JP2023078902A - Wind velocity acceleration type wind turbine - Google Patents

Wind velocity acceleration type wind turbine Download PDF

Info

Publication number
JP2023078902A
JP2023078902A JP2021192226A JP2021192226A JP2023078902A JP 2023078902 A JP2023078902 A JP 2023078902A JP 2021192226 A JP2021192226 A JP 2021192226A JP 2021192226 A JP2021192226 A JP 2021192226A JP 2023078902 A JP2023078902 A JP 2023078902A
Authority
JP
Japan
Prior art keywords
wind
wind tunnel
wind turbine
turbine
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021192226A
Other languages
Japanese (ja)
Inventor
壮一郎 浅井
Soichiro Asai
邦光 佐藤
Kunimitsu Sato
則雄 清徳
Norio Seitoku
康隆 吉場
Yasutaka Yoshiba
浩司 山田
Koji Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Green Power By Accelerated Flow Research LLC
Original Assignee
Green Power By Accelerated Flow Research LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Green Power By Accelerated Flow Research LLC filed Critical Green Power By Accelerated Flow Research LLC
Priority to JP2021192226A priority Critical patent/JP2023078902A/en
Priority to PCT/JP2022/015001 priority patent/WO2023095359A1/en
Publication of JP2023078902A publication Critical patent/JP2023078902A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels

Abstract

To provide a wind velocity acceleration type wind turbine that increases wind velocity on a wind turbine back surface and wind velocity at an outlet part of a wind tunnel body, thus improves rotation efficiency of blades, and improves a problem in height of a device, stability of the device, and stability for supporting the wind tunnel body.SOLUTION: A wind velocity acceleration type wind turbine is composed of a front wind tunnel member 22-1 that is composed of a wind tunnel body 22 and a wind turbine 21, and in which the wind tunnel body 22 is formed so as to have a generally longitudinal cross-section and contract its cross-sectional area from a wind inflow port 22a in a straight line or a curved line, and a rear wind tunnel member 22-2 that is formed so as to expand from a position of the contracted cross-sectional area to a wind outflow port 22b in a straight line or a curved line or hold the same cross-sectional area. The wind turbine 21 performs wind velocity acceleration by both a high-speed airflow blowing through space portions on both sides and acceleration of a wind flow scattered in the rear wind tunnel member 22-2 to be low speed and high pressure by a high-speed airflow outside the wind tunnel body 22 and friction.SELECTED DRAWING: Figure 1

Description

本発明は風速加速型風車に関し、風車背面の風速を上げると共に風胴体の出口部分の風速を上げる、その結果、風車の羽根の回転効率を向上せしめて、発電電力を高めると共に、設置の高さの問題、装置の安定性及び風胴体支持の安定性を改良した風速加速型風車に関する。 The present invention relates to a wind acceleration type wind turbine, which increases the wind speed at the back of the wind turbine and the wind speed at the outlet of the wind tunnel. , relates to a wind acceleration wind turbine with improved stability of the installation and stability of the wind tunnel support.

近年、地球温暖化防止が叫ばれて、新しいクリーンエネルギーの開発が急務となっている。該クリーンエネルギーの一つとして注目されているのがCOを排出しない風力発電システムである。しかしながら、風力発電は、現在開発中であるが、現状では石油代替えエネルギーとしての位置は低い。風力エネルギーを有効に捕捉する手段を開発していかなければならない。 In recent years, the prevention of global warming has been called for, and the development of new clean energy has become an urgent task. A wind power generation system that does not emit CO 2 is attracting attention as one of the clean energies. However, although wind power generation is currently under development, it is currently in a low position as an oil alternative energy. We must develop means to effectively capture wind energy.

従来、風力エネルギーの補足手段は揚力型プロペラ式風車による風力発電が主流となっている。該揚力型プロペラ式風車の場合は長大なブレード(プロペラ翼)を必要とするため、風車自体が大型化するという問題がある。また、そのエネルギー効率は40%前後、すなわち、風力エネルギーの40%前後を捕捉しているのが現状である。ちなみに理論的最高効率は59.3%(ベッツの法則)である。 Conventionally, the main means of supplementing wind energy is wind power generation using a lifting propeller type windmill. In the case of the lift type propeller type wind turbine, there is a problem that the wind turbine itself becomes large because it requires long blades (propeller blades). In addition, its energy efficiency is currently around 40%, that is, it captures around 40% of wind energy. Incidentally, the theoretical maximum efficiency is 59.3% (Betts law).

前記の風力発電用風車は、(1)できるだけ回転直径の大きな羽根を備え、(2)できるだけ背の高い風車を、(3)できるだけ風が吹く場所に設置する、という方向で発展してきた。 The aforementioned wind turbines for wind power generation have been developed in the following directions: (1) having blades with as large a rotational diameter as possible; (2) being as tall as possible;

しかし、できるだけ多くの風を捕捉するために回転羽根の直径を大きくすると支柱を高くしなければならず、強風に対しては不安定になり、風が強すぎると破損を恐れて運転を停止しなければならない、という問題があり、建設費にしても数億円と莫大である。 However, increasing the diameter of the rotor blades in order to capture as much wind as possible requires the columns to be taller, making them unstable in strong winds and shutting them down for fear of damage if the wind is too strong. There is a problem that it must be done, and the construction cost is enormous at hundreds of millions of yen.

