JP2008196425A - Wind and hydraulic power generator - Google Patents

Wind and hydraulic power generator Download PDF

Info

Publication number
JP2008196425A
JP2008196425A JP2007033921A JP2007033921A JP2008196425A JP 2008196425 A JP2008196425 A JP 2008196425A JP 2007033921 A JP2007033921 A JP 2007033921A JP 2007033921 A JP2007033921 A JP 2007033921A JP 2008196425 A JP2008196425 A JP 2008196425A
Authority
JP
Japan
Prior art keywords
nacelle
propeller
wind
power generator
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007033921A
Other languages
Japanese (ja)
Other versions
JP4939252B2 (en
Inventor
Masahiko Suzuki
政彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FJC KK
Original Assignee
FJC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FJC KK filed Critical FJC KK
Priority to JP2007033921A priority Critical patent/JP4939252B2/en
Publication of JP2008196425A publication Critical patent/JP2008196425A/en
Application granted granted Critical
Publication of JP4939252B2 publication Critical patent/JP4939252B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wind and hydraulic power generator capable of operating at a high speed by creating Coanda effect by a shape of a nacelle to increase speed of fluid and apply the same on a propeller. <P>SOLUTION: This wind and hydraulic power generator 1 is provided with the propeller 5 in a rear part of the nacelle 3 rotatably provided on a column 2. High speed fluid flow faster than flow speed caused by Coanda effect is generated on a circumference surface of the nacelle, and is made pass through to a front surface of the propeller 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、風水力発電機に係り、特に、風速よりも高速な風流をプロペラに誘導して、高速回転することのできる風水力発電機に関する。   The present invention relates to a wind-hydraulic power generator, and more particularly, to a wind-hydraulic power generator capable of rotating at a high speed by guiding a wind flow higher than the wind speed to a propeller.

従来、風力発電機は、数値100の風力を受けた時の風車効率は、プロペラ式で45%とされている。これはプロペラの前に風を受けて、直角横へ回転する機械的ロスと、回転時における空気抵抗、伝動機構による摩擦抵抗損などによる。
従って、風力を多く得るために、特許文献1のような、風車の前方に、集風板などを配設する物もある。また特許文献2のような、ナセルの後部にプロペラを配設したものもある。
特開2003−83231号 特開2006−152957号
Conventionally, the wind turbine generator has a wind turbine efficiency of 45% when it receives a numerical value of 100 wind power. This is due to a mechanical loss that rotates in a right-and-left direction by receiving wind in front of the propeller, air resistance during rotation, and frictional resistance loss due to the transmission mechanism.
Therefore, in order to obtain a large amount of wind power, there is an object such as Patent Document 1 in which a wind collecting plate or the like is disposed in front of the windmill. In addition, there is a type in which a propeller is disposed at the rear part of the nacelle as in Patent Document 2.
JP 2003-83231-A JP 2006-152957 A

従来の風車において、集風板を配設した場合、風向きが変ると集風板を風向きに合わせて移動しなければならず、また小型プロペラ式風車では、プロペラの前方に集風板を配したとき、全体として重量の重いものになり、支柱に支持することが困難になる。また、特許文献2のナセルは、側面で全体的に同じ太さで、かつ、先端は風抜けが良いように先細にとがらせている。
この発明は、ナセルの形状によりコアンダ効果を造り出して、流体を高速化してプロペラに当て、高速回転させることのできる風力発電機を提供することを目的としている。
In the conventional windmill, when the wind collecting plate is arranged, the wind collecting plate must be moved in accordance with the wind direction when the wind direction changes. In the small propeller type windmill, the wind collecting plate is arranged in front of the propeller. When it becomes heavy as a whole, it becomes difficult to support the column. In addition, the nacelle of Patent Document 2 has the same overall thickness on the side surface, and the tip is tapered so that the air can be ventilated.
An object of the present invention is to provide a wind power generator capable of creating the Coanda effect by the shape of the nacelle, speeding up the fluid, applying it to a propeller, and rotating the fluid at high speed.

この発明の具体的な内容は次の通りである。   The specific contents of the present invention are as follows.

(1) 支柱上に旋回自在に配設されたナセルの後部に、プロペラが配設された風水力発電機であって、ナセル周面に、コアンダ効果により生じる流速以上の高速流体流を生じさせて、プロペラ前面へ通過させる風水力発電機。   (1) A wind-hydraulic power generator in which a propeller is disposed at the rear part of a nacelle that is pivotably disposed on a support column, and a high-speed fluid flow that is higher than the flow velocity generated by the Coanda effect is generated on the circumferential surface of the nacelle. A wind-hydraulic generator that passes through the front of the propeller.

(2) 支柱上に旋回自在に配設されたナセルの後部に、プロペラが配設された風水力発電機であって、ナセルは先端が球面で、先端縁部の最大直径が、プロペラ直前のナセル後端部の直径の2倍〜5倍に形成され、ナセルの先端部に当接した流体が、コアンダ効果を生じて、ナセルの周面に沿って、プロペラ前面へ高速で流動するよう構成されている、風力発電機。   (2) A wind-hydraulic generator in which a propeller is disposed at the rear of a nacelle that is pivotably disposed on a support column. The nacelle has a spherical tip, and the maximum diameter of the tip edge is immediately before the propeller. Formed to be 2 to 5 times the diameter of the nacelle rear end, and the fluid in contact with the tip of the nacelle causes the Coanda effect to flow at high speed along the circumference of the nacelle to the propeller front Wind generators that have been.

