得られる硬化物に関する。
本発明の硬化性樹脂は、耐熱性、及び、低誘電特性に寄与できるため、前記硬化性樹脂を含有する硬化性樹脂組成物より得られる硬化物が、耐熱性(高ガラス転移温度)、及び、低誘電特性に優れ、有用である。
以下、本発明を詳細に説明する。
<硬化性樹脂>
本発明は、下記一般式(1)で表される繰り返し単位と、(メタ)アクリロイルオキシ基、ビニルベンジルエーテル基、及び、アリルエーテル基からなる群より選択される少なくとも1種以上の反応性基を末端構造として有することを特徴とする硬化性樹脂に関する。
Figure 2023087852000003
上記一般式(1)中、Ra及びRbは、それぞれ独立に、炭素数1~12のアルキル基、アリール基、アラルキル基、または、シクロアルキル基を表す。kは、0~3の整数を示す。Xは、炭化水素基を表す。Yは、脂環式基、芳香族基、または、複素環基を表す。
前記硬化性樹脂が、上記一般式(1)で表される繰り返し単位と、(メタ)アクリロイルオキシ基、ビニルベンジルエーテル基、及び、アリルエーテル基からなる群より選択される少なくとも1種以上の反応性基を末端構造として有することにより、前記硬化性樹脂中に含まれるエーテル結合に比べて、分子運動性が低いため、低誘電特性となり、さらに、前記反応性基に隣接した箇所に、置換基であるRaやRb(特に、Ra)が存在することにより、前記反応性基由来の極性が、Raの立体障害により拘束され、より誘電正接が低い硬化物を得ることができ、好ましい。また、前記硬化性樹脂中に、反応性基を有することで、得られる硬化物が耐熱性に優れ、更に、分子運動性の低いエーテル結合を有することで、低誘電特性だけでなく、高ガラス転移温度を有する硬化物を得ることができる。
上記一般式(1)中、Ra及びRbは、それぞれ独立に、炭素数1~12のアルキル基、アリール基、アラルキル基、または、シクロアルキル基を表し、好ましくは、炭素数1~4のアルキル基、アリール基、または、シクロアルキル基である。前記Ra及びRbが炭素数1~12のアルキル基等であることで、上記一般式(1)中のベンゼン環の近傍の平面性が低下し、結晶性低下により、溶剤溶解性が向上するとともに、融点が低くなり、好ましい態様となる。また、前記反応性基に隣接する位置に、置換基であるRaやRb(特に、Ra)が存在することにより、前記反応性基由来の極性が、Raの立体障害により拘束され、更に誘電正接が低い硬化物を得ることができ、好ましい。
上記一般式(1)中、kは、0~3の整数を示し、好ましくは、0~1の整数である。kが前記範囲内にあることにより、上記一般式(1)中のベンゼン環の近傍の平面性が低下し、結晶性低下により、溶剤溶解性が向上するとともに、融点が低くなり、好ましい態様となる。また、kが0ではない場合、つまり、置換基であるRbが存在し、前記反応性基の近傍に存在する場合には、前記反応性基由来の極性が、Rbの立体障害により拘束され、誘電正接が低い硬化物を得ることができ、好ましい。
上記一般式(1)中、Xは、炭化水素基であればよいが、工業原料の入手のしやすさから、下記一般式(2)~(4)の構造で表されることが好ましく、特に下記一般式(2)の構造であることが、耐熱性と低誘電特性のバランスがよく、より好ましい。
Figure 2023087852000004
上記一般式(2)~(4)中、R及びRは、それぞれ独立に、水素原子、炭素数1~12のアルキル基、アリール基、アラルキル基、または、シクロアルキル基で表され、あるいは、R及びRが共に結合し環状骨格を形成していても良い。nは0~2の整数を示し、好ましくは、0~1の整数である。nが前記範囲内にあることにより、高耐熱性となり、好ましい態様となる。
上記一般式(1)中、Yは、高耐熱性の硬化物を得るため、脂環式基、芳香族基、または、複素環基で表されるが、好ましくは、下記一般式(5)~(9)で表される構造であり、特に下記一般式(5)の構造(ベンゼン環)が、コスト面、耐熱性、及び、低誘電特性の観点から、更に好ましい。
Figure 2023087852000005
前記硬化性樹脂は、(メタ)アクリロイルオキシ基、ビニルベンジルエーテル基、及び、アリルエーテル基からなる群より選択される少なくとも1種以上の反応性基を末端構造として有し、好ましくは、前記末端構造として、メタクリロイルオキシ基が、得られる硬化物が低誘電正接となる点でより好ましい。前記メタクリロイルオキシ基は、エステル結合を形成するのに対して、ビニルベンジルエーテル基、アリルエーテル基は、エーテル結合を形成し、分子運動性が高く、誘電正接が高くなる傾向にある。
本発明の硬化性樹脂は、上記一般式(1)が、下記一般式(1A)で表される繰り返し単位であることが好ましい。
Figure 2023087852000006
上記一般式(1A)中、Rcは水素原子、または、メチル基を表すことが好ましく、水素原子であることがより好ましい。前記Rcが水素原子等であることにより、低極性となり、好ましい態様となる。なお、上記一般式(1A)中、Ra、Rb、及び、Yは、上記一般式(1)の場合と同様である。
前記硬化性樹脂は、上記一般式(1)で表される繰り返し単位(または、上記一般式(1A)で表される繰り返し単位)と、前記反応性基を末端構造として有することを特徴とするが、前記硬化性樹脂の特性を損なわない範囲であれば、その他繰り返し単位(構造)を含んでも良い。
前記硬化性樹脂の重量平均分子量(Mw)は、500~50000であることが好ましく、1000~10000であることがより好ましく、1500~5000が更に好ましい。前記範囲内であると、溶剤溶解性が向上し、加工作業性が良好であり、好ましい。
<硬化性樹脂の製造方法>