時に、人がビルの谷間やアーケード街を通過する時、思いもよらぬ強風に出会うことがある。これは、ビルの壁などに堰き止められた風が空隙を求めて谷間やアーケード街の通過可能地点に集中するためである。これは一種のラバール管効果と考えられる。したがって、ラッパ管を前後に繋ぎ合わせた形のラバール管の中央部、すなわち、最小断面積の近傍に風車を置く風力発電装置が提案されている(特許文献1)。 Occasionally, when people pass through the canyons of buildings and arcades, they encounter unexpectedly strong winds. This is because the wind dammed up by the wall of the building or the like seeks a gap and concentrates in the passable point of the valley or the arcade street. This is considered to be a kind of Laval tube effect. Therefore, a wind power generator has been proposed in which a wind turbine is placed near the center of a Laval tube in which trumpet tubes are connected in the front and rear, that is, in the vicinity of the minimum cross-sectional area (Patent Document 1).

本発明者は、扇風機と風車との間に隔壁を設け、その壁面に穴をあけ、その穴を通して扇風機で風を送り、その穴の直後に風車を置き、風車の回転数を検討した。その結果、驚いたことに、隔壁を設けずに扇風機から直接風車に風を送った場合に比べてはるかに風車の回転数が落ちることが判明した。すなわち、風車の回転には、風車に当たる前面の風だけではなく、風車の周辺から背面へと通過する風の量も重要であることが判明し、二重構造風胴体の外側の風胴体により収束した大量の風力を風車背面へと送ることにより風車の発電効率を高める集風型風車が提案されている(特許文献2)。 The present inventor provided a partition wall between the fan and the windmill, made a hole in the wall surface, sent air through the hole with the fan, placed the windmill immediately after the hole, and examined the rotation speed of the windmill. As a result, surprisingly, it was found that the number of revolutions of the windmill was much lower than when the wind was sent directly from the fan to the windmill without providing a partition wall. In other words, it was found that not only the amount of wind that hits the front of the wind turbine but also the amount of wind that passes from the periphery of the wind turbine to the back is important for the rotation of the wind turbine. A wind collecting type wind turbine is proposed that increases the power generation efficiency of the wind turbine by sending a large amount of wind power to the back of the wind turbine (Patent Document 2).

前記した集風型風車は以下に述べる原理で機能する。風車を通過する空気の速度をV、密度をρ、圧力をPとすれば、単位体積当たりの風の全エネルギーは(1/2)ρV+P=一定であるから、集風は圧力エネルギーが減り、運動エネルギーを増やす。これは、V、Pの整流化(ランダム化の反対)だからエントロピー(S)の減少である。従って、―TΔS(T:温度)だけ自由エネルギーが増大する。従って、集風型の方がエネルギー効率が高い。しかし、これは、ベルヌーイ流管の定常流を想定した場合である。これに風車を置き、エネルギーを取り出せば、風車の背後のVは減少し、Pは増大する。従って、これを定常流に近づけるためには流管外測の高速流の摩擦によって低速流を高速化する必要がある。換言すれば、高速空気分子によって低速化した風車背後の空気分子を後方へ叩き出すのである(特許文献3)。 The wind collecting wind turbine described above functions according to the principle described below. Let V be the velocity of the air passing through the windmill, ρ be the density, and P be the pressure. Decrease and increase kinetic energy. This is a reduction in entropy (S) because it is a rectification (opposite of randomization) of V,P. Therefore, the free energy increases by -TΔS (T: temperature). Therefore, the wind collecting type has higher energy efficiency. However, this is the case assuming steady flow in a Bernoulli tube. If you put a windmill on it and extract the energy, V behind the windmill will decrease and P will increase. Therefore, in order to make this flow closer to a steady flow, it is necessary to increase the speed of the low-speed flow by the friction of the high-speed flow measured externally. In other words, the air molecules behind the wind turbine, which are slowed down by the high-speed air molecules, are pushed backward (Patent Document 3).

さらに、風車背後の空気分子を叩き出すには中間風胴体の内部に設置されている風車の側面の両側又は側面の両側と上下面側との両方に風が吹き抜ける隙間を設け高い風速を持った風を流すことが有効である(特許文献4)。 Furthermore, in order to blow out the air molecules behind the wind turbine, a gap is provided on both sides of the wind turbine installed inside the intermediate wind fuselage, or both sides and both sides of the wind turbine and the top and bottom sides to allow the wind to blow through. It is effective to blow air (Patent Document 4).

特開2008-520900号公報Japanese Patent Application Laid-Open No. 2008-520900 特開2011-140887号公報JP 2011-140887 A 特許第6033870号公報Japanese Patent No. 6033870 特許第6110455号公報Japanese Patent No. 6110455

本発明は前記特許文献3、特許文献4が基本的な考えである。その詳細を以下に説明する。 The basic idea of the present invention is based on the aforementioned Patent Document 3 and Patent Document 4. The details are described below.

人がビルの谷間やアーケード街を通過する時、しばしば思いもよらぬ強風に出会うことがある。これは、ビルの壁等に堰き止められた風が空隙を求めて谷間やアーケード街の通過可能地点に集中するためである。通過空気の密度をρ、風速をVとすれば、単位体積当たりの風のエネルギーは、(1/2)ρV+P=一定であるから、壁で堰き止められて速度が0になればエネルギーは圧力だけとなり、谷間等の入り口の両側の壁に圧力の高い空気の壁が生じる。これが風胴ダクトとなり、風速が上がるものと考えられる。 When people pass through the canyons of buildings and arcade streets, they often encounter unexpectedly strong winds. This is because the wind dammed up by the wall of the building or the like seeks a gap and concentrates in valleys and passable points of the arcade street. If the density of passing air is ρ and the wind speed is V, the wind energy per unit volume is (1/2) ρV 2 +P = constant. is only pressure, and high-pressure air walls are generated on both sides of the inlet such as a valley. It is thought that this serves as a wind tunnel duct and increases the wind speed.