(3) 前記ナセルは先端部が半円球状に形成されている、前記(1)(2)のいずれかに記載された風水力発電機。   (3) The wind turbine generator according to any one of (1) and (2), wherein the nacelle has a semi-spherical tip.

(4) 前記ナセルには、後部に支持腕を介して囲壁がプロペラを覆うように配設され、該囲壁の左右後部に、外側後方へ傾斜して突出した方向舵が、一体に形成されている、前記(1)〜(3)のいずれかに記載された風水力発電機。   (4) The nacelle is arranged so that the surrounding wall covers the propeller via the supporting arm at the rear part, and the rudder that projects obliquely outward and rearward is integrally formed on the left and right rear parts of the surrounding wall. The wind-hydraulic generator described in any one of (1) to (3).

(5) 前記プロペラのプロペラ翼は、翼端縁部の弦長が翼根の弦長より広く形成され、翼端に前方へ傾斜する傾斜部が形成され、該傾斜部は、正面において幅中央線から左方よりも、回転方向の右方の面積が広く形成されている、前記(1)〜(4)のいずれかに記載された風水力発電機。   (5) The propeller blade of the propeller is formed such that the chord length of the blade tip edge is wider than the chord length of the blade root, and an inclined portion inclined forward is formed at the blade tip. The wind-hydraulic power generator according to any one of (1) to (4), wherein an area on the right side in the rotation direction is wider than that on the left side from the line.

(6) 前記プロペラは、その直径がナセルの最大直径の100%〜250%の範囲に設定されている、前記(1)〜(5)のいずれかに記載された風水力発電機。   (6) The wind turbine generator according to any one of (1) to (5), wherein the propeller has a diameter set in a range of 100% to 250% of a maximum diameter of the nacelle.

(7) 前記ナセル、プロペラ翼、囲壁における、流体が当たる前面部は滑面で、それより後部の表面は、粗面に形成されたことを特徴とする、前記(1)〜(6)の何れかに記載された風水力発電機。   (7) In the nacelle, the propeller blade, and the surrounding wall, the front surface portion where the fluid hits is a smooth surface, and the rear surface is a rough surface. The wind-hydraulic generator described in any one.

本発明によると次のような効果がある。   The present invention has the following effects.

(1) 請求項1に記載された発明の風水力発電機は、ナセルの先端に流体を受けると、コアンダ効果により、ナセル先端部で圧縮され、密度の高くなった流体がナセルの周面に沿って後方へ高速で通過してプロペラにあたるので、プロペラはナセル前面にあたる流体流よりも速度の速い流体を受けて、高速回転する。   (1) When the hydrodynamic power generator of the invention described in claim 1 receives fluid at the tip of the nacelle, the fluid is compressed at the tip of the nacelle due to the Coanda effect, and the fluid having a high density is applied to the peripheral surface of the nacelle. Therefore, the propeller receives a fluid having a higher speed than the fluid flow on the front surface of the nacelle and rotates at a high speed.

(2) 請求項2に記載された発明の風水力発電機は、ナセルの先端縁部の最大直径と、後部の直径の差が大きいので、前面に当る流体は、圧縮効果が高く、これによるコアンダ効果も高くなるため、ナセルの周面に沿って高速流体流を通過させることができる。   (2) Since the difference between the maximum diameter of the front edge portion of the nacelle and the diameter of the rear portion of the wind-hydraulic power generator of the invention described in claim 2 is large, the fluid hitting the front surface has a high compression effect. Since the Coanda effect is also increased, a high-speed fluid flow can be passed along the peripheral surface of the nacelle.

(3) 請求項3に記載された発明の風水力発電機は、ナセルの前端部が球面状なので、前面に当る流体は、圧縮効果が高く、これによるコアンダ効果も高くなるため、ナセルの周面に沿って高速流体流を、プロペラに向けて通過させることができる。   (3) Since the front end portion of the nacelle has a spherical shape in the wind-hydraulic generator according to the invention described in claim 3, the fluid that strikes the front surface has a high compression effect, and the Coanda effect thereby increases. A high velocity fluid stream can be passed along the plane toward the propeller.

(4) 請求項4に記載された発明の風水力発電機は、後部の両側部に方向舵が形成されているので、微風時における流体流の向きの変化にも、敏感に方向を変えて、流動上方にナセルを向けることができる。   (4) Since the rudder is formed on both sides of the rear part of the wind-hydraulic power generator of the invention described in claim 4, the direction is changed sensitively to the change of the direction of the fluid flow at the time of light wind, The nacelle can be directed above the flow.

(5) 請求項5に記載された発明の風水力発電機は、プロペラ翼の翼端傾斜部の面積が、中央の左側よりも右側の面積が大きく設定されているので、プロペラ翼を回転方向へ回転するとき、プロペラ翼に当る相対流を早く後方へ通過させて、抵抗を軽減させることができる。   (5) In the wind turbine generator according to the fifth aspect of the invention, since the area of the blade tip inclined portion of the propeller blade is set larger on the right side than the central left side, the propeller blade is rotated in the direction of rotation. When rotating to the right, the relative flow hitting the propeller blades can be quickly passed backwards to reduce the resistance.

