KR100982352B1 - Small hydroelectric generator - Google Patents

Small hydroelectric generator Download PDF

Info

Publication number
KR100982352B1
KR100982352B1 KR1020090094775A KR20090094775A KR100982352B1 KR 100982352 B1 KR100982352 B1 KR 100982352B1 KR 1020090094775 A KR1020090094775 A KR 1020090094775A KR 20090094775 A KR20090094775 A KR 20090094775A KR 100982352 B1 KR100982352 B1 KR 100982352B1
Authority
KR
South Korea
Prior art keywords
turbine
pipe
water inlet
water
flow
Prior art date
Application number
KR1020090094775A
Other languages
Korean (ko)
Inventor
설정철
변정윤
Original Assignee
인시스글로벌 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인시스글로벌 주식회사 filed Critical 인시스글로벌 주식회사
Priority to KR1020090094775A priority Critical patent/KR100982352B1/en
Application granted granted Critical
Publication of KR100982352B1 publication Critical patent/KR100982352B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/20Controlling by varying liquid flow specially adapted for turbines with jets of high-velocity liquid impinging on bladed or like rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/30Application in turbines
    • F05B2220/32Application in turbines in water turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Hydraulic Turbines (AREA)

Abstract

PURPOSE: A small hydroelectric generator is provided to produce renewable energy using water discharged from a waste water disposal plant, an apartment, and a building. CONSTITUTION: A small hydroelectric generator comprises a turbine casing(16) with a horizontal turbine shaft(14) connected to a turbine generator(12). A water inlet(18) is vertically formed in the turbine casing. A water outlet(20) is coupled to one side of the turbine casing. A pipe body(22) is inserted into the water inlet pipe. Turbine blades(26) are installed in the horizontal turbine shaft. An air suction pipe(24) is formed in the pipe body in which the water inlet is located.

Description

소수력 발전기{SMALL HYDROELECTRIC GENERATOR}Small Hydro Generators {SMALL HYDROELECTRIC GENERATOR}

본 발명은 발전장치에 관한 것으로, 특히 대형 수력발전이 아니고 개별이나 단위별의 소규모 수력발전이 가능한 소수력 발전기에 관한 것이다. The present invention relates to a power generation apparatus, and more particularly, to a small hydro power generator capable of small-scale hydropower generation by individual or unit, rather than large-scale hydropower generation.

수력 발전은 우리나라의 전체 발전설비 가운데 10%정도의 시설용량을 유지하고 있으며, 전력생산은 전체의 겨우 5%정도 밖에 되질 않는다. 전력공급 계통의 기술적 가치측면에서 살필 때 수력발전소가 더욱 증가하는 것이 바람직하나 그러하지 못한 것은 댐공사 등의 막대한 시설투자와 환경파괴 등의 발생으로 많은 문제점이 야기되었기 때문이다.Hydropower maintains about 10% of Korea's total power generation capacity, and power generation is only about 5% of the total. In view of the technical value of the power supply system, it is desirable to increase hydroelectric power generation, but it is not because the huge investment in facilities such as dam construction and environmental destruction have caused many problems.

그러므로 막대한 시설투자나 환경파괴 등의 문제가 없이도 수력발전 설비를 차지율을 높이는 방안이 요망되어진다.Therefore, there is a need for a method of increasing the occupancy rate of hydroelectric power plants without enormous facility investment or environmental damage.

따라서 본 발명의 목적은 막대한 시설투자나 환경파괴 등의 문제 없이도 수력발전이 가능하되 각 공장, 빌딩, 마트, 백화점 등에서 버리지는 방류수를 이용하여 수미터정도의 낙차를 가져도 발전을 할 수 있도록 해주는 소수력 발전기를 제공하는데 있다. Therefore, the object of the present invention is to enable the power generation without the problem of enormous facility investment or environmental destruction, but to be able to generate power even with a drop of several meters by using the effluent water discarded in each factory, building, mart, department store, etc. To provide a hydropower generator.

본 발명의 다른 목적은 소규모의 개별 수력발전이나 단위 수력발전을 추진하여 무상 자원으로 전력을 생산할 수 있도록 하는 소수력 발전기를 제공하는데 있다.It is another object of the present invention to provide a small hydro power generator that can produce electric power as a free resource by promoting small hydro or unit hydro power generation.

