JP2023080956A - 駆動力制御方法及び駆動力制御装置 - Google Patents

駆動力制御方法及び駆動力制御装置 Download PDF

Info

Publication number
JP2023080956A
JP2023080956A JP2021194549A JP2021194549A JP2023080956A JP 2023080956 A JP2023080956 A JP 2023080956A JP 2021194549 A JP2021194549 A JP 2021194549A JP 2021194549 A JP2021194549 A JP 2021194549A JP 2023080956 A JP2023080956 A JP 2023080956A
Authority
JP
Japan
Prior art keywords
distance
vehicle
driving force
target
lateral acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021194549A
Other languages
English (en)
Inventor
京達 韓
Jingda Han
裕樹 塩澤
Yuki Shiozawa
健一 関
Kenichi Seki
智晴 飯田
Tomoharu Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Nissan Motor Co Ltd
Original Assignee
Renault SAS
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS, Nissan Motor Co Ltd filed Critical Renault SAS
Priority to JP2021194549A priority Critical patent/JP2023080956A/ja
Publication of JP2023080956A publication Critical patent/JP2023080956A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

【課題】自車両の周囲の環境を検出するセンサにより検出した走路に基づいて操舵制御を行う際に、外界認識センサで走路を検出できる距離が短くなった場合の操舵制御の安定性を向上する。【解決手段】駆動力制御方法では、自車両の進行方向の前方の走路をセンサで検出し(S2)、センサにより走路を検出可能な範囲のうちで最も遠い地点から自車両までの距離である第1距離を検出し(S4)、自車両の進行方向の前方においてセンサにより検出された走路内に、自車両から第2距離だけ離れた前方注視点を設定し(S8)、自車両に発生させるべき目標駆動力を設定し(S10)、第1距離が第2距離未満の場合には、駆動源の駆動力が、目標駆動力を減少補正して得られる補正駆動力となるように駆動源を制御する(S11、S12)。【選択図】図5

Description

本発明は、駆動力制御方法及び駆動力制御装置に関する。
特許文献1には、自車両の前方の撮像画像からレーンマークを検出し、自車両の走路内の前方注視距離だけ前方の地点に前方注視点を設定し、自車両が前方注視点に向かうように自車両の操舵装置を制御する操舵制御装置が記載されている。
特開2003-312505号公報
しかしながら、このようにセンサで検出した走路に基づいて操舵制御を行うと、センサで走路を検出できる距離が前方注視距離よりも短くなった場合に安定した操舵制御ができなくなることがある。
本発明は、自車両の周囲の環境を検出するセンサにより検出した走路に基づいて操舵制御を行う際に、センサで走路を検出できる距離が短くなった場合の操舵制御の安定性を向上することを目的とする。
本発明の一態様の駆動力制御方法では、自車両の進行方向の前方の走路をセンサで検出し、センサにより走路を検出可能な範囲のうちで最も遠い地点から自車両までの距離である第1距離を検出し、自車両の進行方向の前方においてセンサにより検出された走路内に、自車両から第2距離だけ離れた前方注視点を設定し、設定された前方注視点に基づいて自車両の転舵機構を制御し、自車両に発生させるべき目標駆動力を設定し、第1距離が第2距離以上の場合には、自車両の駆動源の駆動力が目標駆動力となるように駆動源を制御し、第1距離が第2距離未満の場合には、駆動源の駆動力が、目標駆動力を減少補正して得られる補正駆動力となるように駆動源を制御する。
本発明によれば、自車両の周囲の環境を検出するセンサにより検出した走路に基づいて操舵制御を行う際に、センサで走路を検出できる距離が短くなった場合の操舵制御の安定性を向上できる。
実施形態の運転支援装置を搭載する車両の概略構成の一例を示す図である。 実施形態の運転支援装置による操舵制御の一例の説明図である。 図1のコントローラの機能構成の一例のブロック図である。 図3の駆動力補正量演算部の機能構成の一例のブロック図である。 本発明の実施形態の駆動力制御方法の一例のフローチャートである。
以下、図面を参照して、本発明の実施形態を説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略する。各図面は模式的なものであり、現実のものとは異なる場合が含まれる。以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、下記の実施形態に例示した装置や方法に特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
(構成)
自車両1は、自車両1の運転を支援する運転支援装置10を備える。運転支援装置10は、自車両1の周囲の走行環境を検出し、検出した走行環境に基づいて自車両1の走行を自動的に制御することにより、自車両1の乗員(例えば運転者)による自車両1の運転を支援する。
例えば、運転支援装置10による自車両1の運転支援は、少なくとも転舵角を自動制御する操舵支援制御を含んでもよい。例えば、運転支援装置10による運転支援は、車線逸脱防止支援であってもよい。また、運転支援装置10による運転支援は、乗員が関与せずに自車両1を自動で運転する自律走行制御を含んでもよい。
運転支援装置10は、測位装置11と、地図データベース12と、外界センサ13と、車両センサ14と、コントローラ15と、アクチュエータ16を備える。なお、図面において、地図データベースを、「地図DB」と表記する。
測位装置11は、自車両1の現在位置を測定する。測位装置11は、例えば全地球型測位システム(GNSS)受信機を備えてよい。GNSS受信機は、例えば地球測位システム(GPS)受信機等であり、複数の航法衛星から電波を受信して自車両1の現在位置を測定する。
地図データベース12は、道路地図データを記憶している。例えば地図データベース12は、自動運転用の地図情報として好適な高精度地図データ(以下、単に「高精度地図」という。)を記憶してよい。高精度地図は、ナビゲーション用の地図データ(以下、単に「ナビ地図」という)よりも高精度の地図データである。
地図データベース12に記憶される道路地図データは、ナビ地図であってもよい。
外界センサ13は、自車両1の周囲の走行環境についての様々な情報(周囲環境情報)、例えば自車両1の周囲の物体を検出する。外界センサ13は、自車両1の周囲に存在する物体、自車両1と物体との相対位置、自車両1と物体との距離、物体が存在する方向等の自車両1の周囲環境を検出する。外界センサ13は、検出した周囲環境の情報を外界情報としてコントローラ15に出力する。
例えば外界センサ13は、自車両1に対する自車両1周囲の他車両や物標の相対位置を検出する。ここで、物標とは、例えば、自車両1が走行する道路に設けられた信号機、路面上の線(車線区分線等)や、路肩の縁石、ガードレール等である。
外界センサ13は、例えばフルHD解像度のカラーカメラのような単眼のカメラを備えてよい。カメラは、自車両1の周囲環境の認識対象を含む画像を撮像し、その撮像画像を外界情報としてコントローラ15へ出力する。
また、外界センサ13は、レーザレンジファインダ(LRF)やレーダ、LiDAR(Light Detection and Ranging)のレーザレーダなどの測距装置を備えてよい。測距装置は、例えば、自車両周囲に存在する物体との相対距離と方向により定まる相対位置を検出する。測距装置は、検出した測距データを外界情報としてコントローラ15へ出力する。
車両センサ14は、自車両1から得られる様々な情報(車両情報)を検出する。車両センサ14には、例えば、自車両1の走行速度(車速)Vを検出する車速センサ、自車両1が備える各タイヤの回転速度を検出する車輪速センサ、自車両1の3軸方向の加速度(減速度を含む)を検出する3軸加速度センサ(Gセンサ)、ステアリングホイールの操舵角を検出する操舵角センサ、操向輪の転舵角δtを検出する転舵角センサ、自車両1に生じる角速度を検出するジャイロセンサ、ヨーレイトγを検出するヨーレイトセンサ、自車両1のアクセルペダルの操作量αを検出するアクセルセンサと、運転者によるブレーキ操作量を検出するブレーキセンサが含まれる。
コントローラ15は、自車両1の運転支援制御を行う電子制御ユニット(ECU:Electronic Control Unit)である。自車両1の運転支援制御においてコントローラ15は、周囲の走行環境に基づいて自車両1の操向輪の転舵角δtの目標値である目標転舵角δtarを設定し、転舵角δtが目標転舵角δtarとなるように転舵機構を制御する。またコントローラ15は、運転者によるアクセルペダルの操作量Acに基づいて、アクセルペダルの操作量Acが大きいほど大きな目標駆動力Fxを設定する。なお、運転支援装置10により自律走行制御が行われる場合には、外界センサ13が検出した周囲の走行環境に基づいて目標駆動力Fxを設定する。コントローラ15は、設定した目標駆動力Fxに基づいて自車両1の駆動源の駆動力を制御する。
コントローラ15は、プロセッサ20と、記憶装置21等の周辺部品とを含む。プロセッサ20は、例えばCPU(Central Processing Unit)やMPU(Micro-Processing Unit)であってよい。
記憶装置21は、半導体記憶装置や、磁気記憶装置、光学記憶装置等を備えてよい。記憶装置21は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを含んでよい。
以下に説明するコントローラ15の機能は、例えばプロセッサ20が、記憶装置21に格納されたコンピュータプログラムを実行することにより実現される。
なお、コントローラ15を、以下に説明する各情報処理を実行するための専用のハードウエアにより形成してもよい。例えば、コントローラ15は、汎用の半導体集積回路中に設定される機能的な論理回路を備えてもよい。例えばコントローラ15はフィールド・プログラマブル・ゲート・アレイ(FPGA:Field-Programmable Gate Array)等のプログラマブル・ロジック・デバイス(PLD:Programmable Logic Device)等を有していてもよい。
アクチュエータ16は、自車両1の車輪に接続した駆動源を備える。アクチュエータ16は、自車両1の車輪に駆動トルクや制動トルクを発生させる、例えば駆動用モータや内燃機関、あるいはブレーキアクチュエータを備える。以下、本実施形態においては一例として、アクチュエータ16は駆動用モータを備える。アクチュエータ16はコントローラ15からの制御信号(目標駆動力Fx)に応じて、自車両1を駆動する駆動力又は自車両1を制動する制動力を発生する。
また、アクチュエータ16は、自車両1の操向輪を転舵する転舵機構を備える。アクチュエータ16は、コントローラ15からの制御信号(目標転舵角δtar)に応じて、自車両1の操向輪を転舵する。
次に、自車両1の運転支援制御の際におけるコントローラ15の操舵制御について説明する。図2を参照する。
破線L1及びL2は、自車両1の走路(走行車線)の左側及び右側の車線境界線(ラインマーク)を示す。また、実線Ttrgは、運転支援装置10の運転支援制御によって自車両1を走行させる軌道の目標となる線(以下「目標走行軌道」と表記する)を示す。
例えば、車線逸脱防止支援においてコントローラ15は、周囲の走行環境に基づいて自車両1が走路内の所定の車線幅方向位置を走行するように自車両の転舵角δtを制御する。この場合は、例えば車線境界線L1、L2から車線幅方向に所定距離だけ内側にオフセットした線が目標走行軌道Ttrgとなる。例えば、目標走行軌道Ttrgは走路中央(車線中央)であってよい。
また例えば、運転支援装置10により自律走行制御が行われる場合には、コントローラ15は、ナビゲーション装置等により設定された走行経路と周囲の走行環境に基づいて自車両1の目標走行軌道Ttrgを生成する。
一点鎖線P1は、走路に沿った縦方向における自車両1の現在位置を示し、点Psは、現在位置P1における自車両1の車線幅方向位置を示す。距離Yは、車線境界線L1と車線幅方向位置Psとの横偏差である。一点鎖線P2は前方注視距離Dfだけ自車両1の前方の位置を示している。実線Ltは、現在位置P1における車線境界線L1の接線であり、車線幅方向と直交している。図2では、x軸方向及びy軸方向は、それぞれ接線Ltの方向と車線幅方向を表している。
コントローラ15は、前方注視距離Dfだけ自車両1の前方の位置P2における目標の車線幅方向位置を基本前方注視点Pfとして設定する。
以下の説明において、自車両1から前方注視距離Dfだけの前方の位置P2における車線境界線L1の車線幅方向の位置Ppreを「前方車線境界線位置Ppre」と表記する。例えば、基本前方注視点Pf1の車線幅方向位置は、前方車線境界線位置Ppreを基準として設定してよい。例えば、前方車線境界線位置Ppreから車線中央へ向かって車線幅方向に目標車線幅距離Ytrgだけ離れた位置を、基本前方注視点Pf1の車線幅方向位置として設定してよい。
例えば、図2に示すように目標走行軌道Ttrg上の地点を基本前方注視点Pfとして設定する場合、目標走行軌道Ttrgと車線境界線L1との間の間隔が目標車線幅距離Ytrgとして設定される。また、例えば車線中央に基本前方注視点Pf1を設定する場合には、車線幅の半分の長さが目標車線幅距離Ytrgとして設定される。
なお、前方車線境界線位置Ppreに代えて車線中央位置を基準として基本前方注視点Pf1を設定してもよい。すなわち、自車両1から前方注視距離Dfだけの前方の位置P2における車線中央位置を基準としてもよい。
このように設定した基本前方注視点Pfに向かって自車両1が走行するように転舵角δtを制御することにより、コントローラ15は、自車両1を目標走行軌道Ttrgに沿って走行させることができる。例えば、車線に沿って車線中央を走行させることができる。
しかしながら、外界センサ13により走路を検出できる距離(すなわち、車線境界線L1、L2の位置を検出できる距離)は、様々な要因により短くなることがある。以下の説明において、外界センサ13により自車両1の前方において車線境界線L1、L2の位置を検出できる限界の地点(すなわち、外界センサ13により検出可能な範囲のうちで最も遠い地点)から自車両1の位置までの距離を「認識距離Dr」と表記することがある。
例えば、カーブ路においては走路の曲率によって認識距離Drが短くなることがある。また、天候や時間帯によっても認識距離Drが短くなることがある。
その結果、認識距離Drが前方注視距離Dfよりも短くなると、基本前方注視点Pf1を設定できなくなる。しかしながら、認識距離Drに合わせて前方注視距離Dfを短縮すると、自車両1の車線幅方向位置の追従制御の周波数が高くなるため、制御の安定性が下がって急操舵や発散操舵が発生し易くなる。また、前方注視距離Dfを短くした状態で自車両1の車速Vが高くなると、ヨー旋回運動の共振周波数が低下して制御システムが不安定になる虞がある。
そこで、実施形態のコントローラ15は、認識距離Drが前方注視距離よりも短くなる場合には、駆動源の駆動力が減少するように目標駆動力Fxを補正する。例えば、前方注視距離から認識距離Drを減じて得られる距離差分ΔDが小さい場合に比べて距離差分ΔDが大きい場合に、大きな減少補正量で目標駆動力を補正する。これにより、自車両1の加速が抑制され(又は自車両1が減速し)、操舵制御の安定性を向上できる。
続いて、コントローラ15の機能について更に詳細に説明する。なお、以下の説明では、外界センサ13のカメラが自車両1の進行方向の前方を撮影して生成された撮像画像から走路を認識する(すなわち、車線境界線L1、L2を認識する)構成を例示するが、本発明はこれに限定されず、レーダやLiDARにより走路を認識する構成にも適用可能である。
図3は、コントローラ15の機能構成の一例のブロック図である。コントローラ15は、画像認識部30と、前方注視距離設定部31と、注視点設定部32と、目標横力演算部33と、変換部34と、基本駆動力設定部35と、駆動力補正量演算部36と、減算器37を備える。
画像認識部30は、外界センサ13のカメラが自車両1の進行方向の前方を撮影して生成された撮像画像から、走路の位置及び形状(すなわち車線境界線L1、L2の位置及び形状)を認識する。画像認識部30は、認識した走路の位置及び形状を示す走路形状情報を注視点設定部32に出力する。走路形状情報は、例えば認識した走路上の各点の座標の集合である点列データであってよい。
また、画像認識部30は、認識した走路の位置に基づいて自車両1の現在位置P1における走路内の車線幅方向位置Psを検出する。画像認識部30は、検出した車線幅方向位置Psの情報を目標横力演算部33へ出力する。
また、画像認識部30は、撮像画像に基づいて走路を認識できる限界の地点から自車両1の位置までの距離を、認識距離Drとして検出する。例えば画像認識部30は、撮像画像に基づいて認識できた走路上の地点のうち自車両1から最も遠い最遠点を、走路を認識できる限界の地点として検出してよい。また、このような最遠点よりも所定のマージン距離だけ自車両1に近い点を、走路を認識できる限界の地点として検出してもよい。認識距離Drは特許請求の範囲に記載の「第1距離」の一例である。
画像認識部30は、認識距離Drの情報を前方注視距離設定部31と駆動力補正量演算部36に出力する。
前方注視距離設定部31は、自車両の位置から前方注視点Pfを設定する自車両1の前方の位置までの距離である前方注視距離Dfを設定する。例えば、前方注視距離設定部31は、自車両1の車速Vが遅い場合に比べて車速Vが早い場合により長い前方注視距離Dfを設定する。例えば車速Vが高くなるほどより長い前方注視距離Dfを設定してよい。
例えば、前方注視距離設定部31は、車速Vに所定の先読み時間Tprevを乗算して得られる積を基本前方注視距離Df0として設定する。基本前方注視距離Df0は、特許請求の範囲に記載の「第2距離」の一例である。
そして、前方注視距離設定部31は、認識距離Drが基本前方注視距離Df0未満であるか否かを判定する。認識距離Drが基本前方注視距離Df0以上である場合には、前方注視距離設定部31は、基本前方注視距離Df0を前方注視距離Dfに設定する。認識距離Drが基本前方注視距離Df0未満である場合には、認識距離Drを前方注視距離Dfに設定する。
また、前方注視距離設定部31は、基本前方注視距離Df0から認識距離Drを減じて得られる距離差分ΔDを次式(1)により算出する。
ΔD=max(0,Df0-Dr) …(1)
すなわち、認識距離Drが基本前方注視距離Df0未満である場合に、距離差分ΔDは基本前方注視距離Df0から認識距離Drを減算した得られる差分になり、認識距離Drが基本前方注視距離Df0以上である場合には0になる。
前方注視距離設定部31は、前方注視距離Dfの情報を注視点設定部32に出力する。また、距離差分ΔDの情報を目標横力演算部33と駆動力補正量演算部36に出力する。
注視点設定部32は、前方注視距離Dfと走路の形状に基づいて前方注視点Pfを設定する。
注視点設定部32は、例えば以下の方法で前方注視点Pfを設定してよい。まず、注視点設定部32は、車線境界線L1の曲率ρ、曲率変化ρ’、自車両1と車線境界線L1との間のヨー角偏差Ψ、横偏差Yに基づいて前方車線境界線位置Ppreを算出する。
例えば注視点設定部32は、次式(2)に基づいて、接線Ltから前方車線境界線位置Ppreまでの距離である車線境界線偏差Ypreを算出することにより、接線Ltを基準とする前方車線境界線位置Ppreの車線幅方向位置を算出してよい。
Ypre=Y+Ψ×Df+ρ×Df/2+ρ’×Df/6 …(2)
注視点設定部32は、前方車線境界線位置Ppreから車線中央に向かって目標車線幅距離Ytrgだけ移動した点を前方注視点Pfとして設定する。例えば、車線逸脱防止支援において車線中央を走行する場合には、車線幅の半分の長さを目標車線幅距離Ytrgとして設定してよい。また例えば自律走行制御などにより目標走行軌道Ttrgが生成されている場合は、目標走行軌道Ttrgと車線境界線L1との間の間隔を目標車線幅距離Ytrgとして設定してよい。
目標横力演算部33は、自車両1を現在位置から前方注視点Pfへと向かわせる目標横力Fyを算出する。
目標横力演算部33は、認識距離Drが短い場合には目標横力Fyを減少補正してもよい。認識距離Drが短い場合には、走路の曲率ρの推定精度が低下することにより目標横力Fyの制御精度が低下する虞があるためである。例えば、認識距離Drが基本前方注視距離Df0未満である場合に、目標横力Fyを減少補正してよい。
例えば目標横力演算部33は、基本前方注視距離Df0から認識距離Drを減じて得られる距離差分ΔDが小さい場合に比べて距離差分ΔDが大きい場合に小さな目標横力Fyを設定してよい。例えば目標横力演算部33は距離差分ΔDが大きいほど小さな目標横力Fyを設定してよい。例えば、距離差分ΔDが大きいほど大きな減少補正量で目標横力Fyを減少補正してよい。
変換部34は、目標横力Fyを、次式(3)に基づいて操向輪の目標転舵角δtarに変換して、目標転舵角δtarの情報をアクチュエータ16へ出力する。
δtar=C×lx×(1+AV)×Fy/mV…(3)
上式(3)において、Cは操向輪の転舵角δtとステアリングホイールの操舵角との変換係数であり、lはホイールベース長であり、Aはステアビリティファクタである。
アクチュエータ16の転舵機構は、転舵角δtが目標転舵角δtarとなるように自車両1の操向輪を転舵する。
基本駆動力設定部35は、アクチュエータ16の駆動源により自車両1の車輪に発生させる目標駆動力の初期値である基本駆動力Fx0を設定する。例えば基本駆動力設定部35は、運転者によるアクセルペダルの操作量Acと車速Vとに基づいて基本駆動力Fx0を設定してよい。
また、運転支援装置10が自車両1の自律走行制御を行う場合は、コントローラ15は、外界センサ13が検出した周囲の走行環境と車速Vに基づいて基本駆動力Fx0を設定してよい。基本駆動力設定部35は、基本駆動力Fx0を減算器37に出力する。
駆動力補正量演算部36は、基本駆動力Fx0を減少補正するための減少補正量Cdを演算する。
図4は、駆動力補正量演算部36の機能構成の一例のブロック図である。駆動力補正量演算部36は、第1補正量演算部41と、第2補正量演算部42と、第3補正量演算部43と、加算器44と、ゲイン設定部45と、乗算器46を備える。
第1補正量演算部41は、認識距離Drが基本前方注視距離Df0未満である場合に、基本前方注視距離Df0から認識距離Drを減じて得られる距離差分ΔDに応じた第1減少補正量C1を演算する。
例えば、第1補正量演算部41は、距離差分ΔDが小さい場合に比べて距離差分ΔDが大きい場合に、大きな第1減少補正量C1を演算してよい。例えば、距離差分ΔDが大きいほど大きな第1減少補正量C1を演算してよい。認識距離Drが基本前方注視距離Df0以上である場合には、第1減少補正量C1を0に設定してよい。
例えば第1補正量演算部41は、次式(4)に基づいて第1減少補正量C1を演算してよい。
C1=K1×ΔD …(4)
上式(4)においてK1は所定のゲインである。例えばゲインK1は固定値であってよい。
なお、走路の曲率ρが大きい場合には、認識距離Drが短くなるため距離差分ΔDは大きくなる。したがって、走路の曲率ρが小さい場合に比べて曲率ρが大きい場合に大きな第1減少補正量C1が演算される。例えば、走路の曲率ρが大きいほど大きな第1減少補正量C1が演算される。
第2補正量演算部42は、自車両1の現在の横加速度の推定値である推定横加速度Gyeと目標横加速度Gyとの差に応じた第2減少補正量C2を演算する。目標横加速度Gyは、目標横力演算部33が演算した目標横力Fyを自車両1の質量mで除算することにより算出できる。
このような第2減少補正量C2で目標駆動力を減少補正することにより、推定横加速度Gyeと目標横加速度Gyとの差が発生し易いカーブ路において車両安定性を向上することができる。
例えば、第2補正量演算部42は、推定横加速度Gyeから目標横加速度Gyを減算して得られる横加速度差分ΔGが小さい場合に比べて横加速度差分ΔGが大きい場合に、大きな第2減少補正量C2を演算してよい。例えば横加速度差分ΔGが大きいほど大きな第2減少補正量C2を演算してよい。
しかしながら、曲率ρの大きなカーブ路では認識距離Drが短くなり、外界センサ13のカメラの撮像画像から検出した曲率ρの誤差が大きくなるため、横加速度差分ΔGに応じて目標駆動力を減少補正しても十分な車両安定性を確保できない虞がある。
そこで、第2補正量演算部42は、認識距離Drが基本前方注視距離Df0未満である場合には、横加速度差分ΔGに応じた第2減少補正量C2を増加補正する。これによって自車両1の加速がより強く抑制される(又は自車両1がより強く減速する)ため、安定制御性能が求められるカーブ路における車両安定性をさらに向上することができる。
第2補正量演算部42は、横加速度推定部42aと、除算器42bと、減算器42cと、ゲイン乗算部42dを備える。
横加速度推定部42aは、車速Vと操向輪の転舵角δtとに基づいて推定横加速度Gyeを演算する。除算器42bは、目標横力Fyを自車両1の質量mで除算して目標横加速度Gyを算出する。減算器42cは、推定横加速度Gyeから目標横加速度Gyを減算して得られる差分を横加速度差分ΔGとして算出する。ゲイン乗算部42dは、横加速度差分ΔGに制御ゲインを乗算して得られる積を第2減少補正量C2として算出する。
制御ゲインは、距離差分ΔDが小さい場合に比べて距離差分ΔDが大きい場合に大きくなるゲインである。
例えば制御ゲインの値は、距離差分ΔDが0のときに「1」であってよい。距離差分ΔDが0より大きい範囲では、制御ゲインを「1」より大きな値に設定するとともに、距離差分ΔDが小さい場合に比べて距離差分ΔDが大きい場合により大きな値に設定してよい。例えば距離差分ΔDが大きいほど大きな制御ゲインを設定してよい。このような制御ゲインを乗算することにより、認識距離Drが基本前方注視距離Df0未満である場合には、より大きな第2減少補正量C2で目標駆動力を減少補正できる。
上記のとおり、走路の曲率ρが大きいほど距離差分ΔDは大きくなる。したがって、走路の曲率ρが小さい場合に比べて曲率ρが大きい場合に大きな第2減少補正量C2が演算される。例えば、走路の曲率ρが大きいほど大きな第2減少補正量C2が演算される。
また、上記のとおり目標横力Fyは、距離差分ΔDが小さい場合に比べて距離差分ΔDが大きい場合に小さな値に設定してもよい。この場合には、曲率ρが小さい場合に比べて大きい場合に目標横加速度Gyが小さくなる。このため、推定横加速度Gyeから目標横加速度Gyを減算して得られる横加速度差分ΔGは大きくなる。したがって、走路の曲率ρが小さい場合に比べて曲率ρが大きい場合に大きな第2減少補正量C2が演算される。例えば、走路の曲率ρが大きいほど大きな第2減少補正量C2が演算される。
第3補正量演算部43は、認識距離Drの減少速度に応じた第3減少補正量C3を演算する。カーブ路の曲率ρの増加速度が高いほど認識距離Drの減少速度が高くなる。このため、認識距離Drの減少速度に応じた第3減少補正量C3で目標駆動力を減少補正することにより、カーブ路の曲率ρの増加速度が高いほど自車両1の加速をより強く抑制できる。または自車両1をより強く減速できる。
例えば、第3補正量演算部43は、認識距離Drの減少速度が低い場合に比べて減少速度が高い場合に大きな第3減少補正量C3を演算してよい。例えば、認識距離Drの減少速度が高いほどより大きな第3減少補正量C3を演算してよい
例えば第3補正量演算部43は、次式(5)に基づいて第3減少補正量C3を演算してよい。
C3=-K2×min(0,(Dr2-Dr1)/(t2-t1))
上式(5)において、Dr1、Dr2はそれぞれ時刻t1、t2における認識距離Drであり、K2は所定のゲインである。例えばゲインK2は固定値であってよい。
加算器44は、第1減少補正量C1、第2減少補正量C2及び第3減少補正量C3の合計値(C1+C2+C3)を算出する。
ゲイン設定部45は、運転者によるアクセルペダルの操作量Acに応じたゲインKを設定する。
乗算器46は、合計値(C1+C2+C3)にゲインKを乗算して得られる積を減少補正量Cdとして算出する。
ゲイン設定部45は、ゲインKの値を、操作量Acが所定の操作量閾値Ath以下の場合に「1」に設定し、操作量Acが操作量閾値Athより大きい場合に「1」よりも小さな値に設定してよい。これにより、操作量Acが操作量閾値Athよりも大きい場合には減少補正量Cdを減少させることができる。操作量Acが操作量閾値Athより大きい範囲において、操作量Acが小さい場合に比べて操作量Acが大きい場合により小さなゲインKを設定してよい。操作量Acが大きいほどより小さなゲインKを設定してよい。
例えば、アクセルペダルの操作量Acに応じたアクセル開度が0%のときにゲインKは1であり、アクセル開度が大きくなるほどゲインKが減少し、アクセル開度が100%に至るとゲインKが0になるように設定してもよい。
このように、操作量Acが操作量閾値Athより大きい場合に減少補正量Cdを減少させることにより、運転者による加速意図を優先させることができる。
ゲイン設定部45は、アクセルペダルの操作量Acの操作量の変化速度に応じたゲインKを設定してもよい。例えば、ゲインKの値を、操作速度が所定の速度閾値以下の場合に「1」に設定し、操作速度が速度閾値より高い場合に「1」よりも小さな値に設定してよい。これにより、操作速度が速度閾値よりも高い場合には、減少補正量Cdを減少させることができる。操作速度が速度閾値よりも高い範囲において、速度が低い場合に比べて操作速度が高い場合により小さなゲインKを設定してよい。例えば操作量Acが高いほどより小さなゲインKを設定してよい。このようにゲインKを設定しても、運転者による加速意図に応じて減少補正量Cdを減少させることができる。
図3を参照する。減算器37は、基本駆動力Fx0から減少補正量Cdを減算することにより得られる差分を補正駆動力Fxとして算出する。減算器37は、補正駆動力Fxの情報を、アクチュエータ16に出力する。
アクチュエータ16の駆動源は、自車両1の車輪に発生する駆動力が補正駆動力Fxとなるように出力を制御する。
(動作)
図5は、本発明の実施形態の駆動力制御方法の一例のフローチャートである。
ステップS1において外界センサ13のカメラは、自車両1の進行方向の前方を撮影して撮像画像を生成する。
ステップS2において画像認識部30は、撮像画像から自車両1の進行方向の前方の走路を認識する。
ステップS3において画像認識部30は、撮像画像から自車両1の現在位置P1における走路内の車線幅方向位置Psを検出する。
ステップS4において認識距離Drを検出する。
ステップS5において前方注視距離設定部31は、基本前方注視距離Df0を設定する。
ステップS6において前方注視距離設定部31は、距離差分ΔD=max(0,Df0-Dr)を算出する。
ステップS7において前方注視距離設定部31は、認識距離Drが基本前方注視距離Df0未満である場合に認識距離Drを前方注視距離Dfに設定する。認識距離Drが基本前方注視距離Df0以上である場合には、基本前方注視距離Df0を前方注視距離Dfに設定する。
ステップS8において注視点設定部32は、前方注視点Pfを設定する。
ステップS9において目標横力演算部33は、自車両1を現在位置から前方注視点Pfへと向かわせる目標横力Fyを算出する。変換部34は、目標横力Fyを操向輪の目標転舵角δtarに変換する。
ステップS10において基本駆動力設定部35は、駆動源により自車両1の車輪に発生させる目標駆動力の初期値である基本駆動力Fx0を設定する。
ステップS11において駆動力補正量演算部36は、基本駆動力Fx0を減少補正するための減少補正量Cdを演算する。
ステップS12において減算器37は、基本駆動力Fx0から減少補正量Cdを減算することにより得られる差分を補正駆動力Fxとして算出する。
ステップS13においてアクチュエータ16の駆動源は、自車両1の車輪に発生する駆動力が補正駆動力Fxとなるように出力を制御する。アクチュエータ16の転舵機構は、転舵角δtが目標転舵角δtarとなるように自車両1の操向輪を転舵する。その後に処理は終了する。
(実施形態の効果)
(1)コントローラ15は、自車両1の進行方向の前方の走路を外界センサ13で検出し、外界センサ13により走路を検出できる限界の地点までの自車両1からの距離である第1距離を検出し、自車両1の進行方向の前方において外界センサ13により検出された走路内に、自車両1から第2距離だけ離れた前方注視点を設定し、設定された前方注視点に基づいて自車両1の転舵機構を制御し、自車両1に発生させるべき目標駆動力を設定し、第1距離が第2距離以上の場合には、自車両1の駆動源の駆動力が目標駆動力となるように駆動源を制御し、第1距離が第2距離未満の場合には、駆動源の駆動力が、目標駆動力を減少補正して得られる補正駆動力となるように駆動源を制御する。
これにより、外界センサ13により走路を検出できる距離が短くなり制御の安定性が低下し易くなった場合には、自車両1の駆動源の駆動力が減少補正されて、自車両1の加速が抑制される(又は自車両1が減速する)。この結果、自車両1の操舵制御の安定性を向上させることができる。
(2)コントローラ15は、運転者によるアクセルペダルの操作量に基づいて目標駆動力を設定してよい。
これにより、例えば、車線逸脱防止支援のような操舵支援制御が実行されている間に外界センサ13により走路を検出できる距離が短くなった場合に、運転者によるアクセルペダルの操作量に基づいて設定される目標駆動力を減少補正できる。
(3)コントローラ15は、自車両1の周囲環境を外界センサ13で検出し、周囲環境の検出結果に基づく自車両1の自動運転制御によって目標駆動力を設定してもよい。
これにより、例えば、乗員が関与せずに自車両1を自動で運転する自動運転制御を実行している間に外界センサ13により走路を検出できる距離が短くなった場合に、自動運転制御により設定される目標駆動力を減少補正できる。
(4)コントローラ15は、第2距離を、自車両1の車速が遅い場合に比べて車速が早い場合に長い距離に設定してよい。これにより、自車両1の車速に応じて適切な前方注視点を設定できる。
(5)コントローラ15は、第1距離が第2距離未満の場合には、第2距離から第1距離を減算して得られる距離差分が小さい場合に比べて距離差分が大きい場合に、大きな減少補正量で目標駆動力を減少補正して補正駆動力を設定してよい。
これにより、外界センサ13により走路を検出できる距離と前方注視距離との差の大きさに応じて減少補正量を設定できる。
(6)コントローラ15は、自車両1に発生している横加速度の推定値である推定横加速度を算出し、自車両1に発生させるべき目標横加速度を設定し、推定横加速度から目標横加速度を減算して得られる横加速度差分に、距離差分が小さい場合に比べて距離差分が大きい場合に大きくなるゲインを乗算して得られる積に応じて、減少補正量を設定してよい。
また、コントローラ15は、自車両1に発生している横加速度の推定値である推定横加速度を算出し、自車両1に発生させるべき目標横加速度として、距離差分が小さい場合に比べて距離差分が大きい場合に小さな横加速度を設定し、推定横加速度から目標横加速度を減算して得られる横加速度差分に応じて減少補正量を設定してもよい。
これにより、安定制御性能が求められるカーブ路における車両安定性をさらに向上することができる。
(7)走路の曲率が大きいほど、外界センサ13により走路を検出できる距離は短くなる。このため、コントローラ15は、センサにより検出された走路の曲率が小さい場合に比べて曲率が大きい場合に、大きな減少補正量で目標駆動力を減少補正して補正駆動力を設定してもよい。
これにより、外界センサ13により走路を検出できる距離に応じて減少補正量を設定できる。
(8)コントローラ15は、運転者によるアクセルペダルの操作量が所定の操作量閾値よりも大きい場合、又は運転者によるアクセルペダルの操作量の変化速度が所定の速度閾値よりも高い場合には、第1距離が第2距離未満の場合に目標駆動力を減少補正する補正量を低減してもよい。これにより、運転者の加速意図を優先させることができる。
(9)コントローラ15は、第1距離の減少速度が低い場合に比べて減少速度が高い場合に大きな減少補正量で目標駆動力を減少補正して補正駆動力を設定してよい。これにより、カーブ路の曲率の増加速度が速いほど自車両1の加速をより強く抑制できる。または自車両1をより強く減速できる。
1…自車両、10…運転支援装置、11…測位装置、12…地図データベース、13…外界センサ、14…車両センサ、15…コントローラ、16…アクチュエータ、20…プロセッサ、21…記憶装置、30…画像認識部、31…前方注視距離設定部、32…注視点設定部、33…目標横力演算部、34…変換部、35…基本駆動力設定部、36…駆動力補正量演算部、37、42…減算器、41…第1補正量演算部、42…第2補正量演算部、42a…横加速度推定部、42b…除算器、42d…ゲイン乗算部、43…第3補正量演算部、44…加算器、45…ゲイン設定部、46…乗算器

Claims (11)

  1. 自車両の進行方向の前方の走路をセンサで検出し、
    前記センサにより前記走路を検出可能な範囲のうちで最も遠い地点から前記自車両までの距離である第1距離を検出し、
    前記自車両の進行方向の前方において前記センサにより検出された前記走路内に、前記自車両から第2距離だけ離れた前方注視点を設定し、
    設定された前記前方注視点に基づいて前記自車両の転舵機構を制御し、
    前記自車両に発生させるべき目標駆動力を設定し、
    前記第1距離が前記第2距離以上の場合には、前記自車両の駆動源の駆動力が前記目標駆動力となるように前記駆動源を制御し、前記第1距離が前記第2距離未満の場合には、前記駆動源の駆動力が、前記目標駆動力を減少補正して得られる補正駆動力となるように前記駆動源を制御する、
    ことを特徴とする駆動力制御方法。
  2. 運転者によるアクセルペダルの操作量に基づいて前記目標駆動力を設定することを特徴とする請求項1に記載の駆動力制御方法。
  3. 前記自車両の周囲環境をセンサで検出し、
    前記周囲環境の検出結果に基づく前記自車両の自動運転制御によって前記目標駆動力を設定する、
    ことを特徴とする請求項1に記載の駆動力制御方法。
  4. 前記第2距離を、前記自車両の車速が遅い場合に比べて前記車速が早い場合に長い距離に設定することを特徴とする請求項1~3のいずれか一項に記載の駆動力制御方法。
  5. 前記第1距離が前記第2距離未満の場合には、前記第2距離から前記第1距離を減算して得られる距離差分が小さい場合に比べて前記距離差分が大きい場合に、大きな減少補正量で前記目標駆動力を減少補正して前記補正駆動力を設定することを特徴とする請求項1~4のいずれか一項に記載の駆動力制御方法。
  6. 前記自車両に発生している横加速度の推定値である推定横加速度を算出し、
    前記自車両に発生させるべき目標横加速度を設定し、
    前記推定横加速度から前記目標横加速度を減算して得られる横加速度差分に、前記距離差分が小さい場合に比べて前記距離差分が大きい場合に大きくなるゲインを乗算して得られる積に応じて、前記減少補正量を設定する、
    ことを特徴とする請求項5に記載の駆動力制御方法。
  7. 前記自車両に発生している横加速度の推定値である推定横加速度を算出し、
    前記自車両に発生させるべき目標横加速度として、前記距離差分が小さい場合に比べて前記距離差分が大きい場合に小さな横加速度を設定し、
    前記推定横加速度から前記目標横加速度を減算して得られる横加速度差分に応じて前記減少補正量を設定する、
    ことを特徴とする請求項5に記載の駆動力制御方法。
  8. 前記センサにより検出された前記走路の曲率が小さい場合に比べて前記曲率が大きい場合に、大きな減少補正量で前記目標駆動力を減少補正して前記補正駆動力を設定することを特徴とする請求項1~7のいずれか一項に記載の駆動力制御方法。
  9. 運転者によるアクセルペダルの操作量が所定の操作量閾値よりも大きい場合、又は運転者によるアクセルペダルの操作量の変化速度が所定の速度閾値よりも高い場合には、前記第1距離が前記第2距離未満の場合に前記目標駆動力を減少補正する補正量を低減することを特徴とする請求項1~8のいずれか一項に記載の駆動力制御方法。
  10. 前記第1距離の減少速度が低い場合に比べて前記減少速度が高い場合に大きな減少補正量で前記目標駆動力を減少補正して前記補正駆動力を設定することを特徴とする請求項1~9のいずれか一項に記載の駆動力制御方法。
  11. 自車両の進行方向の前方の走路を検出するセンサと、
    前記自車両の操向輪を転舵する転舵機構と、
    前記自車両の駆動力を発生させる駆動源と、
    前記センサにより前記走路を検出可能な範囲のうちで最も遠い地点から前記自車両までの距離である第1距離を検出し、前記自車両の進行方向の前方において前記センサにより検出された前記走路内に、前記自車両から第2距離だけ離れた前方注視点を設定し、設定された前記前方注視点に基づいて前記転舵機構を制御し、前記自車両に発生させるべき目標駆動力を設定し、前記第1距離が前記第2距離以上の場合には、前記駆動源の駆動力が前記目標駆動力となるように前記駆動源を制御し、前記第1距離が前記第2距離未満の場合には、前記駆動源の駆動力が、前記目標駆動力を減少補正して得られる補正駆動力となるように前記駆動源を制御するコントローラと、
    を備えることを特徴とする駆動力制御装置。
JP2021194549A 2021-11-30 2021-11-30 駆動力制御方法及び駆動力制御装置 Pending JP2023080956A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021194549A JP2023080956A (ja) 2021-11-30 2021-11-30 駆動力制御方法及び駆動力制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021194549A JP2023080956A (ja) 2021-11-30 2021-11-30 駆動力制御方法及び駆動力制御装置

Publications (1)

Publication Number Publication Date
JP2023080956A true JP2023080956A (ja) 2023-06-09

Family

ID=86656294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021194549A Pending JP2023080956A (ja) 2021-11-30 2021-11-30 駆動力制御方法及び駆動力制御装置

Country Status (1)

Country Link
JP (1) JP2023080956A (ja)

Similar Documents

Publication Publication Date Title
JP6642772B2 (ja) 運転支援車両の位置誤差補正方法及び位置誤差補正装置
US10988139B2 (en) Vehicle position control method and device vehicle position control device for correcting position in drive-assisted vehicle
US11260859B2 (en) Vehicle control system, vehicle control method, and storage medium
JP6705414B2 (ja) 動作範囲決定装置
US11603132B2 (en) Steering control method and steering control device
US11603128B2 (en) Steering control method and steering control device
US10001782B2 (en) Target pathway generating device and driving control device
US11631257B2 (en) Surroundings recognition device, and surroundings recognition method
US11904936B2 (en) Driving support device for vehicle
WO2016194168A1 (ja) 走行制御装置及び方法
WO2019207639A1 (ja) 行動選択装置、行動選択プログラム及び行動選択方法
JP2020032828A (ja) 車両用操舵装置
CN112703539A (zh) 行驶路径生成装置及车辆控制装置
JP7470555B2 (ja) 交通標識表示装置
WO2020148561A1 (ja) 運転支援方法及び運転支援装置
JP6673531B2 (ja) 運転支援車両の目標車速生成方法及び目標車速生成装置
JP6365688B2 (ja) 前方注視点距離設定装置および走行制御装置
JP2023080956A (ja) 駆動力制御方法及び駆動力制御装置
US11634140B2 (en) Vehicle control method and vehicle control device
JP2023049571A (ja) 操舵制御方法及び操舵制御装置
WO2023032009A1 (ja) 車両制御方法及び車両制御装置
KR102259603B1 (ko) 차량 간 거리 산출 장치 및 방법
WO2023100355A1 (ja) 車両制御方法及び車両制御装置
JP7172786B2 (ja) 車両制御システム
JP2023128845A (ja) 操舵制御方法及び操舵制御装置