(6) 請求項6に記載された発明の風水力発電機は、プロペラの直径を小さくすることができ、プロペラの直径が小さくても、ナセルのコアンダ効果による高速流を得て、高速回転することができて発電効率をたかめる。   (6) The hydrodynamic power generator of the invention described in claim 6 can reduce the diameter of the propeller, and can obtain a high-speed flow due to the Coanda effect of the nacelle and rotate at a high speed even if the propeller diameter is small. To increase power generation efficiency.

(7) 請求項6に記載された発明の風水力発電機は、流体の当る前面以外は、粗面に形成されているので、コアンダ効果で周面に沿って流動する流体が、粘性を増してコアンダ効果を高める。   (7) Since the hydrodynamic power generator of the invention described in claim 6 is formed in a rough surface except for the front surface where the fluid hits, the fluid flowing along the peripheral surface by the Coanda effect increases the viscosity. To enhance the Coanda effect.

この発明は、支柱の上に旋回自在にナセルを配し、ナセルの後部にプロペラを配し、ナセルの形状をコアンダ効果の生じる前部の太い略魚形に形成し、プロペラの直径を、ナセルの最大部の直径ないし直径の2.5倍とする。    In this invention, a nacelle is pivotably arranged on a support column, a propeller is arranged at the rear part of the nacelle, and the shape of the nacelle is formed into a thick, generally fish shape at the front part where the Coanda effect occurs. The diameter of the largest part of the material or 2.5 times the diameter.

図1は、本発明に係る風力発電機の側面図、図2は平面図、図3は正面図である。ここでは流体を風として説明する。
図において風力発電機1は、支柱2の上に、旋回自在にナセル3が配設されている。
FIG. 1 is a side view of a wind power generator according to the present invention, FIG. 2 is a plan view, and FIG. 3 is a front view. Here, the fluid is described as wind.
In the figure, the wind power generator 1 is provided with a nacelle 3 on a support column 2 so as to be rotatable.

ナセル3の側面は、図示するように、前部が太く、後方へ次第に細く、略マグロ状の略魚形に形成されている。例えばナセル3の前縁部の直径は25cm、後端部の直径は6cmのように、大きな差が形成されて、ナセル3の前から当る風流は、ナセル3の形状によりコアンダ効果(流体粘性による付着流動現象)が生じる。   As shown in the drawing, the side surface of the nacelle 3 has a thick front portion and gradually narrows backward, and is formed in a substantially fish-like shape of a tuna shape. For example, a large difference is formed such that the diameter of the front edge of the nacelle 3 is 25 cm and the diameter of the rear end of the nacelle 3 is 6 cm. Adhesion flow phenomenon) occurs.

ナセル3の内部には、図示省略した発電器と、これに連結された変速機、出力軸4が常法により配設され、出力軸4の後端部にはプロペラ5が配設されている。該プロペラ5のプロペラ翼6は、先端部が前方へ45℃傾斜された傾斜部6aが形成されている。
前記プロペラ翼6の枚数は、2枚〜6枚程度で、弦長は先端部が広く設定されている。この弦長は、プロペラ5の半径の30%〜60%にすることができる。
Inside the nacelle 3, a generator (not shown), a transmission connected thereto, and an output shaft 4 are arranged in a conventional manner, and a propeller 5 is arranged at the rear end of the output shaft 4. . The propeller blade 6 of the propeller 5 is formed with an inclined portion 6a whose tip is inclined 45 ° forward.
The number of the propeller blades 6 is about 2 to 6, and the chord length has a wide tip. This chord length can be 30% to 60% of the radius of the propeller 5.

ナセル3の後端縁部には、放射方向を向く複数の支持腕7を介して、風流拡散を防止するための囲壁8がプロペラ5を囲むように配設されている。
前記支持腕7は、図1に断面を示すように、コアンダ効果が生じるように、前部は板厚が厚く、両側へ膨出して、後方へかけて次第に薄く形成されている。支持腕7の前部に当る風流は、前部で圧縮され、高速で両側面を後方へ通過する。コアンダ効果が生じる部位においては、乱流が生じない。
On the rear edge of the nacelle 3, a surrounding wall 8 for preventing airflow diffusion is disposed so as to surround the propeller 5 via a plurality of support arms 7 facing in the radial direction.
As shown in the cross section of FIG. 1, the support arm 7 has a thick front portion, a bulge on both sides, and a gradually decreasing thickness toward the rear so that the Coanda effect occurs. The airflow hitting the front part of the support arm 7 is compressed at the front part, and passes rearward on both sides at high speed. There is no turbulent flow at the site where the Coanda effect occurs.

囲壁8は、図示するように縦断側面において、コアンダ効果が生じるように、前部は板厚が厚く、内側へ膨出して、後方へかけて次第に薄く形成されている。また囲壁8の左右両側後部には、後部が外側方へ傾斜した方向舵9が一体に形成されている。   As shown in the figure, the surrounding wall 8 is formed so that the front portion has a thick plate thickness, bulges inward, and gradually becomes thinner toward the rear so that the Coanda effect occurs on the longitudinal side surface as shown. A rudder 9 is integrally formed on the left and right rear portions of the surrounding wall 8 so that the rear portion is inclined outward.

該囲壁8及び方向舵9は、例えば発泡スチロール樹脂成形体を、カーボン繊維、ガラス繊維などを使用したFRP樹脂被膜で被覆すると、軽量で剛性に優れた囲壁8及び方向舵9が得られる。   The surrounding wall 8 and the rudder 9 can be obtained by, for example, covering a foamed polystyrene resin molded body with an FRP resin film using carbon fiber, glass fiber, or the like, which is lightweight and excellent in rigidity.