상기한 목적을 달성하기 위한 본 발명은, 수력 발전장치에 있어서, 터빈발전부(12)와 연결된 횡형 터빈축(14)이 축설된 터빈케이싱(16)을 구비하고 터빈케이싱(16)에 직립 연통하는 물유입관(18)을 상하방향으로 형성하며, 터빈케이싱(16) 일측부에는 물배출관(20)이 체결되게 구성하고, 낙하되는 물(W)이 들어오는 물유입관(18)내에는 허리 잘록한 병목부(34)가 형성된 유로관체(22)를 삽입설치하되 유로관체(22)의 상측 입구부(30)는 물유입관(18)내에 맞춤끼움되고 유로관체(22)의 하측 출구부(32)는 물유입관(18)과 분리 이격되어 상측 입구부(30)의 구경보다 작은 구경으로 형성하고, 유로관체(22) 직하방의 횡형 터빈축(14)에는 터빈날개(26)들이 설치되게 구성하며, 유로관체(22)의 병목부(34) 높이의 물유입관(18) 위치에는 공기흡입소관(24)을 형성하여서 공기흡입소관(24)를 통해서 외부 공기(A)가 유로관체(22)의 하측 출구부(32)와 유로관체(22)간의 이격부를 통과하여 터빈케이싱(16)내에 유입되게 구성함을 특징으로 하는 소수력 발전기이다. The present invention for achieving the above object is, in the hydroelectric power generation apparatus, provided with a turbine casing (16) in which a horizontal turbine shaft (14) connected to the turbine power generation unit (12) is installed, and is in direct communication with the turbine casing (16). The water inlet pipe 18 is formed in the up and down direction, the water discharge pipe 20 is configured to be fastened to one side of the turbine casing 16, and the water inlet pipe 18 into which the water (W) falling falls into the waist. The flow path tube 22 having a narrow bottleneck portion 34 is inserted and installed, but the upper inlet portion 30 of the flow path tube 22 is fitted into the water inlet pipe 18 and the lower outlet portion of the flow path tube 22 ( 32 is spaced apart from the water inlet pipe 18 to form a smaller diameter than the diameter of the upper inlet portion 30, and the turbine blades 26 are installed on the horizontal turbine shaft 14 directly below the flow pipe (22). The air intake pipe 24 is formed at the position of the water inlet pipe 18 at the height of the bottleneck 34 of the flow pipe 22. 4 is a hydrophobic power generator characterized in that the outside air (A) is introduced into the turbine casing (16) through the separation between the lower outlet portion 32 and the flow pipe body 22 of the flow pipe body 22 through. .

또한 본 발명의 공기흡입소관(24)의 구경은 물유입관 구경의 5∼15%크기임을 특징으로 하며,
터빈날개(26)는 횡형 터빈축(14)방향에 경사형성되고 비틀어져서 터빈축(14)에 길이부가 고정된 직사각형 본체판을 구비하되 터빈축(14)에 연접한 내측에서 날개 외연방향으로 요입 만곡되게 경사진 다음 외연이 융기되게 형성된 본체판 전면형상(26a)과 아울러 터빈축(14)에 연접한 내측에서 날개 외연방향으로 내려가는 기울기를 가진 본체판 배면형상(26b)을 가짐을 특징으로 한다.
In addition, the diameter of the air intake pipe 24 of the present invention is characterized in that the size of 5 to 15% of the diameter of the water inlet pipe,
The turbine blades 26 are inclined and twisted in the direction of the horizontal turbine shaft 14 to have a rectangular body plate having a fixed length in the turbine shaft 14, but indented in the blade outer peripheral direction in an inner side connected to the turbine shaft 14. It is characterized by having a main body plate front shape (26a) formed in the next outer edge is inclined to be curved, as well as the body plate rear shape (26b) inclined downward in the wing outer peripheral direction from the inner side in contact with the turbine shaft (14). .