前記硬化性樹脂の製造方法は特に限定されるものではないが、好ましくは、ジヒドロキシ芳香族化合物、または、ジヒドロキシ芳香族化合物のアルカリ金属塩とハロゲン化アリールとを銅触媒の存在下において、50~250℃の温度で1~20時間攪拌しながら縮合させることが挙げられる。
前記ジヒドロキシ芳香族化合物としては、例えば、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,6-ジメチルフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5,6-トリメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-2,3,6-トリメチルフェニル)プロパン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)メタン、ビス(4-ヒドロキシ-3,6-ジメチルフェニル)メタン、ビス(4-ヒドロキシ-3-メチルフェニル)メタン、ビス(4-ヒドロキシ-3,5,6-トリメチルフェニル)メタン、ビス(4-ヒドロキシ-2,3,6-トリメチルフェニル)メタン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)ブタン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)エタン、1,3-ビス(2-(4-ヒドロキシ-3,5-ジメチルフェニル)-2-プロピル)ベンゼン、1,4-ビス(2-(4-ヒドロキシ-3,5-ジメチルフェニル)-2-プロピル)ベンゼン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)シクロヘキサン、2,2-ビス(2-ヒドロキシ-5-ビフェニルイル)プロパン、2,2-ビス(4-ヒドロキシ-3-シクロヘキシル-6-メチルフェニル)プロパンなどが挙げられる。中でも、コストの観点から、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)メタンが好ましい。
前記ヒドロキシ芳香族化合物のアルカリ金属塩としては、例えば、ナトリウム塩、カリウム塩、リチウム塩などが挙げられる。中でも、コストの観点から、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)メタンのナトリウム塩、カリウム塩、リチウム塩が好ましい。
前記ヒドロキシ芳香族化合物のアルカリ金属塩は、ジヒドロキシ芳香族化合物とアルカリ金属水溶液を混合し、加熱により水を留去する工程を経て調製してもよい。前記アルカリ金属水溶液は、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどが挙げられる。
前記ハロゲン化アリールとしては、例えば、ジクロロベンゼン、ジブロモベンゼン、ジヨードベンゼン、ジクロロナフタレン、ジブロモナフタレン、ジヨードナフタレン、ジクロロビフェニル、ジブロモビフェニル、ジヨードビフェニル、ジクロロジフェニルエーテル、ジブロモジフェニルエーテル、ジヨードジフェニルエーテルなどが挙げられる。中でも、溶剤溶解性の観点から、クロロベンゼン、ジブロモベンゼン、ジヨードベンゼン、ジクロロナフタレン、ジブロモナフタレン、ジヨードナフタレンが好ましい。
前記銅含有触媒として、例えば、銅粉、銅(I)化合物(すなわち、第一銅化合物)及び銅(II)化合物(すなわち、第二銅化合物)が挙げられる。これらの化合物は酸化物又は塩であってもよい。銅含有触媒の具体的な例として、酸化銅(I)、酸化銅(II)、塩化第一銅、塩化第二銅、臭化第一銅、臭化第二銅、よう化第一銅、よう化第二銅、酢酸第二銅、硫酸第一銅、硫酸第二銅、銅アセチルアセトネートなどが挙げられる。中でも、反応性の観点から、酸化銅(I)、酸化銅(II)、塩化第一銅、塩化第二銅が好ましい。
前記銅含有触媒の添加量としては、ジヒドロキシ芳香族化合物(プロトン化物または塩であってもよい)のモル数に対して、0.01~2倍モルが好ましく、0.1~1倍モルがより好ましい。なお、銅含有触媒の添加量が0.01倍モル以上であると、反応性が高くなり、反応時間を短縮できるため好ましい。一方、2倍モル以下であると、反応コストを抑制できるため好ましい。
なお、前記銅含有触媒は、場合により配位子と結合させてもよい。配位子の例としては、1,10-フェナントロリン、ジメチルグリシン、1-ブチルイミダゾール、1-メチルイミダゾール及びDL-アラニンなどが挙げられるが、この限りではない。銅触媒にこれら配位子を配位させる場合は、銅含有触媒に対する配位子のモル数は1:10~10:1が好ましい。
前記硬化性樹脂の末端構造として、(メタ)アクリロイルオキシ基、ビニルベンジルエーテル基、及び、アリルエーテル基からなる群より選択される少なくとも1種以上の反応性基を有するが、これら反応性基を導入するために、反応性基導入剤を用いることができる。前記反応性基導入剤としては、例えば、無水(メタ)アクリル酸、(メタ)アクリル酸クロリド、クロロメチルスチレン、クロロスチレン、塩化アリル、及び、臭化アリル等を反応させることができ、特に前記末端構造として、メタクリロイルオキシ基を導入した硬化性樹脂を含有する硬化性樹脂組成物により得られる硬化物は、低誘電正接となる点から、無水(メタ)アクリル酸、または、(メタ)アクリル酸クロリドを用いることがより好ましい。これらを反応させることにより、硬化性樹脂中に反応性基を導入することができ、また、低誘電率、低誘電正接な熱硬化性となり、好ましい態様となる。