図4は、本発明風水力発電機1における、風流変化を示す平面図である。海において、鯛とマグロとでは、圧倒的にマグロの方が高速で泳ぐことができる。これは、マグロの体型が魚雷のように、前部が丸く太く、後方は細いため、尾鰭で加速すると、コアンダ効果が生じるためである。   FIG. 4 is a plan view showing a wind flow change in the wind hydraulic generator 1 of the present invention. In the sea, tuna and swallows can swim overwhelmingly at high speed. This is because the tuna body shape is like a torpedo, the front is round and thick, and the back is thin.

本願におけるナセル3も、マグロの体型に似たものに形成されている。図4において、ナセル3の前に当る風流は、ナセル3の前端部で抵抗を受けて圧縮される。
圧縮された気流は、密度が高くなり、ナセル3の周面に沿って、内部では水飴が流れるように密接して流れ、外部では、圧縮された濃度の高い気流が分岐して高速で後方へ流動する。
The nacelle 3 in the present application is also formed to resemble a tuna body shape. In FIG. 4, the wind that hits the nacelle 3 is compressed by receiving resistance at the front end of the nacelle 3.
The compressed airflow has a high density and flows closely along the peripheral surface of the nacelle 3 so that a water tank flows inside, and on the outside, the compressed high-concentration airflow branches and moves backward at high speed. To flow.

すなわち、圧縮されて空気密度の高くなった気流は、後部の気圧よりも高いので、気圧の低い後方へ、ナセル3周面に沿って高速で流動する気流は、ナセル3前部の大きな直径部から周囲へ分岐拡散して、細い後方へ通過するために、拡散されて空気密度が薄くなり、負圧になる。ナセル3の後部は前部よりも細いために、前から吹く風流は、気圧の低くなったナセル3の後部に高速で集中して通過する。   That is, since the compressed airflow having a higher air density is higher than the rear atmospheric pressure, the airflow flowing at a high speed along the circumferential surface of the nacelle 3 toward the rear at a lower atmospheric pressure is a large diameter portion at the front of the nacelle 3. In order to branch and diffuse from to the surroundings and pass to the back, it is diffused and the air density is reduced, resulting in a negative pressure. Since the rear part of the nacelle 3 is thinner than the front part, the wind flow blown from the front is concentrated and passes at the rear part of the nacelle 3 where the atmospheric pressure is low.

その結果、プロペラ5は、ナセル3の前面に当る風速よりも高速な気流を、前面に受けることになり、高速回転をする。すなわち同じ風速の中で、ナセル3の形状によってナセル3の周面には高速気流が生じてプロペラにあたる。その結果、例えば風速5m/sの風が吹いている時、プロペラに当る風速は6m/sというように、高速風流を得ることができる。   As a result, the propeller 5 receives airflow at a speed higher than the wind speed hitting the front surface of the nacelle 3 and rotates at high speed. That is, in the same wind speed, due to the shape of the nacelle 3, a high-speed air current is generated on the peripheral surface of the nacelle 3 and hits the propeller. As a result, for example, when a wind having a wind speed of 5 m / s is blowing, a high-speed wind flow can be obtained such that the wind speed hitting the propeller is 6 m / s.

前記囲壁8は、ナセル3の周囲を高速で通過する気流を外方へ拡散させず、内面の膨出面により気流をより高速化させ、後方外側方へ拡散させる。
ナセル3の前方から吹く風流は、囲壁8後部における左右の方向舵9の前面を圧迫して、ナセル3の先端部を風上に向けて保持させる。
The surrounding wall 8 does not diffuse the airflow passing through the periphery of the nacelle 3 at a high speed outward, but speeds up the airflow by the bulging surface of the inner surface and diffuses it outward and rearward.
The wind that blows from the front of the nacelle 3 presses the front surfaces of the left and right rudder 9 at the rear of the surrounding wall 8 to hold the tip of the nacelle 3 facing upwind.

風向きが変ったとき、片方の方向舵9に対する風圧がなくなり、他方の方向舵9にのみ風圧がかかるので、その風圧に押されてナセル3は旋回して、前端部を風上に瞬時に向ける。このように風向きに敏感に反応して、風向きが変化しても、直ちにプロペラ5を風に対面させるので、風力を無駄なく受取ることができる。   When the wind direction changes, the wind pressure on one rudder 9 disappears, and the wind pressure is applied only to the other rudder 9, so that the nacelle 3 turns by being pushed by the wind pressure, and the front end portion is instantaneously directed to the windward. Thus, even if the wind direction changes in response sensitively to the wind direction, the propeller 5 is immediately faced to the wind, so that the wind force can be received without waste.

図5はプロペラ翼の正面図、図6はA−A断面を示す平面図、図7は側面図である。プロペラ翼6は、図5において右側が回転前側端部6b、左側が回転後側端部6Cである。図6においてA−A断面は、回転前側端部6bの板厚は、回転半径の7%〜15%の範囲に厚く設定され、回転後側端部6Cは薄く設定されて、回転時に全体としてコアンダ効果が生じるように形成されている。   FIG. 5 is a front view of the propeller blade, FIG. 6 is a plan view showing the AA cross section, and FIG. 7 is a side view. In FIG. 5, the propeller blade 6 has a front end 6b on the right side and a rear end 6C on the left side in FIG. In FIG. 6, the AA cross section is such that the plate thickness of the front end 6 b is set to be thick within the range of 7% to 15% of the rotation radius, and the end 6 </ b> C after the rotation is set thin so It is formed so as to produce a Coanda effect.

また、相対流Bはプロペラ翼6の前後に分かれて、高速で通過し、プロペラ翼6の回転後側端縁部に負圧を生じさせることから、周囲の常気圧流が集合してプロペラ翼6の回転後側方から回転前方向へ押すことになる。   Further, since the relative flow B is divided before and after the propeller blade 6 and passes at a high speed and generates a negative pressure at the end edge on the rear side of the rotation of the propeller blade 6, the surrounding normal pressure flow gathers and the propeller blade 6 is pushed from the side after the rotation to the direction before the rotation.

図6においてプロペラ翼6の背面は、出力軸4に対して直角に設定され、前面は膨出した右側から左側端部にかけて傾斜されている。従ってプロペラ翼6の前方から吹く風流Aは、プロペラ翼6の前面に当って左側端へと流動して、プロペラ翼6を回転前側端部6b方へ回転させる。   In FIG. 6, the back surface of the propeller blade 6 is set at a right angle to the output shaft 4, and the front surface is inclined from the bulging right side to the left side end. Therefore, the wind flow A blown from the front of the propeller blade 6 strikes the front surface of the propeller blade 6 and flows to the left end, and rotates the propeller blade 6 toward the front rotation end 6b.

また、プロペラ翼6の回転に伴い、プロペラ翼6の回転前側端部6bに当る相対流Bは、回転前側端部6bで圧縮され、コアンダ効果で高速で回転後側端部6Cへと流動して、その反動でプロペラ翼6は回転前側端部6bが回転方へ回転する。この場合、プロペラ翼6の前面には負圧が生じるため、前方から吹く風流Aを多く呼び込んで、回転効率が高まる。   As the propeller blade 6 rotates, the relative flow B that hits the front end 6b of the propeller blade 6 is compressed by the front end 6b and flows to the rear end 6C at high speed by the Coanda effect. As a result, the propeller blade 6 rotates in the rotational direction at the front end 6b. In this case, since a negative pressure is generated on the front surface of the propeller blade 6, a large amount of the wind flow A blowing from the front is called in, and the rotation efficiency is increased.

図7において、プロペラ翼6が回転すると、翼根部位から翼端方へ遠心力により拡散風流Cが生じる。また前方から吹く風流Aが傾斜部6aにあたる時、点OからPへ至る風速よりも点QからPへ滑走する風速の方が早くなり、この域に負圧が生じ、前方から吹く風流を多く集合させる。   In FIG. 7, when the propeller blade 6 rotates, a diffused wind flow C is generated from the blade root portion toward the blade tip by centrifugal force. Further, when the wind flow A blowing from the front hits the inclined portion 6a, the wind speed sliding from the point Q to the P is faster than the wind speed from the point O to the P, and a negative pressure is generated in this region, and the wind flow blowing from the front is increased. Gather together.

図5に示すように、傾斜部6aは、幅中央線Sから左側部の面積よりも右側の面積が広いので、プロペラ翼6の前右先端部位に風流が多く集合することになり、回転力が高まるとどうじに、回転方向におけるプロペラ翼6にあたる相対流を早く後方へ通過させて、抵抗を軽減させる。   As shown in FIG. 5, since the inclined portion 6a has a larger area on the right side than the area on the left side from the width center line S, a large amount of wind current gathers at the front right tip portion of the propeller blade 6, and the rotational force As the distance increases, the relative flow corresponding to the propeller blades 6 in the rotational direction is quickly passed rearward to reduce the resistance.

以上のように構成されたこの風水力発電機1は、ナセル3の形を前縁部が太く大きく、後部が細い形状として、コアンダ効果により、ナセル3周面に沿って流動する高速気流を造り出して、プロペラ5に当てるようにした。   This wind-hydraulic power generator 1 configured as described above creates a high-speed airflow that flows along the circumferential surface of the nacelle 3 by the Coanda effect, with the shape of the nacelle 3 having a large front edge and a large rear edge. I tried to hit the propeller 5.

これに加えて、プロペラ翼6の断面を、コアンダ効果が出るように、回転前側端部6bの板厚が厚く形成されたので、回転に伴いプロペラ翼6の前後面に沿う高速風の通過に伴う反作用として、プロペラ翼6の回転後側端方から、回転後側端部6Cへかかる風圧により、回転が加速されることとなり、相乗効果により、プロペラ翼面積の同じ従来型風力発電機と比較して、実験的に発電効率が1.5倍〜2倍に向上した。   In addition to this, the cross section of the propeller blade 6 is formed so that the front end portion 6b is thick so that the Coanda effect can be obtained, so that the high-speed wind passes along the front and rear surfaces of the propeller blade 6 with rotation. As a reaction, the rotation is accelerated by the wind pressure applied from the rear end of the propeller blade 6 to the rear end 6C, and compared with a conventional wind generator having the same propeller blade area due to a synergistic effect. Experimentally, the power generation efficiency was improved 1.5 to 2 times.

図8は、実施例2を示す風水力発電機の側面図で、図9は背面図である。前例と同じ部位には同じ符号を付して説明を省略する。
この実施例2におけるナセル3は、先端部が半円球状に形成され、後方へ急激に細く設定されている。ナセル3前部の最大直径と、プロペラ5直前のナセル3後端部の直径との差は、5対1に形成されている。
FIG. 8 is a side view of the wind-hydraulic power generator showing the second embodiment, and FIG. 9 is a rear view. The same parts as those in the previous example are denoted by the same reference numerals and description thereof is omitted.
The nacelle 3 according to the second embodiment has a tip formed in a semi-spherical shape, and is set to be sharply narrowed backward. The difference between the maximum diameter of the front portion of the nacelle 3 and the diameter of the rear end portion of the nacelle 3 immediately before the propeller 5 is formed to be 5: 1.

また、ナセル3の最大直径と、プロペラ5の直径は、1対1.7で、プロペラ5の直径が小さく設定されている。これによって、ナセル3の周面に生じるコアンダ効果は高速流をプロペラ5に導き、またプロペラ5は直径が小さいので、傾斜部6aによる気流捕捉性に優れて、回転効率が向上する。   Further, the maximum diameter of the nacelle 3 and the diameter of the propeller 5 are 1 to 1.7, and the diameter of the propeller 5 is set to be small. As a result, the Coanda effect generated on the peripheral surface of the nacelle 3 guides a high-speed flow to the propeller 5, and since the propeller 5 has a small diameter, it is excellent in air flow trapping property by the inclined portion 6a and the rotation efficiency is improved.

囲壁8は、図9に示すように左右一対で、対面する上下の間に間隙がある。これによって、 囲壁8板厚の左右両側部において、囲壁8の内外を流通する気流の速度差があり、風向きの変化に対して、敏感に反応して方向の制御性に優れる。   As shown in FIG. 9, the surrounding walls 8 are a pair of left and right, and there is a gap between the upper and lower surfaces facing each other. As a result, there is a difference in the speed of the airflow flowing through the inside and outside of the surrounding wall 8 at both the left and right sides of the surrounding wall 8 plate thickness, and it reacts sensitively to changes in the wind direction and has excellent direction controllability.

図8.9において、ナセル3,プロペラ5、支持腕7、囲壁8における前から流体を受ける面は平滑面とし、それ以外の面は、粗面(砂点で表示)1aとする。これによって、周面に沿って後方へ流動する流体は、粗面により粘着性を増してコアンダ効果を向上させる。   In FIG. 8.9, the surface of the nacelle 3, propeller 5, support arm 7 and surrounding wall 8 that receives fluid from the front is a smooth surface, and the other surface is a rough surface (indicated by a sand point) 1a. As a result, the fluid flowing backward along the circumferential surface increases the cohesiveness by the rough surface and improves the Coanda effect.

なおこの風水力発電機1は、適宜支持体を介して水中に設置して、水流を利用した発電をすることができる。その場合、前記風流等における風は水または流と読み替える。水中においても、コアンダ効果は同様に生じる。   In addition, this wind-hydraulic power generator 1 can be installed in water through a support as appropriate, and can generate power using a water flow. In that case, the wind in the wind flow or the like is read as water or flow. Even in water, the Coanda effect occurs similarly.

この風水力発電機1は、弱風、弱水流でも発電効率がよいため、プロペラ5の直径を小さくすることができるので、小型で性能のよい風水力発電機1を得ることができる。家庭用、農事用、僻地での電源確保その他、幅広い分野に利用することができる。   Since this wind-hydraulic power generator 1 has good power generation efficiency even in a weak wind and a weak water flow, the diameter of the propeller 5 can be reduced, and thus a small-sized and high-performance wind-hydraulic power generator 1 can be obtained. It can be used in a wide range of fields such as home use, agricultural use, securing power in remote areas, and so on.

本発明に係る風水力発電機の側面図である。It is a side view of the wind-hydraulic power generator concerning the present invention. 本発明に係る風水力発電機の正面図である。It is a front view of the wind-hydraulic power generator concerning the present invention. 本発明に係る風水力発電機の平面図である。It is a top view of the wind hydraulic power generator concerning the present invention. 風流を示す風水力発電機の平面図である。It is a top view of the wind hydraulic power generator which shows a wind flow. 本発明に係るプロペラ翼の正面図である。It is a front view of the propeller blade which concerns on this invention. 図5におけるA−A断面図である。It is AA sectional drawing in FIG. 本発明に係るプロペラ翼の側面図である。It is a side view of the propeller blade which concerns on this invention. 実施例2を示す風水力発電機の側面図である。It is a side view of the wind-hydraulic power generator which shows Example 2. FIG. 図8の背面図である。It is a rear view of FIG.

符号の説明Explanation of symbols

1. 風水力発電機
1a. 粗面
2. 支柱
3. ナセル
4. 出力軸
5. プロペラ
6. プロペラ翼
6a.傾斜部
6b.回転前側端部
6c 回転後側端部
7. 支持腕
8. 囲壁
9. 方向舵
1. Feng shui generator 1a. Rough surface Strut 3. Nasser 4. Output shaft 5. Propeller 6. Propeller wing 6a. Inclined part 6b. Front end 6c after rotation End 7a after rotation Support arm 8. Enclosure 9. Rudder

Claims (7)

支柱上に旋回自在に配設されたナセルの後部に、プロペラが配設された風水力発電機であって、ナセルに当る流体のコアンダ効果により生じる、ナセル先端部に当る流速以上の高速流体流を、ナセル周面に生じさせて、プロペラ前面へ通過させることを特徴とする風水力発電機。 A hydrodynamic power generator with a propeller disposed at the rear of a nacelle that is pivotably disposed on a support, and a high-speed fluid flow that exceeds the flow velocity at the tip of the nacelle caused by the Coanda effect of the fluid that strikes the nacelle Is generated on the peripheral surface of the nacelle and passed to the front surface of the propeller. 支柱上に旋回自在に配設されたナセルの後部に、プロペラが配設された風水力発電機であって、ナセルは先端が球面で、先端縁部の最大直径が、プロペラ直前のナセル後端部の直径の2倍〜5倍に形成され、ナセルの先端部に当接した流体が、コアンダ効果を生じて、ナセルの周面に沿って、プロペラ前面へ高速で流動するよう構成されていること、を特徴とする風水力発電機。 A wind-hydraulic power generator in which a propeller is disposed at the rear of a nacelle that is pivotably disposed on a support column, the nacelle having a spherical tip, and the maximum diameter of the tip edge is the rear end of the nacelle immediately before the propeller. The fluid that is formed to be twice to five times the diameter of the part and is in contact with the tip of the nacelle causes the Coanda effect to flow at high speed along the circumferential surface of the nacelle to the front surface of the propeller. This is a wind-hydraulic power generator. 前記ナセルは先端部が半円球状に形成されていること、を特徴とする請求項1、2の何れかに記載された風水力発電機。 The wind turbine generator according to any one of claims 1 and 2, wherein the nacelle has a semispherical tip. 前記ナセルには、後部に支持腕を介して囲壁がプロペラを覆うように配設され、該囲壁の左右後部に、外側後方へ傾斜して突出した方向舵が、一体に形成されていること、を特徴とする請求項1〜3のいずれかに記載された風水力発電機。 In the nacelle, a surrounding wall is arranged so as to cover the propeller via a support arm at the rear part, and rudder that is inclined and protrudes outwardly from the left and right rear parts of the surrounding wall is integrally formed. The wind-hydraulic power generator according to any one of claims 1 to 3. 前記プロペラのプロペラ翼は、翼端縁部の弦長が翼根の弦長より広く形成され、翼端に前方へ傾斜する傾斜部が形成され、該傾斜部は、正面において幅中央線から左方よりも、回転方向の右方の面積が広く形成されていること、を特徴とする請求項1〜4のいずれかに記載された風水力発電機。 The propeller blade of the propeller is formed such that the chord length of the blade tip edge portion is wider than the chord length of the blade root, and an inclined portion inclined forward is formed at the blade tip. The wind-hydraulic power generator according to any one of claims 1 to 4, wherein an area on the right side in the rotation direction is formed wider than the direction of the wind power generator. 前記プロペラは、その直径がナセルの最大直径の100%〜250%の範囲に設定されていること、を特徴とする請求項1〜5のいずれかに記載された風水力発電機。 The wind turbine generator according to any one of claims 1 to 5, wherein a diameter of the propeller is set in a range of 100% to 250% of a maximum diameter of the nacelle. 前記ナセル、プロペラ翼、囲壁における、流体が当たる前面部は滑面で、それより後部の表面は、粗面に形成されたこと、を特徴とする請求項1〜6のいずれかに記載された風水力発電機。


7. The nacelle, the propeller blade, and the surrounding wall, wherein a front surface portion to which a fluid hits is a smooth surface, and a rear surface surface thereof is a rough surface. Feng hydro power generator.


JP2007033921A 2007-02-14 2007-02-14 Wind hydraulic generator Expired - Fee Related JP4939252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007033921A JP4939252B2 (en) 2007-02-14 2007-02-14 Wind hydraulic generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007033921A JP4939252B2 (en) 2007-02-14 2007-02-14 Wind hydraulic generator

Publications (2)

Publication Number Publication Date
JP2008196425A true JP2008196425A (en) 2008-08-28
JP4939252B2 JP4939252B2 (en) 2012-05-23

Family

ID=39755595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007033921A Expired - Fee Related JP4939252B2 (en) 2007-02-14 2007-02-14 Wind hydraulic generator

Country Status (1)

Country Link
JP (1) JP4939252B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159657A (en) * 2009-01-07 2010-07-22 Global Energy Co Ltd Wind power generator
JP2010281297A (en) * 2009-06-08 2010-12-16 Chia Yuan Li Wind power generator
JP2011007147A (en) * 2009-06-29 2011-01-13 Global Energy Co Ltd Exhaust gas flow power plant
JP2011032936A (en) * 2009-07-31 2011-02-17 Global Energy Co Ltd Power generation vehicle
JP2013189970A (en) * 2012-01-18 2013-09-26 Fukushima Univ Power generating impeller and wind turbine including the same
JP2014514500A (en) * 2011-04-21 2014-06-19 アナカタ・ウィンド・パワー・リソーシズ・エス・アー・エル・エル Diffuser enhanced wind turbine
JP2015203396A (en) * 2014-04-16 2015-11-16 国立大学法人 東京大学 Wave power turbine
WO2017006657A1 (en) * 2015-07-08 2017-01-12 株式会社ベルシオン Wind-following horizontal-axis wind turbine
WO2017145488A1 (en) 2016-02-24 2017-08-31 株式会社ベルシオン Rotor blade
WO2019049902A1 (en) * 2017-09-07 2019-03-14 株式会社ベルシオン Rotor blade and horizontal water turbine comprising same
US20210246867A1 (en) * 2018-06-08 2021-08-12 Global Energy Co., Ltd. Horizontal shaft rotor
WO2023095359A1 (en) * 2021-11-26 2023-06-01 合同会社加速流グリーンパワー研究所 Wind speed acceleration type wind turbine
DE102022128891A1 (en) 2022-11-01 2024-05-02 Siwing Gmbh Device and method for positioning a movable component in a desired position relative to a flowing fluid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666460A (en) * 1979-11-06 1981-06-04 Shimadzu Corp Wind power turbine
JP2006226148A (en) * 2005-02-15 2006-08-31 Fjc:Kk Horizontal-shaft windmill and propeller
JP2007009822A (en) * 2005-06-30 2007-01-18 Fjc:Kk Propeller windmill

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666460A (en) * 1979-11-06 1981-06-04 Shimadzu Corp Wind power turbine
JP2006226148A (en) * 2005-02-15 2006-08-31 Fjc:Kk Horizontal-shaft windmill and propeller
JP2007009822A (en) * 2005-06-30 2007-01-18 Fjc:Kk Propeller windmill

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159657A (en) * 2009-01-07 2010-07-22 Global Energy Co Ltd Wind power generator
JP2010281297A (en) * 2009-06-08 2010-12-16 Chia Yuan Li Wind power generator
JP2011007147A (en) * 2009-06-29 2011-01-13 Global Energy Co Ltd Exhaust gas flow power plant
JP2011032936A (en) * 2009-07-31 2011-02-17 Global Energy Co Ltd Power generation vehicle
JP2014514500A (en) * 2011-04-21 2014-06-19 アナカタ・ウィンド・パワー・リソーシズ・エス・アー・エル・エル Diffuser enhanced wind turbine
JP2013189970A (en) * 2012-01-18 2013-09-26 Fukushima Univ Power generating impeller and wind turbine including the same
JP2015203396A (en) * 2014-04-16 2015-11-16 国立大学法人 東京大学 Wave power turbine
JP2017020371A (en) * 2015-07-08 2017-01-26 株式会社ベルシオン Wind pursuing horizontal shaft type wind turbine
WO2017006657A1 (en) * 2015-07-08 2017-01-12 株式会社ベルシオン Wind-following horizontal-axis wind turbine
WO2017145488A1 (en) 2016-02-24 2017-08-31 株式会社ベルシオン Rotor blade
KR20180116405A (en) 2016-02-24 2018-10-24 가부시키가이샤 베르시온 Rotor blades
US11162472B2 (en) 2016-02-24 2021-11-02 Ntn Corporation Rotor blade
WO2019049902A1 (en) * 2017-09-07 2019-03-14 株式会社ベルシオン Rotor blade and horizontal water turbine comprising same
JP2019049203A (en) * 2017-09-07 2019-03-28 株式会社ベルシオン Rotor blade and horizontal shaft water turbine equipped with the same
JP7007841B2 (en) 2017-09-07 2022-01-25 Ntn株式会社 Rotor blade and horizontal axis turbine equipped with it
US20210246867A1 (en) * 2018-06-08 2021-08-12 Global Energy Co., Ltd. Horizontal shaft rotor
WO2023095359A1 (en) * 2021-11-26 2023-06-01 合同会社加速流グリーンパワー研究所 Wind speed acceleration type wind turbine
JP2023078902A (en) * 2021-11-26 2023-06-07 合同会社加速流グリーンパワー研究所 Wind velocity acceleration type wind turbine
DE102022128891A1 (en) 2022-11-01 2024-05-02 Siwing Gmbh Device and method for positioning a movable component in a desired position relative to a flowing fluid

Also Published As

Publication number Publication date
JP4939252B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP2008196425A (en) Wind and hydraulic power generator
TWI308195B (en)
TWI294943B (en) Wind-tunnel-like dynamic power generator
JP5730003B2 (en) Fluid rotating wheel
US20080166242A1 (en) Wind Turbine Rotor Projection
JP2007538189A5 (en)
JP4740580B2 (en) Horizontal axis wind turbine blades and horizontal axis wind turbine
TWM366608U (en) Wind power generator capable of automatically tracking wind direction
JP2011007147A (en) Exhaust gas flow power plant
KR20130006419A (en) Turbine
JP2016525186A (en) Wind power generation tower with gyromill type wind turbine
JP2012224140A (en) Blade of rotor for fluid equipment
JP2006257886A (en) Three-dimensional propeller and horizontal-shaft windmill
EP1375911A4 (en) Propeller type windmill for power generation
JP2010281297A (en) Wind power generator
US20120100004A1 (en) High efficiency impeller
JP4728008B2 (en) Horizontal axis windmill
US20100295314A1 (en) Floating wind turbine
JP2006152864A (en) Blade for wind power generator and wind power generation device having the same
JP2003328921A (en) Double wind collecting device
WO2019235344A1 (en) Horizontal axis rotor
JP2017154576A (en) Horizontal-shaft rotor and craft comprising the same
JP5703499B2 (en) Windmill blade with tare
JP5976414B2 (en) Water current generator
WO2017006657A1 (en) Wind-following horizontal-axis wind turbine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080626

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4939252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees