JP2023079827A - 軟磁性金属粉末、圧粉磁心、磁性部品および電子機器 - Google Patents

軟磁性金属粉末、圧粉磁心、磁性部品および電子機器 Download PDF

Info

Publication number
JP2023079827A
JP2023079827A JP2021193484A JP2021193484A JP2023079827A JP 2023079827 A JP2023079827 A JP 2023079827A JP 2021193484 A JP2021193484 A JP 2021193484A JP 2021193484 A JP2021193484 A JP 2021193484A JP 2023079827 A JP2023079827 A JP 2023079827A
Authority
JP
Japan
Prior art keywords
soft magnetic
powder
magnetic metal
metal particles
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021193484A
Other languages
English (en)
Inventor
真仁 小枝
Shinji Koeda
智子 森
Satoko Mori
和宏 吉留
Kazuhiro Yoshitome
裕之 松元
Hiroyuki Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2021193484A priority Critical patent/JP2023079827A/ja
Priority to US17/992,378 priority patent/US20230178275A1/en
Priority to CN202211499092.3A priority patent/CN116190036A/zh
Publication of JP2023079827A publication Critical patent/JP2023079827A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • H01F1/14741Fe-Ni based alloys in the form of particles pressed, sintered or bonded together
    • H01F1/1475Fe-Ni based alloys in the form of particles pressed, sintered or bonded together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

【課題】耐電圧性および透磁率が良好な圧粉磁心、これを備える磁性部品および当該圧粉磁心に好適な軟磁性金属粉末を提供する。【解決手段】軟磁性金属粒子を含む軟磁性金属粉末である。軟磁性金属粒子が、金属粒子と、金属粒子を被覆する酸化部と、を有する。金属粒子と酸化部との界面が凹凸を有する。金属粒子と酸化部との界面の粗さの最大高さRzが1.0nm以上50.0nm以下である。【選択図】図2

Description

本発明は軟磁性金属粉末、圧粉磁心、磁性部品および電子機器に関する。
特許文献1は、リン(P)の酸化物を含む粉末ガラスを機械的摩擦により軟化させて、Fe系非晶質合金粉末の表面に絶縁コーティング層を形成することを開示している。
特開2015-132010号公報
近年では、より高い水準で耐電圧性と高透磁率とを両立することが求められている。
本発明は、耐電圧性および透磁率が良好な圧粉磁心、これを備える磁性部品および当該圧粉磁心に好適な軟磁性金属粉末を提供することを目的とする。
本発明に係る軟磁性金属粉末は、軟磁性金属粒子を含み、
前記軟磁性金属粒子が、金属粒子と、前記金属粒子を被覆する酸化部と、を有し、
前記金属粒子と前記酸化部との界面が凹凸を有し、前記金属粒子と前記酸化部との界面の粗さの最大高さRzが1.0nm以上50.0nm以下である。
前記界面の粗さの算術平均粗さRaが0.2nm以上10.0nm以下であってもよい。
前記酸化部の平均厚みが1.0nm以上100nm以下であってもよい。
前記軟磁性金属粒子が、前記酸化部を被覆する被覆部をさらに有してもよい。
前記被覆部の平均厚みが1.0nm以上100nm以下であってもよい。
本発明の圧粉磁心は上記の軟磁性金属粉末を含む。
本発明の磁性部品は上記の軟磁性金属粉末を含む。
本発明の電子機器は上記の軟磁性金属粉末を含む。
軟磁性金属粒子の断面模式図である。 軟磁性金属粒子の断面模式図である。 軟磁性金属粒子の断面画像である。 軟磁性金属粒子の断面画像である。 粉末被覆装置の断面模式図である。
以下、本発明を、図面に示す具体的な実施形態に基づき、以下の順序で詳細に説明する。
1.軟磁性金属粉末
1.1.金属粒子の材質
1.2.酸化部
1.3.被覆部
2.圧粉磁心
3.磁性部品
4.電子機器
5.圧粉磁心の製造方法
5.1.軟磁性金属粉末の製造方法
5.2.圧粉磁心の製造方法
(1.軟磁性金属粉末)
軟磁性金属粉末は、軟磁性金属粒子1を含む。図1に示すように、軟磁性金属粒子1が、金属粒子2と、金属粒子2を被覆する酸化部11と、を有する。また、図1に示すように、軟磁性金属粒子1が酸化部11を被覆する被覆部12をさらに有していてもよい。
軟磁性金属粉末に含まれる軟磁性金属粒子1の形状は球形であることが好ましい。例えば、軟磁性金属粉末に含まれる軟磁性金属粒子1の断面の円形度の平均値が0.85以上であってもよい。また、軟磁性金属粒子1の断面の円形度は、2×(π×断面積)1/2/(断面の周囲長)で算出される円形度を用いた。
また、軟磁性金属粉末に含まれる軟磁性金属粒子1の平均粒子径(D50)は、用途および材質に応じて選択すればよい。軟磁性金属粒子1の平均粒子径(D50)は、0.3~100μmの範囲内であってもよい。軟磁性金属粒子1の平均粒子径を上記の範囲内とすることにより、十分な成形性を維持することが容易となる。また、所定の磁気特性を維持することが容易となる。軟磁性金属粒子1の平均粒子径の測定方法には特に限定はない。例えばレーザー回折散乱法を用いてもよい。
磁性部品から平均粒子径(D50)を算出する場合には、磁性部品の断面を観察してもよい。この場合には、磁性部品の断面に含まれる各軟磁性金属粒子の円相当径を算出し、各軟磁性金属粒子の円相当径を各軟磁性金属粒子の粒子径とする。そして、各軟磁性金属粒子の粒子径から平均粒子径(D50)を算出する。
軟磁性金属粉末に含まれる軟磁性金属粒子1の材質は全て同一であってもよく、互いに異なっていてもよい。
(1.1.金属粒子)
金属粒子2は、鉄(Fe)を含む軟磁性金属からなっていてもよい。鉄を含む軟磁性金属としては、例えば、Fe系結晶質材料、Fe系アモルファス合金、Fe系ナノ結晶合金が挙げられる。
Fe系アモルファス合金は、アモルファス相のみで構成されていてもよく、初期微結晶がアモルファス相中に分散している構造、すなわち、ナノヘテロ構造を有していてもよい。
Fe系ナノ結晶合金は、ナノメートルオーダーのFe基ナノ結晶がアモルファス相中に分散している構造を有している。
鉄を含む軟磁性金属としては、Fe系アモルファス合金、または、Fe系ナノ結晶合金であることが好ましい。以下では、Fe系アモルファス合金およびFe系ナノ結晶合金について説明する。
Fe系アモルファス合金は、アモルファス相のみで構成されていてもよいし、ナノヘテロ構造を有していてもよい。ナノヘテロ構造は、軟磁性金属の原料の溶湯を急冷することにより得られる構造である。そして、ナノヘテロ構造は、アモルファス合金中に多数の初期微結晶が析出し、かつ、分散している構造である。初期微結晶の平均結晶粒子径は0.3nm以上10nm以下であってもよい。
Fe系アモルファス合金の組成について詳細に説明する。
Fe系アモルファス合金の組成には特に限定はない。Fe基アモルファス合金の組成は、組成式(Fe(1-(α+β))X1αX2β)(1-(a+b+c+d+e+f))abcSidefで表されてもよい。
上記の組成式において、Mは、ニオブ(Nb)、ハフニウム(Hf)、ジルコニウム(Zr)、タンタル(Ta)、モリブデン(Mo)、タングステン(W)、チタン(Ti)およびバナジウム(V)からなる群から選ばれる少なくとも1種の元素である。
Mの原子数比(a)は、圧粉磁心の耐電圧性および強度を好適にする観点からは、0≦a≦0.300を満たしてもよい。すなわち、Fe基アモルファス合金はMを含有しなくてもよい。
軟磁性金属粉末および圧粉磁心の軟磁気特性を好適にする観点からは、0≦a≦0.150を満たしてもよい。さらに、aが0.040以上であってもよく、0.050以上であってもよい。aが0.100以下であってもよく、0.080以下であってもよい。aが小さいことにより、軟磁性金属粉末の飽和磁化を好適にしやすくなる。
ホウ素(B)の原子数比(b)は、圧粉磁心の耐電圧性および強度を好適にする観点から、0≦b≦0.400を満たしてもよい。すなわち、Fe基アモルファス合金はBを含有しなくてもよい。
軟磁性金属粉末および圧粉磁心の軟磁気特性を好適にする観点からは、0≦b≦0.200を満たしてもよい。さらに、bが0.025以上であってもよく、0.060以上であってもよく、0.080以上であってもよい。bが0.150以下であってもよく、0.120以下であってもよい。bが小さいことにより、軟磁性金属粉末の飽和磁化を好適にしやすくなる。
リン(P)の原子数比(c)は、圧粉磁心の耐電圧性および強度を好適にする観点から、0≦c≦0.400を満たしてもよい。すなわち、Fe基アモルファス合金はPを含有しなくてもよい。
軟磁性金属粉末および圧粉磁心の軟磁気特性を好適にする観点からは、0≦c≦0.200を満たしてもよい。さらに、cが0.005以上であってもよく、0.010以上であってもよい。cが0.100以下であってもよい。cが上記の範囲内であることにより、軟磁性金属粉末の比抵抗が向上しやすく、保磁力が低下しやすい。cが小さいことにより、軟磁性金属粉末の飽和磁化を好適にしやすくなる。
シリコン(Si)の原子数比(d)は、圧粉磁心の耐電圧性および強度を好適にする観点から、0≦d≦0.400を満たしてもよい。すなわち、Fe基アモルファス合金はSiを含有しなくてもよい。
軟磁性金属粉末および圧粉磁心の軟磁気特性を好適にする観点からは、0≦d≦0.200を満たしてもよい。さらに、dが0.001以上であってもよく、0.005以上であってもよい。dが0.040以下であってもよい。dが上記の範囲内であることにより、軟磁性金属粉末の保磁力が低下しやすい。
炭素(C)の原子数比(e)は、圧粉磁心の耐電圧性および強度を好適にする観点から、0≦e≦0.400を満たしてもよい。すなわち、Fe基アモルファス合金はCを含有しなくてもよい。
軟磁性金属粉末および圧粉磁心の軟磁気特性を好適にする観点からは、0≦e≦0.200を満たしてもよい。さらに、eは、0.001以上であってもよい。eが0.035以下であってもよく、0.030以下であってもよい。eが上記の範囲内であることにより、軟磁性金属粉末の保磁力が低下しやすい。
硫黄(S)の原子数比(f)は、圧粉磁心の耐電圧性および強度を好適にする観点から、0≦f≦0.040を満たしてもよい。すなわち、Fe基アモルファス合金はSを含有しなくてもよい。
軟磁性金属粉末および圧粉磁心の軟磁気特性を好適にする観点からは、0≦f≦0.020を満たしてもよい。さらに、fは0.001以上であってもよく、0.002以上であってもよい。fは、0.010以下であってもよい。fが上記の範囲内であることにより、軟磁性金属粉末の保磁力が低下しやすい。
また、fが0.001以上である場合には、f=0の場合と比較して軟磁性金属粉末に含まれる軟磁性金属粒子1の断面の円形度が向上しやすくなる。そして、圧粉磁心の密度を向上しやすくなる。
鉄(Fe)の原子数比(1-(a+b+c+d+e+f))は、圧粉磁心の耐電圧性および強度を好適にする観点から、0.410以上0.910以下であってもよい。
軟磁性金属粉末および圧粉磁心の軟磁気特性を好適にする観点からは、(1-(a+b+c+d+e+f))は、0.700以上0.850以下であってもよい。(1-(a+b+c+d+e+f))が上記の範囲内であることにより、結晶粒子径が100nmよりも大きい結晶から構成される結晶相が生じにくくなる。
また、上記の組成式に示すように、鉄の一部をX1および/またはX2で組成的に置換してもよい。
X1は、コバルト(Co)およびニッケル(Ni)からなる群から選ばれる少なくとも1種の元素である。上記の組成式において、αはFe、X1およびX2の合計に対するX1の原子数比を示している。αは0以上である。すなわち、Fe基アモルファス合金はX1を含有しなくてもよい。
圧粉磁心の耐電圧性および強度を好適にする観点から、組成全体の原子数、すなわち、Fe、X1、X2、M、B、P、Si、CおよびSの合計に対するX1の原子数比は70.00at%以下であってもよい。すなわち、0≦α{1-(a+b+c+d+e+f)}≦0.7000を満たしてもよい。
軟磁性金属粉末および圧粉磁心の軟磁気特性を好適にする観点からは、Fe、X1、X2、M、B、P、Si、CおよびSの合計に対するX1の原子数比は40.00at%以下であってもよい。すなわち、0≦α{1-(a+b+c+d+e+f)}≦0.4000を満たしてもよい。
X2は、アルミニウム(Al)、マンガン(Mn)、銀(Ag)、亜鉛(Zn)、スズ(Sn)、ヒ素(As)、アンチモン(Sb)、銅(Cu)、クロム(Cr)、ビスマス(Bi)、窒素(N)、酸素(O)および希土類元素からなる群から選ばれる少なくとも1種の元素である。上記の組成式において、βはFe、X1およびX2の合計に対するX2の原子数比を示している。βは0以上である。すなわち、Fe基アモルファス合金はX2を含有しなくてもよい。
圧粉磁心の耐電圧性および強度を好適にする観点から、組成全体の原子数、すなわち、Fe、X1、X2、M、B、P、Si、CおよびSの合計に対するX2の原子数比は6.00at%以下であってもよい。すなわち、0≦β{1-(a+b+c+d+e+f)}≦0.0600を満してもよい。
軟磁性金属粉末および圧粉磁心の軟磁気特性を好適にする観点からは、Fe、X1、X2、M、B、P、Si、CおよびSの合計に対するX2の原子数比は3.00at%以下であってもよい。すなわち、0≦β{1-(a+b+c+d+e+f)}≦0.0300を満たしてもよい。
さらに、圧粉磁心の耐電圧性および強度を好適にする観点から、X1および/またはX2が鉄を置換する範囲(置換比)としては、原子数換算でFeの総原子数の0.94以下としてもよい。すなわち、0≦α+β≦0.94としてもよい。
軟磁性金属粉末および圧粉磁心の軟磁気特性を好適にする観点からは、X1および/またはX2が鉄を置換する範囲は、原子数換算でFeの総原子数の半分以下としてもよい。すなわち、0≦α+β≦0.50としてもよい。α+β>0.50の場合には、熱処理によりFe基ナノ結晶が析出した軟磁性金属を得にくい。
なお、上記のFe系アモルファス合金は、上記以外の元素、すなわち、Fe、X1、X2、M、B、P、Si、CおよびS以外の元素を不可避的不純物として含んでいてもよい。例えば、Fe系アモルファス合金100質量%に対して、Fe、X1、X2、M、B、P、Si、CおよびS以外の元素を合計で0.1質量%以下含んでいてもよい。
ナノへテロ構造を有するFe系アモルファス合金を所定の条件で熱処理することにより、初期微結晶を成長させてFe系ナノ結晶合金を得ることができる。
Fe系ナノ結晶合金は、Fe基ナノ結晶を有している。Fe基ナノ結晶とは、結晶粒子径がナノメートルオーダーであり、結晶構造がbcc(体心立方格子構造)であるFeの結晶のことである。Fe系ナノ結晶合金においては、多数のFe基ナノ結晶がアモルファス相中に析出し分散している。Fe基ナノ結晶は、ナノヘテロ構造を有するFe系アモルファス合金を熱処理して、初期微結晶を成長させることにより好適に得られる。
したがって、Fe基ナノ結晶の平均結晶粒子径は、初期微結晶の平均結晶粒子径よりも若干大きい傾向にある。本実施形態では、Fe基ナノ結晶の平均結晶粒子径は5nm以上30nm以下であってもよい。Fe基ナノ結晶がアモルファス相中に分散している軟磁性金属を含む軟磁性金属粉末は、高い飽和磁化が得られやすく、かつ低い保磁力が得られやすい。
本実施形態では、Fe系ナノ結晶合金の組成は、上述したFe系アモルファス合金の組成と同一であってもよい。したがって、Fe系アモルファス合金の組成に関する上記の説明はFe系ナノ結晶合金の組成に関する説明に適用される。
(1.2.酸化部)
酸化部11は、図1に示すように金属粒子2の表面を覆うように形成されている。また、「表面が物質により被覆されている」は、「物質が表面に接触して接触した部分を覆うように固定されている」と同義である。また、金属粒子2を被覆する酸化部11は、金属粒子2の表面の少なくとも一部を覆っていればよい。金属粒子2の表面の90%程度以上が酸化部11により被覆されていてもよい。金属粒子2の表面が全て酸化部11により被覆されていてもよい。酸化部11は金属粒子2の表面を連続的に覆っていてもよく、断続的に覆っていてもよい。
酸化部11の組成には特に制限はないが、少なくとも金属粒子2に含まれる元素の酸化物を含む。例えば、金属粒子2がFeを含む場合には、Feの酸化物を含む。後述するように、金属粒子2の表面を酸化させることで酸化物11を形成してもよい。
図2に示すように、軟磁性金属粒子1は、金属粒子2と酸化部11との界面2aが凹凸を有する。
そして、上記の凹凸に起因して金属粒子2と酸化部11との界面2aの粗さが大きくなる。具体的には、金属粒子2と酸化部11との界面2aの粗さの最大高さRzが1.0nm以上50.0nm以下である。最大高さRzが4.3nm以上49.3nm以下であってもよい。金属粒子2と酸化部11との界面2aの粗さの算術平均粗さRaが0.2nm以上10.0nm以下であってもよく、0.2nm以上9.9nm以下であってもよい。
最大高さRzが所定の範囲内であることにより、軟磁性金属粒子1を含む軟磁性金属粉末を用いて作製される圧粉磁心の耐電圧が向上する。最大高さRzが小さすぎても大きすぎても圧粉磁心の耐電圧が十分に向上しない。さらに、圧粉磁心の透磁率も低下する場合がある。
また、算術平均粗さRaが所定の範囲内であることにより、さらに耐電圧と透磁率とをバランスよく好適にしやすくなる。
以下、単に粗さといえば、最大高さRzおよび算術平均粗さRaの2種類の粗さを指すものとする。粗さの測定方法には特に制限はない。以下、軟磁性金属粒子1の断面観察による粗さの測定方法について説明する。
軟磁性金属粒子1の断面観察では、公知の電子顕微鏡(走査型電子顕微鏡:SEM、透過型電子顕微鏡:TEM等)で軟磁性金属粒子1の断面を観察する。例えば、観察像におけるコントラスト差、EDSによる組成分析結果等に基づき、金属粒子2および酸化部11を特定する。金属粒子2と酸化部11との界面2aである曲線を輪郭曲線とする。そして、得られた輪郭曲線から粗さを算出する。
例えば、図3には後述する実施例の断面画像を示す。図4には後述する粗さが小さすぎる比較例の断面画像を示す。図3に示す断面画像では、軟磁性金属粒子1は、金属粒子2と酸化部11との界面2aが凹凸を有する。そのため、図3に示す軟磁性金属粒子1は、界面2aの粗さが十分に大きくなる。これに対し、図4に示す断面画像では、軟磁性金属粒子1は、金属粒子2と酸化部11との界面2aが凹凸を有さない。そのため、図4に示す軟磁性金属粒子1は、界面2aの粗さが小さすぎる。
金属粒子2と酸化部11との界面2aの粗さは、具体的には、表面粗さの算出方法と同様の手法で算出することが可能である。まず、得られた輪郭曲線から、形状に起因する因子と、うねりに起因する因子と、を除去して粗さ曲線を得る。得られた粗さ曲線に基づき、JIS B 601に規定する方法に準じて、RzおよびRaを算出する。すなわち、RzおよびRaはJIS B 601に規定する方法と同様の方法により測定することができる。しかし、JIS B 601に記載の条件とは異なる条件でRzおよびRaを測定してもよい。
輪郭曲線から粗さ曲線を得る操作は、公知のフィルタ処理、平坦化処理等により行うことができる。
さらに、軟磁性金属粒子1が軟磁性金属粉末に含まれている場合には、精度の高いRzおよびRaを得るために、円形度が高い軟磁性金属粒子1、具体的には円形度が0.95以上である軟磁性金属粒子1に対して界面2aの粗さを測定することが好ましい。また、界面2aの粗さの測定箇所は、円形度が高い任意の10~100個の軟磁性金属粒子1における任意の箇所とすることが好ましい。
輪郭曲線の基準長さについては、0.1μm~50μmであってもよい。輪郭曲線の測定は、1個の軟磁性金属粒子1に対して、10~100箇所程度行ってもよい。各測定結果から算出されるRzの平均値を軟磁性金属粉末のRzとしてもよい。各測定結果から算出されるRaの平均値を軟磁性金属粉末のRaとしてもよい。
最大高さRzは粗さ曲線から粗さ曲線の平均線の方向に基準長さだけを抜き取り、この抜取り部分の中で最も高い山の高さと最も深い谷の深さとの和である。
算術平均粗さRaは粗さ曲線から粗さ曲線の平均線の方向に基準長さだけを抜き取り、この抜取り部分の平均線の方向にx軸を、縦倍率の方向にy軸を取り、粗さ曲線を数式1で表した際に、数式2に示すように定義したものである。すなわち、粗さ曲線の平均線から粗さ曲線までの距離を平均化したものである。なお、Lは基準長さである。
Figure 2023079827000002
Figure 2023079827000003
(1.3.被覆部)
被覆部12は、図1に示すように、酸化部11の表面を覆うように形成されている。酸化部11が形成されていない部分では金属粒子2の表面を覆うように形成されている。以下、「酸化部11または金属粒子2の表面」は、「酸化部11が形成されている部分では酸化部11の表面であり酸化部11が形成されていない部分では金属粒子2の表面である面」を意味する。また、本実施形態では、「表面が物質により被覆されている」は、「物質が表面に接触して接触した部分を覆うように固定されている」と同義である。また、酸化部11または金属粒子2を被覆する被覆部12は、酸化部11の表面の少なくとも一部を覆っていればよい。「酸化部11または金属粒子2の表面」の90%程度以上が被覆部12により被覆されていてもよい。「酸化部11または金属粒子2の表面」が全て被覆部12により被覆されていてもよい。被覆部12は「酸化部11または金属粒子2の表面」を連続的に覆っていてもよく、断続的に覆っていてもよい。
被覆部12の材質には特に制限はない。被覆部12の材質は、軟磁性金属粉末を構成する軟磁性金属粒子1同士を絶縁できる材質であればよい。すなわち、被覆部12の材質は絶縁性である。例えば、被覆部12は、リン(P)、アルミニウム(Al)、カルシウム(Ca)、バリウム(Ba)、ビスマス(Bi)、シリコン(Si)、クロム(Cr)、ナトリウム(Na)、亜鉛(Zn)および酸素(O)からなる群から選ばれる少なくとも1種を含んでいてもよい。好ましくは、被覆部12は、リン、亜鉛、ナトリウムからなる群から選ばれる少なくとも1種を含む化合物を含む。当該化合物は酸化物であることがより好ましく、酸化物ガラスであることが特に好ましい。
当該化合物が酸化物である場合には、被覆部12において、P、Al、Ca、Ba、Bi、Si、Cr、NaおよびZnからなる群から選ばれる少なくとも1種の元素の酸化物が主成分として含まれていることが好ましい。「被覆部12において、P、Al、Ca、Ba、Bi、Si、Cr、NaおよびZnからなる群から選ばれる少なくとも1種の元素の酸化物が主成分として含まれる」とは、被覆部12において、酸素を除いた元素の合計量を100質量%とした場合に、P、Al、Ca、Ba、Bi、Si、Cr、NaおよびZnからなる群から選ばれる少なくとも1種の元素の合計量が最も多いことを意味する。また、被覆部12において、P、Al、Ca、Ba、Bi、Si、Cr、NaおよびZnからなる群から選ばれる少なくとも1種の元素の合計量は50質量%以上であることが好ましく、60質量%以上であることがより好ましい。
当該化合物が酸化物ガラスである場合における酸化物ガラスの種類には特に制限はない。例えば、リン酸塩(P25)系ガラス、ビスマス酸塩(Bi23)系ガラス、ホウケイ酸塩(B23-SiO2)系ガラスが例示される。
25系ガラスとしては、P25が50質量%以上含まれるガラスが好ましい。P25系ガラスとしては、P25-ZnO-R2O-Al23系ガラス等が例示される。なお、P25系ガラスにR2Oとして含まれるRはアルカリ金属である。
Bi23系ガラスとしては、Bi23が50質量%以上含まれるガラスが好ましい。Bi23系ガラスとしては、Bi23-ZnO-B23-SiO2系ガラス等が例示される。
23-SiO2系ガラスとしては、B23が10質量%以上含まれ、SiO2が10質量%以上含まれるガラスが好ましい。B23-SiO2系ガラスとしては、BaO-ZnO-B23-SiO2-Al23系ガラス等が例示される。
軟磁性金属粉末において、Ra、Rzが所定の範囲内である酸化部11を有する金属粒子2がさらに被覆部12を有することにより、軟磁性金属粉末から構成される圧粉磁心の耐電圧が向上する。
被覆部12に含まれる成分は、走査型透過電子顕微鏡(STEM)等の透過電子顕微鏡(TEM)を用いたエネルギー分散型X線分光法(EDS)による元素分析、電子エネルギー損失分光法(EELS)による元素分析、TEM画像の高速フーリエ変換(FFT)解析等により得られる格子定数等の情報から同定することができる。
酸化部11および被覆部12の厚みの測定方法には特に制限はない。例えば、公知の電子顕微鏡(走査型電子顕微鏡:SEM、透過型電子顕微鏡:TEM等)で軟磁性金属粒子1の断面を観察し、観察像におけるコントラスト差およびEDSによる組成分析結果に基づき、酸化部11および被覆部12を特定することにより測定できる。酸化部11の厚みおよび被覆部12の厚みの測定は、1個の軟磁性金属粒子1に対して、5~10箇所程度行うことが好ましい。また、酸化部11の平均厚みおよび被覆部12の平均厚みの測定は、10~100個の軟磁性金属粒子1に行うことが好ましい。得られる測定結果より、酸化部11の平均厚みおよび被覆部12の平均厚みを算出できる。
酸化部11の平均厚みには特に制限はない。例えば、1.0nm以上100nm以下であってもよい。高い透磁率を得る観点からは、20nm以下であることが好ましい。高い透磁率と高い耐電圧とを両立する観点からは、5.0nm以上20nm以下であることが好ましく5.0nm以上15nm以下であることがさらに好ましい。
被覆部12の平均厚みには特に制限はない。例えば、1.0nm以上100nm以下であってもよく、1.0nm以上50nm以下であってもよく、10nm以上50nm以下であることが好ましい。
また、軟磁性金属粉末に含まれる軟磁性金属粒子1の個数割合を100%とした場合において、金属粒子2と、金属粒子2を被覆する酸化部11と、酸化部11を被覆する被覆部12と、を有する軟磁性金属粒子1の個数割合が90%以上であってもよく、95%以上であってもよい。
(2.圧粉磁心)
圧粉磁心は、上記の軟磁性金属粉末を含み、所定の形状を有するように形成されていればよい。圧粉磁心は、例えば、軟磁性金属粉末と結合剤としての樹脂とを含んでいてもよい。そして、圧粉磁心は、当該軟磁性金属粉末を構成する軟磁性金属粒子同士が樹脂を介して結合することにより、所定の形状に固定されていてもよい。
なお、圧粉磁心は、上記の軟磁性金属粉末と他の磁性粉末との混合粉末から構成され、所定の形状を有するように形成されていてもよい。
一般的に、圧粉磁心においては、磁性成分の割合(充填率)を高めることで磁気特性を向上させることができる。磁性成分の割合(充填率)を高めるためには、絶縁性である樹脂の含有量を減らす手法が知られている。しかしながら、圧粉磁心における樹脂の含有量を減らす場合には、軟磁性金属粒子同士が接触する割合が増加する。その結果、圧粉磁心を有する磁性部品へ交流電圧を印加する際に、接触している軟磁性金属粒子間を流れる電流(粒子間渦電流)に起因する損失が大きくなる。その結果、圧粉磁心のコアロスが大きくなる。
渦電流を抑制するために、軟磁性金属粒子の表面には被覆部が形成される。本発明者らは、上記の軟磁性金属粉末を含む圧粉磁心を作製することにより、耐電圧および透磁率が高く、コアロスが小さい圧粉磁心を作製することができることを見出した。
(3.磁性部品)
磁性部品は、上記の軟磁性金属粉末を含む圧粉磁心を備えるものであればよい。例えば、所定形状の圧粉磁心の内部にワイヤが巻回された空芯コイルが埋設された磁性部品であってもよい。また、所定形状の圧粉磁心の表面にワイヤが所定の巻き数だけ巻回されてなる磁性部品であってもよい。
(4.電子機器)
電子機器は、上記の軟磁性金属粉末を含む圧粉磁心を備える磁性部品を有する電子機器であればよい。例えば、電源回路に用いられるパワーインダクタが挙げられる。上記の軟磁性金属粉末を含む圧粉磁心を備える磁性部品を有する場合には、耐電圧性が良好である。
また、各種電子機器の電源回路に用いられる磁性部品としては、他にもトランス、チョークコイル等が知られている。
(5.圧粉磁心の製造方法)
上記の軟磁性金属粉末を含む圧粉磁心を製造する方法について説明する。まず、上記の軟磁性金属粉末を製造する方法について説明する。
(5.1.軟磁性金属粉末の製造方法)
軟磁性金属粉末を得るために、まず、金属粒子2を含む粉末を製造する。金属粒子2の製造方法としては、公知の製造方法と同様の方法を用いることができる。具体的には、ガスアトマイズ法、水アトマイズ法、回転ディスク法等を用いて製造することができる。また、単ロール法等により得られる薄帯を機械的に粉砕して製造してもよい。これらの製造方法の中では、所望の形状および磁気特性を有する軟磁性金属粉末が得られやすいという観点から、ガスアトマイズ法を用いることが好ましい。
ガスアトマイズ法では、まず、金属粒子2の原料が溶解した溶湯を得る。金属粒子2に含まれる各金属元素の原料(純金属等)を準備し、最終的に得られる金属粒子2の組成となるように秤量し、当該原料を溶解する。なお、金属元素の原料を溶解する方法には特に制限はない。例えば、アトマイズ装置のチャンバー内で真空引きした後に高周波加熱にて溶解させる方法がある。溶解時の温度は、各金属元素の融点を考慮して決定すればよい。1200~1600℃とすることができる。
得られた溶湯をルツボ底部に設けられたノズルを通じて線状の連続的な流体としてチャンバー内に供給する。供給された溶湯に高圧のガスを吹き付けて、溶湯を液滴化するとともに、急冷して微細な粉末を得る。ガスの噴射温度、チャンバー内の圧力等は、金属粒子2の組成、構造等に応じて決定すればよい。
ガスの噴射温度は10~200℃としてもよい。
得られた金属粉末の平均粒子径(D50)が、1~50μmであってもよい。また、得られた粉末に含まれる金属粒子の断面の平均円形度が0.60以上1.00以下でであってもよい。好ましくは0.85以上1.00以下であり、さらに好ましくは0.93以上1.00以下である。なお、金属粒子2の粒子径については篩分級や気流分級等により調整してもよい。
上記の範囲内の条件で金属粒子を含む粉末を作製することにより、後述する酸素雰囲気下でのメカノケミカル処理でRz、Raを特定の範囲内に制御しやすくなる。
この時点で得られる粉末に含まれる金属粒子2は、結晶質またはアモルファス合金からなる。
金属粒子2に結晶粒子径が30nmよりも大きい結晶が存在している場合には、金属粒子2が結晶質からなると判断し、結晶粒子径が30nmよりも大きい結晶が存在していない場合には、金属粒子2がアモルファス合金からなると判断する。なお、金属粒子2に結晶粒子径が30nmよりも大きい結晶が存在しているか否かは、公知の方法により評価すればよい。例えば、X線回折測定、TEMによる観察等がある。TEMを用いる場合には、制限視野回折像、ナノビーム回折像を得ることで確認できる。制限視野回折像またはナノビーム回折像を用いる場合には、金属粒子2がアモルファス合金からなる場合には回折パターンにおいてリング状の回折が形成される。これに対し、金属粒子2が結晶質からなる場合には回折パターンにおいて結晶構造に起因した回折斑点が形成される。
また、アモルファス合金からなる金属粒子2における初期微結晶の有無および平均結晶粒子径の評価方法については特に制限はない。公知の方法により評価すればよい。例えば、イオンミリングにより薄片化した試料に対してTEMを用いて明視野像または高分解能像を得ることで確認できる。具体的には、倍率1.00×105~3.00×105倍で得られる明視野像または高分解能像を目視にて観察することで初期微結晶の有無および平均結晶粒子径を評価できる。
ナノ結晶合金からなる金属粒子2を含む粉末を得る場合には、Fe基ナノ結晶を析出させるために、アモルファス合金からなる金属粒子2を含む粉末を熱処理することが好ましい。
アモルファス合金からなる金属粒子2を含む粉末に熱処理を行うことにより、各金属粒子2同士が焼結し粉体が粗大化することを防ぎつつ、金属粒子2に含まれる元素の拡散が促される。その結果、金属粒子2にFe基ナノ結晶を析出させることができる。
熱処理条件は、Fe基ナノ結晶が析出しやすい条件であれば特に制限されない。例えば、熱処理温度を400~700℃、保持時間を0.5~10時間とすることができる。また、熱処理時の雰囲気は不活性雰囲気、例えばAr雰囲気、とする。
熱処理により、ナノ結晶合金からなる金属粒子2を含む粉末が得られる。
続いて、得られた金属粒子2を含む粉末に対して前処理を行い、金属粒子2に酸化部11を形成する。酸化部11を形成する前処理の方法には特に制限はない。例えば、酸素雰囲気下におけるメカノケミカル処理による方法が挙げられる。
従来、金属粒子2の表面に酸化部11を形成する方法として、酸素雰囲気下において熱処理を行う方法がある。しかし、この方法では金属粒子2と酸化部11との界面2aの粗さは熱処理前の金属粒子2の表面粗さからほとんど変化しない。そして、Rzが1.0nm以上にはならない。
本発明者らは、酸化部11を形成する前処理を酸素雰囲気下におけるメカノケミカル処理で行うことを見出した。具体的には、図5に示す粉末被覆装置100を用いて酸素雰囲気下におけるメカノケミカル処理を行う。粉末被覆装置100は従来、各種粉末のコーティング処理に用いられてきた装置である。本発明者らは、粉末被覆装置100を粉末に含まれる金属粒子2の酸化に用いることで、金属粒子2と酸化部11との界面2aの粗さを大きくしながら酸化を好適に進行させることができることを見出した。
具体的には、まず、酸素雰囲気下で粉末被覆装置100に金属粒子2を含む粉末を投入する。次に、粉末被覆装置100内のローター101を回転させる。酸素雰囲気下で金属粒子2を含む粉末がプレスヘッド102とローター101の内壁との間で圧縮される。そして、酸素雰囲気下で金属粒子2の表面が摩擦により生じた熱により高温になり、摩擦により金属粒子2の表面粗さが増大する。同時に金属粒子2の表面の酸化が進行する。
酸素雰囲気下におけるメカノケミカル処理では、まず、粉末被覆装置100内の酸素濃度を調整する。Rzを1.0nm以上50nm以下に制御する観点からは、酸素濃度を1%以上5%以下にすることが好ましい。酸素濃度が低すぎる場合にはRzが小さくなりすぎる。酸素濃度が高すぎる場合にはRzが大きくなりすぎる。
粉末被覆装置100内のローター101の内壁とプレスヘッド102との間の距離がギャップである。ギャップが大きいほど金属粒子2の表面と壁面との摩擦が小さくなる。その結果、最終的に得られる軟磁性金属粒子1を圧粉して圧粉磁心を作製する場合に、得られる圧粉磁心の耐電圧が悪化する傾向がある。ギャップの大きさは粉末被覆装置100の構造や金属粒子の粒径などによっても異なるが、例えば1mm以上10mm以下であってもよい。
酸素雰囲気下におけるメカノケミカル処理の処理時間には特に制限はない。処理時間が長いほど酸化部11の厚みが厚くなる。酸化部11が厚いほど最終的に得られる圧粉磁心の耐電圧が上昇するが、透磁率が減少する。処理時間は例えば15分以上180分以下であってもよい。また、RzおよびRaが良好な範囲に入るように酸化雰囲気中の酸素濃度、ギャップの大きさ、処理時間等を適宜調節してもよい。
続いて、酸化部11を形成した金属粒子2に対して被覆部12を形成する。被覆部12を形成する方法には特に制限はなく、公知の方法を採用することができる。例えば、金属粒子2に対して湿式処理を行って被覆部12を形成してもよいし、乾式処理を行って被覆部12を形成してもよい。また、メカノケミカルを利用したコーティング方法、リン酸塩処理法、ゾルゲル法等により被覆部を形成することができる。
メカノケミカルを利用したコーティング方法では、例えば、図5に示す粉末被覆装置100を用いる。酸素雰囲気下におけるメカノケミカル処理で金属粒子2に酸化部11を形成した場合には、粉末被覆装置100内にある酸化部11を形成した金属粒子2を含む粉末に、被覆部を構成する材質(P、Al、Ca、Ba、Bi、Si、Cr、Na、Znの化合物等)の粉末状コーティング材を添加して混合物50を作製する。その後、ローター101を回転させることにより、混合物50がプレスヘッド102とローター101の内壁との間で圧縮され摩擦が生じて熱が発生する。この発生した摩擦熱により、粉末状コーティング材が軟化し、圧縮作用により粉末状コーティング材が酸化部11の表面に固着する。固着したコーティング材が冷却されて被覆部12が形成される。
メカノケミカルを利用したコーティング方法では、ローター101の回転速度、ギャップ等を調整することにより、発生する摩擦熱を制御することができる。そして、混合物50の温度を制御することができる。混合物50の温度は、50℃以上150℃以下であってもよい。このような温度範囲とすることにより、被覆部12が酸化部11の表面を覆うように形成しやすくなる。さらに、金属粒子2と被覆部12を構成する材質の粉末との混合比率を調整することにより、被覆部12の厚みを容易に制御できる。
必要に応じて、被覆部12を形成した軟磁性金属粒子1を含む軟磁性金属粉末を熱処理してもよい。
酸素雰囲気下におけるメカノケミカル処理で金属粒子2に酸化部11を形成した場合には、従来よりも金属粒子2と酸化部11との界面2aの粗さが大きい。すなわち、金属粒子2が凹凸を有し、酸化部11も凹凸を有する。そして、金属粒子2と酸化物11との間に隙間が存在してもよい。
この状態で粉末状コーティング材が軟化すると、軟化したコーティング材が酸化部11の表面に固着する。さらに、金属粒子2と酸化物11との間に隙間が存在する場合には、軟化したコーティング材が隙間に充填される。その後、金属粒子2、酸化物11およびコーティング材が室温まで冷却されてコーティング材が硬化すると、コーティング材に体積収縮が生じる。金属粒子2が凹凸を有する場合には、この体積収縮により金属粒子2および酸化部11と、被覆部12と、の間の密着性が向上する。
上記の通りに密着性が向上した軟磁性金属粒子1を含む軟磁性金属粉末を用いて圧粉磁心を作製すると、局所的に電圧に弱い部分が減少する。その結果、圧粉磁心の耐電圧が向上する。
(5.2.圧粉磁心の製造方法)
圧粉磁心は、上記の軟磁性金属粉末を用いて製造する。具体的な製造方法には特に制限はなく、公知の方法を採用することができる。例えば、まず、軟磁性金属粒子1を含む軟磁性金属粉末と、結合剤としての公知の樹脂とを混合し、混合物を得る。必要に応じて、得られた混合物を造粒粉としてもよい。そして、混合物または造粒粉を金型内に充填して圧縮成形し、作製すべき圧粉磁心の形状を有する成形体を得る。
得られた成形体に対して、例えば50~200℃で熱処理を行うことにより、樹脂が硬化し、軟磁性金属粒子1が樹脂を介して固定された所定形状の圧粉磁心が得られる。得られた圧粉磁心に、ワイヤを所定回数だけ巻回することにより、インダクタ等の磁性部品が得られる。
また、上記の混合物または造粒粉と、ワイヤを所定回数だけ巻回して形成された空心コイルと、を金型内に充填し、圧縮成形し、コイルが内部に埋設された成形体を得てもよい。得られた成形体に対して、熱処理を行うことにより、コイルが埋設された所定形状の圧粉磁心が得られる。このような圧粉磁心は、その内部にコイルが埋設されているので、インダクタ等の磁性部品として機能する。
以上、本発明の実施形態について説明してきたが、本発明は上記の実施形態に何ら限定されるものではなく、本発明の範囲内において種々の態様で改変してもよい。
以下、実施例を用いて、発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実験例1)
まず、軟磁性金属粉末の原料金属を準備した。準備した原料金属を、Feの含有割合が95.5質量%、Siの含有割合が4.5質量%となるように秤量し、アトマイズ装置内に配置されたルツボに収容した。続いて、チャンバー内を真空引きした後、ルツボ外部に設けたワークコイルを用いて、ルツボを高周波誘導により加熱し、ルツボ中の原料金属を溶融、混合して1600℃の溶湯(溶融金属)を得た。
得られた溶湯をルツボ底部に設けられたノズルを通じて線状の連続的な流体としてチャンバー内に供給し、供給された溶湯にガスを吹き付けて粉末を得た。ガスの噴射温度は20℃とした。
得られた粉末の平均粒子径(D50)は、20μmであった。また、得られた粉末に含まれる粒子の断面の平均円形度は0.97~0.98であった。
得られた粉末に対してX線回折測定を行い、結晶粒子径が30nmよりも大きい結晶の有無を確認した。そして、結晶粒子径が30nmよりも大きい結晶が存在しない場合には、粉末を構成する軟磁性金属がアモルファス合金からなると判断し、結晶粒子径が30nmよりも大きい結晶が存在する場合には、軟磁性金属が結晶質からなると判断した。
実験例1では、全ての得られた粉末が結晶質からなっていた。
続いて、得られた粉末に対して、表1に示す前処理を行った。前処理の欄に「なし」と記載した粉末には前処理を行わなかった。「熱処理」と記載した粉末には熱処理を行った。「メカノケミカル処理」と記載した粉末にはメカノケミカル処理を行った。
熱処理の条件は、熱処理温度を300℃、保持時間を30分とした。雰囲気中の酸素濃度は1%とした。
メカノケミカル処理の条件(ギャップの大きさ、雰囲気中の酸素濃度、保持時間)を表1に示す。
前処理を行わなかった場合には酸化部が生じなかった。前処理を行った場合において、後述する測定方法により測定される酸化部の厚みを表1に示す。
続いて、各試料の粉末を、粉末状コーティング材とともに、粉末被覆装置の容器内に投入した。そして、粉末状コーティング材を粉末に含まれる粒子の表面にコーティングして被覆部を形成した。粉末状コーティング材の添加量は、熱処理後の粉末100質量%に対して0.01~3質量%に設定した。また、コーティング時間は0.1~8時間であった。熱処理後の粉末と粉末状コーティング材との混合物の温度は50~150℃であった。被覆部形成後の粉末における被覆粒子の個数割合は85~95%であった。そして、後述する測定方法により測定される被覆部の厚みが25nmとなるようにした。
実験例1では、粉末状コーティング材として、組成がP25-ZnO-R2O-Al23であるリン酸塩系ガラスを用いた。当該リン酸塩系ガラスの具体的な組成は、P25が50質量%、ZnOが12質量%、R2Oが20質量%、Al23が6質量%であり、残部が副成分であった。
なお、本発明者らは、粉末状コーティング材として、P25が60質量%、ZnOが20質量%、R2Oが10質量%、Al23が5質量%であり、残部が副成分である組成を有するガラス等を用いる場合についても同様の実験を行い、後述する結果と同様の結果が得られることを確認した。
酸化部および被覆部が形成された軟磁性金属粒子に対し、以下のようにして酸化部の厚みおよび被覆部の厚みを測定した。軟磁性金属粒子の断面をTEMにより観察した。得られた観察像におけるコントラスト差により酸化部および被覆部を特定した。観察像の大きさおよび倍率は後述する厚みおよび粗さを測定するのに十分な大きさおよび倍率とした。さらに、金属粒子と酸化部との界面および酸化部と被覆部との界面も特定した。観察像のみで酸化部と被覆部との界面が特定できない場合にはEDSを用いて特定した。
特定した酸化部において、厚みを10箇所測定した。測定した厚みの平均値を酸化部の厚みとした。酸化部の厚みを表1に示す。
特定した被覆部において、厚みを10箇所測定した。測定した厚みの平均値を被覆部の厚みとした。上述した通り、全ての試料で被覆部の厚みが25μmであった。
そして、観察像から金属粒子と酸化部との界面の粗さを測定した。結果を表1に示す。なお、軟磁性金属粒子に酸化部が含まれない試料1では、金属粒子と被覆部との界面の粗さを測定した。結果を表1に示す。
軟磁性金属粉末の保磁力Hcは、測定装置としては東北特殊鋼株式会社製K-HC1000型を使用し、測定磁界は150kA/mとして測定した。結果を表1に示す。
続いて、圧粉磁心を作製した。まず、熱硬化樹脂であるエポキシ樹脂と、硬化剤であるイミド樹脂と、の総量が、得られた軟磁性金属粉末100質量部に対して、3質量部となるように、熱硬化樹脂と硬化剤とを秤量した。熱硬化樹脂と硬化剤とをアセトンに加えた。得られた溶液と軟磁性金属粉末とを混合した。混合した後にアセトンを揮発させて顆粒を得た。得られた顆粒を355μmのメッシュで整粒した。整粒した顆粒を外径11mm、内径6.5mmのトロイダル形状の金型に充填した。次に、成形圧3.0t/cm2で加圧して圧粉磁心の成形体を得た。得られた圧粉磁心の成形体を180℃で1時間熱処理して樹脂を硬化させることにより圧粉磁心を得た。
得られた圧粉磁心の耐電圧を以下の方法で測定した。得られた圧粉磁心の試料の両端部にIn-Ga電極を形成した。昇圧破壊試験機(多摩電測製THK-2011ADMPT)を用いて両端部に電圧を印加し、1mAの電流が流れたときの電圧値を測定した。得られた電圧値を圧粉磁心の長さで割ることにより耐電圧を算出した。結果を表1に示す。
得られた圧粉磁心の透磁率は、インピーダンス・アナライザ(Keysight Technologies社製E4990A)を用いて測定した。結果を表1に示す。透磁率は32.0以上を良好とし、35.0以上をさらに良好とした。
前処理を行わない点以外を同条件で実施した試料の耐電圧に対する各試料の耐電圧を耐電圧比RVとした。前処理を行わない点以外を同条件で実施した試料の透磁率に対する各試料の透磁率を透磁率比Rμとした。そして、RV×Rμを算出した。結果を表1に示す。RVは1.20以上である場合を良好とした。Rμは0.90以上である場合を良好とした。RV×Rμは1.20以上である場合を良好とし、1.40以上である場合をさらに良好とした。
Figure 2023079827000004
表1より、前処理としてメカノケミカル処理を行った軟磁性金属粉末はRzが高くなった。そして、Rzが1.0nm以上である50.0nm以下である各実施例の軟磁性金属粉末を用いて作製した圧粉磁心は耐電圧比RVおよび透磁率比Rμが優れていた。さらに、RV×Rμも良好であった。
これに対し、前処理として熱処理を行った比較例の軟磁性金属粉末は前処理を行わない軟磁性金属粉末と比較してRzおよびRaが低下した。その結果、前処理として熱処理を行った軟磁性金属粉末を用いて作製した圧粉磁心は実施例の圧粉磁心と比較して透磁率比Rμが劣り、さらに、RV×Rμも劣っていた。
前処理としてメカノケミカル処理を行ったがRzが高くなりすぎた比較例の圧粉磁心は実施例の圧粉磁心と比較して耐電圧比RVおよび透磁率比Rμが劣り、さらに、RV×Rμも劣っていた。
Raが0.2nm以上10nm以下である実施例はRaが10nmを上回る実施例と比較して耐電圧および透磁率が高くRV×Rμも優れていた。
(実験例2)
準備した原料金属を、Feの含有割合が88.4質量%、Siの含有割合が6.5質量%、Bの含有割合が2.6質量%、Crの含有割合が2.5質量%となるように秤量した点以外は実験例1と同条件で実施した。結果を表2に示す。なお、実験例2では、全ての得られた粉末がアモルファス合金からなっていた。
Figure 2023079827000005
表2より、前処理としてメカノケミカル処理を行った軟磁性金属粉末はRzが高くなった。そして、Rzが1.0nm以上である50.0nm以下である各実施例の軟磁性金属粉末を用いて作製した圧粉磁心は耐電圧比RVおよび透磁率比Rμが優れていた。さらに、RV×Rμも良好であった。
これに対し、前処理として熱処理を行った比較例の軟磁性金属粉末は前処理を行わない軟磁性金属粉末と比較してRzが低下した。その結果、前処理として熱処理を行った軟磁性金属粉末を用いて作製した圧粉磁心は実施例の圧粉磁心と比較して透磁率比Rμが劣り、さらに、RV×Rμも劣っていた。
前処理としてメカノケミカル処理を行ったがRzが高くなりすぎた比較例の圧粉磁心は実施例の圧粉磁心と比較して耐電圧比RVおよび透磁率比Rμが劣り、さらに、RV×Rμも劣っていた。
Raが0.2nm以上10nm以下である実施例はRaが10nmを上回る実施例と比較して耐電圧および透磁率が高くRV×Rμも優れていた。
(実験例3)
準備した原料金属を、Feの含有割合が81.7質量%、Siの含有割合が7.6質量%、Bの含有割合が2.3質量%、Nbの含有割合が7.3質量%、Cuの含有割合が1.1質量%となるように秤量した点、および、前処理の前に600℃で1時間、熱処理を行った点以外は実験例1と同条件で実施した。結果を表3に示す。なお、実験例3では、全ての得られた粉末がナノ結晶合金からなっていた。
Figure 2023079827000006
表3より、前処理としてメカノケミカル処理を行った軟磁性金属粉末はRzが高くなった。そして、Rzが1.0nm以上である50.0nm以下である各実施例の軟磁性金属粉末を用いて作製した圧粉磁心は耐電圧比RVおよび透磁率比Rμが優れていた。さらに、RV×Rμも良好であった。
これに対し、前処理として熱処理を行った比較例の軟磁性金属粉末は前処理を行わない軟磁性金属粉末と比較してRzが低下した。その結果、前処理として熱処理を行った軟磁性金属粉末を用いて作製した圧粉磁心は実施例の圧粉磁心と比較して透磁率比Rμが劣り、さらに、RV×Rμも劣っていた。
前処理としてメカノケミカル処理を行ったがRzが高くなりすぎた比較例の圧粉磁心は実施例の圧粉磁心と比較して耐電圧比RVが劣り、さらに、RV×Rμも劣っていた。
Raが0.2nm以上10nm以下である実施例はRaが10nmを上回る実施例と比較して耐電圧および透磁率が高くRV×Rμも優れていた。
(実験例4)
被覆部の厚みを変化させた点以外は試料No.15、17と同条件で実施した。結果を表4に示す。
Figure 2023079827000007
表4より、被覆部の厚みが高いほど耐電圧が高くなるが透磁率が低くなることが確認された。そして、RV×Rμは全ての実施例で良好であった。特に被覆部の厚みが10nm以上50nm以下である場合に良好であった。
(実験例5)
メカノケミカル処理の保持時間を変化させて酸化物の厚みを変化させた点以外は試料No.17と同条件で実施した。結果を表5に示す。
Figure 2023079827000008
表5より、酸化部の厚みが高いほど耐電圧が高くなるが透磁率が低くなることが確認された。そして、RV×Rμは全ての実施例で良好であった。特に酸化部の厚みが10nm以上20nm以下である場合に良好であった。
(実験例6)
粉末状コーティング材の組成を変化させた点以外は試料No.15、17と同条件で実施した。結果を表6に示す。
試料No.34、35では、粉末状コーティング材として、組成がBi23-ZnO-B23-SiO2であるガラスを用いた。当該ガラスの具体的な組成は、Bi23が40~60質量%、ZnOが10~15質量%、B23が15~25質量%、SiO2が15~20質量%であり、残部が副成分であった。
試料No.36、37では、粉末状コーティング材として、組成がBaO-ZnO-B23-SiO2-Al23であるガラスを用いた。当該ガラスの具体的な組成は、BaOが35~40質量%、ZnOが30~40質量%、B23が5~15質量%、SiO2が5~15質量%、Al23が5~10質量%であり、残部が副成分であった。
Figure 2023079827000009
表6より、被覆部の組成を変化させても同様な傾向が見られた。
1…軟磁性金属粒子
2…金属粒子
2a…界面
11…酸化部
12…被覆部
50…混合物
100…粉末被覆装置
101…ローター
102…プレスヘッド

Claims (8)

  1. 軟磁性金属粒子を含む軟磁性金属粉末であって、
    前記軟磁性金属粒子が、金属粒子と、前記金属粒子を被覆する酸化部と、を有し、
    前記金属粒子と前記酸化部との界面が凹凸を有し、前記金属粒子と前記酸化部との界面の粗さの最大高さRzが1.0nm以上50.0nm以下である軟磁性金属粉末。
  2. 前記界面の粗さの算術平均粗さRaが0.2nm以上10.0nm以下である請求項1に記載の軟磁性金属粉末。
  3. 前記酸化部の平均厚みが1.0nm以上100nm以下である請求項1または2に記載の軟磁性金属粉末。
  4. 前記軟磁性金属粒子が、前記酸化部を被覆する被覆部をさらに有する請求項1~3のいずれかに記載の軟磁性金属粉末。
  5. 前記被覆部の平均厚みが1.0nm以上100nm以下である請求項4に記載の軟磁性金属粉末。
  6. 請求項1~5のいずれかに記載の軟磁性金属粉末を含む圧粉磁心。
  7. 請求項1~5のいずれかに記載の軟磁性金属粉末を含む磁性部品。
  8. 請求項1~5のいずれかに記載の軟磁性金属粉末を含む電子機器。
JP2021193484A 2021-11-29 2021-11-29 軟磁性金属粉末、圧粉磁心、磁性部品および電子機器 Pending JP2023079827A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021193484A JP2023079827A (ja) 2021-11-29 2021-11-29 軟磁性金属粉末、圧粉磁心、磁性部品および電子機器
US17/992,378 US20230178275A1 (en) 2021-11-29 2022-11-22 Soft magnetic metal powder, dust core, magnetic component, and electronic component
CN202211499092.3A CN116190036A (zh) 2021-11-29 2022-11-28 软磁性金属粉末、压粉磁芯、磁性部件和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021193484A JP2023079827A (ja) 2021-11-29 2021-11-29 軟磁性金属粉末、圧粉磁心、磁性部品および電子機器

Publications (1)

Publication Number Publication Date
JP2023079827A true JP2023079827A (ja) 2023-06-08

Family

ID=86446927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021193484A Pending JP2023079827A (ja) 2021-11-29 2021-11-29 軟磁性金属粉末、圧粉磁心、磁性部品および電子機器

Country Status (3)

Country Link
US (1) US20230178275A1 (ja)
JP (1) JP2023079827A (ja)
CN (1) CN116190036A (ja)

Also Published As

Publication number Publication date
CN116190036A (zh) 2023-05-30
US20230178275A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
CN110246652B (zh) 软磁性合金粉末、压粉磁芯及磁性部件
KR102165130B1 (ko) 연자성 합금 분말, 압분 자심 및 자성 부품
JP6504287B1 (ja) 軟磁性金属粉末、圧粉磁心および磁性部品
JP6504288B1 (ja) 軟磁性金属粉末、圧粉磁心および磁性部品
US11705259B2 (en) Soft magnetic metal powder, dust core, and magnetic component
KR102229115B1 (ko) 연자성 금속 분말, 압분 자심 및 자성 부품
US20210035719A1 (en) Soft magnetic metal powder and electronic component
CN110246648B (zh) 软磁性金属粉末、压粉磁芯及磁性部件
JP6504289B1 (ja) 軟磁性金属粉末、圧粉磁心および磁性部品
JP6773193B2 (ja) 軟磁性合金粉末、圧粉磁心および磁性部品
JP2019052356A (ja) 軟磁性合金および磁性部品
JP2023079827A (ja) 軟磁性金属粉末、圧粉磁心、磁性部品および電子機器
JP2021057577A (ja) 軟磁性金属粉末、圧粉磁心および磁性部品
JP6773194B2 (ja) 軟磁性合金粉末、圧粉磁心および磁性部品
JP7456279B2 (ja) 軟磁性金属粉末及び電子部品
JP2021027326A (ja) 軟磁性金属粉末及び電子部品
CN116013630A (zh) 软磁性合金粉末、压粉磁芯及磁性部件
JP2022152452A (ja) 軟磁性粉末および磁性体コア
JP2020136647A (ja) 磁性体コアおよび磁性部品