前記無水(メタ)アクリル酸としては、無水アクリル酸と無水メタクリル酸が挙げられる。前記(メタ)アクリル酸クロリドとしては、メタクリル酸クロリドとアクリル酸クロリドが挙げられる。また、クロロメチルスチレンとしては、例えば、p-クロロメチルスチレン、m-クロロメチルスチレンが挙げられ、クロロスチレンとしては、例えば、p-クロロスチレン、m-クロロスチレンが挙げられる。また、塩化アリルとしては、例えば、3-クロロ-1-プロペンが挙げられ、臭化アリルとしては、例えば、3-ブロモ-1-プロペンが挙げられる。これらはそれぞれ単独で用いても混合して用いてもよい。中でも、より低誘電正接の硬化物が得られる無水メタクリル酸や、メタクリル酸クロリドを用いることが特に好ましい。
<硬化性樹脂組成物>
本発明は、前記硬化性樹脂を含有する硬化性樹脂組成物に関する。前記硬化性樹脂は溶剤溶解性に優れるため、硬化性樹脂組成物の調製が容易で、ハンドリング性に優れ、前記硬化性樹脂を含有する前記硬化性樹脂組成物を用いて得られる硬化物は、耐熱性、及び、低誘電特性に優れ、好ましい態様となる。
〔その他樹脂等〕
本発明の硬化性樹脂組成物には、前記硬化性樹脂に加えて、その他樹脂、硬化剤、硬化促進剤等を、本発明の目的を損なわない範囲で特に限定なく使用できる。前記硬化性樹脂が、後述するが、硬化剤を配合することなく、加熱等により硬化物を得ることができるが、例えば、その他樹脂等を合わせて配合する際には、硬化剤や硬化促進剤などを配合して、使用することができる。
なお、本発明の硬化性樹脂組成物には、前記硬化性樹脂を含むが、前記硬化性樹脂の中で末端構造の反応性基として、アリルエーテル基を導入した場合、反応性基が(メタ)アクリロイルオキシ基、ビニルベンジルエーテル基とは異なり、単独重合(架橋・自己硬化)することができない(単独では硬化物を得ることができない)ため、前記アリルエーテル基の場合は、硬化剤や硬化促進剤などを使用することが必要となる。
〔その他樹脂〕
前記その他樹脂としては、例えば、アルケニル基含有化合物、例えば、ビスマレイミド類、アリルエーテル系化合物、アリルアミン系化合物、トリアリルシアヌレート、アルケニルフェノール系化合物、ビニル基含有ポリオレフィン化合物等を添加することもできる。また、その他の熱硬化性樹脂、例えば、熱硬化性ポリイミド樹脂、エポキシ樹脂、フェノール樹脂、活性エステル樹脂、ベンゾオキサジン樹脂、シアヌネート樹脂等も目的に応じて適宜配合することも可能である。特に、誘電正接を低減させることから、マレイミド樹脂、シアネートエステル樹脂、ポリフェニレンエーテル樹脂、及び、ビニル樹脂が好ましい
前記シアネートエステル樹脂としては、例えば、ビス(4-シアナトフェニル)エタン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-シアナトフェニル)メタン、2,2-ビス(4-シアナトフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、α,α’-ビス(4-シアナトフェニル)-m-ジイソプロピルベンゼン、フェノール付加ジシクロペンタジエン重合体のシアネートエステル化物等が挙げられる。
前記マレイミド樹脂としては、例えば、4,4'-ジフェニルメタンビスマレイミド、m-フェニレンビスマレイミド、ビスフェノール A ジフェニルエーテルビスマレイミド、3,3'-ジメチル-5,5'-ジエチル-4,4'-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6'-ビスマレイミド- (2,2,4-トリメチル)ヘキサンが挙げられる。
前記ポリフェニレンエーテル樹脂としては、例えば、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2,6-ジメチル-1,4-フェニレン)エーテルとポリスチレンのアロイ化ポリマー、ポリ(2,6-ジメチル-1,4-フェニレン)エーテルとスチレン-ブタジエンコポリマのアロイ化ポリマー等が挙げられる。
前記ビニル樹脂としては、例えば、トリアリルイソシアヌレート等のトリアルケニルイソシアヌレート化合物、繰り返し単位が1,2-ブタジエン、シス-1,4-ブタジエン、トランス-1,4-ブタジエンのポリブタジエン樹脂、分子中にビニルベンジル基を有するスチレン、ジビニルベンゼン等のビニルベンジル化合物等が挙げられる。
〔硬化剤〕
前記硬化剤としては、例えば、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノール系化合物、シアネートエステル化合物などが挙げられる。これらの硬化剤は、単独でも2種類以上の併用でも構わない。
〔硬化促進剤〕
前記硬化促進剤としては、種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール類、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、トリフェニルフォスフィン等のリン系化合物、又は、イミダゾール類が好ましい。これらの硬化促進剤は、単独でも2種類以上の併用でも構わない。
