JP2002070713A - Air intake system for water mill - Google Patents
Air intake system for water millInfo
- Publication number
- JP2002070713A JP2002070713A JP2000259477A JP2000259477A JP2002070713A JP 2002070713 A JP2002070713 A JP 2002070713A JP 2000259477 A JP2000259477 A JP 2000259477A JP 2000259477 A JP2000259477 A JP 2000259477A JP 2002070713 A JP2002070713 A JP 2002070713A
- Authority
- JP
- Japan
- Prior art keywords
- air supply
- water
- air
- runner
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Hydraulic Turbines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水車を通過する水
の溶存酸素量を増加するための給気装置に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air supply device for increasing the amount of dissolved oxygen in water passing through a water turbine.
【0002】[0002]
【従来の技術】貯水池等の水深10m以下の深層では水
の自然循環があまり行われず、また光合成が表層ほど活
発ではなく、一般に溶存酸素濃度は低い。貯水池の低層
から取水された水が水車を通り抜け、そのまま流下する
と下流の生物環境を低下させる場合がある。2. Description of the Related Art In deep water layers such as reservoirs with a water depth of 10 m or less, natural circulation of water is not so much performed, photosynthesis is not as active as the surface layer, and the dissolved oxygen concentration is generally low. If water withdrawn from the lower part of the reservoir passes through the turbine and flows down, the downstream biological environment may be reduced.
【0003】従来、ダム施設においては、陸上のコンプ
レッサから貯水池底部付近に設置した散気管に空気を供
給し、散気管から噴出する空気を低層部流体に混入させ
る方法が採用されていた。また、水面の表面近くに攪拌
ポンプを設置して低層の水を汲み上げ、表面水との置換
が試みられている。あるいは、水中に攪拌機を設置し
て、攪拌機翼の回転で発生する攪拌流中に空気を供給し
て、貯水池の溶存酸素濃度を高める方法が実施されてい
る。[0003] Conventionally, in a dam facility, a method has been adopted in which air is supplied from a land-based compressor to an air diffuser tube installed near the bottom of a reservoir, and air ejected from the air diffuser tube is mixed into a lower layer fluid. Also, an agitation pump is installed near the surface of the water surface to pump low-rise water, and replacement with surface water has been attempted. Alternatively, a method has been practiced in which a stirrer is installed in water and air is supplied into a stirring flow generated by rotation of a stirrer blade to increase the concentration of dissolved oxygen in a reservoir.
【0004】これらの方法は、水車の上流の貯水池にあ
る水に対する対策であり、必ずしも、水車で取水される
水ではない。効果的に水車の下流の溶存酸素濃度を高め
る手段として、図9に示すように、水車の回転するラン
ナ9のブレード10の内部に空気通路12を設け、空気
が通過可能な構造に成形し、水車の静止部である上カバ
ー4から給気管5を通じて給気し、各ブレード10の内
部に送気して、ブレード10の出口端である後縁の給気
口18から水車を通過する流水に給気する方法が試みら
れている(米国特許5,879,130)。[0004] These methods are countermeasures against water in a reservoir upstream of the turbine, and are not necessarily water taken by the turbine. As means for effectively increasing the dissolved oxygen concentration downstream of the water turbine, as shown in FIG. 9, an air passage 12 is provided inside the blade 10 of the rotating runner 9 of the water turbine, and formed into a structure through which air can pass. Air is supplied from the upper cover 4, which is a stationary portion of the water turbine, through the air supply pipe 5, and is supplied to the inside of each blade 10. Attempts have been made to supply air (US Pat. No. 5,879,130).
【0005】この方法は、ランナ及び元々構造的に厚味
のないブレードの内部に給気通路を構成しなければなら
ず、ランナの加工工数が増加し高価になる可能性があ
る。また、この方法ではランナの強度低下も懸念され
る。[0005] In this method, the air supply passage must be formed inside the runner and the blade which is originally not thick in structure, which may increase the number of processing steps of the runner and increase the cost. Also, in this method, there is a concern that the strength of the runner may be reduced.
【0006】なお、従来の水車吸出し管には、設計運転
点から外れた部分負荷運転時に発生する旋回流による水
車の振動を抑制する目的で、給気管が配備されている場
合がある。旋回流によって圧力脈動が発生し、水車が振
動するような場合に、前記給気管から空気を給気し圧力
脈動を緩和させている。この給気管は、前述したように
本発明とは目的が異なる。[0006] The conventional water turbine suction pipe may be provided with an air supply pipe for the purpose of suppressing the vibration of the water turbine caused by the swirling flow generated at the time of partial load operation deviating from the design operation point. When a pressure pulsation is generated by the swirling flow and the water turbine vibrates, air is supplied from the air supply pipe to reduce the pressure pulsation. The purpose of this air supply pipe is different from that of the present invention as described above.
【0007】[0007]
【発明が解決しようとする課題】上記した水車の回転す
るランナのブレードの後縁から給気する方法では、加工
工数の増加によって高コストになる可能性が大きい。ま
た、給気通路構造が複雑でメンテナンスが困難と予想さ
れる。In the above-described method of supplying air from the trailing edge of the rotating runner blade of the water turbine, there is a great possibility that the cost will increase due to an increase in the number of processing steps. In addition, it is expected that maintenance is difficult due to the complicated supply passage structure.
【0008】本発明は、かかる事情を鑑みてなされたも
ので、低コストで製作でき、かつメンテナンスが容易な
水車の給気装置を提供することを目的とする。The present invention has been made in view of such circumstances, and has as its object to provide a water turbine air supply device that can be manufactured at low cost and that is easy to maintain.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
に、本発明における水車の給気装置の特徴とするところ
は、ランナを回転させる流水の流路に設けられ、流水中
へ空気を給気する給気部材を、流路の内周側にセグメン
ト構造にして形成し、かつ給気部材に、空気を流水中へ
給気する複数の貫通孔を設けることにある。In order to achieve the above object, a feature of a water supply device for a water turbine according to the present invention is that the air supply device is provided in a flow path of a running water for rotating a runner and supplies air to the running water. An air supply member to be evacuated is formed in a segment structure on the inner peripheral side of the flow path, and the air supply member is provided with a plurality of through holes for supplying air into flowing water.
【0010】具体的には本発明は次に掲げる装置を提供
する。Specifically, the present invention provides the following devices.
【0011】本発明は、ランナを回転させる流水の流路
に設けられ、前記流水中へ空気を給気する給気部材と、
該給気部材へ前記空気を供給する給気管とを有する水車
の給気装置において、前記給気部材は、前記流路の内周
側にセグメント構造にして形成され、前記給気管から供
給された空気を前記流水中へ給気する複数の貫通孔を有
することを特徴とする水車の給気装置を提供する。According to the present invention, there is provided an air supply member provided in a flow path of flowing water for rotating a runner, for supplying air to the flowing water.
In a water supply device for a water turbine having an air supply pipe for supplying the air to the air supply member, the air supply member is formed in a segment structure on an inner peripheral side of the flow path, and supplied from the air supply pipe. A water supply device for a water turbine, comprising: a plurality of through holes for supplying air into the flowing water.
【0012】好ましくは、前記給気部材は、前記ランナ
のランナバンドと対面する流路の内周側に形成される。[0012] Preferably, the air supply member is formed on an inner peripheral side of a flow path facing a runner band of the runner.
【0013】好ましくは、前記給気部材は、前記ランナ
の下流に位置する流路の内周側に形成される。[0013] Preferably, the air supply member is formed on the inner peripheral side of a flow path located downstream of the runner.
【0014】好ましくは、前記各貫通孔の流水面側の開
口位置を、前記給気管側の開口位置より下流側に位置す
るように構成する。[0014] Preferably, the opening position of each of the through holes on the flowing water surface side is located downstream of the opening position on the air supply tube side.
【0015】また、本発明は、ガイドベーン及びランナ
を通過した流水を下流方向に流出させる吸出し管の内面
に設けられた開口部と、前記開口部へ空気を供給する給
気管とを有する水車の給気装置において、前記開口部
は、水車の空転運転時には、前記ガイドベーンの隙間か
ら漏れる水及び前記ランナで巻き上げられた水を排水す
る排水口として機能し、前記水車の運転時には、前記給
気管から供給された空気を前記流水中へ給気する給気口
として機能するように構成されていることを特徴とする
水車の給気装置を提供する。According to the present invention, there is provided a water turbine having an opening provided on an inner surface of a suction pipe through which water flowing through a guide vane and a runner flows out in a downstream direction, and an air supply pipe for supplying air to the opening. In the air supply device, the opening portion functions as a drain port for draining water leaking from a gap between the guide vanes and water wound up by the runner during an idle operation of the water wheel, and the air supply pipe during operation of the water wheel. The water supply device is configured to function as an air supply port for supplying the air supplied from the water into the flowing water.
【0016】また、本発明は、ランナを通過した流水を
下流方向に流出させる吸出し管の内面に設けられ、前記
流水中へ空気を給気する給気口と、該給気口へ空気を供
給する給気管とを有する水車の給気装置において、前記
給気口は、前記吸出し管の内面に設けられ前記流水の旋
回流を抑制する突起構造物の下流側近傍に設けられるこ
とを特徴とする水車の給気装置を提供する。Further, the present invention provides an air supply port provided on the inner surface of a suction pipe through which the flowing water that has passed through the runner flows out in a downstream direction, and supplies air to the flowing water, and supplies air to the air supplying port. A water supply device having an air supply pipe, wherein the air supply port is provided in the vicinity of a downstream side of a projection structure provided on an inner surface of the suction pipe and suppressing a swirling flow of the flowing water. Provide a water supply device for a water turbine.
【0017】また、本発明は、ランナを通過した流水を
下流方向に流出させる吸出し管の内面に設けられ、前記
流水の旋回流を抑制する突起構造物と、該突起構造物へ
空気を供給する給気管とを有する水車の給気装置におい
て、前記突起構造物は、前記流水中へ空気を給気する給
気口を有し、前記給気口は、前記流水の旋回流の方向に
応じて、前記空気を給気する方向が変わるように構成さ
れていることを特徴とする水車の給気装置を提供する。According to the present invention, there is provided a projection structure provided on an inner surface of a suction pipe for allowing flowing water that has passed through a runner to flow in a downstream direction, and suppressing a swirling flow of the flowing water, and supplying air to the projection structure. In the air supply device for a water turbine having an air supply pipe, the protrusion structure has an air supply port for supplying air into the flowing water, and the air supply port is provided according to a direction of a swirling flow of the flowing water. And an air supply device for a water turbine, wherein the air supply direction is changed.
【0018】[0018]
【発明の実施の形態】以下、本発明の実施の形態例に係
る水車の給気装置を、図を用いて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A water supply device for a water turbine according to an embodiment of the present invention will be described below with reference to the drawings.
【0019】図1は、本発明の第1の実施の形態例に係
る水車の給気装置を装備した水車の断面図である。図2
は、図1の吸出し管用の給気部材の斜視図であり、図3
は、図1の側圧室用の給気部材の平面図である。FIG. 1 is a sectional view of a water turbine provided with a water supply device for a water turbine according to a first embodiment of the present invention. FIG.
FIG. 3 is a perspective view of an air supply member for the suction pipe of FIG.
FIG. 2 is a plan view of an air supply member for a side pressure chamber in FIG. 1.
【0020】図1に示すように、ダムの取水口(図示せ
ず)から取水された水は導水管(図示せず)を通り、水
車のケーシング1に入る。その後、ステーベーン2、ガ
イドベーン3、ランナ9に至り、水の保有していた圧力
と運動のエネルギーはランナ9に伝達される。ランナ9
に伝達されたエネルギーは、水車主軸7を介し、主軸上
部に配備されている発電機(図示せず)によって、電気
エネルギーに変換される。As shown in FIG. 1, water taken from a water intake (not shown) of a dam passes through a water pipe (not shown) and enters a casing 1 of a water turbine. After that, it reaches the stay vanes 2, the guide vanes 3, and the runners 9, and the pressure and kinetic energy stored in the water are transmitted to the runners 9. Runner 9
Transmitted through the turbine 7 is converted into electric energy by a generator (not shown) disposed above the main shaft.
【0021】ランナ9を通過した水は、水流方向17の
ように流出し、吸出し管16を通り、下流に至る。The water that has passed through the runner 9 flows out in a water flow direction 17, passes through a suction pipe 16, and reaches downstream.
【0022】本実施の形態例は、吸出し管16及び側圧
室14の双方にそれぞれ図2及び図3の給気部材19か
らなる給気装置が設けられている例であるが、もちろん
側圧室14のみ、或いは吸出し管16のみに給気装置を
設けてもよい。The present embodiment is an example in which an air supply device including the air supply member 19 shown in FIGS. 2 and 3 is provided in both the suction pipe 16 and the side pressure chamber 14, respectively. An air supply device may be provided only on the suction pipe 16 or only on the suction pipe 16.
【0023】溶存酸素濃度検出器30で、ランナ9を通
過する水の溶存酸素濃度を検出し、溶存酸素濃度が規定
値より不足の場合、給気弁開操作の信号が弁制御信号発
生器29に送信される。そこから給気弁開操作指令が給
気用弁24、及び給気流量調節弁25に発信され、空気
源28内の空気が配管23を通りヘッダー22に供給さ
れる。The dissolved oxygen concentration detector 30 detects the dissolved oxygen concentration of the water passing through the runner 9, and when the dissolved oxygen concentration is less than a specified value, a signal for opening the air supply valve is sent to a valve control signal generator 29. Sent to. From there, an air supply valve opening operation command is transmitted to the air supply valve 24 and the air supply flow rate control valve 25, and the air in the air source 28 is supplied to the header 22 through the pipe 23.
【0024】供給された空気は給気管5を通り、空気室
20に入り、給気部材19の給気口18から側圧室14
の流水中に、あるいは吸出し管16の流水中に出る。給
気部材19の流水面側には19aの記号を、反流水面側
には19bの記号を付している。The supplied air passes through the air supply pipe 5 and enters the air chamber 20, from the air supply port 18 of the air supply member 19 to the side pressure chamber 14.
Out of the flowing water of the pipe or the flowing water of the suction pipe 16. The symbol 19a is attached to the flowing water surface side of the air supply member 19, and the symbol 19b is attached to the counter-current water surface side.
【0025】ここで、図2の吸出し管16用の給気部材
19について説明する。Here, the air supply member 19 for the suction pipe 16 in FIG. 2 will be described.
【0026】吸出し管16用の給気部材19は、8個の
個別給気部材を組み合わせした円周上8分割のセグメン
ト構造である。給気口18は小口径で複数個あり、空気
は複数の開口部から水中に送り出される。The air supply member 19 for the suction pipe 16 has a circumferentially divided eight-segment structure in which eight individual air supply members are combined. The air supply port 18 has a plurality of small diameters, and air is sent out into the water from the plurality of openings.
【0027】一個所から一気に大量の空気を水中に注入
しても、空気は水に溶け込まず、水中溶存酸素濃度を高
める効果は乏しい。ここでは、複数個所の開口部からの
注入として、水に空気が溶け込み易いようにしている。Even if a large amount of air is injected into water at once from a single location, the air does not dissolve in the water, and the effect of increasing the dissolved oxygen concentration in water is poor. Here, air is easily injected into water by injection from a plurality of openings.
【0028】各個別給気部材は、取り付けボルト用穴3
1にボルトを通して吸出し管16に固定される。突き合
わせ部32をもつ個別給気部材があるが、これは、分解
組立を円滑に行うために特別に配慮したものである。組
立的には図示した凸型の個別給気部材を最後にはめ込
み、分解時には最初に引き抜く。このように凸型の個別
給気部材を設けることによって、周方向に隙間を作らず
に給気部材19からなる給気装置が構成でき、より多く
の空気を供給できる。Each individual air supply member has a mounting bolt hole 3
1 is fixed to the suction pipe 16 through a bolt. There is an individual air supply member having a butt portion 32, which has been specially considered to facilitate disassembly and assembly. As shown in the figure, the convex individual air supply member shown in FIG. By providing the convex individual air supply member in this manner, an air supply device including the air supply member 19 can be configured without forming a gap in the circumferential direction, and more air can be supplied.
【0029】次に、図3の側圧室14用の給気部材19
について説明する。Next, an air supply member 19 for the side pressure chamber 14 shown in FIG.
Will be described.
【0030】側圧室14用の給気部材19は、6個の個
別給気部材を組み合わせした円周上6分割のセグメント
構造である。個別給気部材は、6個とも同一形状、同一
寸法で構成されている。また、吸出し管用と同様に、取
り付けボルト用穴31があり、そこにボルトを通して側
圧室14の静止部に固定される。The air supply member 19 for the side pressure chamber 14 has a circumferentially-divided six-segment structure in which six individual air supply members are combined. The six individual air supply members have the same shape and the same dimensions. As in the case of the suction pipe, there is a mounting bolt hole 31 through which the bolt is fixed to the stationary portion of the side pressure chamber 14.
【0031】吸出し管16用及び側圧室14用の給気部
材19は、ゼグメント構造であるので、劣化した場合、
劣化部分だけを交換すればよく経済的である。経済的で
あるということはメンテナンスを頻繁に行っても経費が
かさばらず、給気装置を最良の状態に維持することがで
き、その結果、給気装置を十分に活用した溶存酸素濃度
増加法が実現される。The air supply member 19 for the suction pipe 16 and the side pressure chamber 14 has a segment structure.
It is economical to replace only the deteriorated part. Economical means that frequent maintenance does not increase the cost and the air supply system can be maintained in the best condition. As a result, the dissolved oxygen concentration increasing method that makes full use of the air supply system can be achieved. Is achieved.
【0032】なお、給気口の形状、寸法及び個数、並び
に、給気部材の分割構造様式は、水力発電所ごとの条件
に応じて適宜選定されることは当然である。It should be noted that the shape, size, and number of the air supply ports, and the manner of dividing the air supply members are appropriately selected according to the conditions of each hydroelectric power plant.
【0033】吸出し管16側の給気部材19の交換法に
ついて、以下に補足する。The replacement of the air supply member 19 on the suction pipe 16 side will be supplemented below.
【0034】給気部材19の交換の必要が生じた場合に
は、水車の抜水後、吸出し管16内に足場を組み、給気
部材19を分解し、作業用のマンホールから分解した給
気部材19を搬出する。搬入及び取り付けも同様な工程
を辿ればよい。このように、作業用のマンホールから分
解した給気部材19を搬出、搬入できるので、他の構造
物を分解することなく、作業を進めることができる。If it is necessary to replace the air supply member 19, after draining the water turbine, a scaffold is set in the suction pipe 16, the air supply member 19 is disassembled, and the air supply member disassembled from the work manhole. The member 19 is unloaded. Carrying in and mounting may follow the same process. As described above, since the disassembled air supply member 19 can be carried out and carried in from the work manhole, the work can be performed without disassembling other structures.
【0035】再び図1に戻り、給気装置の周辺について
説明する。空気源28とヘッダー22との間に弁を2個
設けた理由は、給気用弁24は単純な全開、全閉操作用
であり、流量調節弁25は状況に応じた調整を可能にす
るためである。側圧室14側の給気管系統の弁26は、
給気系統に土砂等が溜まったときの排出用である。吸出
し管16側の給気管系統の弁26も同じ目的である。と
ころで、水車の吸出し管16の壁面静圧は運転条件によ
って、大気圧以下に低下する場合がある。Returning to FIG. 1, the periphery of the air supply device will be described. The reason that two valves are provided between the air source 28 and the header 22 is that the air supply valve 24 is for a simple full open and full close operation, and the flow control valve 25 enables adjustment according to the situation. That's why. The valve 26 of the air supply pipe system on the side pressure chamber 14 side is
It is for discharging when soil and the like accumulate in the air supply system. The valve 26 of the air supply pipe system on the side of the suction pipe 16 has the same purpose. By the way, the static pressure on the wall surface of the suction pipe 16 of the water turbine may drop below the atmospheric pressure depending on the operating conditions.
【0036】このような場合には、空気源28を用いた
強制給気をしなくても、給気管を大気に開放するだけで
自然に給気が行われる。弁27は、前述の自然給気状態
になったときに開閉される弁である。なお、このときに
は弁26は開の状態である。また、本実施の形態例で
は、吸出し管16側の空気室20を傾斜構造にして底部
に土砂や塵埃が蓄積するのを防止している。In such a case, air supply is naturally performed only by opening the air supply pipe to the atmosphere without forced air supply using the air source 28. The valve 27 is a valve that is opened and closed when the above-described natural air supply state is established. At this time, the valve 26 is open. In the present embodiment, the air chamber 20 on the side of the suction pipe 16 has an inclined structure to prevent accumulation of earth and sand and dust on the bottom.
【0037】図4は、図2、図3の給気部材19の断面
図である。給気部材19の流水面側19aの給気口18
の開口位置は、反流水面側19b、すなわち給気源28
側の開口位置より下流側に位置するように構成されてい
る。このように構成されることにより、流水中の土砂等
の給気通路18aへの侵入を抑制し、給気通路18aの
目詰まりを防止している。すなわち、給気部材19から
なる給気装置の健全性を高めることによって、高性能な
給気装置の実現を可能にしている。FIG. 4 is a sectional view of the air supply member 19 shown in FIGS. Air supply port 18 on the flowing water surface side 19a of air supply member 19
Is located at the counter-current water surface side 19b, that is, the air supply source 28.
It is configured to be located downstream from the opening position on the side. With this configuration, intrusion of earth and sand in flowing water into the air supply passage 18a is suppressed, and clogging of the air supply passage 18a is prevented. That is, by improving the soundness of the air supply device including the air supply member 19, a high-performance air supply device can be realized.
【0038】図5は、本発明の第2の実施の形態例に係
る水車の給気装置を装備した水車の断面図である。図1
と同一の構成物には同一の記号を付している。ポンプ水
車や水車で待機運転や調相運転が要求された場合、ラン
ナ9室内の水面を押し下げて空転運転をすることにな
る。このときに、全閉したガイドベーン3の隙間からの
漏水や、ランナ9によって巻き上げられた水がガイドベ
ーン3とランナ9との間に溜まる。この水を吸出し管1
6に排水するために通称20DG2と呼ばれる排水管3
3が設置されている。FIG. 5 is a sectional view of a water turbine equipped with a water supply device for a water turbine according to a second embodiment of the present invention. FIG.
The same components are denoted by the same symbols. When a standby operation or a phase adjustment operation is requested by a pump turbine or a water turbine, the water surface in the runner 9 room is depressed to perform the idling operation. At this time, water leaks from a gap between the guide vanes 3 that are fully closed, and water that has been wound up by the runners 9 accumulates between the guide vanes 3 and the runners 9. Suction pipe 1
Drain pipe 3 so-called 20DG2 for draining to 6
3 are installed.
【0039】また、側圧室14の水を排水するために通
称20DG1と呼ばれる排水管34も通常設置されてい
る。A drain pipe 34, commonly called 20DG1, for draining the water in the side pressure chamber 14 is usually provided.
【0040】本実施の形態例は、これらの排水管33,
34に、給気管5、給気用弁24及び流量調節弁25を
付加したものである。本来の空転運転時は、給気用弁2
4、流量調節弁25は全閉で、弁35,36は全開であ
る。水車運転時には、弁35,36を全閉にして、給気
用弁24、流量調節弁25を開操作する。In this embodiment, the drain pipes 33,
34, an air supply pipe 5, an air supply valve 24, and a flow control valve 25 are added. During the idling operation, the air supply valve 2
4. The flow control valve 25 is fully closed and the valves 35 and 36 are fully open. During the operation of the water turbine, the valves 35 and 36 are fully closed, and the air supply valve 24 and the flow control valve 25 are opened.
【0041】空気は、空気源28からヘッダー22、給
気管5を通り、吸出し管16の開口部37,38から流
水中に供給される。この空気によって水中の溶存酸素濃
度が増加する。The air is supplied from the air source 28 through the header 22 and the air supply pipe 5 to the flowing water from the openings 37 and 38 of the suction pipe 16. This air increases the dissolved oxygen concentration in the water.
【0042】本実施の形態例では、設備の効率的運用が
図られ、経済的な水車の流水中への給気が可能となる。In this embodiment, the equipment can be operated efficiently and the water can be supplied to the running water of the economical turbine.
【0043】図6は、本発明の第3の実施の形態例に係
る水車の給気装置を装備した水車の断面図である。図1
と同一の構成物には同一の記号を付している。FIG. 6 is a sectional view of a water turbine equipped with a water supply device for a water turbine according to a third embodiment of the present invention. FIG.
The same components are denoted by the same symbols.
【0044】本実施の形態例では、水車の部分負荷運転
時に発生する旋回流を抑制するための突起構造物39の
下流に給気口18を設けている。給気口18の場所は他
の場所より場の圧力が低いので、外部から空気は入り込
み易い。低圧場所への給気であり、空気源28の圧力を
それに応じて低下できる。換言すれば、エネルギーの節
約、空気源28設備の軽減が可能ということになる。In the present embodiment, the air supply port 18 is provided downstream of the projection structure 39 for suppressing the swirling flow generated during the partial load operation of the water turbine. Since the location of the air supply port 18 has a lower field pressure than other locations, air can easily enter from the outside. Air supply to a low pressure location and the pressure of the air source 28 can be reduced accordingly. In other words, it is possible to save energy and reduce the facilities of the air source 28.
【0045】図7は、本発明の第4の実施の形態例に係
る水車の給気装置を装備した水車の一部断面図である。
図6と同一の構成物には同一の記号を付している。FIG. 7 is a partial sectional view of a water turbine equipped with a water supply device for a water turbine according to a fourth embodiment of the present invention.
The same components as those in FIG. 6 are denoted by the same symbols.
【0046】本実施の形態例は、吸出し管16内の旋回
流れの方向が水車の運転条件によって変化することに着
目して考案されたものである。一般に、水車が設計点近
傍で運転される場合には、ランナ9から流出する水は旋
回成分を持っていなく、吸出し管16内の流れは旋回流
れにはならない。The present embodiment has been devised by paying attention to the fact that the direction of the swirling flow in the suction pipe 16 changes depending on the operating conditions of the water turbine. Generally, when the water wheel is operated near the design point, the water flowing out of the runner 9 has no swirl component, and the flow in the suction pipe 16 does not become a swirl flow.
【0047】水車の設計点より小流量側の軽負荷運転時
には、ランナ9から流出する水がランナ9の回転方向と
同じ向きの旋回成分を持っているので、吸出し管16内
にはランナ9の回転方向と同じ向きの旋回流れが発生す
る。At the time of light load operation on the small flow rate side from the design point of the water turbine, the water flowing out of the runner 9 has a swirl component in the same direction as the rotation direction of the runner 9. A swirling flow is generated in the same direction as the rotation direction.
【0048】一方、水車の設計点より大流量側の過負荷
運転時には、ランナ9から流出する水がランナ9の回転
方向と反対向きの旋回成分を持っているので、吸出し管
16内にはランナ9の回転方向と反対向きの旋回流が発
生する。On the other hand, at the time of overload operation on the large flow rate side from the design point of the water turbine, the water flowing out of the runner 9 has a swirl component in the direction opposite to the rotation direction of the runner 9. 9 generates a swirling flow in the opposite direction to the rotation direction.
【0049】図7において、旋回流れの方向40aは軽
負荷運転時の旋回流れの方向であり、ランナ9の回転方
向と同じである。また、旋回流れの方向40bは過負荷
運転時の旋回流れの方向であり、ランナ9の回転方向と
反対方向である。上記の旋回流が発生し、吸出し管16
内の突起構造物39に衝突すると、突起構造物39の旋
回流と直面する側の圧力は高くなり、その陰となる側の
圧力は低くなる。図8は、給気口18を有する突起構造
物39の正面図である。In FIG. 7, the direction 40a of the swirling flow is the direction of the swirling flow during light load operation, and is the same as the direction of rotation of the runner 9. The direction 40b of the swirling flow is the direction of the swirling flow during the overload operation, and is opposite to the direction of rotation of the runner 9. The above-mentioned swirling flow is generated and the suction pipe 16
When the projection structure 39 collides with the inside, the pressure of the projection structure 39 on the side facing the swirling flow increases, and the pressure on the shadow side thereof decreases. FIG. 8 is a front view of the projection structure 39 having the air supply port 18.
【0050】そこで、吸出し管16内に給気する場合に
は、低圧となる突起構造物39の陰側から給気した方が
効果的である。本実施の形態例は、運転状態、すなわ
ち、吸出し管16内旋回流の方向に応じて、切換弁41
で給気先を切換えて、突起構造物39の低圧側にある給
気口18から効果的に給気するものである。これによ
り、水車下流の水の溶存酸素濃度を高めることができ
る。Therefore, when air is supplied into the suction pipe 16, it is more effective to supply air from the negative side of the protruding structure 39 where the pressure becomes low. In the present embodiment, the switching valve 41 is changed according to the operating state, that is, the direction of the swirling flow in the suction pipe 16.
To switch the air supply destination, and to effectively supply air from the air supply port 18 on the low pressure side of the projection structure 39. Thereby, the dissolved oxygen concentration of the water downstream of the turbine can be increased.
【0051】なお、図示した突起構造物39の内部の空
気室20は仕切42によって二つの空気室に仕切られて
いる。また、切換弁41は各空気室への給気の切換と給
気の遮断の役目をもつ。The air chamber 20 inside the projection structure 39 shown in the figure is partitioned by a partition 42 into two air chambers. Further, the switching valve 41 has a role of switching air supply to each air chamber and shutting off the air supply.
【0052】[0052]
【発明の効果】以上の説明から明らかなように、本発明
の請求項1、2、3によれば、給気部材をセグメント構
造にしてあるので、劣化した場合、劣化部分だけを交換
すればよく、経済的に有利となり、給気装置を最良の状
態に維持し易く、その結果として、水車下流の溶存酸素
濃度の維持、改善がし易くなり、水車下流の生物環境を
保持、改善することができる。As is apparent from the above description, according to the first, second and third aspects of the present invention, since the air supply member has a segment structure, if the air supply member deteriorates, only the deteriorated portion needs to be replaced. Good and economical advantage, it is easy to maintain the air supply system in the best condition, as a result, it is easy to maintain and improve the dissolved oxygen concentration downstream of the turbine, and to maintain and improve the biological environment downstream of the turbine Can be.
【0053】また、本発明の請求項4によれば、給気装
置の健全性が高まり、高性能な給気装置が実現できる。According to the fourth aspect of the present invention, the soundness of the air supply device is improved, and a high-performance air supply device can be realized.
【0054】また、本発明の請求項5によれば、既設の
設備を有効に活用した給気装置が実現できる。Further, according to the fifth aspect of the present invention, an air supply device that effectively utilizes existing facilities can be realized.
【0055】また、本発明の請求項6、7によれば、エ
ネルギーの節約型の給気装置が実現できる。According to the sixth and seventh aspects of the present invention, an energy-saving air supply device can be realized.
【図1】本発明の第1の実施の形態例に係る水車の給気
装置を装備した水車の断面図である。FIG. 1 is a cross-sectional view of a water turbine equipped with a water supply device for a water turbine according to a first embodiment of the present invention.
【図2】図1の吸出し管用の給気部材の斜視図である。FIG. 2 is a perspective view of an air supply member for the suction pipe of FIG. 1;
【図3】図1の側圧室用の給気部材の平面図である。FIG. 3 is a plan view of an air supply member for a side pressure chamber in FIG. 1;
【図4】図2、図3の給気部材の断面図である。FIG. 4 is a sectional view of the air supply member of FIGS. 2 and 3;
【図5】本発明の第2の実施の形態例に係る水車の給気
装置を装備した水車の断面図である。FIG. 5 is a sectional view of a water turbine equipped with a water supply device for a water turbine according to a second embodiment of the present invention.
【図6】本発明の第3の実施の形態例に係る水車の給気
装置を装備した水車の断面図である。FIG. 6 is a sectional view of a water turbine equipped with a water supply device for a water turbine according to a third embodiment of the present invention.
【図7】本発明の第4の実施の形態例に係る水車の給気
装置を装備した水車の一部断面図である。FIG. 7 is a partial sectional view of a water turbine provided with a water supply device for a water turbine according to a fourth embodiment of the present invention.
【図8】図7の突起構造物39の正面図である。FIG. 8 is a front view of the protrusion structure 39 of FIG.
【図9】従来技術による給気装置を有する水車の断面図
である。FIG. 9 is a sectional view of a water turbine having an air supply device according to the related art.
5…給気管、9…ランナ、14…側圧室、15…ランナ
バンド、16…吸出し管、17…流水方向、18…給気
口、18a…給気通路、19…給気部材、19a…給気
部材の流水面側、19b…給気部材の反流水面側、20
…空気室、22…ヘッダー、24…給気用弁、25…流
量調節弁、28…空気源、29…弁制御信号発生器、3
0…溶存酸素濃度検出器、33,34…排水管、39…
突起構造物5 ... air supply pipe, 9 ... runner, 14 ... side pressure chamber, 15 ... runner band, 16 ... suction pipe, 17 ... flowing water direction, 18 ... air supply port, 18a ... air supply passage, 19 ... air supply member, 19a ... air supply Flowing water surface side of air member, 19b ... countercurrent water surface side of air supply member, 20
... air chamber, 22 ... header, 24 ... air supply valve, 25 ... flow control valve, 28 ... air source, 29 ... valve control signal generator, 3
0: dissolved oxygen concentration detector, 33, 34: drain pipe, 39:
Projection structure
Claims (7)
れ、前記流水中へ空気を給気する給気部材と、該給気部
材へ前記空気を供給する給気管とを有する水車の給気装
置において、前記給気部材は、前記流路の内周側にセグ
メント構造にして形成され、前記給気管から供給された
空気を前記流水中へ給気する複数の貫通孔を有すること
を特徴とする水車の給気装置。An air supply for a water turbine provided in a flow path of running water for rotating a runner, the air supply member supplying air to the flowing water, and an air supply pipe supplying the air to the air supply member. In the device, the air supply member is formed in a segment structure on the inner peripheral side of the flow path, and has a plurality of through holes for supplying air supplied from the air supply pipe into the flowing water. Water turbine air supply system.
ランナのランナバンドと対面する流路の内周側に形成さ
れることを特徴とする水車の給気装置。2. The water supply device for a water turbine according to claim 1, wherein the air supply member is formed on an inner peripheral side of a flow path facing a runner band of the runner.
ランナの下流に位置する流路の内周側に形成されること
を特徴とする水車の給気装置。3. The air supply device for a water turbine according to claim 1, wherein the air supply member is formed on an inner peripheral side of a flow path located downstream of the runner.
側の開口位置を、前記給気管側の開口位置より下流側に
位置するように構成することを特徴とする水車の給気装
置。4. The air supply device for a water turbine according to claim 1, wherein an opening position of each of the through holes on a flowing water surface side is located downstream of an opening position on the air supply tube side. .
下流方向に流出させる吸出し管の内面に設けられた開口
部と、前記開口部へ空気を供給する給気管とを有する水
車の給気装置において、前記開口部は、水車の空転運転
時には、前記ガイドベーンの隙間から漏れる水及び前記
ランナで巻き上げられた水を排水する排水口として機能
し、前記水車の運転時には、前記給気管から供給された
空気を前記流水中へ給気する給気口として機能するよう
に構成されていることを特徴とする水車の給気装置。5. A water supply device for a water turbine, comprising: an opening provided on an inner surface of a suction pipe through which guide water flows through a guide vane and a runner to flow in a downstream direction; and an air supply pipe for supplying air to the opening. The opening functions as a drain port for draining water leaking from the gap between the guide vanes and water wound up by the runner during idle running of the turbine, and is supplied from the air supply pipe during operation of the turbine. A water supply device for a water turbine, which is configured to function as an air supply port for supplying air into the flowing water.
せる吸出し管の内面に設けられ、前記流水中へ空気を給
気する給気口と、該給気口へ空気を供給する給気管とを
有する水車の給気装置において、前記給気口は、前記吸
出し管の内面に設けられ前記流水の旋回流を抑制する突
起構造物の下流側近傍に設けられることを特徴とする水
車の給気装置。6. An air supply port provided on the inner surface of a suction pipe through which the flowing water passing through the runner flows out in a downstream direction, for supplying air to the flowing water, and an air supply pipe for supplying air to the air supply port. Wherein the air supply port is provided near the downstream side of a projecting structure provided on the inner surface of the suction pipe and suppressing the swirling flow of the flowing water. apparatus.
せる吸出し管の内面に設けられ、前記流水の旋回流を抑
制する突起構造物と、該突起構造物へ空気を供給する給
気管とを有する水車の給気装置において、前記突起構造
物は、前記流水中へ空気を給気する給気口を有し、前記
給気口は、前記流水の旋回流の方向に応じて、前記空気
を給気する方向が変わるように構成されていることを特
徴とする水車の給気装置。7. A protruding structure provided on an inner surface of a suction pipe for allowing flowing water passing through a runner to flow out in a downstream direction and suppressing a swirling flow of the flowing water, and an air supply pipe for supplying air to the protruding structure. In the water supply device for a water turbine, the protrusion structure has an air supply port for supplying air into the flowing water, and the air supply port supplies the air in accordance with a direction of a swirling flow of the flowing water. A water supply device for a water turbine, wherein the supply direction is changed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000259477A JP2002070713A (en) | 2000-08-29 | 2000-08-29 | Air intake system for water mill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000259477A JP2002070713A (en) | 2000-08-29 | 2000-08-29 | Air intake system for water mill |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002070713A true JP2002070713A (en) | 2002-03-08 |
Family
ID=18747654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000259477A Pending JP2002070713A (en) | 2000-08-29 | 2000-08-29 | Air intake system for water mill |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002070713A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100982352B1 (en) | 2009-10-06 | 2010-09-14 | 인시스글로벌 주식회사 | Small hydroelectric generator |
WO2018137820A1 (en) * | 2017-01-24 | 2018-08-02 | Voith Patent Gmbh | Runner for a hydraulic turbine or pump |
-
2000
- 2000-08-29 JP JP2000259477A patent/JP2002070713A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100982352B1 (en) | 2009-10-06 | 2010-09-14 | 인시스글로벌 주식회사 | Small hydroelectric generator |
WO2018137820A1 (en) * | 2017-01-24 | 2018-08-02 | Voith Patent Gmbh | Runner for a hydraulic turbine or pump |
CN110382860A (en) * | 2017-01-24 | 2019-10-25 | 福伊特专利有限公司 | For hydraulic turbo machine or the runner of pump |
CN110382860B (en) * | 2017-01-24 | 2020-10-02 | 福伊特专利有限公司 | Runner for a hydraulic turbine or pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4295611B2 (en) | Flow stabilizer | |
JP2002070713A (en) | Air intake system for water mill | |
JP5345123B2 (en) | Vertical shaft pump | |
JPH08105400A (en) | Vibration control device of precedent waiting type pump | |
JP2002332983A (en) | Pull-out type vertical shaft double-suction volute pump | |
JP2007332890A (en) | Resin submerged pump | |
JP3925250B2 (en) | Vertical shaft pump | |
JP2558315Y2 (en) | Once-through water wheel | |
JP2010121480A (en) | Preceding standby operation pump | |
JPH03160195A (en) | Centrifugal pump and automatic feed water supply system | |
JPH0732941Y2 (en) | Intake device for once-through turbine | |
JP2022179126A (en) | Submersible pump with air tube, and its equipment | |
JPH01155078A (en) | Hydraulic machine | |
JPH09158824A (en) | Horizontal shaft hydraulic machinery | |
WO2019239750A1 (en) | Vertical shaft pump | |
JPH0110442Y2 (en) | ||
JPH09144644A (en) | Hydraulic turbine or pump hydraulic turbine | |
JPH10176648A (en) | Pelton turbine device | |
FI67431C (en) | RELEASE INSTRUCTIONS FOR USE OF MASTERN EQUIPMENT OEVERTRYCK | |
JP2003042099A (en) | Turbo fluid machine | |
JP3495089B2 (en) | Hydraulic machinery | |
JPH08200198A (en) | Leakage preventing device for water turbine | |
JPH08177706A (en) | Fluid friction reducing device for hydraulic machinery and method thereof | |
JPH033071B2 (en) | ||
JP2020084956A (en) | Method for operating turbine device |