본 발명은 소수력 발전기를 사용하므로 막대한 시설투자나 환경파괴 등의 문제 없이도 수력발전이 가능하다. 또한 각 공장의 폐수처리장에서 버리는 방류수, 하수종말처리장이나 정수처리장에서 버리는 방류수, 백화점 대형마트, 아파트, 빌딩 등에서 버리는 하수를 조금의 낙차를 만들어 주고 거기에 본 발명의 소수력 발전기를 투입 설치하여서 수력발전으로 전력을 생산하게 되면 고유가 대책이나 이산화탄소 배출규제 등에도 큰 도움을 줄 수 있다.Since the present invention uses a small hydroelectric generator, hydropower generation is possible without enormous facility investment or environmental damage. In addition, effluents discarded in wastewater treatment plants of each plant, effluents discarded in sewage treatment plants or water treatment plants, department stores, large marts, apartments, buildings, etc., make a small drop and install hydropower generator of the present invention therein. If electricity is produced, it can be a great help for high oil prices and carbon dioxide emission control.

이하 본 발명의 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 실시 예에 따른 소수력 발전기의 사시도이고, 도 2는 도 1의 정단면도이며, 도 3은 도 1의 평단면도이다. 그리고, 도 4는 도 1의 측단면도이고, 도 5는 터빈날개의 부품 사시도이다. 1 is a perspective view of a hydrophobic power generator according to an embodiment of the present invention, FIG. 2 is a front sectional view of FIG. 1, and FIG. 3 is a plan sectional view of FIG. 1. 4 is a side cross-sectional view of FIG. 1, and FIG. 5 is a perspective view of parts of the turbine blades.

본 발명의 실시 예에 따른 소수력 발전기(10)는 각 공장, 빌딩, 마트, 백화점 등에서 버려지는 방류수를 이용하여 전력을 생산하는 재생에너지 발전장치로서, 적은 양의 물을 이용하고 예컨대 3~5미터 정도가 되는 약간의 낙차를 주어서도 전력을 생산할 수 있는 구조이다.The hydrophobic power generator 10 according to the embodiment of the present invention is a renewable energy generator that generates power by using discharged water discarded in each factory, building, mart, department store, etc., using a small amount of water, for example, 3 to 5 meters. It is a structure that can generate electricity even by giving a slight drop.

본 발명의 소수력 발전기(10)는 받침프레임(28)상에 역학적 에너지를 전기에너지로 변환하는 터빈발전부(12)를 구비하며, 터빈발전부(12)와 연결된 횡형 터빈축(14)이 축설된 터빈케이싱(16)을 구비한다. 터빈케이싱(16)의 상부에는 직립 연통하는 물유입관(18)이 용접되어 상하방향으로 형성되게 구성하고 터빈케이싱(16)의 일측부에는 물배출관(20)이 플랜지관을 매개로 체결 구성된다. The hydrophobic power generator 10 of the present invention has a turbine power generation unit 12 for converting mechanical energy into electrical energy on the support frame 28, the horizontal turbine shaft 14 connected to the turbine power generation unit 12 is built up Turbine casing 16 is provided. The upper portion of the turbine casing 16 is formed so that the water inlet pipe 18 in upright communication is welded and formed in the vertical direction, and the water discharge pipe 20 is fastened to one side of the turbine casing 16 via a flange pipe. .

또 터빈케이싱(16)에 수직연통되며 낙하되는 물(W)이 들어오는 물유입관(18)내에는 허리 잘록한 병목부(34)가 형성된 통형의 유로관체(22)를 삽입설치하되, 유로관체(22)의 상측 입구부(30)는 물유입관(18)내에 맞춤끼움되고 유로관체(22)의 하측 출구부(32)는 물유입관(18)과 약간 분리 이격되게 형성하여 상측 입구부(30)의 구경보다 작은 구경을 갖도록 구성한다. 게다가 물유입관(18)에는 공기흡입소관(24)을 형성하되 유로관체(22)의 병목부(34) 높이와 같은 위치의 물유입관(18)에 외부 공기(A)가 터빈케이싱(16)내로 유입되게 하는 공기흡입소관(24)이 형성되게 구성한다.In addition, in the water inlet pipe 18 in which the water W falling in vertical communication with the turbine casing 16 is inserted, a cylindrical flow path tube 22 having a bottleneck 34 formed therein is inserted therein, The upper inlet portion 30 of the 22 is fitted in the water inlet pipe 18 and the lower outlet portion 32 of the flow pipe 22 is formed to be slightly separated from the water inlet pipe 18 to separate the upper inlet ( It is configured to have a diameter smaller than the diameter of 30). In addition, the water inlet pipe 18 forms an air suction pipe 24, but the external air A is supplied to the water inlet pipe 18 at the same position as the height of the bottleneck 34 of the flow pipe 22. It is configured to form an air suction pipe 24 to be introduced into).