また、前記硬化促進剤としては、前記硬化性樹脂組成物に、その他樹脂として、エポキシ樹脂を使用する場合には、例えば、有機ホスフィン化合物:TPP、TPP-K、TPP-S、TPTP-S(北興化学工業(株))、アミン類:ジシアンジアミド、ジアミノジフェニルエタン、グアニル尿素、ノバキュア(旭化成工業(株))、フジキュア(富士化成工業(株))などのアミンアダクト化合物、1,8-ジアザビシクロ[5,4,0]ウンデセン-7、4-ジメチルアミノピリジン(DMAP)、ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール等、イミダゾール類:2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、ベンゾイミダゾール、キュアゾール2MZ、2E4MZ、C11Z、C11Z-CN、C11Z-CNS、C11Z-A、2MZ-OK、2MA-OK、2PHZ(四国化成工業(株))を用いることができ、その他樹脂として、マレイミド樹脂を使用する場合には、例えば、酸性触媒:p-トルエンスルホン酸、アミン化合物:トリエチルアミン、ピリジン、トリブチルアミン、第3級アミン化合物;第4級アンモニウム化合物、イミダゾール化合物、リン系化合物、有機過酸化物:ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3,2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、カルボン酸塩:マンガン、コバルト、亜鉛を用いることができ、その他樹脂として、シアネートエステル樹脂を使用する場合には、イミダゾール化合物及びその誘導体、マンガン、コバルト、亜鉛等のカルボン酸塩;マンガン、コバルト、亜鉛等の遷移金属のアセチルアセトン錯体等の有機金属化合物などを用いることができる。
〔難燃剤〕
本発明の硬化性樹脂組成物には、必要に応じて、難燃性を発揮させるために、難燃剤を配合することができ、中でも、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合することが好ましい。前記非ハロゲン系難燃剤として、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、これらの難燃剤は、単独でも2種類以上の併用でも構わない。
〔充填剤〕
本発明の硬化性樹脂組成物には、必要に応じて、無機質充填剤を配合することができる。前記無機質充填剤として、例えば、シリカ(溶融シリカ、結晶シリカ)、アルミナ、硫酸バリウム、タルク、クレニ、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられる。またシランカップリング剤で表面処理をしてもよい。前記無機充填剤の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め、かつ、成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に、球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。また、前記硬化性樹脂組成物を以下に詳述する導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。
〔その他配合剤〕
本発明の硬化性樹脂組成物は、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。
<硬化物>
本発明は、前記硬化性樹脂組成物を硬化反応させた硬化物に関する。前記硬化性樹脂組成物は、前記硬化性樹脂単独、もしくは、前記硬化性樹脂に加えて、上述した硬化剤などの各成分を均一に混合することにより得られ、従来知られている方法と同様の方法で容易に硬化物とすることができる。前記硬化物としては、積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。
前記硬化反応としては、熱硬化や紫外線硬化反応などが挙げられ、中でも熱硬化反応としては、無触媒下でも容易に行われるが、さらに速く反応させたい場合には、有機過酸化物、アゾ化合物のような重合開始剤やホスフィン系化合物、第3級アミンの様な塩基性触媒の添加が効果的である。例えば、ベンゾイルパーオキシド、ジクミルパーオキシド、アゾビスイソブチロニトリル、トリフェニルフォスフィン、トリエチルアミン、イミダゾール類等が挙げられる。
<用途>
本発明の硬化性樹脂組成物により得られる硬化物が、耐熱性、及び、低誘電特性に優れることから、耐熱部材や電子部材に好適に使用可能である。特に、プリプレグ、回路基板、半導体封止材、半導体装置、ビルドアップフィルム、ビルドアップ基板、接着剤やレジスト材料などに好適に使用できる。また、繊維強化樹脂のマトリクス樹脂にも好適に使用でき、高耐熱性のプリプレグとして特に適している。前記硬化性樹脂組成物に含まれる前記硬化性樹脂は、各種溶剤への優れた溶解性を表すことから塗料化が可能である。こうして得られる耐熱部材や電子部材は、各種用途に好適に使用可能であり、例えば、産業用機械部品、一般機械部品、自動車・鉄道・車両等部品、宇宙・航空関連部品、電子・電気部品、建築材料、容器・包装部材、生活用品、スポーツ・レジャー用品、風力発電用筐体部材等が挙げられるが、これらに限定される物ではない。
以下、本発明の硬化性樹脂組成物を用いて製造される代表的な製品について例を挙げて説明する。
<プリプレグ>
プリプレグとしては、前記硬化性樹脂組成物を有機溶剤で希釈したものであるワニスを含むことが好ましい。前記ワニス(樹脂ワニス)を補強基材に含浸させ、該補強基材を熱処理することにより、前記硬化性樹脂組成物を半硬化(あるいは未硬化)させることで、プリプレグとすることができる。その熱処理の条件としては、使用する有機溶剤、触媒、各種添加剤の種類や使用量などに応じて、適宜選択されるが、通常、80~220℃の温度で、3分~30分といった条件で行われる。前記ワニス(樹脂ワニス)を含浸させる補強基材としては、ガラス繊維、ポリエステル繊維、ポリアミド繊維等の無機繊維、有機繊維からなる織布や不織布、またはマット、紙等であり、これらを単独、あるいは、組み合わせて用いることができる。硬化性樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の硬化性樹脂組成物(中の樹脂分)が20~60質量%となるように調製することが好ましい。
<積層体>
積層体としては、前記硬化性樹脂組成物を硬化させた硬化物を含むことが好ましい。前記積層体は、基材と前記硬化物を含む層を有し、前記基材としては、金属やガラス等の無機材料や、プラスチックや木材といった有機材料等、用途によって適時使用すればよく、例えば、ガラス繊維:Eガラス、Dガラス、Sガラス、Qガラス、球状ガラス、NEガラス、Lガラス、Tガラス、無機繊維:クォーツ、全芳香族ポリアミド:ポリパラフェニレンテレフタラミド(ケブラー(登録商標)、デュポン株式会社製)、コポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド(テクノーラ(登録商標)、帝人テクノプロダクツ株式会社製)
、ポリエステル:2,6-ヒドロキシナフトエ酸・パラヒドロキシ安息香酸(ベクトラン(登録商標)、株式会社クラレ製)、ゼクシオン(登録商標、KBセーレン製)、有機繊維:ポリパラフェニレンベンズオキサゾール(ザイロン(登録商標)、東洋紡績株式会社製)、ポリイミドなどが挙げられる。
前記積層体の形状としても、平板、シート状、あるいは3次元構造を有していても立体状であっても構わない。全面にまたは一部に曲率を有するもの等、目的に応じた任意の形状であってよい。また、基材の硬度、厚み等にも制限はない。また、前記硬化物を基材とし、更に硬化物を積層しても構わない。
前記積層体を回路基板や半導体パッケージ基板に使用する場合、金属箔を積層することが好ましく、金属箔としては銅箔、アルミ箔、金箔、銀箔などが挙げられ、加工性が良好なことから銅箔を用いることが好ましい。
前記積層体において、前記硬化物を含む層(硬化物層)は、基材に対して直接塗工や成形により形成してもよく、すでに成形したものを積層させても構わない。直接塗工する場合、塗工方法としては特に限定は無く、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、インクジェット法等が挙げられる。直接成形する場合は、インモールド成形、インサート成形、真空成形、押出ラミネート成形、プレス成形等が挙げられる。
また、前記硬化物に対して、前記基材となりうる前駆体を塗工して硬化させることで積層させてもよく、前記基材となりうる前駆体または本発明の硬化性樹脂組成物が未硬化あるいは半硬化の状態で接着させた後に硬化させてもよい。前記基材となりうる前駆体としては特に限定はなく、各種硬化性樹脂組成物等を用いることもできる。
<回路基板>
回路基板としては、前記プリプレグを含有することが好ましい。具体的には、本発明の硬化性樹脂組成物から回路基板を得る方法としては、上記プリプレグを、常法により積層し、適宜銅箔を重ねて、1~10MPaの加圧下に170~300℃で10分~3時間、加熱圧着成型させる方法が挙げられる。
<半導体封止材>
半導体封止材としては、前記硬化性樹脂組成物を含有することが好ましい。具体的には、本発明の硬化性樹脂組成物から半導体封止材を得る方法としては、前記硬化性樹脂組成物に、更に任意成分である硬化促進剤、および無機充填剤等の配合剤とを必要に応じて押出機、ニ-ダ、ロ-ル等を用いて均一になるまで充分に溶融混合する方法が挙げられる。その際、無機充填剤としては、通常、溶融シリカが用いられるが、パワートランジスタ、パワーIC用高熱伝導半導体封止材として用いる場合は、溶融シリカよりも熱伝導率の高い結晶シリカ,アルミナ,窒化ケイ素などの高充填化、または溶融シリカ、結晶性シリカ、アルミナ、窒化ケイ素などを用いるとよい。その充填率は、硬化性樹脂組成物100質量部当たり、無機充填剤を30~95質量部の範囲で用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上がより好ましく、80質量部以上であることがさらに好ましい。
<半導体装置>
半導体装置としては、前記半導体封止材を加熱硬化した硬化物を含むことが好ましい。具体的には、本発明の硬化性樹脂組成物から半導体装置を得る半導体パッケージ成形としては、上記半導体封止材を注型、または、トランスファー成形機、射出成形機などを用いて成形し、さらに50~250℃で、2~10時間の間、加熱硬化する方法が挙げられる。
<ビルドアップ基板>
本発明の硬化性樹脂組成物からビルドアップ基板を得る方法としては、工程1~3を経由する方法が挙げられる。工程1では、まず、ゴム、フィラーなどを適宜配合した前記硬化性樹脂組成物を、回路を形成した回路基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。工程2では、必要に応じて、硬化性樹脂組成物が塗布された回路基板に所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、前記基板に凹凸を形成させ、銅などの金属をめっき処理する。工程3では、工程1~2の操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップしてビルドアップ基板を成形する。なお、前記工程において、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行うとよい。また、本発明におけるビルドアップ基板は、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170~300℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
<ビルドアップフィルム>
ビルドアップフィルムとしては、前記硬化性樹脂組成物を含有することが好ましい。本発明の硬化性樹脂組成物からビルドアップフィルムを得る方法としては、例えば、支持フィルム上に硬化性樹脂組成物を塗布したのち、乾燥させて、支持フィルムの上に樹脂組成物層を形成する方法が挙げられる。本発明の硬化性樹脂組成物をビルドアップフィルムに用いる場合、該フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70~140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう前記各成分を配合することが好ましい。
ここで、回路基板のスルーホールの直径は通常0.1~0.5mm、深さは通常0.1~1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。
前記したビルドアップフィルムを製造する具体的な方法としては、有機溶剤を配合してワニス化した樹脂組成物を調製した後、支持フィルム(Y)の表面に、前記ワニス化した樹脂組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥して、樹脂組成物層(X)を形成する方法が挙げられる。
ここで用いる有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を用いることが好ましく、また、不揮発分30~60質量%となる割合で使用することが好ましい。
なお、形成される前記樹脂組成物層(X)の厚さは、通常、導体層の厚さ以上とする必要がある。回路基板が有する導体層の厚さは通常5~70μmの範囲であるので、前記樹脂組成物層(X)の厚さは10~100μmの厚みを有するのが好ましい。なお、本発明における前記樹脂組成物層(X)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。
前記支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、前記支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。支持フィルムの厚さは特に限定されないが、通常10~150μmであり、好ましくは25~50μmの範囲で用いられる。また保護フィルムの厚さは1~40μmとするのが好ましい。
前記支持フィルム(Y)は、回路基板にラミネートした後に、あるいは、加熱硬化することにより、絶縁層を形成した後に、剥離される。ビルドアップフィルムを構成する樹脂組成物層が加熱硬化した後に支持フィルム(Y)を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。
なお、前記のようにして得られたビルドアップフィルムから多層プリント回路基板を製造することができる。例えば、前記樹脂組成物層(X)が保護フィルムで保護されている場合はこれらを剥離した後、前記樹脂組成物の層(X)を回路基板に直接接するように回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。また必要により、ラミネートを行う前にビルドアップフィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。ラミネートの条件は、圧着温度(ラミネート温度)を70~140℃とすることが好ましく、圧着圧力を1~11kgf/cm(9.8×10~107.9×10N/m)とすることが好ましく、空気圧を20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。
<導電ペースト>
本発明の硬化性樹脂組成物から導電ペーストを得る方法としては、例えば、導電性粒子を該組成物中に分散させる方法が挙げられる。上記導電ペーストは、用いる導電性粒子の種類によって、回路接続用ペースト樹脂組成物や異方性導電接着剤とすることができる。
以下に、本発明を実施例、比較例により具体的に説明するが、「部」及び「%」は特に断わりのない限り、質量基準である。なお、以下に示す条件で、硬化性樹脂、及び、前記硬化性樹脂を用いて得られる硬化物を調製し、更に得られた硬化物について、以下の条件にて測定・評価を行った。
<GPC測定(硬化性樹脂の重量平均分子量(Mw)の評価)>
以下の測定装置、測定条件を用いて測定し、以下に示す合成方法で得られた硬化性樹脂のGPCチャートを得た。前記GPCチャートの結果より、硬化性樹脂の重量平均分子量(Mw)を算出した(GPCチャートは図示せず)。
測定装置 :東ソー株式会社製「HLC-8320 GPC」
カラム:東ソー株式会社製ガードカラム「HXL-L」+東ソー株式会社製「TSK-GEL G2000HXL」+東ソー株式会社製「TSK-GEL G2000HXL」+東ソー株式会社製「TSK-GEL G3000HXL」+東ソー株式会社製「TSK-GEL G4000HXL」
検出器:RI(示差屈折計)
データ処理:東ソー株式会社製「GPCワークステーション EcoSEC-WorkStation」
測定条件:カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準:前記「GPCワークステーション EcoSEC-WorkStation」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A-500」
東ソー株式会社製「A-1000」
東ソー株式会社製「A-2500」
東ソー株式会社製「A-5000」
東ソー株式会社製「F-1」
東ソー株式会社製「F-2」
東ソー株式会社製「F-4」
東ソー株式会社製「F-10」
東ソー株式会社製「F-20」
東ソー株式会社製「F-40」
東ソー株式会社製「F-80」
東ソー株式会社製「F-128」
試料:実施例及び比較例で得られた硬化性樹脂の固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
(実施例1)
ディーン・スタークトラップ、冷却器、窒素入口、攪拌機、及び温度計を取り付けた反応容器に、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン113.8質量部、48%水酸化ナトリウム66.7質量部、キシレン200質量部を添加し、140℃に加熱して水とキシレンの共沸混合物を集めた。4時間後完全に脱水されたら、反応混合物の温度を200℃に上げキシレンを蒸留により除いた。次いで、N-メチル-2-ピロリドン200質量部、1,4-ジブロモベンゼン70.8質量部、塩化銅(I)0.396質量部を添加し、200℃で20時間攪拌した。反応混合物を60℃に冷却し、N-メチル-2-ピロリドン100質量部、トリエチルアミン20.2質量部、メタクリル酸クロリド20.9質量部を添加し、60℃で10時間攪拌した。次に反応混合物を、高速で攪拌されたメタノール2Lと酢酸100mlの混合液中に少しずつ注ぎ込み、沈殿物を得た。沈殿物をメタノール1Lで2回洗浄し、次に熱水1Lで2回洗浄し、次に80℃で減圧乾燥し、下記繰り返し単位を有し、末端にメタクリロイルオキシ基を有する重量平均分子量が2700の硬化性樹脂を得た。
Figure 2023087852000007
(実施例2)
2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパンを、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)メタン102.5質量部に変更した以外は、実施例1と同様の方法で合成を実施し、下記繰り返し単位を有し、末端にメタクリロイルオキシ基を有する重量平均分子量が2600の硬化性樹脂を得た。
Figure 2023087852000008
(実施例3)
2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパンを、2,2-ビス(4-ヒドロキシ-3-シクロヘキシル-6-メチルフェニル)プロパン157.0質量部に変更した以外は、実施例1と同様の方法で合成を実施し、下記繰り返し単位を有し、末端にメタクリロイルオキシ基を有する重量平均分子量が2900の硬化性樹脂を得た。
Figure 2023087852000009
(実施例4)
2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパンを、1,4-ビス(2-(4-ヒドロキシ-3,5-ジメチルフェニル)-2-プロピル)ベンゼン161.0質量部に変更した以外は、実施例1と同様の方法で合成を実施し、下記繰り返し単位を有し、末端にメタクリロイルオキシ基を有する重量平均分子量が3000硬化性樹脂を得た。
Figure 2023087852000010
(実施例5)
1,4-ジブロモベンゼンを、4,4’-ジブロモジフェニルエーテル98.4質量部に変更した以外は、実施例1と同様の方法で合成を実施し、下記繰り返し単位を有し、末端にメタクリロイルオキシ基を有する重量平均分子量が3200硬化性樹脂を得た。
Figure 2023087852000011
(実施例6)
メタクリル酸クロリドを、クロロメチルスチレン30.5質量部に変更した以外は、実施例1と同様の方法で合成を実施し、下記繰り返し単位を有し、末端にビニルベンジルエーテル基を有する重量平均分子量が2700硬化性樹脂を得た。
Figure 2023087852000012
(実施例7)
メタクリル酸クロリドを、塩化アリル15.3質量部に変更した以外は、実施例1と同様の方法で合成を実施し、下記繰り返し単位を有し、末端にアリルエーテル基を有する重量平均分子量が2700硬化性樹脂を得た。
Figure 2023087852000013
(比較例1)
2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパンを、2,2-ビス(4-ヒドロキシフェニル)プロパン91.3質量部に変更した以外は、実施例1と同様の方法で合成を実施し、下記繰り返し単位を有し、末端にメタクリロイルオキシ基を有する重量平均分子量が2600の硬化性樹脂を得た。
Figure 2023087852000014
<樹脂フィルム(硬化物)の作製>
実施例、及び、比較例で得られた硬化性樹脂を5cm角の正方形の型枠に入れ、ステンレス板で挟み、真空プレスにセットした。常圧常温下で1.5MPaまで加圧した。次に10torrまで減圧後、熱硬化温度より50℃高い温度まで30分かけて加温した。さらに2時間静置後、室温まで徐冷し、平均膜厚が100μmの均一な樹脂フィルム(硬化物)を得た。
<誘電特性の評価>
得られた樹脂フィルム(硬化物)の面内方向の誘電特性について、キーサイト・テクノロジー社のネットワークアナライザーN5247Aを用いて、スプリットポスト誘電体共振器法により、周波数10GHzについて誘電率、及び、誘電正接を測定した。
前記誘電正接としては、10.0×10-3以下であれば、実用上問題がなく、好ましくは、3.0×10-3以下であり、より好ましくは2.5×10-3以下である。
また、前記誘電率としては、3以下であれば、実用上問題がなく、好ましくは、2.7以下であることが好ましく、より好ましくは、2.5以下である。
<耐熱性の評価(ガラス転移温度)>
得られた樹脂フィルム(硬化物)について、パーキンエルマー製DSC装置(Pyris Diamond)を用い、30℃から20℃/分の昇温条件で測定した際に観測される発熱ピーク温度(熱硬化温度)の観測後、それより50℃高い温度で30分間保持した。ついで、20℃/分の降温条件で30℃まで試料を冷却し、さらに、再度20℃/分の昇温条件で昇温し、樹脂フィルム(硬化物)のガラス転移点温度(Tg)(℃)を測定した。
前記ガラス転移点温度(Tg)としては、100℃以上であれば、実用上問題がなく、好ましくは、150℃以上、より好ましくは、190℃以上である。
<耐熱性の評価(10%重量減少温度)>
得られた樹脂フィルム(硬化物)について、株式会社リガク製TG-DTA装置(TG-8120)を用いて、20mL/分の窒素流下、20℃/分の昇温速度で測定を行い、5%重量減少温度(Td5)を測定した。
Figure 2023087852000015
上記表1の評価結果より、全ての実施例においては、硬化性樹脂を使用することで得られる硬化物は、耐熱性、及び、低誘電特性の両立を図ることができ、実用上問題のないレベルであることが確認できた。

Claims (7)

  1. 下記一般式(1)で表される繰り返し単位と、(メタ)アクリロイルオキシ基、ビニルベンジルエーテル基、及び、アリルエーテル基からなる群より選択される少なくとも1種以上の反応性基を末端構造として有することを特徴とする硬化性樹脂。
    [化1]

    Figure 2023087852000016

    (式中、Ra及びRbは、それぞれ独立に、炭素数1~12のアルキル基、アリール基、アラルキル基、または、シクロアルキル基を表す。kは、0~3の整数を示す。Xは、炭化水素基を表す。Yは、脂環式基、芳香族基、または、複素環基を表す。)
  2. 上記一般式(1)が、下記一般式(1A)で表される繰り返し単位である請求項1に記載の硬化性樹脂。
    [化2]

    Figure 2023087852000017

    (式中、Rcは水素原子、または、メチル基を表す。)
  3. 前記Yがベンゼン環である請求項1または2に記載の硬化性樹脂。
  4. 前記反応性基が、メタクリロイルオキシ基である請求項1~3のいずれか1項に記載の硬化性樹脂。
  5. 前記硬化性樹脂の重量平均分子量が、500~50000である請求項1~4のいずれか1項に記載の硬化性樹脂。
  6. 請求項1~5のいずれか1項に記載の硬化性樹脂を含有することを特徴とする硬化性樹脂組成物。
  7. 請求項6に記載の硬化性樹脂組成物を硬化反応させたことを特徴とする硬化物。
JP2021202369A 2021-12-14 2021-12-14 硬化性樹脂、硬化性樹脂組成物、及び、硬化物 Pending JP2023087852A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021202369A JP2023087852A (ja) 2021-12-14 2021-12-14 硬化性樹脂、硬化性樹脂組成物、及び、硬化物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021202369A JP2023087852A (ja) 2021-12-14 2021-12-14 硬化性樹脂、硬化性樹脂組成物、及び、硬化物

Publications (1)

Publication Number Publication Date
JP2023087852A true JP2023087852A (ja) 2023-06-26

Family

ID=86899726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021202369A Pending JP2023087852A (ja) 2021-12-14 2021-12-14 硬化性樹脂、硬化性樹脂組成物、及び、硬化物

Country Status (1)

Country Link
JP (1) JP2023087852A (ja)

Similar Documents

Publication Publication Date Title
KR101710854B1 (ko) N-치환 말레이미드기를 갖는 폴리페닐렌에테르 유도체, 및 그것을 사용한 열경화성 수지 조성물, 수지 바니시, 프리프레그, 금속 피복 적층판 및 다층 프린트 배선판
JP7229422B2 (ja) 硬化性樹脂、硬化性樹脂組成物、及び、硬化物
JP7212323B2 (ja) 硬化性樹脂組成物
JP7176623B2 (ja) 硬化性樹脂組成物
JP7060181B1 (ja) 硬化性樹脂、硬化性樹脂組成物、及び、硬化物
KR20210137139A (ko) 경화성 수지 조성물
JP2022512567A (ja) エポキシ樹脂組成物
JP2007211201A (ja) 低誘電損失樹脂、樹脂組成物及び低誘電損失樹脂の製造方法
JP7116934B2 (ja) 硬化性樹脂組成物
JP2002338806A (ja) 変性シアネートエステル系樹脂組成物、それを用いる樹脂フィルム、多層プリント配線板およびそれらの製造方法
JP5151114B2 (ja) 接着層付き金属箔、金属張積層板、並びに、この金属張積層板を用いて得られる印刷配線板及び多層配線板
JP7198419B2 (ja) 硬化性樹脂組成物
JP2023087852A (ja) 硬化性樹脂、硬化性樹脂組成物、及び、硬化物
JP7306599B2 (ja) 硬化性樹脂組成物、および、硬化物
TWI833906B (zh) 硬化性樹脂組成物
JP5510498B2 (ja) 接着層付き金属箔、金属張積層板、並びに、この金属張積層板を用いて得られる印刷配線板及び多層配線板
WO2023145108A1 (ja) 硬化性樹脂、硬化性樹脂組成物、及び、硬化物
KR20230135522A (ko) 수지 조성물
KR20230159296A (ko) 수지 조성물
JP2001261958A (ja) 誘電特性に優れる樹脂組成物、これを用いて作製されるワニス、プリプレグ及び金属張積層板