そこで、図9(a)及び(b)に示すように、扇風機11(φ=240mm)と風車12(φ150mm)とを約750mmの間隔で配置し、風車12の風の流入口の口縁の外側には、それぞれ鍔状の壁部材13 a及び13bを設け、扇風機11から送風した場合の風車12の回転数を観測した。この壁部材13aの外径は扇風機11の風束よりも大きく、また、壁部材13bの外径は扇風機11の風束以下になるように構成した。また、図示していないが、壁部材を設けない場合についても同様にして回転数を観測した。 Therefore, as shown in FIGS. 9A and 9B, the fan 11 (φ=240 mm) and the wind turbine 12 (φ150 mm) are arranged at an interval of about 750 mm, and the rim of the wind inlet of the wind turbine 12 is Flange-shaped wall members 13a and 13b were provided on the outside, respectively, and the number of revolutions of the windmill 12 when air was blown from the electric fan 11 was observed. The outer diameter of the wall member 13a is larger than the air flux of the electric fan 11, and the outer diameter of the wall member 13b is smaller than the air flux of the electric fan 11.例文帳に追加Although not shown, the number of rotations was also observed in the same manner when the wall member was not provided.

その結果、壁部材13aを設けた場合(図9(a))は、壁部材を設けなかった場合よりも風車12の回転数が大幅に落ちた。これは風源が扇風機であるために、基本的には扇風機11の羽根の直径に相当する風束しか得られないので、壁部材の外径を扇風機11の風速より大きくすると、風車12の背面への風流が完全に遮断されるためである。また、壁部材13bを設けた場合(図9(b)は、壁部材13aを設けた場合よりも風車の回転数が増大した。これは扇風機11の風束以下の外径を有する壁部材13bを設けた場合、風量の一部が風車の背面に流れるため、風車12を通過する風が引っ張られて速度が上がるためであると考えられる。 As a result, when the wall member 13a was provided (FIG. 9A), the rotational speed of the wind turbine 12 was significantly lower than when the wall member was not provided. This is because the air source is a fan, and basically only the wind flux corresponding to the diameter of the blades of the fan 11 can be obtained. This is because the air flow to the air is completely blocked. Further, when the wall member 13b was provided (FIG. 9B), the number of revolutions of the wind turbine increased more than when the wall member 13a was provided. is provided, part of the airflow flows to the back of the windmill, which pulls the wind passing through the windmill 12 and increases its speed.

風が風車を通過すると、エネルギーが奪われて風速が下がる。このことは、分子運動論的には温度が下がることである。上記の実験は風車の背面風流の低下エネルギーを外側の風速の大きい、すなわち、動圧・運動エネルギーの大きい空気流との混合・摩擦により補い、風車背面の風流の速度が上がることを示している。その結果、風車の回転数を上げるためには風車を通過する風を風車後方へ強制的に追い出すことが重要であることが分かる。 When the wind passes through a windmill, it loses energy and slows down the wind. This means that the temperature drops in terms of molecular kinetics. The above experiment shows that the reduced energy of the wind flow behind the wind turbine is compensated by mixing and friction with the air flow with high dynamic pressure and kinetic energy on the outside, and the speed of the wind flow behind the wind turbine increases. . As a result, it can be seen that it is important to forcibly expel the wind passing through the windmill to the rear of the windmill in order to increase the rotation speed of the windmill.

本発明は、前記事情を踏まえて、従来技術の問題点を解決することにあり、風車背面の風速を上げると共に風胴体の出口部分で風速を上げる、その結果、風車の回転効率を向上せしめて、発電電力を高めると共に、装置の高さの問題、設置の安定性及び風胴体支持の安定性を改良した風速加速型風車を提供することを目的とする。 In view of the above circumstances, the present invention aims to solve the problems of the prior art by increasing the wind speed at the back of the wind turbine and at the outlet of the wind tunnel, thereby improving the rotational efficiency of the wind turbine. The object of the present invention is to provide a wind speed acceleration type wind turbine which can increase power generation and improve the problem of device height, installation stability and wind tunnel support stability.

前記目的を達成する本発明の風速加速型風車は、風胴体と風車とからなり、風胴体は断面略長方形状でその断面積が風流入口から直線的又は曲線的に縮小した断面積に形成されている前方風胴部材と、その縮小した断面積の位置から風流出口までの間で直線的若しくは曲線的に拡大するか又は同じ断面積を保持するように形成されている断面略長方形状の後方風胴部材と、からなり、前記風車は両側に空間部を形成して断面略長方形状の縮小部に設置されてなることを特徴とする(請求項1)。 The wind speed accelerating wind turbine of the present invention for achieving the above object comprises a wind tunnel body and a wind turbine. and a substantially rectangular cross-sectional rearward member formed so as to expand linearly or curvilinearly from the position of the reduced cross-sectional area to the wind outlet or maintain the same cross-sectional area. and a wind tunnel member, wherein the wind turbine is installed in a reduced portion having a substantially rectangular cross section with space portions formed on both sides thereof (Claim 1).