터빈케이싱(16)내에는 횡형 터빈축(14)이 축설치되고, 그 터빈축(14)에는 다수의 터빈날개(26)들이 장착되며 상기 터빈날개(26)의 직상방에는 물유입관(18)내 삽입 설치된 유로관체(22)가 위치한다.A horizontal turbine shaft 14 is installed in the turbine casing 16, and a plurality of turbine blades 26 are mounted on the turbine shaft 14, and a water inlet pipe 18 is directly above the turbine blade 26. Is inserted into the flow passage tube 22.

각 공장의 폐수처리장에서 버리는 방류수, 하수종말처리장이나 정수처리장에서 버리는 방류수, 백화점 대형마트, 아파트, 빌딩 등에서 버리는 하수 등에서 나와서 낙하되는 물(W)을 받아들이는 물유입관(18)내에 삽입설치된 유로관체(22)는 허리 잘록한 병목부(34)가 형성된 마치 모래시계와 같은 통형상의 관체로서, 물투입구의 구경이 점차 좁아지게 되므로 베르누이 정리에 의거하여 유로관체(22)의 병목부(34)를 통과하는 물의 속도(유속)는 빨라지고 그 압력은 낮아지게 된다. 비록 유로관체(22)의 병목부(34)에서 하측 출구부(32)로 갈수록 유로가 점차 확장되지만 물유입관(18)과 유로관체(22)의 하측 출구부(32)간에 이격부가 형성되어 있는 관계로 유로관체(22)의 하측 출구부(32)의 구경은 유로관체(22)의 상측 입구부(30)의 구경보다 훨씬 작게 형성되기에 유로관체(22)의 입구부보다는 훨씬 빠른 유속이 생긴다.
베르누이 정리에서 속도수두는 V2/2g(여기서, g는 중력가속도, V는 유속)이고, 또 유체역학에서의 연속방정식은 Q= A1V1 = A2V2(여기서, A1,A2는 관의 단면적, V1,V2는 유속)이고, 관의 단면적 A1,A2는 (π/4)d2(여기서 d는 구경)이므로, 유속은 구경의 4제곱에 비례하는 관계가 있어 상측입구부(30)의 구경에 비해 하측 출구부(32)의 구경이 줄어듬에 따라 유로관체(22)의 하측 출구부(32)에서 배출되는 유속은 그 구경 축소에 4제곱에 비례하여 증가하게 된다.
Flow path installed in the water inlet pipe (18) to receive the water (W) coming out of the effluent from each plant's wastewater treatment plant, the effluent from the sewage terminal treatment plant or water treatment plant, and the sewage from the department store mart, apartment, building, etc. Conduit 22 is a tubular tube like a sandglass with a bottleneck 34 is formed, the diameter of the water inlet is gradually narrowed, the bottleneck 34 of the flow passage 22 according to Bernoulli theorem. The speed (flow rate) of the water passing through it increases and the pressure decreases. Although the flow path gradually expands from the bottleneck portion 34 of the flow pipe body 22 toward the lower outlet part 32, a space is formed between the water inlet pipe 18 and the lower outlet part 32 of the flow pipe body 22. Since the diameter of the lower outlet portion 32 of the flow pipe body 22 is much smaller than that of the upper inlet portion 30 of the flow pipe body 22, the flow velocity is much faster than that of the inlet of the flow pipe body 22. This occurs.
In Bernoulli's theorem, the velocity head is V 2 / 2g, where g is gravitational acceleration and V is flow velocity, and the continuous equation in hydrodynamics is Q = A1V1 = A2V2 (where A1, A2 is the cross-sectional area of the tube, V1, V2 is the flow velocity), and the cross-sectional areas A1 and A2 of the pipe are (π / 4) d 2 (where d is the aperture), so the flow velocity is proportional to the square of the aperture, compared to the aperture of the upper inlet section 30. As the diameter of the lower outlet portion 32 decreases, the flow velocity discharged from the lower outlet portion 32 of the flow pipe body 22 increases in proportion to the square of the reduction in the diameter.