前記断面略長方形状とは長辺部及び短辺部を有する楕円形状、その他の多角形状なども含む。本発明は風胴体を断面略長方形状にすることにより、風胴体を円形状や正方形状とした場合と比べて風車の脇を流れる風速を風車の上下に逃がすことなく風車の両側の空間部へ供給して風車の背面の速度が低下した気流を効果的に叩き出して風車背面の気流の速度エネルギーを回復させることができる。 The substantially rectangular cross-sectional shape includes an elliptical shape having long sides and short sides, and other polygonal shapes. In the present invention, by making the wind tunnel body substantially rectangular in cross section, compared to the case where the wind tunnel body is circular or square, the wind velocity flowing along the sides of the wind turbine does not escape to the space on both sides of the wind turbine. It is possible to effectively knock out the airflow whose speed has been reduced behind the windmill by supplying the airflow, thereby recovering the velocity energy of the airflow behind the windmill.

本発明では、風流入口から風を受けると、該風が前方風胴部材を通って断面略長方形状の縮小部に設置された風車に至り該風車を回転させる。同時に、風車の両側の空間部からの高速気流が吹き抜ける。そして、風車によってエネルギーが奪われた風車背面の速度の低下した気流を、風車の両側の空間部から吹き抜ける高速気流が叩き出して風車背面の気流の速度エネルギーを回復させる。その結果、断面積が風流入口から風車の設置された位置までの間で直線的又は曲線的に縮小するように形成された前方風胴部材により風が速度を上げて風車に導かれて風車を通過する風の量及び速度が上昇させられて後方風胴部材に供給される。 In the present invention, when wind is received from the wind inlet, the wind passes through the front wind tunnel member and reaches the windmill installed in the reduced portion having a substantially rectangular cross section to rotate the windmill. At the same time, high-speed air currents blow through from the spaces on both sides of the windmill. Then, the low-speed airflow behind the windmill whose energy has been deprived by the windmill is beaten out by the high-speed airflow blowing from the spaces on both sides of the windmill to recover the velocity energy of the airflow behind the windmill. As a result, the front wind tunnel member formed so that the cross-sectional area decreases linearly or curvilinearly from the wind inlet to the position where the wind turbine is installed increases the speed of the wind, guides it to the wind turbine, and blows the wind turbine. The passing wind is increased in volume and velocity and delivered to the rear wind tunnel.

つぎに、前記風車を通過した風は後方風胴部材に供給される。該後方風胴部材は縮小した断面積が風車の設置された位置から風流出口までの間で直線的若しくは曲線的に拡大するか又は同じ断面積を保持するように形成されている。該後方風胴部材に供給された前記風車を通過した風に対し、後方風胴部材の外側を吹き抜ける、より速い、より低圧の気流と接触させて混合・摩擦、吸収により供給された、より低速、より高圧の後方風胴部材内の風を風流出口から引きずり出し、再度、風車を通過する風の量及び速度を上昇させる。すなわち、本発明は二段構えの風速加速により風車背面の風速を上げ、風車の回転効率を向上せしめて、発電効率を高めるものである。 なお、本発明の構成・作用及び効果は風胴体を横長に配置した場合も縦長に配置した場合も変化を生じない。したがって、装置の高さの問題、設置の安定性及び風胴体支持の安定性が改良される。 Next, the wind that has passed through the windmill is supplied to the rear wind tunnel member. The rear wind tunnel member is formed so that the reduced cross-sectional area expands linearly or curvilinearly from the position where the wind turbine is installed to the wind outlet, or maintains the same cross-sectional area. The wind that has passed through the wind turbine supplied to the rear wind tunnel member is brought into contact with the faster, lower pressure airflow that blows through the outside of the rear wind tunnel member, and is supplied by mixing, friction, and absorption. , drags the higher pressure wind in the rear wind tunnel out of the wind outlet, again increasing the volume and velocity of the wind passing through the windmill. That is, the present invention increases the wind speed behind the wind turbine by two-step wind speed acceleration, thereby improving the rotation efficiency of the wind turbine and increasing the power generation efficiency. The configuration, operation and effects of the present invention do not change whether the wind tunnel is arranged horizontally or vertically. Thus, device height issues, installation stability and wind tunnel support stability are improved.

本発明の実施の一形態は、風車と風胴体の長辺部間との間隔を最小とし、風胴体の短辺部と長辺部の比を1~10倍とし、後方風胴部材の出口部分の短辺部と長辺部の比を1~10倍としたことを特徴とする(請求項2)。本発明では、風車の両側の空間部を吹き抜ける高速気流及び後方風胴部材で拡散し低速、高圧となった風流を風胴体外部の高速の風流と摩擦によって高速化させることの二段構えによって、風車によってエネルギーが奪われた風車背面の速度の低下した気流を叩き出して風車背面の気流の速度エネルギーを効果的に回復させることができる。 例えば、後方風胴部材の出口部分で風胴体内外の風流の摩擦を多くするためにはその断面積に対する周長を長くしなければならない。これは正方形及び円形より長方形と
した方がよい(面積に対する周長の増加割合が大きいことによる)。前記比1~10倍において、前記比10倍を超えると面積に対する周長/面積比の増加が大きくならない。また、10倍を超えると装置の大型化を招くという問題も生じるものである。
In one embodiment of the present invention, the distance between the wind turbine and the long side of the wind tunnel is minimized, the ratio of the short side to the long side of the wind tunnel is 1 to 10 times, and the outlet of the rear wind tunnel member is It is characterized in that the ratio of the short side portion to the long side portion of the portion is 1 to 10 times (Claim 2). In the present invention, the high-speed airflow that blows through the space on both sides of the wind turbine and the high-speed airflow outside the wind tunnel member, which has been diffused by the rear wind tunnel member and become low speed and high pressure, are accelerated by friction with the high speed wind flow outside the wind tunnel. The velocity energy of the airflow behind the windmill can be effectively recovered by blowing out the airflow whose energy has been deprived by the windmill and whose speed has decreased behind the windmill. For example, in order to increase the friction of the wind flow inside and outside the wind tunnel at the outlet of the rear wind tunnel member, the perimeter with respect to the cross-sectional area must be increased. It is better to be rectangular than square and circular (because the perimeter increases more than the area). In the above ratio of 1 to 10 times, if the above ratio exceeds 10 times, the increase in perimeter/area ratio with respect to the area does not become large. In addition, if it exceeds 10 times, there arises a problem that the size of the device is increased.

本発明の他の実施の一形態は、後方風胴部材の風流出口の口縁に風の分散部を形成したことを特徴とする(請求項3)。後方風胴部材の風流出口の口縁に風の分散部を構成することにより、風胴体の外側の風が分散され、該風胴体の外側の風と風胴体内からの風との接触面積が増やされ風胴内の風が後方風胴部材の風流出口から強制的に追い出されて風車を通過する風の量及び速度を向上させることができる。なお、分散部の形状は限定されない。分散部により風胴体の外側を流れる風が分散され、該分散された風と後方風胴部材の風流出口から流れ出す風との接触面積を増やすことができ、風の混合を促進して、ひいては流出風の速度を上昇させることができる形状であれば前記に限定されない。 Another embodiment of the present invention is characterized in that a wind dispersing portion is formed on the rim of the wind outlet of the rear wind tunnel member (Claim 3). By constructing a wind dispersing part at the rim of the wind outflow outlet of the rear wind tunnel member, the wind outside the wind tunnel is dispersed, and the contact area between the wind outside the wind tunnel and the wind from inside the wind tunnel is large. The increased wind in the wind tunnel can be forced out of the wind outlet of the rear wind tunnel member to increase the volume and speed of the wind passing through the wind turbine. Note that the shape of the dispersed portion is not limited. The wind flowing outside the wind tunnel is dispersed by the dispersion part, and the contact area between the dispersed wind and the wind flowing out from the wind outlet of the rear wind tunnel member can be increased, thus promoting the mixing of the wind and eventually the outflow. The shape is not limited to the above as long as the shape can increase the wind speed.

本発明の実施の一形態は、水力の利用が可能であることを特徴とする(請求項4)。前記は風力の利用について述べたが本発明の風速加速型風車はそのまま水力の利用が可能であり水速加速型水車として機能させることができる。 An embodiment of the present invention is characterized in that hydraulic power can be used (claim 4). Although the use of wind power has been described above, the wind speed acceleration type wind turbine of the present invention can use water power as it is, and can function as a water speed acceleration type water turbine.

本発明によれば、風車背面の風速を上げると共に風胴体の出口部分で風速を上げる、その結果、風車の羽根の回転効率を向上せしめて、発電電力を高めると共に、装置の高さの問題、設置の安定性及び風胴体支持の安定性を改良した風速加速型風車を提供することができる。 According to the present invention, the wind speed at the back of the wind turbine is increased and the wind speed is increased at the outlet of the wind tunnel. It is possible to provide a wind acceleration type wind turbine with improved installation stability and wind tunnel support stability.

本発明の風速加速型風車の斜視図である。1 is a perspective view of a wind acceleration type wind turbine of the present invention; FIG. 風胴体の風車設置位置の端面図である。FIG. 3 is an end view of the wind turbine installation position of the wind tunnel; 本発明の他の実施例を示す斜視図である。FIG. 11 is a perspective view showing another embodiment of the present invention; 星形分散部(a)、(b)、(c)の例を示す正面図である。It is a front view which shows the example of a star-shaped dispersion|distribution part (a), (b), (c). 鍔状分散部の正面図である。It is a front view of a collar-like dispersion|distribution part. 切欠き状突起分散部の側面図及び正面図である。It is the side view and front view of a notch-like projection dispersion|distribution part. 歯車形分散部の正面図である。1 is a front view of a gear-shaped dispersing section; FIG. 星形分散部の大きさを説明する正面図である。It is a front view explaining the magnitude|size of a star-shaped dispersion|distribution part. 風車効率の実験図である。It is an experimental figure of wind turbine efficiency.

以下に図面に基づいて本発明の実施の一形態を説明する。 An embodiment of the present invention will be described below based on the drawings.

図1は本発明の風速加速型風車の斜視図、図2は風胴体の風車設置位置の端面図である。図中、21は風車、22dは縮小部、22は風胴体であり、22-1は前方風胴部材、22-2は後方風胴部材、22aは風流入口、22bは風流出口、Sは風車21の両側に形成された空間部である。 FIG. 1 is a perspective view of a wind acceleration type wind turbine according to the present invention, and FIG. 2 is an end view of the installation position of the wind turbine in a wind tunnel. In the figure, 21 is a windmill, 22d is a contraction part, 22 is a wind tunnel body, 22-1 is a front wind tunnel member, 22-2 is a rear wind tunnel member, 22a is an air inlet, 22b is an air outlet, and S is a wind turbine. 21 are space portions formed on both sides.

本発明では、前記風胴体22、すなわち、前方風胴部材22-1及び後方風胴部材22-2がそれぞれ断面略長方形状に形成される。なお、この断面略長方形状には長辺部及び短辺部を有する楕円形、その他の多角形などを含む。図中、23は長辺部、24は短辺部、また、26は後方風胴部材22-2の出口部分の長辺部、27は後方風胴部材22-1の出口部分の短辺部である。 In the present invention, the wind tunnel body 22, that is, the front wind tunnel member 22-1 and the rear wind tunnel member 22-2 are each formed to have a substantially rectangular cross section. Note that the substantially rectangular cross-sectional shape includes an ellipse having long sides and short sides, and other polygonal shapes. In the figure, 23 is the long side, 24 is the short side, 26 is the long side of the outlet of the rear wind tunnel member 22-2, and 27 is the short side of the outlet of the rear wind tunnel member 22-1. is.

さらに、前記前方風胴部材22-1は断面積が風流入口22aから直線的又は曲線的に縮小した断面積に形成され、前記後方風胴部材22-2は前記前方風胴部材22-1の縮小した断面積の位置から風流出口22bまでの間で直線的若しくは曲線的に拡大するか又は同じ断面積を保持するように形成される。そして、風車21は両側に空間部Sを形成して断面略長方形状の縮小部22dに設置される。 そして、風車21と風胴体22の長辺部23との間隔を最小とし、風胴体22の短辺部24と長辺部23の比を1~10倍とされる。さらに、後方風胴部材22-2の出口部分の短辺部27と長辺部26の比を1~10倍とされる。 Further, the front wind tunnel member 22-1 is formed to have a cross-sectional area that is linearly or curvilinearly reduced from the wind inlet 22a, and the rear wind tunnel member 22-2 is the front wind tunnel member 22-1. It is formed so as to expand linearly or curvilinearly from the position of the reduced cross-sectional area to the air flow outlet 22b, or keep the same cross-sectional area. The wind turbine 21 is installed in a reduced portion 22d having a substantially rectangular cross section with a space portion S formed on both sides thereof. The distance between the wind turbine 21 and the long side portion 23 of the wind tunnel body 22 is minimized, and the ratio of the short side portion 24 to the long side portion 23 of the wind tunnel body 22 is set to 1 to 10 times. Further, the ratio of the short side portion 27 to the long side portion 26 of the outlet portion of the rear wind tunnel member 22-2 is set to 1 to 10 times.

図3は前記後方風胴部材22-2の風流出口22bの口縁に風胴体22の外側の風を分散する分散部25を形成した実施例である。同図では、分散部として後に述べる切り欠き状突起分散部が形成されている。 FIG. 3 shows an embodiment in which a dispersion portion 25 for dispersing the wind outside the wind tunnel body 22 is formed at the rim of the wind outlet 22b of the rear wind tunnel member 22-2. In the figure, a notch-shaped projection dispersion portion, which will be described later, is formed as the dispersion portion.

分散部の例としては、図4( a )(b)(c)に示す星形分散部、図5に示す鍔状分散部、図6に示す切り欠き状突起分散部、図7に示す歯車形分散部などが考えられるがこれらの形状に限定されない。 Examples of the dispersion portion include the star-shaped dispersion portion shown in FIGS. 4A, 4B, and 4C, the flange-shaped dispersion portion shown in FIG. Shape dispersions and the like are conceivable, but are not limited to these shapes.

図4の星形分散部の一例としては、同図(a)(b)(c)に示すように6角形、8連形、16連形などがある。なお、図8に示すように星形分散部の最外部を結ぶ外周円Dが描く円の面積が風胴体22の風流出口22bの外径dが描く円の面積の2倍以上であることが好ましい。 As an example of the star-shaped dispersion part in FIG. 4, there are a hexagonal shape, an octagonal shape, a 16-channeled shape, etc., as shown in FIGS. Incidentally, as shown in FIG. 8, the area of the circle drawn by the outer circumference circle D connecting the outermost part of the star-shaped dispersion part is at least twice the area of the circle drawn by the outer diameter d of the wind outlet 22b of the wind tunnel body 22. preferable.

また、分散部25による圧力損失を外側風胴体への風の流入を妨げないような抵抗とするためには分散部25の面積を風が通過する部分の面積よりも小さくすることが好ましい。図8において、外側の点線で描かれる円は星形分散部の頂点を繋ぐ仮想円径であり、内側の実線で示された円は風胴体22の風流出口22bの外径である。仮想円径D及び風流出口外径dで挟まれた円径帯状空間において星形分散部の面積はそれ以外の部分の面積の半分未満程度であることが好ましい。 Moreover, in order to make the pressure loss by the dispersing part 25 a resistance that does not hinder the inflow of the wind into the outer wind tunnel, it is preferable to make the area of the dispersing part 25 smaller than the area of the portion through which the wind passes. In FIG. 8 , the outer circle drawn with dotted lines is the virtual diameter of the circle connecting the vertices of the star-shaped dispersion part, and the inner solid line circle is the outer diameter of the wind outlet 22b of the wind tunnel body 22 . It is preferable that the area of the star-shaped dispersion portion is less than half the area of the other portion in the circular belt-like space sandwiched between the virtual circular diameter D and the outer diameter d of the air outlet.

また、図7に示すように歯車形も可能である。これ以外にも波形や鍔形も使用可能でこれらに限定されない。多孔板形も適用可能であるが圧力損失を大きくしないような設計が必要である。 A gear shape is also possible as shown in FIG. Other than this, corrugated and brim-shaped can also be used, but are not limited to these. A perforated plate type is also applicable, but a design that does not increase the pressure loss is required.

図5の鍔状分散部の場合は、同図に示すように、鍔の高さは鍔の外径Dと風流出口22bの内径d差の半分は内径dの1/10~1/5であることが好ましい。 5, the height of the flange is 1/10 to 1/5 of the difference between the outer diameter D of the flange and the inner diameter d of the air outlet 22b. Preferably.

図6の切り欠き状突起分散部の場合は、切り欠きは連続に限らず、間隔を開いてもよいが切り欠き部での圧力損失の観点から切り欠き部の総面積が切り欠きのある周囲部の面積の半分を超える程度が好ましい。 In the case of the notch-like protrusion dispersion part shown in FIG. 6, the notches are not limited to being continuous and may be spaced apart. A degree exceeding half of the area of the part is preferable.

前記の各構成において風流入口22aから風を受けると、該風は前方風胴部材22-1から縮小部22dの風車21に供給される。同時に風車21の両側に形成された空間部Sを高速気流が吹き抜ける。 そして、風車21の両側の空間部Sを吹き抜ける高速気流によって、風車21によってエネルギーを奪われた風車21の背面の速度が低下した気流を後方風胴部材22-2に叩き出して風車21背面の気流の速度エネルギーの回復を図る。 In each of the configurations described above, when wind is received from the wind inlet 22a, the wind is supplied from the front wind tunnel member 22-1 to the windmill 21 of the reduced portion 22d. At the same time, high-speed air currents blow through the spaces S formed on both sides of the windmill 21 . Then, the high-speed airflow that blows through the space S on both sides of the windmill 21 blows out the airflow whose energy has been deprived of energy by the windmill 21 and whose speed has decreased at the back surface of the windmill 21 to the rear wind tunnel member 22-2, thereby causing the windmill 21 back surface. Attempts to recover the velocity energy of the airflow.

つぎに、後方風胴部材22-2に供給された気流を後方風胴部材22-2の外側を吹き抜ける、より速い、より低圧の気流と接触させて、混合・摩擦・吸収により、より低速、より高圧の後方風胴部材内の風を風流出口から引きずり出して再度、風車21を通過する風の量及び速度を上昇させる。すなわち、本発明は、二段構えの風速加速により風車21背面の風速を上げ、風車21の回転効率を向上せしめて、発電効率を高めるものである。 Next, the airflow supplied to the rear wind tunnel member 22-2 is brought into contact with the faster, lower pressure airflow that blows through the outside of the rear wind tunnel member 22-2, and the mixture, friction, and absorption reduce the speed and speed of the airflow. The higher pressure wind in the rear wind tunnel member is dragged out from the wind outlet to increase the volume and speed of the wind passing through the windmill 21 again. That is, the present invention increases the wind speed behind the wind turbine 21 by two-stage wind speed acceleration, thereby improving the rotation efficiency of the wind turbine 21 and increasing the power generation efficiency.

産業上の利用分野Industrial field of application

本発明は風胴体と風車からなり、風車背面の風速を上げると共に風胴体の出口部分で風速を上げる、その結果、風車の羽根の回転効率を向上せしめて、発電電力を高めると共に、装置高さの問題、設置の安定性及び風胴体支持の安定性を改良したことにより、高い風力エネルギーを必要とする技術分野、例えば風力発電等の分野で利用可能性が大である。 The present invention consists of a wind tunnel and a wind turbine, and increases the wind speed at the back of the wind turbine and at the outlet of the wind tunnel. Due to the improved stability of the installation problem, the stability of the installation and the stability of the wind tunnel support, it has great applicability in technical fields requiring high wind energy, such as wind power generation.

21 風車21d 縮小部22 風胴体22-1 前方風胴部材22-2 後方風胴部材22a 風流入口22b 風流出口23、26 長辺部24、27 短辺部25 分散部 21 Windmill 21d Reduced portion 22 Wind tunnel body 22-1 Front wind tunnel member 22-2 Rear wind tunnel member 22a Wind inlet 22b Wind outlet 23, 26 Long side 24, 27 Short side 25 Dispersion part

Claims (4)

風胴体と風車とからなり、風胴体は断面略長方形状でその断面積が風流入口から直線的又は曲線的に縮小した断面積に形成されている前方風胴部材と、その縮小した断面積の位置から風流出口までの間で直線的若しくは曲線的に拡大するか又は同じ断面積を保持するように形成されている断面略長方形状の後方風胴部材と、からなり、前記風車は両側に空間部を形成して断面略長方形状の縮小部に設置されてなることを特徴とする風速加速型風車。 The wind tunnel is composed of a wind tunnel and a wind turbine, and the wind tunnel has a substantially rectangular cross-sectional area, and the cross-sectional area is reduced linearly or curvilinearly from the wind inlet, and the front wind tunnel member with the reduced cross-sectional area. a rear wind tunnel member having a substantially rectangular cross section formed so as to expand linearly or curvilinearly from the position to the wind outlet or maintain the same cross sectional area, and the wind turbine has spaces on both sides. A wind speed acceleration type wind turbine, characterized in that it is installed in a reduced part having a substantially rectangular cross section by forming a part. 前記風車と風胴体の長辺部間との間隔を最小とし、風胴体の短辺部と長辺部の比を1~10倍とし、後方風胴部材の出口部分の短辺部と長辺部の比を1~10倍としたことを特徴とする請求項1に記載の風速加速型風車。 The distance between the wind turbine and the long side of the wind tunnel is minimized, the ratio of the short side to the long side of the wind tunnel is 1 to 10 times, and the short side and long side of the outlet part of the rear wind tunnel member are 2. The wind acceleration type wind turbine according to claim 1, wherein the ratio of the parts is 1 to 10 times. 前記後方風胴部材の流出口の口縁に風の分散部を形成したことを特徴とする請求項1又は2に記載の風速加速型風車。 3. The wind accelerating wind turbine according to claim 1, wherein a wind dispersing portion is formed at the rim of the outflow port of the rear wind tunnel member. 水力の利用が可能であることを特徴とする請求項1乃至3に記載の風速加速型風車。 4. The wind acceleration type wind turbine according to claim 1, wherein hydraulic power can be used.
JP2021192226A 2021-11-26 2021-11-26 Wind velocity acceleration type wind turbine Pending JP2023078902A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021192226A JP2023078902A (en) 2021-11-26 2021-11-26 Wind velocity acceleration type wind turbine
PCT/JP2022/015001 WO2023095359A1 (en) 2021-11-26 2022-03-28 Wind speed acceleration type wind turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021192226A JP2023078902A (en) 2021-11-26 2021-11-26 Wind velocity acceleration type wind turbine

Publications (1)

Publication Number Publication Date
JP2023078902A true JP2023078902A (en) 2023-06-07

Family

ID=86539280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021192226A Pending JP2023078902A (en) 2021-11-26 2021-11-26 Wind velocity acceleration type wind turbine

Country Status (2)

Country Link
JP (1) JP2023078902A (en)
WO (1) WO2023095359A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587864A (en) * 1978-12-27 1980-07-03 Nagao Furukawa Wind-driven power plant utilizing controlled wind
JPS63145795U (en) * 1987-03-17 1988-09-26
JP2003049760A (en) * 2001-08-08 2003-02-21 Noriyasu Matsumoto Wind power generating device
JP2003278635A (en) * 2002-03-22 2003-10-02 Sangaku Renkei Kiko Kyushu:Kk Wind power generator
JP2008196425A (en) * 2007-02-14 2008-08-28 Fjc:Kk Wind and hydraulic power generator
WO2009063599A1 (en) * 2007-11-15 2009-05-22 Kyushu University, National University Corporation Fluid machine utilizing unsteady flow, wind turbine, and method for increasing velocity of internal flow of fluid machine
WO2010109800A1 (en) * 2009-03-24 2010-09-30 国立大学法人九州大学 Fluid machine utilizing unsteady flow, windmill, and method for increasing velocity of internal flow of fluid machine
CN202176458U (en) * 2011-08-03 2012-03-28 陈革 High-efficiency wind power generation device
WO2014038661A1 (en) * 2012-09-06 2014-03-13 特定非営利活動法人国際資源活用協会 Wind-collecting wind turbine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587864A (en) * 1978-12-27 1980-07-03 Nagao Furukawa Wind-driven power plant utilizing controlled wind
JPS63145795U (en) * 1987-03-17 1988-09-26
JP2003049760A (en) * 2001-08-08 2003-02-21 Noriyasu Matsumoto Wind power generating device
JP2003278635A (en) * 2002-03-22 2003-10-02 Sangaku Renkei Kiko Kyushu:Kk Wind power generator
JP2008196425A (en) * 2007-02-14 2008-08-28 Fjc:Kk Wind and hydraulic power generator
WO2009063599A1 (en) * 2007-11-15 2009-05-22 Kyushu University, National University Corporation Fluid machine utilizing unsteady flow, wind turbine, and method for increasing velocity of internal flow of fluid machine
WO2010109800A1 (en) * 2009-03-24 2010-09-30 国立大学法人九州大学 Fluid machine utilizing unsteady flow, windmill, and method for increasing velocity of internal flow of fluid machine
CN202176458U (en) * 2011-08-03 2012-03-28 陈革 High-efficiency wind power generation device
WO2014038661A1 (en) * 2012-09-06 2014-03-13 特定非営利活動法人国際資源活用協会 Wind-collecting wind turbine

Also Published As

Publication number Publication date
WO2023095359A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
RU2493427C2 (en) Wind-driven power plant, generator to generate power from ambient air and method to generate power from moving ambient air
JP5289770B2 (en) Omnidirectional wind turbine
JP2007528467A (en) Wind turbine in wind tunnel
JP6110455B2 (en) Wind-collecting windmill
WO2016023351A1 (en) All-directional flow-guide shaftless wind-driven generator
US20210222451A1 (en) Enclosure having outer surface with vortex-induced vibration suppression function
JP2019060345A (en) Wind power generation tower comprising gyro-mill type wind turbine
KR20180116418A (en) Wind power generator combined with building
KR20140064707A (en) Augmented fluid turbine with retractable wall panels and aerodynamic deflectors
Wicaksono et al. Influence of omni-directional guide vane on the performance of cross-flow rotor for urban wind energy
JP2012107612A (en) Wind tunnel body, vertical axis wind turbine, structure, wind power generator, hydraulic device, and building
WO2015023200A1 (en) Ejector type turbine
PT104629A (en) OMNIDIRECTIONAL COMBINED FLOW WINDING DEVICE FOR ELECTRICAL ENERGY
US20120098262A1 (en) Energy production device from an omnidirectional Bi-axial flow
WO2023095359A1 (en) Wind speed acceleration type wind turbine
KR101488220B1 (en) Wind, hydro and tidal power turbine to improve the efficiency of the device
JP5738252B2 (en) Impulse air turbine equipment used with reverse bidirectional airflow in wave power plants
WO2023166750A1 (en) Wind-speed accelerating wind turbine
WO2023188263A1 (en) Vertical wind speed-accelerating windmill
CA2480988C (en) Turbine with a downstream tube
JP2019060237A (en) Windmill system and wind farm
JP3803721B2 (en) Wind speed increasing device and wind power generator using the same
US11519384B2 (en) Venturi vortex and flow facilitating turbine
EP3748153A2 (en) Wind-based electrical power generation system
KR100982352B1 (en) Small hydroelectric generator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230905