이렇게 물유입관(18)으로 투입된 후 유로관체(22)의 좁은 병목부(34)와 하측 출구부(32)를 차례로 통과한 물(W)은 유로관체(22)로 유입되기 전보다 훨씬 빠른 유속을 가질뿐만 아니라 와류현상도 함께 발생되므로 유로관체(22)의 하방에 위치한 터빈날개(26)들에게 유체의 빠른 부딪힘과 유체의 마찰을 좀더 많은 시간받게 해주어서 적은 유량으로 터빈날개(26)들의 회전속도를 최대화시킨다.The water (W), which has been introduced into the water inlet pipe 18 and passed through the narrow bottleneck part 34 and the lower outlet part 32 of the flow pipe body 22 in turn, is much faster than the flow rate before entering the flow pipe body 22. As well as having a vortex phenomenon is also generated so that the turbine blades 26 located below the flow path tube 22 to receive a quick impact of the fluid and friction of the fluid more time, so that the turbine blades 26 of the lower flow rate Maximize the rotation speed.

더욱이 유로관체(22)의 상측 입구부(30)가 물유입관(18)내에 맞춤끼움되고, 유로관체(22)의 하측 출구부(32)는 물유입관(18)과는 분리 이격된 이격부를 형성함과 동시에 유로관체(22)의 병목부(34) 높이의 물유입관(18) 위치에 공기흡입소관(24)이 형성되므로, 공기흡입소관(24)을 통해서 대기압의 외부 공기(A)가 감압상태의 유로관체(22)의 하측 출구부(32)측으로의 흐름으로 고속 투입되어서 터날날개(26)로 낙하되는 물의 유속을 더 빠르게 하는데 보탬이 되며 또 터빈케이싱(16)과 물배출관(20)으로 대기압 공기가 유입됨에 따라 외부로 보다 원활한 물배출이 되게 해준다. In addition, the upper inlet portion 30 of the flow conduit 22 is fitted into the water inlet pipe 18, and the lower outlet 32 of the flow conduit 22 is separated from the water inlet pipe 18. The air intake pipe 24 is formed at the water inlet pipe 18 at the height of the bottleneck portion 34 of the flow pipe body 22 while forming a portion, so that the outside air at atmospheric pressure (A) is passed through the air intake pipe 24. ) Is added to the lower outlet portion 32 of the flow pipe body 22 in a reduced pressure state at high speed to help the flow rate of the water falling to the blade blade 26 to be faster, and further, the turbine casing 16 and the water discharge pipe. Atmospheric pressure air is introduced into (20) to allow a smoother water discharge to the outside.

공기흡입소관(24)의 구경은 물유입관(18) 구경의 5∼15%크기가 바람직하고 더욱 바람직하게는 물유입관(18) 구경의 10%크기이다. 물유입관(18) 구경의 5∼15%크기가 되는 공기흡입소관(24)의 구경은 현재 낙하되는 물(W)의 유속에는 영향을 끼치지 않으면서 공기(A)가 빠르게 유입이 될 수 있도록 하는데 의의를 가지며, 빠르게 내부 유입된 공기(A)의 기류는 허리 잘록한 유로관체(22)의 병목부(34)와 물유입관(18)보다 더 좁게 형성되는 유로관체(22)의 하측출구부(32)와 물유입관(18) 사이의 좁은 이격 틈을 지나면서 기류속도가 더 빨라져서 낙하되는 물(W)의 유속이 현재보다 더욱 빠르게 되도록 물(W)을 밀어줄 수 있으며 또 터빈케이싱(16)에 유입된 공기가 물배출관(20)을 통해 외부로 나아가는 물배출이 원활하게 이루어지는데 도움이 된다. The size of the air intake pipe 24 is preferably 5 to 15% of the size of the water inlet pipe 18 and more preferably 10% of the size of the water inlet pipe 18. The diameter of the air intake pipe 24, which is 5 to 15% of the diameter of the water inlet pipe 18, allows the air (A) to be introduced rapidly without affecting the flow rate of the water (W) currently falling. The air flow of the air (A) is introduced into the lower outlet of the flow path body 22 formed narrower than the bottleneck 34 and the water inlet pipe 18 of the waist constricted flow pipe (22). As the air flow speeds faster through the narrow separation gap between the part 32 and the water inlet pipe 18, the water W can be pushed so that the flow rate of the water W falling faster than the present, and the turbine casing Air introduced into the (16) helps to smoothly discharge the water to the outside through the water discharge pipe (20).

유로관체(22)의 직하방 터빈케이싱(16)내 터빈축(14)에 설치되는 다수개의 터빈날개(26)들은 물의 부딪힘이 최대화되게 하는 형상을 갖는다. The plurality of turbine blades 26 installed on the turbine shaft 14 in the turbine casing 16 directly below the flow passage body 22 have a shape such that the impact of water is maximized.

도 5에 도시된 바와 같이 본 발명의 실시 예에 따른 터빈날개(26)는 횡형 터빈축(14)방향에 경사 형성되고 폭방향보다 길이방향으로 훨씬 길게 형성되고 터빈축(14)에 길이변이 고정되며 꽈배기형상으로 약간 틀어진 본체판을 구비하되, 본체판의 전면부(26a)는 터빈축(14)에 연접한 내측에서 날개 외연방향으로 요입만곡되게 경사진 다음 외연이 융기돌출되게 형성하고 본체판의 후면부(26b)는 터빈축(14)에 연접한 내측에서 날개 외연방향으로 내려가는 기울기로 형성한 구성이다. As shown in FIG. 5, the turbine blades 26 according to the embodiment of the present invention are formed to be inclined in the direction of the horizontal turbine shaft 14 and are formed to be much longer in the longitudinal direction than the width direction thereof, and the length side is fixed to the turbine shaft 14. And a main body plate slightly twisted into a pretzel shape, and the front portion 26a of the main body plate is inclined to be indented in the periphery of the blade from the inner side in contact with the turbine shaft 14 to form a protruding protrusion and a main body plate. The rear part 26b of the structure is formed in the inclination which descends to the blade outer periphery direction from the inner side connected to the turbine shaft 14.

터빈날개(26)는 터빈축(14)의 축방향에서 길이부 양단이 30°경사형성하는 것이 바람직하고, 소수력 발전을 위한 터빈날개(26)의 개수는 5개가 바람직하다.Preferably, the turbine blades 26 are inclined at 30 ° in both ends of the length in the axial direction of the turbine shaft 14, and the number of turbine blades 26 for hydrophobic power generation is preferably five.

중앙이 약간 꽈배기처럼 비틀어진 터빈날개(26)는 폭방향에 비해서 길이방향으로 훨씬 더 길게 형성되며, 길이방향의 양측에서의 물부딪힘이 연속적으로 이루어지게 하여 터빈날개(26)의 안정적인 회전을 도모한다. 또한 날개부위가 직사각형으로 넓고 3차원의 곡선화되어서 물의 부딪힘은 최대화되면서 한쪽방향으로만 회전이 이루어지도록 해준다. The turbine blades 26, which are twisted like a little twist in the center, are formed to be much longer in the longitudinal direction than in the width direction, and the water strikes on both sides in the longitudinal direction are continuously performed to achieve stable rotation of the turbine blades 26. do. In addition, the wings are rectangular in shape and curved in three dimensions, allowing the water to rotate in one direction while maximizing the impact of water.

전술한 바와 같이 가속된 유속을 갖게 하는 구조와 터빈날개(26)의 구조를 갖는 본 발명의 소수력 발전기(10)는 적은 유량에서도 회전속도를 최대화하여 많은 전력생산을 안정적으로 생산할 수 있다. 더욱이 버리지는 방류수를 이용하면서도 수미터정도의 약간의 낙차만 있어도 재생에너지를 생산할 수 있도록 해주는 설비가 된다. As described above, the hydrophobic power generator 10 of the present invention having a structure having an accelerated flow rate and a structure of the turbine blades 26 can maximize the rotational speed even at a small flow rate and stably produce a large amount of power production. Moreover, it is a facility that uses renewable wastewater to produce renewable energy even with a few drops of several meters.

상술한 본 발명의 설명에서는 구체적인 실시 예에 관해 설명하였으나, 여러 가지 변형이 본 발명의 범위에서 벗어나지 않고 실시할 수 있다. 따라서 본 발명의 범위는 설명된 실시 예에 의하여 정할 것이 아니고 특허청구범위 및 그 특허청구범위와 균등한 것에 의해 정해 져야 한다. While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. Therefore, the scope of the present invention should not be defined by the described embodiments, but should be defined by the claims and their equivalents.

본 발명은 소형의 수력발전에 이용될 수 있다. 예컨대, 각 공장의 폐수처리장에서 버리는 방류수, 하수종말처리장이나 정수처리장에서 버리는 방류수, 백화점 대형마트, 아파트, 빌딩 등의 하수를 이용한 발전에 적용할 수 있다. The present invention can be used for small hydro power generation. For example, it can be applied to power generation using wastewater discharged from wastewater treatment plants of each factory, discharged wastewater from sewage terminal treatment plants or water treatment plants, department stores, large supermarkets, apartments, buildings, and the like.

도 1은 본 발명의 실시 예에 따른 소수력 발전기의 사시도,1 is a perspective view of a hydropower generator according to an embodiment of the present invention,

도 2는 도 1의 정단면도,2 is a front cross-sectional view of FIG.

도 3은 도 1의 평단면도,3 is a plan sectional view of FIG. 1;

도 4는 도 1의 측단면도,4 is a side cross-sectional view of FIG.

도 5는 터빈날개의 부품 사시도. 5 is a perspective view of parts of the turbine blades;

<도면의 주요 부분에 대한 부호의 설명> <Explanation of symbols for the main parts of the drawings>

(10)-- 소수력 발전기 (12)-- 터빈발전부(10)-Small Hydro Generator (12)-Turbine Generation

(14)-- 터빈축 (16)-- 터빈케이싱(14)-Turbine Shaft (16)-Turbine Casing

(18)-- 물유입관 (20)-- 물배출관(18)-Water Inlet Tube (20)-Water Discharge Tube

(22)-- 유로관체 (24)-- 공기흡입소관(22)-Euro pipe (24)-Air intake pipe

(26)-- 터빈날개 (28)-- 받침프레임(26)-Turbine Wings (28)-Base Frame

(30)-- 입구부 (32)-- 출구부(30)-Inlet (32)-Outlet

(34)-- 병목부(34)-Bottleneck

Claims (3)

수력 발전장치에 있어서, In a hydro power plant, 터빈발전부(12)와 연결된 횡형 터빈축(14)이 축설된 터빈케이싱(16)을 구비하고 터빈케이싱(16)에 직립 연통하는 물유입관(18)을 상하방향으로 형성하며, 터빈케이싱(16) 일측부에는 물배출관(20)이 체결되게 구성하고, 낙하되는 물(W)이 들어오는 물유입관(18)내에는 허리 잘록한 병목부(34)가 형성된 유로관체(22)를 삽입설치하되 유로관체(22)의 상측 입구부(30)는 물유입관(18)내에 맞춤끼움되고 유로관체(22)의 하측 출구부(32)는 물유입관(18)과 분리 이격되어 상측 입구부(30)의 구경보다 작은 구경으로 형성하고, 유로관체(22) 직하방의 횡형 터빈축(14)에는 터빈날개(26)들이 설치되게 구성하며, 유로관체(22)의 병목부(34) 높이의 물유입관(18) 위치에는 공기흡입소관(24)을 형성하여서 공기흡입소관(24)를 통해서 외부 공기(A)가 유로관체(22)의 하측 출구부(32)와 유로관체(22)간의 이격부를 통과하여 터빈케이싱(16)내에 유입되게 구성함을 특징으로 하는 소수력 발전기.The turbine casing 16, which has a horizontal turbine shaft 14 connected to the turbine power generation unit 12, is formed, and the water inlet pipe 18, which is in direct communication with the turbine casing 16, is formed in the vertical direction, and the turbine casing ( 16) On one side, the water discharge pipe 20 is configured to be fastened, and in the water inlet pipe 18 through which the water W that falls is inserted into the flow path body 22 in which the bottleneck 34 is formed. The upper inlet 30 of the flow conduit 22 is fitted into the water inlet pipe 18, and the lower outlet 32 of the flow conduit 22 is separated from the water inlet pipe 18 so as to be separated from the water inlet pipe 18. It is formed in a diameter smaller than the diameter of 30, the turbine blades 26 are provided in the horizontal turbine shaft 14 directly below the flow passage 22, the water of the bottleneck portion 34 of the flow passage 22 An air intake pipe 24 is formed at the inlet pipe 18 so that outside air A passes through the air intake pipe 24 to the lower outlet 32 and the flow pipe of the flow pipe body 22. A hydropower generator, characterized in that configured to flow into the turbine casing (16) through the separation between the sieves (22). 제1항에 있어서, 공기흡입소관(24)의 구경은 물유입관(18) 구경의 5∼15%크기임을 특징으로 하는 소수력 발전기. The hydropower generator according to claim 1, wherein the diameter of the air intake pipe (24) is 5-15% of the diameter of the water inlet pipe (18). 삭제delete
KR1020090094775A 2009-10-06 2009-10-06 Small hydroelectric generator KR100982352B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090094775A KR100982352B1 (en) 2009-10-06 2009-10-06 Small hydroelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090094775A KR100982352B1 (en) 2009-10-06 2009-10-06 Small hydroelectric generator

Publications (1)

Publication Number Publication Date
KR100982352B1 true KR100982352B1 (en) 2010-09-14

Family

ID=43010151

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090094775A KR100982352B1 (en) 2009-10-06 2009-10-06 Small hydroelectric generator

Country Status (1)

Country Link
KR (1) KR100982352B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105332848A (en) * 2015-11-03 2016-02-17 清华大学 On-line monitoring instrument self-power-generation device and application for water supply network
CN106870254A (en) * 2017-03-08 2017-06-20 钟浪雅 A kind of high efficiency water power electricity generating system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721896Y2 (en) * 1987-06-09 1995-05-17 株式会社明電舎 Cross flow turbine
JP2002070713A (en) 2000-08-29 2002-03-08 Hitachi Ltd Air intake system for water mill
JP2006070865A (en) 2004-09-06 2006-03-16 Toto Ltd Generator and water discharge control device
KR200424629Y1 (en) 2006-05-30 2006-08-25 공순희 Water power plant using head drop of distribution well

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721896Y2 (en) * 1987-06-09 1995-05-17 株式会社明電舎 Cross flow turbine
JP2002070713A (en) 2000-08-29 2002-03-08 Hitachi Ltd Air intake system for water mill
JP2006070865A (en) 2004-09-06 2006-03-16 Toto Ltd Generator and water discharge control device
KR200424629Y1 (en) 2006-05-30 2006-08-25 공순희 Water power plant using head drop of distribution well

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105332848A (en) * 2015-11-03 2016-02-17 清华大学 On-line monitoring instrument self-power-generation device and application for water supply network
CN106870254A (en) * 2017-03-08 2017-06-20 钟浪雅 A kind of high efficiency water power electricity generating system

Similar Documents

Publication Publication Date Title
RU2493427C2 (en) Wind-driven power plant, generator to generate power from ambient air and method to generate power from moving ambient air
CN103925150B (en) A kind of universal wind gathering console model gentle breeze-driven generator based on Venturi effect
CA2647515A1 (en) Apparatus for hydroelectric power production expansion
KR101073897B1 (en) Multistage aerogenerator
CN105452646B (en) Assembly for generating electricity
MY151465A (en) Wind power generator
KR20180116418A (en) Wind power generator combined with building
WO2016023351A1 (en) All-directional flow-guide shaftless wind-driven generator
CN102165183A (en) Improvements in ocean wave energy extraction
US8444374B2 (en) Impulse hydro electric turbine comprising rotating nozzles
KR100982352B1 (en) Small hydroelectric generator
US8946922B1 (en) Reverse flow hydroelectric generator
EP2054619A1 (en) Omni-directional wind power station
KR101830846B1 (en) Power generator using flowing water
JP3172493U (en) Spiral wind turbine generator
RU117522U1 (en) WIND TURBINE INSTALLATION
CN116950844A (en) Vortex power generation structure
CN114320756A (en) Wind power generation device
Dhakal et al. Notice of Violation of IEEE Publication Principles: Computational and experimental investigation of runner for gravitational water vortex power plant
WO2009060245A1 (en) Solar power plant with short diffuser
JP5426790B1 (en) Hydroelectric generator
KR101165619B1 (en) Wind energy converting system using air stack
JP5478765B1 (en) Hydroelectric generator
JP2013083181A (en) Spiral type wind power generation system
CN220552349U (en) Cooling tower

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130913

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141022

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150828

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee