WO2019171774A1 - Vertical shaft pump - Google Patents

Vertical shaft pump Download PDF

Info

Publication number
WO2019171774A1
WO2019171774A1 PCT/JP2019/001233 JP2019001233W WO2019171774A1 WO 2019171774 A1 WO2019171774 A1 WO 2019171774A1 JP 2019001233 W JP2019001233 W JP 2019001233W WO 2019171774 A1 WO2019171774 A1 WO 2019171774A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
vertical
water level
intake
pump
Prior art date
Application number
PCT/JP2019/001233
Other languages
French (fr)
Japanese (ja)
Inventor
祐治 兼森
Original Assignee
株式会社酉島製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社酉島製作所 filed Critical 株式会社酉島製作所
Priority to JP2020504830A priority Critical patent/JP7094357B2/en
Publication of WO2019171774A1 publication Critical patent/WO2019171774A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing

Definitions

  • the present invention relates to a vertical shaft pump.
  • a vertical shaft pump that includes a pump casing disposed in the water absorption tank so as to extend in the vertical direction and an impeller disposed rotatably in the pump casing.
  • Patent Document 1 discloses a stand-by type vertical shaft pump in which two types of intake pipes having different intake port positions are arranged and can be operated in advance before water flows into the water absorption tank.
  • this pump cannot suppress the generation of an air suction vortex in which the water flow from the water surface toward the suction port includes air in the water absorption tank.
  • Patent Document 2 discloses a vertical shaft pump in which an annular horizontal pipe and a vertical pipe extending in the vertical direction are arranged outside the pump casing to suppress the generation of air suction vortices on the water surface of the water absorption tank. Has been. However, with this pump, the operation cannot be started before the water flows into the water absorption tank (preceding standby).
  • An object of the present invention is to provide a vertical shaft pump that has both functions of suppressing the generation of air suction vortex and waiting in advance, and can effectively achieve drainage at a lower water level.
  • One aspect of the present invention includes a pump casing disposed in the water absorption tank so as to extend in the vertical direction, and an impeller disposed rotatably in the pump casing so as to be positioned at a drainage start water level of the water absorption tank.
  • the vortex prevention pipe is disposed so as to extend in the vertical direction outside the pump casing and an annular horizontal pipe that surrounds a lower side of the drainage start water level of the pump casing.
  • a first vertical pipe having a lower end connected to the horizontal pipe and a closed upper end, and the air supply pipe has one end disposed at the drainage start water level in the water absorption tank and the other end 1st vertical
  • a vertical shaft pump comprising: a first intake pipe disposed in a pipe; and an air supply pipe having one end connected to the horizontal pipe and the other end connected to the lower side of the impeller of the pump casing.
  • the drainage start water level is determined as a required specification based on the water level of a nearby river or sea and the surrounding building conditions.
  • This vertical shaft pump is equipped with an air-water mixing operation that drains water while taking in air in the water absorption tank, a drainage operation that drains only water (total water), and a water column in the pump casing without drainage. Switch to air lock (drainage cut-off) operation with In addition, when the operator starts, the operation is in the air without holding the water column or draining.
  • the first intake pipe sucks air, so that the amount of water absorbed from the suction port is reduced, but the flow speed of the water surface in the water absorption tank is slowed down, so that the water level that can be drained can be lowered.
  • the water surface eventually reaches a flow velocity at which an air suction vortex is generated.
  • the generation of the air suction vortex can be suppressed by a vortex prevention pipe arranged outside the pump casing. Therefore, drainage at a lower water level can be effectively realized without deepening the water absorption tank than a pump without a vortex prevention pipe or an air supply pipe.
  • first intake pipe and the air supply pipe constituting the air supply pipe are connected to the first vertical pipe and the horizontal pipe constituting the vortex prevention pipe, and these are also used as the air supply flow path. Therefore, despite having both functions of suppressing vortex generation and advance standby, a simple configuration can be realized as a whole pump.
  • the vertical shaft pump of the present invention includes the vortex prevention pipe and the air supply pipe, drainage at a lower water level can be effectively realized than a pump without one of them.
  • the air supply piping also uses the pipes that make up the vortex prevention piping as the air supply flow path, the pump as a whole has a simple configuration despite having both the functions of suppressing vortex generation and waiting in advance. realizable.
  • Sectional drawing which shows the vertical shaft pump which concerns on embodiment of this invention Sectional drawing which shows the air lock state of a vertical shaft pump. Sectional drawing which expanded a part of FIG. The principal part plane sectional view of FIG. Sectional drawing which expanded a part of FIG.
  • FIG. 1 shows a vertical shaft pump 10 (hereinafter referred to as “pump”) according to an embodiment of the present invention.
  • the pump 10 drains the water that has flowed into the water absorption tank 1 to the downstream side.
  • the pump 10 of this embodiment includes a vortex prevention pipe 30 and an air supply pipe 38 outside the pump casing 12, and depending on the water level of the water absorption tank 1, drainage (total water) operation, air-water mixing operation, and airlock (drainage). This is a stand-by standby type that switches to shut-off operation.
  • the pump 10 includes a pump casing 12, a rotating shaft 22, and an impeller 25.
  • the pump casing 12 is fixed to the installation floor 2 covering the upper part of the water absorption tank 1 so as to extend in the vertical direction in the water absorption tank 1.
  • the pump casing 12 includes a pumping pipe 13 disposed in the water absorption tank 1 and a discharge pipe 19 disposed on the installation floor 2.
  • the pumping pipe 13 includes a straight pipe 14, a vane casing 15, and a bell mouth 17, and is connected in this order from the upper side to the lower side.
  • the discharge pipe 19 includes a discharge elbow 20 having a central axis curved by 90 degrees, and is connected to the upper end of the straight pipe 14.
  • a water supply pipe (not shown) for draining to the downstream side is connected to the outlet of the discharge elbow 20.
  • the rotary shaft 22 passes through the discharge elbow 20 and is disposed along the axis of the pumping pipe 13.
  • the rotary shaft 22 is rotatably supported by an underwater bearing (sliding part) 23 disposed in the straight pipe 14 and the bearing casing 16 in the vane casing 15.
  • the upper end of the rotating shaft 22 protrudes outward from the discharge elbow 20, and the penetrating portion is sealed watertight by a shaft seal device.
  • the impeller 25 is disposed below the bearing casing 16 and is fixed to the lower end of the rotary shaft 22.
  • the upper end 26 of the impeller 25 is disposed at the same height as the drainage start water level LWL.
  • the drainage start water level LWL will be described in detail later.
  • a driving means (not shown) is connected to the upper end of the rotating shaft 22 protruding from the pump casing 12.
  • the drive means an electric motor or a diesel engine which is one of internal combustion engines is used.
  • the impeller 25 is rotated integrally with the rotary shaft 22, so that the water in the water absorption tank 1 is discharged downstream through the pump casing 12.
  • the vortex prevention pipe 30 is provided to suppress the generation of the air suction vortex Sv.
  • the vortex prevention pipe 30 includes an annular horizontal pipe 32 that surrounds the lower side of the drainage start water level LWL of the pump casing 12, and a straight tubular vertical pipe 35 that is disposed so as to extend in the vertical direction outside the pump casing 12. Prepare.
  • the inner diameter of the horizontal pipe 32 is larger than the outer diameter of the pump casing 12 (the upper part of the bell mouth 17), and a predetermined gap (flow path) is secured between them.
  • the vertical pipe 35 is disposed at a position where the air suction vortex Sv is assumed by actual measurement or calculation. Generation of the air suction vortex Sv can be effectively suppressed by the water flow from the water surface toward the suction port 18 interfering with the vertical pipe 35.
  • the air supply pipe 38 enables an air lock operation in which the water column WC is held in the pump casing 12, thereby preventing the underwater bearing 23 from being overheated and enabling the pump 10 to be continuously operated.
  • the air supply pipe 38 includes a first intake pipe 40, a second intake pipe 45, and an air supply pipe 50, and supplies air in the water absorption tank 1 into the pump casing 12 by the suction force of the pump 10.
  • the intake port (one end) 41 of the first intake pipe 40 is disposed at the drainage start water level LWL
  • the intake port (one end) 46 of the second intake pipe 45 is disposed at the drainage cutoff water level LLWL.
  • the air supply pipe 50 communicates with the first intake pipe 40 and the second intake pipe 45, and the air supply port 51 (the other end) is connected to the bell mouth 17 so as to be positioned below the impeller 25. It is connected.
  • the advance standby type pump 10 including the air supply pipe 38 is started by an operator based on information of a local weather observation system, for example. Since the impeller 25 is in the air at the beginning when the water level in the water absorption tank 1 is lower than the lower end of the impeller 25, the pump 10 is operated in the air without draining. When the water level rises above the lower end of the impeller 25, the water in the water absorption tank 1 is sucked up by the impeller 25 and air is taken in through the first intake pipe 40. Therefore, the pump 10 is in a mixed state of water and air. Switch to a steam / water mixing operation. When the water level rises above the drainage start water level LWL (the upper end 26 of the impeller 25), since the intake of air through the first intake pipe 40 is blocked, the pump 10 is switched to a drainage operation that discharges only water.
  • LWL the upper end 26 of the impeller 25
  • the above-described drainage start water level LWL, drainage cutoff water level LLWL, and maximum water level HWL are defined in the water absorption tank 1. These are defined as heights from the bottom wall 3, and are set to increase in the order of the drainage cutoff water level LLWL, the drainage start water level LWL, and the highest water level HWL. At high water levels above the drainage start water level LWL, it is necessary to discharge only water without mixing air. At a low water level lower than the drainage start water level LWL, mixing of air is allowed. At an ultra-low water level below the drainage cut-off water level LLWL, it is necessary to shift to an air lock operation without draining.
  • the drainage start water level LWL and drainage cutoff water level LLWL are determined as required specifications based on the water level of a nearby river or sea and the status of surrounding buildings.
  • the maximum water level HWL is determined by the depth of the water absorption tank 1 and the required specifications. That is, these water levels LWL, LLWL, and HWL are determined independently of the vortex generation water level VWL shown in FIG. In recent years, since there are many low requests for the drainage start water level LWL, the vortex generation water level VWL tends to be higher than the drainage start water level LWL.
  • the vortex prevention pipe 30 and the air supply pipe 38 are provided to enable the preliminary standby operation while suppressing the generation of the air suction vortex Sv, and the drainage at a lower water level can be effectively realized. To do.
  • the arrangement of the pipes 30 and 38 having different functions prevents the configuration of the pump 10 from becoming complicated.
  • the vortex prevention pipe 30 includes one horizontal pipe 32 and a plurality of vertical pipes 35.
  • the horizontal pipe 32 is hollow, and referring to FIG. 1, the horizontal pipe 32 is disposed on the outer periphery of the pump casing 12 so as to be positioned at the drainage cutoff water level LLWL.
  • the horizontal pipe 32 is fixed to the pump casing 12 by ribs 33 so as to be coaxial with the pump casing 12.
  • the vertical pipe 35 is hollow, the lower end is connected to the horizontal pipe 32, and the upper end is closed liquid-tight and air-tightly by the cover 36.
  • the upper end of the vertical pipe 35 is disposed at a height equal to or higher than the vortex generation water level VWL when pumping 130% of the rated flow rate of the pump 10, and is disposed at a position higher than the highest water level HWL in this embodiment.
  • the plurality of vertical pipes 35 are arranged at predetermined intervals in the circumferential direction around the pump casing 12. More specifically, in the water absorption tank 1, three sides between the installation floor 2 and the bottom wall 3 are blocked by the side walls 4, and water flows from the left side where the side walls 4 are not present in FIG. In this embodiment, four vertical pipes 35 are provided at intervals of 90 degrees, two of which are arranged upstream in the water inflow direction F, and the other two are downstream in the water inflow direction F. Is arranged.
  • two upstream pipes are referred to as first vertical pipes 35A and two downstream pipes are referred to as second vertical pipes 35B as necessary.
  • the air supply pipe 38 includes the same number of first intake pipes 40 as the first vertical pipes 35A, the same number of second intake pipes 45 as the second vertical pipes 35B, and a plurality of air supply pipes.
  • a pipe 50 is provided. That is, in this embodiment, two sets of the first vertical pipe 35A and the first intake pipe 40, and the second vertical pipe 35B and the second intake pipe 45 are provided.
  • the intake port 41 of the first intake pipe 40 is disposed at the drainage start water level LWL, and the exhaust port (the other end) 42 of the first intake pipe 40 is disposed in the first vertical pipe 35A.
  • the intake port 46 of the second intake pipe 45 is disposed at the drain cutoff water level LLWL, and the exhaust port 47 of the second intake pipe 45 is disposed in the second vertical pipe 35B.
  • These intake ports 41 and 46 are opened so as to be positioned in the depression of the water surface when the air suction vortex Sv is generated in order to make it less susceptible to the influence of waves on the water surface of the water absorption tank 1, so that the air can be stably supplied. It is configured to allow intake (supply).
  • first intake pipe 40 is coaxially arranged in the first vertical pipe 35A
  • second intake pipe 45 is coaxially arranged in the second vertical pipe 35B.
  • Bending portions 43 and 48 are formed below the intake pipes 40 and 45 where the intake ports 41 and 46 are located.
  • the intake port 41 of the first intake pipe 40 protrudes outside from the first vertical pipe 35 ⁇ / b> A by the curved portion 43.
  • the intake port 46 of the second intake pipe 45 protrudes outward from the lateral pipe 32 by a curved portion 48.
  • the penetration portion of the first intake pipe 40 in the first vertical pipe 35A and the penetration portion of the second intake pipe 45 in the horizontal pipe 32 are sealed in a liquid-tight and air-tight manner by a sealing material or welding.
  • the exhaust ports 42 and 47 of the intake pipes 40 and 45 are disposed at a position higher than the highest water level HWL. More specifically, as shown in FIG. 1, the height T of the intake pipes 40 and 45 is set to a value obtained by adding the suction head ⁇ H due to the maximum negative pressure generated in the bell mouth 17 by pumping to the maximum water level HWL. ing.
  • the suction head ⁇ H is set by the following equation.
  • the air supply port 51 of the air supply pipe 50 is connected to the bell mouth 17 so as to be positioned at the drainage cutoff water level LLWL, and the connection port (one end) 52 of the air supply pipe 50 is connected to the inner periphery of the horizontal pipe 32. Yes. That is, the air supply pipe 50 communicates with the intake pipes 40 and 45 through the vertical pipe 35 and the horizontal pipe 32, and the air supply pipe 38 also serves as the flow path of the vortex prevention pipe 30.
  • the four air supply pipes 50 are provided, and these are arranged at equal intervals in the circumferential direction around the pump casing 12. Further, the four air supply pipes 50 and the four vertical pipes 35 are arranged at intervals in the circumferential direction, and are configured so that the angular positions in plan view do not match.
  • the air flowing in from the vertical pipe 35 does not flow directly to the air supply pipe 50 but always flows through the horizontal pipe 32 to the air supply pipe 50, and is evenly supplied from the air supply pipe 50 into the bell mouth 17. Is done. As a result, the vibration of the pump 10 due to the supply air being biased locally can be suppressed.
  • this pump 10 has both functions of suppressing the generation of the air suction vortex Sv and leading standby, it is possible to effectively achieve drainage at a lower water level than a pump without the vortex prevention pipe 30 or the air supply pipe 38. .
  • the air in the water absorption tank 1 can be supplied from the first intake pipe 40 into the pump casing 12 by the suction force of the pump 10. Therefore, although the amount of water absorption from the suction inlet 18 decreases, since the flow velocity on the water surface in the water absorption tank 1 is slowed, the generation of the air suction vortex Sv can be suppressed and the level of water that can be drained can be lowered. However, even in this case, as the water level becomes lower, the water surface eventually reaches a flow velocity at which the air suction vortex Sv is generated.
  • the amount of water absorbed from the suction port 18 is further reduced by sucking the air in the water absorption tank 1 from the second intake pipe 45 by the suction force of the pump 10. Therefore, drainage from the pump casing 12 to the downstream side can be stopped reliably, and the state in which the water column WC is held in the pump casing 12 can be maintained.
  • the water column WC cools the submersible bearing 23 which is a sliding component in the pump casing 12 and prevents overheating. Therefore, a standby operation in which the pump 10 is continuously driven can be realized.
  • the water absorption tank is more than a pump without the vortex prevention pipe 30 or the air supply pipe 38. Without deepening 1, drainage at a lower water level can be effectively realized.
  • the first intake pipe 40 and the supply pipe 50 that constitute the supply air pipe 38 are connected to the first vertical pipe 35A and the horizontal pipe 32 that constitute the vortex prevention pipe 30, and these are also used as a supply air flow path. doing. Therefore, despite having both functions of suppressing vortex generation and advance standby, the pump 10 as a whole can have a simple configuration.
  • the upper ends of the vertical pipes 35A and 35B and the upper ends of the intake pipes 40 and 45 are arranged at a position higher than the highest water level HWL of the water absorption tank 1. Therefore, water is not sucked up through the exhaust ports 42 and 47 of the intake pipes 40 and 45 regardless of the operation state of the pump 10. Therefore, it is possible to prevent dust contained in the water in the water absorption tank 1 from entering the vertical pipe 35 through the intake pipes 40 and 45. As a result, clogging of the air supply passage including the vortex prevention pipe 30 can be effectively prevented.
  • the two first intake pipes 40 are arranged, it is possible to prevent these intake ports 41 from being simultaneously blocked by waves.
  • the wavelength ⁇ (see FIG. 5) of the wave generated in the water absorption tank 1 is measured, and the interval L1 (see FIG. 4) between the two intake ports 41 based on the wavelength ⁇ is It is set as follows.
  • the interval L1 is defined as the distance from one center to the other of the two intake ports 41.
  • the interval L1 between the two air inlets 41 is set so as not to be an integral multiple of the wavelength ⁇ of the wave generated in the water tank 1.
  • the distance L1 between the two intake ports 41 is set so as to satisfy this equation, it is possible to prevent one of the two first intake pipes 40 and the other from being simultaneously blocked by waves. Therefore, it is possible to prevent repeated supply and shut-off of air in a short time that causes vibration of the pump 10.
  • the intake port 41 of the first intake pipe 40 is opened by a curved portion 43 in a direction intersecting the water surface in the water absorption tank 1.
  • Crossing the water surface means crossing the horizontal surface.
  • the wave height h of the wave generated in the water absorption tank 1 is measured, and from the wave height h to the upper end (upper top) of the lower end (lower top) of the intake port 41 of the first intake pipe 40.
  • the dimension D1 is set to be high (h ⁇ D1).
  • the dimension D1 is the inner diameter of the inlet 41.
  • the intake port 41 can be prevented from being blocked by the wave. Moreover, in the present embodiment, since the two first intake pipes 40 are provided, it is possible to prevent these intake ports 41 from being simultaneously blocked by waves. Moreover, it is possible to effectively prevent the gap L1 between the two intake ports 41 from being blocked by waves. Therefore, it is possible to effectively prevent repeated supply and shutoff of air in a short time, which causes vibration of the pump 10.
  • the distance L2 between the intake ports 46 of the other two second intake pipes 45 and the dimension D2 from the lower end to the upper end of each intake port 46 are preferably set similarly to the first intake pipe 40.
  • the inner diameter of the horizontal pipe 32 is set similarly to the first intake pipe 40.
  • the interval L2 and the dimension D2 of the second intake pipe 45 are not necessarily set in the above range. It does not have to be.
  • the cross-sectional area of the flow path from the intake port 41 of the first intake pipe 40 to the pump casing 12 (supply port 51) is It is set not to become small. More specifically, Av is the cross-sectional area of the vertical pipe 35, Ap is the cross-sectional area of the first intake pipe 40, Ar is the cross-sectional area of the horizontal pipe 32, and Ai is the cross-sectional area of the air supply pipe 50.
  • the number of 50 is Ni and the number of the first intake pipes 40 is Np, the following equations (1) to (4) are satisfied.
  • the in-pipe cross-sectional area Av of the vertical pipe 35 is set to be larger than twice the cross-sectional area Ap of the first intake pipe 40 (Av ⁇ Ap> Ap).
  • the in-pipe cross-sectional area Ai of the air supply pipe 50 is obtained by subtracting the total of the cross-sectional areas Ap of the two first intake pipes 40 from the cross-sectional area Ar of the horizontal pipe 32. It is set smaller than the value.
  • the in-pipe cross-sectional area Ar of the horizontal pipe 32 is larger than the in-pipe cross-sectional areas (Np ⁇ Ap) of all the first intake pipes 40, and the area obtained by adding the supply pipes 50 to all the first intake pipes 40 ( Np ⁇ Ap + Ai). Thereby, the influence at the time of making the 1st intake pipe 40 (2nd intake pipe 45) penetrate in the horizontal pipe 32 is made small.
  • the in-pipe cross-sectional area Ai of the air supply pipe 50 is set to be equal to or larger than the in-pipe cross-sectional area Ap of the first intake pipe 40 as shown in the above formula (3), and the air supply pipe 50 is set up as in the above formula (4).
  • the number Ni is set to be equal to or greater than the number Np of the first intake pipes 40.
  • the pump 10 of the present embodiment includes the vortex prevention pipe 30 and the air supply pipe 38, drainage at a lower water level can be effectively realized than a pump without one of them.
  • the air supply pipe 38 also uses the vortex prevention pipe 30 as an air supply flow path, the pump 10 as a whole has a simple configuration despite having both functions of suppressing vortex generation and leading standby. it can.
  • the vertical shaft pump 10 of the present invention is not limited to the configuration of the above embodiment, and various modifications can be made.
  • the two first intake pipes 40 may be arranged on the downstream side of the water absorption tank 1 in the water inflow direction F, or may be arranged on the upstream side and the downstream side one by one. Further, the first intake pipe 40 and the second intake pipe 45 may be alternately arranged in the circumferential direction of the pump casing 12. Further, one each of the first intake pipe 40 and the second intake pipe 45 may be arranged, or three or more of each may be arranged. That is, the number and arrangement of the first intake pipes 40 and the second intake pipes 45 can be changed as necessary.
  • the intake ports 41 and 46 of the intake pipes 40 and 45 may be arranged in parallel to the water surface (horizontal plane) of the water absorption tank 1, and the dimensions D1 and D2 need not be set in the above range. .
  • the upper end of the first intake pipe 40 may be disposed below the highest water level HWL.
  • the upper end of the second intake pipe 45 may be disposed below the highest water level HWL.
  • the in-tube cross-sectional areas (inner diameters) of the vertical pipe 35, the horizontal pipe 32, the intake pipes 40 and 45, and the air supply pipe 50 can be changed as necessary.
  • An air supply means such as a compressor is connected to the first vertical pipe 35A in which the first intake pipe 40 is arranged, and the pump casing 12 is in the stage where the water level in the water absorption tank 1 has not dropped to the drainage start water level LWL. Air may be supplied (air-water mixing operation can be performed).

Abstract

A vertical shaft pump 10 is provided with: a pump casing 12 disposed in a water intake tank 1; an impeller 25 disposed so as to be located at a water discharge start water level LWL; swirl prevention piping 30 which suppresses the generation of an air intake swirl Sv; and air supply piping 38 for supplying air into the pump casing 12. The swirl prevention piping 30 is provided with: an annular horizontal pipe 32 which surrounds the pump casing 12; and a first vertical pipe 35A, the lower end of which is connected to the horizontal pipe 32 and the upper end of which is closed. The air supply piping 38 is provided with: a first air intake pipe 40, one end of which is disposed at the water discharge start water level LWL in the water intake tank 1, and the other end of which is disposed within the first vertical pipe 35A; and an air supply pipe 50, one end of which is connected to the horizontal pipe 32, and the other end of which is connected to the pump casing 12 at a position below the impeller 25.

Description

立軸ポンプVertical shaft pump
 本発明は、立軸ポンプに関する。 The present invention relates to a vertical shaft pump.
 吸水槽に鉛直方向に延びるように配置されたポンプケーシングと、ポンプケーシング内に回転可能に配置された羽根車とを備える立軸ポンプが知られている。 A vertical shaft pump is known that includes a pump casing disposed in the water absorption tank so as to extend in the vertical direction and an impeller disposed rotatably in the pump casing.
 特許文献1には、吸気口の位置が異なる2種の吸気パイプを配置し、水が吸水槽内に流入する前に予め運転を可能とした先行待機形の立軸ポンプが開示されている。しかし、このポンプでは、水面から吸込口に向けた水流に吸水槽内の空気が含まれる空気吸込渦の発生を抑制できない。 Patent Document 1 discloses a stand-by type vertical shaft pump in which two types of intake pipes having different intake port positions are arranged and can be operated in advance before water flows into the water absorption tank. However, this pump cannot suppress the generation of an air suction vortex in which the water flow from the water surface toward the suction port includes air in the water absorption tank.
 特許文献2には、ポンプケーシングの外側に、環状の横パイプと、鉛直方向へ延びる縦パイプとを配置し、吸水槽の水面での空気吸込渦の発生を抑制するようにした立軸ポンプが開示されている。しかし、このポンプでは、水が吸水槽に流入する前に運転を開始すること(先行待機)ができない。 Patent Document 2 discloses a vertical shaft pump in which an annular horizontal pipe and a vertical pipe extending in the vertical direction are arranged outside the pump casing to suppress the generation of air suction vortices on the water surface of the water absorption tank. Has been. However, with this pump, the operation cannot be started before the water flows into the water absorption tank (preceding standby).
特開2009-203806号公報JP 2009-203806 A 特開2013-217217号公報JP 2013-217217 A
 本発明は、空気吸込渦の発生抑制と先行待機の両機能を併せ持ち、より低水位での排水を効果的に実現可能な立軸ポンプを提供することを課題とする。 An object of the present invention is to provide a vertical shaft pump that has both functions of suppressing the generation of air suction vortex and waiting in advance, and can effectively achieve drainage at a lower water level.
 本発明の一態様は、吸水槽に上下方向へ延びるように配置されたポンプケーシングと、前記吸水槽の排水開始水位に位置するように、前記ポンプケーシング内に回転可能に配置された羽根車と、前記吸水槽内での空気吸込渦の発生を抑制するための渦防止配管と、前記吸水槽内の水位が前記排水開始水位よりも低くなると、前記吸水槽内の空気を前記ポンプケーシング内に供給するための給気配管と
 を備え、前記渦防止配管は、前記ポンプケーシングの前記排水開始水位よりも下側を取り囲む環状の横パイプと、前記ポンプケーシングの外側に上下方向へ延びるように配置され、下端が前記横パイプに接続され、上端が塞がれた第1縦パイプとを備え、前記給気配管は、一端が前記吸水槽内の前記排水開始水位に配置され、他端が前記第1縦パイプ内に配置された第1吸気パイプと、一端が前記横パイプに接続され、他端が前記ポンプケーシングの前記羽根車よりも下側に接続された給気パイプとを備える、立軸ポンプを提供する。
One aspect of the present invention includes a pump casing disposed in the water absorption tank so as to extend in the vertical direction, and an impeller disposed rotatably in the pump casing so as to be positioned at a drainage start water level of the water absorption tank. A vortex prevention pipe for suppressing the occurrence of air suction vortex in the water absorption tank, and when the water level in the water absorption tank becomes lower than the drainage start water level, the air in the water absorption tank is put into the pump casing. The vortex prevention pipe is disposed so as to extend in the vertical direction outside the pump casing and an annular horizontal pipe that surrounds a lower side of the drainage start water level of the pump casing. A first vertical pipe having a lower end connected to the horizontal pipe and a closed upper end, and the air supply pipe has one end disposed at the drainage start water level in the water absorption tank and the other end 1st vertical A vertical shaft pump comprising: a first intake pipe disposed in a pipe; and an air supply pipe having one end connected to the horizontal pipe and the other end connected to the lower side of the impeller of the pump casing. To do.
 排水開始水位は、近隣の河川又は海の水位と、周囲の建造物の状況とに基づいて、要求仕様として定められる。この立軸ポンプは、吸水槽内の水位によって、吸水槽内の空気を取り込みつつ排水を行う気水混合運転、水のみを排水する排水(全水)運転、及び排水することなくポンプケーシング内に水柱を保持したエアロック(排水遮断)運転に切り替わる。また、オペレータが始動させた当初は、水柱の保持も排水も行わない気中運転になる。 The drainage start water level is determined as a required specification based on the water level of a nearby river or sea and the surrounding building conditions. This vertical shaft pump is equipped with an air-water mixing operation that drains water while taking in air in the water absorption tank, a drainage operation that drains only water (total water), and a water column in the pump casing without drainage. Switch to air lock (drainage cut-off) operation with In addition, when the operator starts, the operation is in the air without holding the water column or draining.
 気水混合運転では、第1吸気パイプが空気を吸い込むことで、吸込口からの吸水量は減るが、吸水槽内の水面の流速が遅くなるため、排水可能な水位を下げることができる。但し、水位が排水開始水位よりも低くなるに従って、やがて水面は空気吸込渦が生じる流速になるが、この空気吸込渦の発生は、ポンプケーシングの外側に配置した渦防止配管によって抑制できる。よって、渦防止配管又は給気配管が無いポンプよりも、吸水槽を深くすることなく、より低水位での排水を効果的に実現できる。しかも、給気配管を構成する第1吸気パイプと給気パイプは、渦防止配管を構成する第1縦パイプと横パイプに接続され、これらを給気用流路として兼用している。よって、渦発生抑制と先行待機の両機能を併せ持つにも拘わらず、ポンプ全体として簡素な構成を実現できる。 In the air-water mixing operation, the first intake pipe sucks air, so that the amount of water absorbed from the suction port is reduced, but the flow speed of the water surface in the water absorption tank is slowed down, so that the water level that can be drained can be lowered. However, as the water level becomes lower than the drainage start water level, the water surface eventually reaches a flow velocity at which an air suction vortex is generated. The generation of the air suction vortex can be suppressed by a vortex prevention pipe arranged outside the pump casing. Therefore, drainage at a lower water level can be effectively realized without deepening the water absorption tank than a pump without a vortex prevention pipe or an air supply pipe. In addition, the first intake pipe and the air supply pipe constituting the air supply pipe are connected to the first vertical pipe and the horizontal pipe constituting the vortex prevention pipe, and these are also used as the air supply flow path. Therefore, despite having both functions of suppressing vortex generation and advance standby, a simple configuration can be realized as a whole pump.
 本発明の立軸ポンプでは、渦防止配管と給気配管を備えるため、これらのうちの一方が無いポンプよりも、より低水位での排水を効果的に実現できる。しかも、給気配管は、渦防止配管を構成するパイプを給気用流路として兼用しているため、渦発生抑制と先行待機の両機能を併せ持つにも拘わらず、ポンプ全体として簡素な構成を実現できる。 Since the vertical shaft pump of the present invention includes the vortex prevention pipe and the air supply pipe, drainage at a lower water level can be effectively realized than a pump without one of them. Moreover, since the air supply piping also uses the pipes that make up the vortex prevention piping as the air supply flow path, the pump as a whole has a simple configuration despite having both the functions of suppressing vortex generation and waiting in advance. realizable.
本発明の実施形態に係る立軸ポンプを示す断面図。Sectional drawing which shows the vertical shaft pump which concerns on embodiment of this invention. 立軸ポンプのエアロック状態を示す断面図。Sectional drawing which shows the air lock state of a vertical shaft pump. 図1の一部を拡大した断面図。Sectional drawing which expanded a part of FIG. 図1の要部平断面図。The principal part plane sectional view of FIG. 図3の一部を拡大した断面図。Sectional drawing which expanded a part of FIG.
 以下、本発明の実施の形態を図面に従って説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施形態に係る立軸ポンプ10(以下「ポンプ」と言う。)を示す。このポンプ10は、吸水槽1に流入した水を下流側へ排水する。本実施形態のポンプ10は、ポンプケーシング12の外側に渦防止配管30と給気配管38を備え、吸水槽1の水位によって、排水(全水)運転、気水混合運転、及びエアロック(排水遮断)運転に切り換わる先行待機形である。 FIG. 1 shows a vertical shaft pump 10 (hereinafter referred to as “pump”) according to an embodiment of the present invention. The pump 10 drains the water that has flowed into the water absorption tank 1 to the downstream side. The pump 10 of this embodiment includes a vortex prevention pipe 30 and an air supply pipe 38 outside the pump casing 12, and depending on the water level of the water absorption tank 1, drainage (total water) operation, air-water mixing operation, and airlock (drainage). This is a stand-by standby type that switches to shut-off operation.
(立軸ポンプの概要)
 図1に示すように、ポンプ10は、ポンプケーシング12、回転軸22、及び羽根車25を備える。
(Outline of vertical shaft pump)
As shown in FIG. 1, the pump 10 includes a pump casing 12, a rotating shaft 22, and an impeller 25.
 ポンプケーシング12は、吸水槽1内で上下方向に延びるように、吸水槽1の上部を覆う据付床2に固定されている。ポンプケーシング12は、吸水槽1内に配置された揚水管13と、据付床2上に配置された吐出し管19とを備える。揚水管13は、直管14、ベーンケーシング15、及びベルマウス17を備え、この順で上側から下側へ接続されている。吐出し管19は、中心軸が90度湾曲した吐出エルボ20を備え、直管14の上端に接続されている。吐出エルボ20の出口には、下流側へ排水するための送水管(図示せず)が接続されている。 The pump casing 12 is fixed to the installation floor 2 covering the upper part of the water absorption tank 1 so as to extend in the vertical direction in the water absorption tank 1. The pump casing 12 includes a pumping pipe 13 disposed in the water absorption tank 1 and a discharge pipe 19 disposed on the installation floor 2. The pumping pipe 13 includes a straight pipe 14, a vane casing 15, and a bell mouth 17, and is connected in this order from the upper side to the lower side. The discharge pipe 19 includes a discharge elbow 20 having a central axis curved by 90 degrees, and is connected to the upper end of the straight pipe 14. A water supply pipe (not shown) for draining to the downstream side is connected to the outlet of the discharge elbow 20.
 回転軸22は、吐出エルボ20を貫通し、揚水管13の軸線に沿って配置されている。回転軸22は、直管14及びベーンケーシング15内の軸受ケーシング16に配置された水中軸受(摺動部品)23に、回転可能に支持されている。回転軸22の上端は吐出エルボ20から外側へ突出されており、その貫通する部分は軸封装置によって水密にシールされている。 The rotary shaft 22 passes through the discharge elbow 20 and is disposed along the axis of the pumping pipe 13. The rotary shaft 22 is rotatably supported by an underwater bearing (sliding part) 23 disposed in the straight pipe 14 and the bearing casing 16 in the vane casing 15. The upper end of the rotating shaft 22 protrudes outward from the discharge elbow 20, and the penetrating portion is sealed watertight by a shaft seal device.
 羽根車25は、軸受ケーシング16の下側に配置され、回転軸22の下端に固定されている。羽根車25の上端26は、排水開始水位LWLと同一高さに配置されている。この排水開始水位LWLについては、後で詳述する。 The impeller 25 is disposed below the bearing casing 16 and is fixed to the lower end of the rotary shaft 22. The upper end 26 of the impeller 25 is disposed at the same height as the drainage start water level LWL. The drainage start water level LWL will be described in detail later.
 ポンプケーシング12から突出した回転軸22の上端には、駆動手段(図示せず)が接続されている。駆動手段には、電動モータ又は内燃機関の1つであるディーゼル機関が用いられる。駆動手段を駆動すると、回転軸22と一体に羽根車25が回転されることで、吸水槽1内の水がポンプケーシング12内を通って下流側へ排出される。 A driving means (not shown) is connected to the upper end of the rotating shaft 22 protruding from the pump casing 12. As the drive means, an electric motor or a diesel engine which is one of internal combustion engines is used. When the driving means is driven, the impeller 25 is rotated integrally with the rotary shaft 22, so that the water in the water absorption tank 1 is discharged downstream through the pump casing 12.
 図2に一点鎖線で示すように、排水によって吸水槽1内の水位が渦発生水位VWLまで下がると、水面からポンプケーシング12の吸込口18に向けた水流(空気吸込渦Sv)が生じる。この空気吸込渦Svは吸水槽1内の水面の流速が一定レベルに達することで発生し、その流速には吸水槽1の断面積が影響している。よって、渦発生水位VWLは、個々の吸水槽1の断面形状によって異なる。空気吸込渦Svの水流には吸水槽1内の空気が連続的又は断続的に吸い込まれるため、据付床2の劣化の原因になる振動がポンプ10に生じる。 2, when the water level in the water absorption tank 1 is lowered to the vortex generation water level VWL by drainage, a water flow (air suction vortex Sv) from the water surface toward the suction port 18 of the pump casing 12 is generated. The air suction vortex Sv is generated when the flow velocity of the water surface in the water absorption tank 1 reaches a certain level, and the cross-sectional area of the water absorption tank 1 affects the flow velocity. Therefore, the vortex generation water level VWL varies depending on the cross-sectional shape of each water absorption tank 1. Since the air in the water absorption tank 1 is continuously or intermittently sucked into the water flow of the air suction vortex Sv, vibrations that cause deterioration of the installation floor 2 are generated in the pump 10.
 渦防止配管30は、空気吸込渦Svの発生を抑制するために設けられている。渦防止配管30は、ポンプケーシング12の排水開始水位LWLよりも下側を取り囲む環状の横パイプ32と、ポンプケーシング12の外側に上下方向へ延びるように配置された直管状の縦パイプ35とを備える。横パイプ32の内径はポンプケーシング12(ベルマウス17の上部)の外径よりも大きく、これらの間には定められた隙間(流路)が確保されている。縦パイプ35は、実測又は演算によって想定される空気吸込渦Svの発生位置に配置されている。水面から吸込口18に向けた水流が縦パイプ35に干渉することで、空気吸込渦Svの発生を効果的に抑制できる。 The vortex prevention pipe 30 is provided to suppress the generation of the air suction vortex Sv. The vortex prevention pipe 30 includes an annular horizontal pipe 32 that surrounds the lower side of the drainage start water level LWL of the pump casing 12, and a straight tubular vertical pipe 35 that is disposed so as to extend in the vertical direction outside the pump casing 12. Prepare. The inner diameter of the horizontal pipe 32 is larger than the outer diameter of the pump casing 12 (the upper part of the bell mouth 17), and a predetermined gap (flow path) is secured between them. The vertical pipe 35 is disposed at a position where the air suction vortex Sv is assumed by actual measurement or calculation. Generation of the air suction vortex Sv can be effectively suppressed by the water flow from the water surface toward the suction port 18 interfering with the vertical pipe 35.
 一方、集中豪雨等によって吸水槽1内に水が急激に流れ込んだ場合、排水(ポンプ10の始動)が遅れると、吸水槽1から水が溢れる可能性がある。この問題は、吸水槽1に水が無い状態でもポンプ10の運転を継続させれば解消できるが、この場合には水中軸受23が過熱され、回転軸22に焼き付くという問題がある。 On the other hand, when water suddenly flows into the water absorption tank 1 due to heavy rain or the like, if the drainage (starting of the pump 10) is delayed, the water may overflow from the water absorption tank 1. This problem can be solved by continuing the operation of the pump 10 even when there is no water in the water absorption tank 1, but in this case, there is a problem that the underwater bearing 23 is overheated and seizes on the rotating shaft 22.
 給気配管38は、図2に示すように、ポンプケーシング12内に水柱WCを保持したエアロック運転を可能とすることで、水中軸受23の過熱を防ぎ、ポンプ10を継続運転可能とするために設けられている。給気配管38は、第1吸気パイプ40、第2吸気パイプ45、及び給気パイプ50を備え、ポンプ10の吸引力によって吸水槽1内の空気をポンプケーシング12内に供給する。第1吸気パイプ40の吸気口(一端)41は排水開始水位LWLに配置され、第2吸気パイプ45の吸気口(一端)46は排水遮断水位LLWLに配置されている。給気パイプ50は、第1吸気パイプ40と第2吸気パイプ45に連通しており、その給気口51(他端)は、羽根車25よりも下側に位置するようにベルマウス17に接続されている。 As shown in FIG. 2, the air supply pipe 38 enables an air lock operation in which the water column WC is held in the pump casing 12, thereby preventing the underwater bearing 23 from being overheated and enabling the pump 10 to be continuously operated. Is provided. The air supply pipe 38 includes a first intake pipe 40, a second intake pipe 45, and an air supply pipe 50, and supplies air in the water absorption tank 1 into the pump casing 12 by the suction force of the pump 10. The intake port (one end) 41 of the first intake pipe 40 is disposed at the drainage start water level LWL, and the intake port (one end) 46 of the second intake pipe 45 is disposed at the drainage cutoff water level LLWL. The air supply pipe 50 communicates with the first intake pipe 40 and the second intake pipe 45, and the air supply port 51 (the other end) is connected to the bell mouth 17 so as to be positioned below the impeller 25. It is connected.
 給気配管38を備える先行待機形のポンプ10は、例えば地域気象観測システムの情報に基づいて、オペレータによって始動される。吸水槽1内の水位が羽根車25の下端よりも低い当初では、羽根車25が気中にあるため、ポンプ10は、排水を行うことのない気中運転になる。水位が羽根車25の下端よりも上がると、吸水槽1内の水が羽根車25によって吸い上げられるとともに、第1吸気パイプ40を通して空気が取り込まれるため、ポンプ10は、水と空気を混合状態で排出する気水混合運転に切り替わる。水位が排水開始水位LWL(羽根車25の上端26)よりも上がると、第1吸気パイプ40を通した空気の取り込みが遮断されるため、ポンプ10は、水のみを排出する排水運転に切り替わる。 The advance standby type pump 10 including the air supply pipe 38 is started by an operator based on information of a local weather observation system, for example. Since the impeller 25 is in the air at the beginning when the water level in the water absorption tank 1 is lower than the lower end of the impeller 25, the pump 10 is operated in the air without draining. When the water level rises above the lower end of the impeller 25, the water in the water absorption tank 1 is sucked up by the impeller 25 and air is taken in through the first intake pipe 40. Therefore, the pump 10 is in a mixed state of water and air. Switch to a steam / water mixing operation. When the water level rises above the drainage start water level LWL (the upper end 26 of the impeller 25), since the intake of air through the first intake pipe 40 is blocked, the pump 10 is switched to a drainage operation that discharges only water.
 排水により、吸水槽1内の水位が排水開始水位LWLよりも下がると、第1吸気パイプ40を通して再び空気が取り込まれるため、ポンプ10は、気水混合運転に切り替わる。水位が排水遮断水位LLWLよりも下がると、第2吸気パイプ45からも空気が取り込まれるため、ポンプ10は、排水することなく水柱WCを保持したエアロック運転に切り替わる。その後、水位が排水遮断水位LLWLよりも上がると、ポンプ10は、再び気水混合運転に切り替わる。つまり、ポンプ10の運転状態は、オペレータが停止するまで、エアロック運転、気水混合運転、排水運転、気水混合運転、エアロック運転の順で切り替わる。 When drainage causes the water level in the water absorption tank 1 to fall below the drainage start water level LWL, air is again taken in through the first intake pipe 40, so the pump 10 switches to the air-water mixing operation. When the water level falls below the drain cut-off water level LLWL, air is also taken in from the second intake pipe 45, so that the pump 10 switches to an air lock operation that holds the water column WC without draining. Thereafter, when the water level rises above the drainage cutoff water level LLWL, the pump 10 is switched to the air / water mixing operation again. That is, the operation state of the pump 10 is switched in the order of air lock operation, air / water mixing operation, drainage operation, air / water mixing operation, and air lock operation until the operator stops.
(吸水槽の水位設定の概要)
 図1に示すように、吸水槽1には、前述した排水開始水位LWL、排水遮断水位LLWL、及び最高水位HWLが定められている。これらは、底壁3からの高さとして定義されており、排水遮断水位LLWL、排水開始水位LWL、及び最高水位HWLの順で高くなるように設定されている。排水開始水位LWL以上の高水位では、空気を混入することなく、水だけを排出する必要がある。排水開始水位LWL未満の低水位では、空気の混入が許容される。排水遮断水位LLWL未満の超低水位では、排水を行わないエアロック運転に移行する必要がある。
(Outline of water level setting in the water tank)
As shown in FIG. 1, the above-described drainage start water level LWL, drainage cutoff water level LLWL, and maximum water level HWL are defined in the water absorption tank 1. These are defined as heights from the bottom wall 3, and are set to increase in the order of the drainage cutoff water level LLWL, the drainage start water level LWL, and the highest water level HWL. At high water levels above the drainage start water level LWL, it is necessary to discharge only water without mixing air. At a low water level lower than the drainage start water level LWL, mixing of air is allowed. At an ultra-low water level below the drainage cut-off water level LLWL, it is necessary to shift to an air lock operation without draining.
 排水開始水位LWLと排水遮断水位LLWLは、近隣の河川又は海の水位と、周囲の建造物の状況とに基づいて、要求仕様として定められる。最高水位HWLは、吸水槽1の深さと要求仕様によって定められる。つまり、これらの水位LWL,LLWL,HWLは、図2に示す渦発生水位VWLとは無関係で定められている。近年では排水開始水位LWLの低位要求が多いため、渦発生水位VWLは、排水開始水位LWLよりも高くなる傾向にある。 The drainage start water level LWL and drainage cutoff water level LLWL are determined as required specifications based on the water level of a nearby river or sea and the status of surrounding buildings. The maximum water level HWL is determined by the depth of the water absorption tank 1 and the required specifications. That is, these water levels LWL, LLWL, and HWL are determined independently of the vortex generation water level VWL shown in FIG. In recent years, since there are many low requests for the drainage start water level LWL, the vortex generation water level VWL tends to be higher than the drainage start water level LWL.
 そこで、本実施形態では、渦防止配管30と給気配管38を設け、空気吸込渦Svの発生を抑えつつ、先行待機運転を実現可能とし、より低水位での排水を効果的に実現可能とする。しかも、機能が異なる配管30,38の配置によって、ポンプ10の構成が複雑になることを防止している。 Therefore, in the present embodiment, the vortex prevention pipe 30 and the air supply pipe 38 are provided to enable the preliminary standby operation while suppressing the generation of the air suction vortex Sv, and the drainage at a lower water level can be effectively realized. To do. In addition, the arrangement of the pipes 30 and 38 having different functions prevents the configuration of the pump 10 from becoming complicated.
(渦防止配管の詳細)
 図3及び図4に示すように、渦防止配管30は、1本の横パイプ32と、複数の縦パイプ35を備える。
(Details of vortex prevention piping)
As shown in FIGS. 3 and 4, the vortex prevention pipe 30 includes one horizontal pipe 32 and a plurality of vertical pipes 35.
 横パイプ32は、中空であり、図1を参照すると、排水遮断水位LLWLに位置するように、ポンプケーシング12の外周に配置されている。横パイプ32は、ポンプケーシング12と同軸に位置するように、ポンプケーシング12に対してリブ33によって固定されている。 The horizontal pipe 32 is hollow, and referring to FIG. 1, the horizontal pipe 32 is disposed on the outer periphery of the pump casing 12 so as to be positioned at the drainage cutoff water level LLWL. The horizontal pipe 32 is fixed to the pump casing 12 by ribs 33 so as to be coaxial with the pump casing 12.
 縦パイプ35は、中空であり、下端が横パイプ32に接続され、上端がカバー36によって液密かつ気密に塞がれている。縦パイプ35の上端は、ポンプ10の定格流量の130%揚水での渦発生水位VWL以上の高さに配置されており、本実施形態では、最高水位HWLよりも高い位置に配置されている。 The vertical pipe 35 is hollow, the lower end is connected to the horizontal pipe 32, and the upper end is closed liquid-tight and air-tightly by the cover 36. The upper end of the vertical pipe 35 is disposed at a height equal to or higher than the vortex generation water level VWL when pumping 130% of the rated flow rate of the pump 10, and is disposed at a position higher than the highest water level HWL in this embodiment.
 複数の縦パイプ35は、ポンプケーシング12を中心として周方向に所定間隔をあけて配置されている。より詳しくは、吸水槽1は、据付床2と底壁3の間の3方が側壁4によって塞がれており、水は、図4において側壁4が無い左側から流入する。本実施形態では4本の縦パイプ35が90度間隔をあけて設けられており、そのうちの2本が水流入方向Fの上流側に配置され、他の2本が水流入方向Fの下流側に配置されている。以下では、必要に応じて上流側の2本を第1縦パイプ35Aといい、下流側の2本を第2縦パイプ35Bという。 The plurality of vertical pipes 35 are arranged at predetermined intervals in the circumferential direction around the pump casing 12. More specifically, in the water absorption tank 1, three sides between the installation floor 2 and the bottom wall 3 are blocked by the side walls 4, and water flows from the left side where the side walls 4 are not present in FIG. In this embodiment, four vertical pipes 35 are provided at intervals of 90 degrees, two of which are arranged upstream in the water inflow direction F, and the other two are downstream in the water inflow direction F. Is arranged. Hereinafter, two upstream pipes are referred to as first vertical pipes 35A and two downstream pipes are referred to as second vertical pipes 35B as necessary.
(給気配管の詳細)
 引き続いて図3及び図4を参照すると、給気配管38は、第1縦パイプ35Aと同数の第1吸気パイプ40、第2縦パイプ35Bと同数の第2吸気パイプ45、及び複数の給気パイプ50を備える。つまり、本実施形態では、第1縦パイプ35Aと第1吸気パイプ40、及び第2縦パイプ35Bと第2吸気パイプ45が、それぞれ2組設けられている。
(Details of air supply piping)
3 and FIG. 4, the air supply pipe 38 includes the same number of first intake pipes 40 as the first vertical pipes 35A, the same number of second intake pipes 45 as the second vertical pipes 35B, and a plurality of air supply pipes. A pipe 50 is provided. That is, in this embodiment, two sets of the first vertical pipe 35A and the first intake pipe 40, and the second vertical pipe 35B and the second intake pipe 45 are provided.
 第1吸気パイプ40の吸気口41は排水開始水位LWLに配置され、第1吸気パイプ40の排気口(他端)42は第1縦パイプ35A内に配置されている。第2吸気パイプ45の吸気口46は排水遮断水位LLWLに配置され、第2吸気パイプ45の排気口47は第2縦パイプ35B内に配置されている。これらの吸気口41,46は、吸水槽1の水面の波の影響を受け難くするために、空気吸込渦Svが発生した場合の水面の窪みに位置するように開口され、安定して空気を吸気(供給)できるように構成されている。 The intake port 41 of the first intake pipe 40 is disposed at the drainage start water level LWL, and the exhaust port (the other end) 42 of the first intake pipe 40 is disposed in the first vertical pipe 35A. The intake port 46 of the second intake pipe 45 is disposed at the drain cutoff water level LLWL, and the exhaust port 47 of the second intake pipe 45 is disposed in the second vertical pipe 35B. These intake ports 41 and 46 are opened so as to be positioned in the depression of the water surface when the air suction vortex Sv is generated in order to make it less susceptible to the influence of waves on the water surface of the water absorption tank 1, so that the air can be stably supplied. It is configured to allow intake (supply).
 より詳しくは、第1吸気パイプ40は第1縦パイプ35A内に同軸に配置され、第2吸気パイプ45は第2縦パイプ35B内に同軸に配置されている。吸気口41,46が位置する吸気パイプ40,45の下側には、湾曲部43,48が形成されている。第1吸気パイプ40の吸気口41は、湾曲部43によって第1縦パイプ35Aから外部に突出している。第2吸気パイプ45の吸気口46は、湾曲部48によって横パイプ32から外部に突出している。第1縦パイプ35Aにおける第1吸気パイプ40の貫通部分と、横パイプ32における第2吸気パイプ45の貫通部分は、シール材又は溶接によって液密かつ気密にシールされている。 More specifically, the first intake pipe 40 is coaxially arranged in the first vertical pipe 35A, and the second intake pipe 45 is coaxially arranged in the second vertical pipe 35B. Bending portions 43 and 48 are formed below the intake pipes 40 and 45 where the intake ports 41 and 46 are located. The intake port 41 of the first intake pipe 40 protrudes outside from the first vertical pipe 35 </ b> A by the curved portion 43. The intake port 46 of the second intake pipe 45 protrudes outward from the lateral pipe 32 by a curved portion 48. The penetration portion of the first intake pipe 40 in the first vertical pipe 35A and the penetration portion of the second intake pipe 45 in the horizontal pipe 32 are sealed in a liquid-tight and air-tight manner by a sealing material or welding.
 吸気パイプ40,45の排気口42,47は、最高水位HWLよりも高い位置に配置されている。より詳しくは、図1に示すように、吸気パイプ40,45の高さTは、最高水位HWLに、揚水によってベルマウス17内で発生する最大負圧による吸込揚程ΔHを加えた値に設定されている。吸込揚程ΔHは、以下の式によって設定される。 The exhaust ports 42 and 47 of the intake pipes 40 and 45 are disposed at a position higher than the highest water level HWL. More specifically, as shown in FIG. 1, the height T of the intake pipes 40 and 45 is set to a value obtained by adding the suction head ΔH due to the maximum negative pressure generated in the bell mouth 17 by pumping to the maximum water level HWL. ing. The suction head ΔH is set by the following equation.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003




 給気パイプ50の給気口51は、排水遮断水位LLWLに位置するようにベルマウス17に接続され、給気パイプ50の接続口(一端)52は、横パイプ32の内周に接続されている。つまり、給気パイプ50は、縦パイプ35と横パイプ32を介して吸気パイプ40,45に連通しており、給気配管38は、渦防止配管30を流路として兼用している。 The air supply port 51 of the air supply pipe 50 is connected to the bell mouth 17 so as to be positioned at the drainage cutoff water level LLWL, and the connection port (one end) 52 of the air supply pipe 50 is connected to the inner periphery of the horizontal pipe 32. Yes. That is, the air supply pipe 50 communicates with the intake pipes 40 and 45 through the vertical pipe 35 and the horizontal pipe 32, and the air supply pipe 38 also serves as the flow path of the vortex prevention pipe 30.
 図4に最も明瞭に示すように、本実施形態では4本の給気パイプ50を備え、これらがポンプケーシング12を中心として周方向に等間隔で配置されている。また、4本の給気パイプ50と4本の縦パイプ35とは、周方向に間隔をあけて配置され、平面視での角度位置が一致しないように構成されている。これにより、縦パイプ35から流入した空気は、給気パイプ50に直接流れることなく、必ず横パイプ32内を通って給気パイプ50に流れ、給気パイプ50からベルマウス17内に均等に供給される。その結果、給気が局部に偏ることによるポンプ10の振動を抑制できる。 As shown most clearly in FIG. 4, in this embodiment, four air supply pipes 50 are provided, and these are arranged at equal intervals in the circumferential direction around the pump casing 12. Further, the four air supply pipes 50 and the four vertical pipes 35 are arranged at intervals in the circumferential direction, and are configured so that the angular positions in plan view do not match. Thus, the air flowing in from the vertical pipe 35 does not flow directly to the air supply pipe 50 but always flows through the horizontal pipe 32 to the air supply pipe 50, and is evenly supplied from the air supply pipe 50 into the bell mouth 17. Is done. As a result, the vibration of the pump 10 due to the supply air being biased locally can be suppressed.
 このポンプ10は、空気吸込渦Svの発生抑制と先行待機の両機能を併せ持っているため、渦防止配管30又は給気配管38が無いポンプよりも、低水位での排水を効果的に実現できる。 Since this pump 10 has both functions of suppressing the generation of the air suction vortex Sv and leading standby, it is possible to effectively achieve drainage at a lower water level than a pump without the vortex prevention pipe 30 or the air supply pipe 38. .
 詳しくは、排水運転では、吸水槽1内の水位が渦発生水位VWLになっても、縦パイプ35によって空気吸込渦Svの発生を抑制できる。よって、吸い込んだ空気吸込渦Svが羽根車25に衝突することによるポンプケーシング12の振動を防止できる。 Specifically, in the drainage operation, even if the water level in the water absorption tank 1 becomes the vortex generation water level VWL, the generation of the air suction vortex Sv can be suppressed by the vertical pipe 35. Therefore, vibration of the pump casing 12 due to the sucked air suction vortex Sv colliding with the impeller 25 can be prevented.
 気水混合運転では、ポンプ10の吸引力によって、吸水槽1内の空気を第1吸気パイプ40からポンプケーシング12内へ供給できる。よって、吸込口18からの吸水量は減るが、吸水槽1内の水面での流速が遅くなるため、空気吸込渦Svの発生を抑制し、排水可能な水位を下げることができる。但し、この場合でも、水位が低くなるに従って、やがて水面は空気吸込渦Svが生じる流速になるが、この時の空気吸込渦Svの発生も渦防止配管30によって抑制できる。 In the air-water mixing operation, the air in the water absorption tank 1 can be supplied from the first intake pipe 40 into the pump casing 12 by the suction force of the pump 10. Therefore, although the amount of water absorption from the suction inlet 18 decreases, since the flow velocity on the water surface in the water absorption tank 1 is slowed, the generation of the air suction vortex Sv can be suppressed and the level of water that can be drained can be lowered. However, even in this case, as the water level becomes lower, the water surface eventually reaches a flow velocity at which the air suction vortex Sv is generated.
 エアロック運転では、ポンプ10の吸引力によって、吸水槽1内の空気を第2吸気パイプ45から吸い込むことで、吸込口18からの吸水量が更に減る。よって、ポンプケーシング12から下流側への排水を確実に停止し、ポンプケーシング12内では水柱WCを保持した状態を維持できる。この水柱WCによってポンプケーシング12内の摺動部品である水中軸受23が冷却され、過熱が防止されるため、ポンプ10の駆動を継続した待機運転を実現できる。 In the air lock operation, the amount of water absorbed from the suction port 18 is further reduced by sucking the air in the water absorption tank 1 from the second intake pipe 45 by the suction force of the pump 10. Therefore, drainage from the pump casing 12 to the downstream side can be stopped reliably, and the state in which the water column WC is held in the pump casing 12 can be maintained. The water column WC cools the submersible bearing 23 which is a sliding component in the pump casing 12 and prevents overheating. Therefore, a standby operation in which the pump 10 is continuously driven can be realized.
 このように、渦防止配管30によって空気吸込渦Svの発生を抑制しつつ、吸水槽1内の水位によって運転状態が切り替わるため、渦防止配管30又は給気配管38が無いポンプよりも、吸水槽1を深くすることなく、より低水位での排水を効果的に実現できる。 Thus, since the operation state is switched depending on the water level in the water absorption tank 1 while suppressing the generation of the air suction vortex Sv by the vortex prevention pipe 30, the water absorption tank is more than a pump without the vortex prevention pipe 30 or the air supply pipe 38. Without deepening 1, drainage at a lower water level can be effectively realized.
 しかも、給気配管38を構成する第1吸気パイプ40と給気パイプ50は、渦防止配管30を構成する第1縦パイプ35Aと横パイプ32に接続され、これらを給気用流路として兼用している。よって、渦発生抑制と先行待機の両機能を併せ持つにも拘わらず、ポンプ10全体としては簡素な構成を実現できる。 In addition, the first intake pipe 40 and the supply pipe 50 that constitute the supply air pipe 38 are connected to the first vertical pipe 35A and the horizontal pipe 32 that constitute the vortex prevention pipe 30, and these are also used as a supply air flow path. doing. Therefore, despite having both functions of suppressing vortex generation and advance standby, the pump 10 as a whole can have a simple configuration.
 また、縦パイプ35A,35Bの上端と吸気パイプ40,45の上端とは、吸水槽1の最高水位HWLよりも高い位置に配置されている。よって、ポンプ10がいずれの運転状態であっても、吸気パイプ40,45の排気口42,47を越えて水が吸い上げられることはない。そのため、吸水槽1内の水に含まれるゴミが、吸気パイプ40,45を通して縦パイプ35内に入り込むことを防止できる。その結果、渦防止配管30を含む給気流路の目詰まりを効果的に防止できる。 Further, the upper ends of the vertical pipes 35A and 35B and the upper ends of the intake pipes 40 and 45 are arranged at a position higher than the highest water level HWL of the water absorption tank 1. Therefore, water is not sucked up through the exhaust ports 42 and 47 of the intake pipes 40 and 45 regardless of the operation state of the pump 10. Therefore, it is possible to prevent dust contained in the water in the water absorption tank 1 from entering the vertical pipe 35 through the intake pipes 40 and 45. As a result, clogging of the air supply passage including the vortex prevention pipe 30 can be effectively prevented.
(第1吸気パイプの詳細)
 水面が排水開始水位LWLに位置している状態で、水面に生じた波によって第1吸気パイプ40の第1吸込口41が塞がれると、ポンプケーシング12内への給気が遮断される。波によってポンプケーシング12への空気の供給と遮断が短時間で繰り返されると、ポンプ10に振動が生じる。
(Details of the first intake pipe)
When the first suction port 41 of the first intake pipe 40 is blocked by a wave generated on the water surface in a state where the water surface is located at the drainage start water level LWL, the supply of air into the pump casing 12 is shut off. When the supply and shutoff of air to the pump casing 12 are repeated in a short time by the waves, the pump 10 is vibrated.
 本実施形態では第1吸気パイプ40を2本配置しているため、これらの吸気口41が波によって同時に塞がれることを抑制できる。しかも、本実施形態では、吸水槽1内で生じる波の波長λ(図5参照)を実測し、その波長λに基づいて2個の吸気口41の間隔L1(図4参照)を、以下のように設定している。なお、間隔L1は、2個の吸気口41のうち、一方の中心から他方の中心までの距離として定義される。 In the present embodiment, since the two first intake pipes 40 are arranged, it is possible to prevent these intake ports 41 from being simultaneously blocked by waves. Moreover, in the present embodiment, the wavelength λ (see FIG. 5) of the wave generated in the water absorption tank 1 is measured, and the interval L1 (see FIG. 4) between the two intake ports 41 based on the wavelength λ is It is set as follows. The interval L1 is defined as the distance from one center to the other of the two intake ports 41.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004




 このように、2個の吸気口41の間隔L1は、吸水槽1内で生じる波の波長λの整数倍にならないように設定されている。言い換えれば、この式を満たすように2個の吸気口41の間隔L1を設定すれば、2本の第1吸気パイプ40のうちの一方と他方が同時に波で塞がれることを防止できる。よって、ポンプ10の振動の原因になる短時間での空気の供給と遮断の繰り返しを防止できる。 Thus, the interval L1 between the two air inlets 41 is set so as not to be an integral multiple of the wavelength λ of the wave generated in the water tank 1. In other words, if the distance L1 between the two intake ports 41 is set so as to satisfy this equation, it is possible to prevent one of the two first intake pipes 40 and the other from being simultaneously blocked by waves. Therefore, it is possible to prevent repeated supply and shut-off of air in a short time that causes vibration of the pump 10.
 図5に示すように、第1吸気パイプ40の吸気口41は、湾曲部43によって吸水槽1内の水面に対して交差する向きに開口している。水面に対して交差するとは、水平面に対して交差することを意味する。しかも、本実施形態では、吸水槽1内で生じる波の波高hを実測し、その波高hよりも、第1吸気パイプ40の吸気口41の下端(下頂部)から上端(上頂部)までの寸法D1が高くなるように設定している(h<D1)。なお、本実施形態の吸気口41は水平面に対して直交する向きに開口させているため、上記寸法D1は吸気口41の内径である。 As shown in FIG. 5, the intake port 41 of the first intake pipe 40 is opened by a curved portion 43 in a direction intersecting the water surface in the water absorption tank 1. Crossing the water surface means crossing the horizontal surface. Moreover, in the present embodiment, the wave height h of the wave generated in the water absorption tank 1 is measured, and from the wave height h to the upper end (upper top) of the lower end (lower top) of the intake port 41 of the first intake pipe 40. The dimension D1 is set to be high (h <D1). In addition, since the inlet 41 of this embodiment is opened in the direction orthogonal to the horizontal plane, the dimension D1 is the inner diameter of the inlet 41.
 このように、波高hよりも吸気口41の高さ(寸法D1)が高くなるように設定されているため、吸気口41が波で塞がれることを防止できる。しかも、本実施形態では2本の第1吸気パイプ40を備えるため、これらの吸気口41が波で同時に塞がれることを防止できる。また、2個の吸気口41の間隔L1が相俟って、これらが波で塞がれることを効果的に防止できる。よって、ポンプ10の振動の原因になる短時間での空気の供給と遮断の繰り返しを効果的に防止できる。 Thus, since the height (dimension D1) of the intake port 41 is set to be higher than the wave height h, the intake port 41 can be prevented from being blocked by the wave. Moreover, in the present embodiment, since the two first intake pipes 40 are provided, it is possible to prevent these intake ports 41 from being simultaneously blocked by waves. Moreover, it is possible to effectively prevent the gap L1 between the two intake ports 41 from being blocked by waves. Therefore, it is possible to effectively prevent repeated supply and shutoff of air in a short time, which causes vibration of the pump 10.
 なお、他の2本の第2吸気パイプ45の吸気口46の間隔L2と、個々の吸気口46の下端から上端までの寸法D2も、第1吸気パイプ40と同様に設定することが好ましい。また、第2吸気パイプ45を横パイプ32の外周部に配置する場合、横パイプ32の管内直径も第1吸気パイプ40と同様に設定することが好ましい。但し、水面が排水遮断水位LLWLに位置している状態では、2本の第1吸気パイプ40が必ず開放されるため、第2吸気パイプ45の間隔L2と寸法D2は、必ずしも上記範囲に設定しなくてもよい。 It should be noted that the distance L2 between the intake ports 46 of the other two second intake pipes 45 and the dimension D2 from the lower end to the upper end of each intake port 46 are preferably set similarly to the first intake pipe 40. Further, when the second intake pipe 45 is disposed on the outer peripheral portion of the horizontal pipe 32, it is preferable that the inner diameter of the horizontal pipe 32 is set similarly to the first intake pipe 40. However, since the two first intake pipes 40 are always opened in a state where the water surface is located at the drainage cutoff water level LLWL, the interval L2 and the dimension D2 of the second intake pipe 45 are not necessarily set in the above range. It does not have to be.
(各パイプの管内断面積(内径)設定の詳細)
 吸水槽1内の空気の吸い込みとポンプケーシング12への給気とを安定させるために、第1吸気パイプ40の吸気口41からポンプケーシング12(給気口51)までの流路の断面積が、小さくならないように設定されている。より詳しくは、縦パイプ35の管内断面積をAv、第1吸気パイプ40の管内断面積をAp、横パイプ32の管内断面積をAr、給気パイプ50の管内断面積をAi、給気パイプ50の本数をNi、第1吸気パイプ40の本数をNpとすると、以下の式(1)から(4)を満たすように構成されている。
(Details of cross-sectional area (inner diameter) setting of each pipe)
In order to stabilize the suction of air in the water tank 1 and the supply of air to the pump casing 12, the cross-sectional area of the flow path from the intake port 41 of the first intake pipe 40 to the pump casing 12 (supply port 51) is It is set not to become small. More specifically, Av is the cross-sectional area of the vertical pipe 35, Ap is the cross-sectional area of the first intake pipe 40, Ar is the cross-sectional area of the horizontal pipe 32, and Ai is the cross-sectional area of the air supply pipe 50. When the number of 50 is Ni and the number of the first intake pipes 40 is Np, the following equations (1) to (4) are satisfied.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005







 上記式(1)のように、縦パイプ35の管内断面積Avは、第1吸気パイプ40の管内断面積Apの2倍よりも大きく設定されている(Av-Ap>Ap)。 As in the above formula (1), the in-pipe cross-sectional area Av of the vertical pipe 35 is set to be larger than twice the cross-sectional area Ap of the first intake pipe 40 (Av−Ap> Ap).
 また、上記式(2)のように、給気パイプ50の管内断面積Aiは、横パイプ32の管内断面積Arから、2本の第1吸気パイプ40の管内断面積Apの合計を減算した値よりも小さく設定されている。詳しくは、横パイプ32の管内断面積Arは、全ての第1吸気パイプ40の管内断面積(Np×Ap)よりも大きく、全ての第1吸気パイプ40に給気パイプ50を加算した面積(Np×Ap+Ai)よりも大きく設定される。これにより、第1吸気パイプ40(第2吸気パイプ45)を横パイプ32内に貫通させた場合の影響を小さくする。 Further, as in the above equation (2), the in-pipe cross-sectional area Ai of the air supply pipe 50 is obtained by subtracting the total of the cross-sectional areas Ap of the two first intake pipes 40 from the cross-sectional area Ar of the horizontal pipe 32. It is set smaller than the value. Specifically, the in-pipe cross-sectional area Ar of the horizontal pipe 32 is larger than the in-pipe cross-sectional areas (Np × Ap) of all the first intake pipes 40, and the area obtained by adding the supply pipes 50 to all the first intake pipes 40 ( Np × Ap + Ai). Thereby, the influence at the time of making the 1st intake pipe 40 (2nd intake pipe 45) penetrate in the horizontal pipe 32 is made small.
 さらに、上記式(3)のように、給気パイプ50の管内断面積Aiは、第1吸気パイプ40の管内断面積Ap以上に設定され、上記式(4)のように、給気パイプ50の本数Niは、第1吸気パイプ40の本数Np以上に設定されている。 Further, the in-pipe cross-sectional area Ai of the air supply pipe 50 is set to be equal to or larger than the in-pipe cross-sectional area Ap of the first intake pipe 40 as shown in the above formula (3), and the air supply pipe 50 is set up as in the above formula (4). The number Ni is set to be equal to or greater than the number Np of the first intake pipes 40.
 このように、空気を供給する流路を小さくすることなく、上記式(1)~(4)のように設定することで、空気の安定した吸い込みと供給を実現できる。つまり、吸水槽1内の水位が排水開始水位LWLまで低下すると、速やかに安定して空気を吸い込むことができる。 In this way, stable suction and supply of air can be realized by setting as in the above formulas (1) to (4) without reducing the flow path for supplying air. That is, when the water level in the water absorption tank 1 is lowered to the drainage start water level LWL, air can be sucked in quickly and stably.
 以上のように、本実施形態のポンプ10では、渦防止配管30と給気配管38を備えるため、これらの一方が無いポンプよりも、より低水位での排水を効果的に実現できる。しかも、給気配管38は、渦防止配管30を給気用流路として兼用しているため、渦発生抑制と先行待機の両機能を併せ持つにも拘わらず、ポンプ10全体として簡素な構成を実現できる。 As described above, since the pump 10 of the present embodiment includes the vortex prevention pipe 30 and the air supply pipe 38, drainage at a lower water level can be effectively realized than a pump without one of them. Moreover, since the air supply pipe 38 also uses the vortex prevention pipe 30 as an air supply flow path, the pump 10 as a whole has a simple configuration despite having both functions of suppressing vortex generation and leading standby. it can.
 なお、本発明の立軸ポンプ10は、前記実施形態の構成に限定されず、種々の変更が可能である。 In addition, the vertical shaft pump 10 of the present invention is not limited to the configuration of the above embodiment, and various modifications can be made.
 例えば、2本の第1吸気パイプ40は、水流入方向Fにおける吸水槽1の下流側に配置してもよいし、上流側と下流側に1本ずつ配置してもよい。また、第1吸気パイプ40と第2吸気パイプ45は、ポンプケーシング12の周方向に交互に配置されてもよい。また、第1吸気パイプ40と第2吸気パイプ45は、それぞれ1本ずつ配置されてもよいし、それぞれ3本以上配置されてもよい。つまり、第1吸気パイプ40及び第2吸気パイプ45の数と配置は、必要に応じて変更が可能である。 For example, the two first intake pipes 40 may be arranged on the downstream side of the water absorption tank 1 in the water inflow direction F, or may be arranged on the upstream side and the downstream side one by one. Further, the first intake pipe 40 and the second intake pipe 45 may be alternately arranged in the circumferential direction of the pump casing 12. Further, one each of the first intake pipe 40 and the second intake pipe 45 may be arranged, or three or more of each may be arranged. That is, the number and arrangement of the first intake pipes 40 and the second intake pipes 45 can be changed as necessary.
 第1吸気パイプ40の数を増やせば、吸気口41の間隔L1は、上記範囲に設定する必要はない。第2吸気パイプ45の数を増やせば、吸気口46の間隔L2は、上記範囲に設定する必要はない。これらの場合、吸気パイプ40,45の吸気口41,46は、吸水槽1の水面(水平面)に対して平行に配置してもよいし、寸法D1,D2も上記範囲に設定する必要はない。 If the number of the first intake pipes 40 is increased, the interval L1 between the intake ports 41 does not need to be set in the above range. If the number of the second intake pipes 45 is increased, the interval L2 between the intake ports 46 need not be set in the above range. In these cases, the intake ports 41 and 46 of the intake pipes 40 and 45 may be arranged in parallel to the water surface (horizontal plane) of the water absorption tank 1, and the dimensions D1 and D2 need not be set in the above range. .
 第1吸気パイプ40の上端は、最高水位HWLよりも以下に配置されてもよい。第2吸気パイプ45の上端は、最高水位HWLよりも以下に配置されてもよい。また、縦パイプ35、横パイプ32、吸気パイプ40,45、及び給気パイプ50の管内断面積(内径)は、必要に応じて変更が可能である。 The upper end of the first intake pipe 40 may be disposed below the highest water level HWL. The upper end of the second intake pipe 45 may be disposed below the highest water level HWL. Further, the in-tube cross-sectional areas (inner diameters) of the vertical pipe 35, the horizontal pipe 32, the intake pipes 40 and 45, and the air supply pipe 50 can be changed as necessary.
 第1吸気パイプ40を配置する第1縦パイプ35Aには、コンプレッサ等の給気手段を接続し、吸水槽1内の水位が排水開始水位LWLまで低下していない段階で、ポンプケーシング12内に空気を供給可能(気水混合運転を実行可能)としてもよい。 An air supply means such as a compressor is connected to the first vertical pipe 35A in which the first intake pipe 40 is arranged, and the pump casing 12 is in the stage where the water level in the water absorption tank 1 has not dropped to the drainage start water level LWL. Air may be supplied (air-water mixing operation can be performed).
 1 吸水槽
 2 据付床
 3 底壁
 4 側壁
 10 立軸ポンプ
 12 ポンプケーシング
 13 揚水管
 14 直管
 15 ベーンケーシング
 16 軸受ケーシング
 17 ベルマウス
 18 吸込口
 19 吐出し管
 20 吐出エルボ
 22 回転軸
 23 水中軸受(摺動部材)
 25 羽根車
 26 上端
 30 渦防止配管
 32 横パイプ
 33 リブ
 35 縦パイプ
 35A 第1縦パイプ
 35B 第2縦パイプ
 36 カバー
 38 給気配管
 40 第1吸気パイプ
 41 吸気口(一端、開口)
 42 排気口(他端)
 43 湾曲部
 45 第2吸気パイプ
 46 吸気口(一端、開口)
 47 排気口(他端)
 48 湾曲部
 50 給気パイプ
 51 給気口(他端)
 52 接続口(一端)
 LWL 排水開始水位
 LLWL 排水遮断水位
 HWL 最高水位
 VWL 渦発生水位
 WC 水柱
 Sv 空気吸込渦
DESCRIPTION OF SYMBOLS 1 Water absorption tank 2 Installation floor 3 Bottom wall 4 Side wall 10 Vertical shaft pump 12 Pump casing 13 Pumping pipe 14 Straight pipe 15 Vane casing 16 Bearing casing 17 Bell mouth 18 Suction port 19 Discharge pipe 20 Discharge elbow 22 Rotating shaft 23 Underwater bearing (slide Moving member)
25 Impeller 26 Upper end 30 Vortex prevention piping 32 Horizontal pipe 33 Rib 35 Vertical pipe 35A First vertical pipe 35B Second vertical pipe 36 Cover 38 Air supply piping 40 First intake pipe 41 Inlet (one end, opening)
42 Exhaust port (other end)
43 curved portion 45 second intake pipe 46 intake port (one end, opening)
47 Exhaust port (other end)
48 Bending part 50 Air supply pipe 51 Air supply port (other end)
52 Connection port (one end)
LWL Drainage start water level LLWL Drainage cutoff water level HWL Highest water level VWL Vortex generation water level WC Water column Sv Air suction vortex

Claims (6)

  1.  吸水槽に上下方向へ延びるように配置されたポンプケーシングと、
     前記吸水槽の排水開始水位に位置するように、前記ポンプケーシング内に回転可能に配置された羽根車と、
     前記吸水槽内での空気吸込渦の発生を抑制するための渦防止配管と、
     前記吸水槽内の水位が前記排水開始水位よりも低くなると、前記吸水槽内の空気を前記ポンプケーシング内に供給するための給気配管と
     を備え、
     前記渦防止配管は、
     前記ポンプケーシングの前記排水開始水位よりも下側を取り囲む環状の横パイプと、
     前記ポンプケーシングの外側に上下方向へ延びるように配置され、下端が前記横パイプに接続され、上端が塞がれた第1縦パイプと
     を備え、
     前記給気配管は、
     一端が前記吸水槽内の前記排水開始水位に配置され、他端が前記第1縦パイプ内に配置された第1吸気パイプと、
     一端が前記横パイプに接続され、他端が前記ポンプケーシングの前記羽根車よりも下側に接続された給気パイプと
     を備える、立軸ポンプ。
    A pump casing arranged to extend in the vertical direction in the water absorption tank;
    An impeller disposed rotatably in the pump casing so as to be positioned at a drainage start water level of the water absorption tank;
    A vortex prevention pipe for suppressing the occurrence of air suction vortex in the water absorption tank;
    An air supply pipe for supplying air in the water absorption tank into the pump casing when the water level in the water absorption tank becomes lower than the drainage start water level;
    The vortex prevention pipe is
    An annular horizontal pipe that surrounds the lower side of the drainage start water level of the pump casing;
    A first vertical pipe disposed outside the pump casing so as to extend in the vertical direction, having a lower end connected to the horizontal pipe and a closed upper end;
    The air supply pipe is
    A first intake pipe having one end arranged at the drainage start water level in the water absorption tank and the other end arranged in the first vertical pipe;
    A vertical shaft pump comprising: an air supply pipe having one end connected to the horizontal pipe and the other end connected to the lower side of the impeller of the pump casing.
  2.  前記渦防止配管は、前記第1縦パイプに対して前記ポンプケーシングを中心として周方向に間隔をあけて位置し、前記ポンプケーシングの外側に上下方向へ延びるように配置され、下端が前記横パイプに接続され、上端が塞がれた第2縦パイプを更に備え、
     前記給気配管は、一端が前記排水開始水位よりも低い前記吸水槽の排水遮断水位に配置され、他端が前記第2縦パイプ内に配置された第2吸気パイプを更に備える、請求項1に記載の立軸ポンプ。
    The vortex prevention pipe is located at a circumferential interval around the pump casing with respect to the first vertical pipe, and is arranged to extend in the vertical direction outside the pump casing, with a lower end at the horizontal pipe. A second vertical pipe connected to the upper end and closed at the upper end;
    2. The air supply pipe further includes a second intake pipe, one end of which is disposed at a drainage cutoff water level of the water absorption tank lower than the drainage start water level, and the other end is disposed in the second vertical pipe. Vertical shaft pump described in 1.
  3.  前記第1縦パイプの前記上端と前記第2縦パイプの前記上端、及び前記第1吸気パイプの前記他端と前記第2吸気パイプの前記他端は、前記排水開始水位よりも高い前記吸水槽の最高水位よりも高い位置にそれぞれ配置されている、請求項2に記載の立軸ポンプ。 The upper end of the first vertical pipe, the upper end of the second vertical pipe, the other end of the first intake pipe, and the other end of the second intake pipe are higher than the drainage start water level. The vertical shaft pump according to claim 2, which is disposed at a position higher than the highest water level.
  4.  前記第1吸気パイプを含む前記第1縦パイプは、前記ポンプケーシングを中心として周方向に間隔をあけて2組配置されており、
     前記2組の第1吸気パイプのうちの一方の前記一端と他方の前記一端の間隔L1は、以下を満たす、請求項1から3のいずれか1項に記載の立軸ポンプ。
    Figure JPOXMLDOC01-appb-I000001



    The first vertical pipe including the first intake pipe is arranged in two sets with a circumferential interval around the pump casing,
    4. The vertical pump according to claim 1, wherein an interval L <b> 1 between one end of the two sets of first intake pipes and the other end of the other satisfies the following. 5.
    Figure JPOXMLDOC01-appb-I000001



  5.  前記第1吸気パイプの前記一端は、前記吸水槽内の水面と交差する向きに開口している、請求項1から4のいずれか1項に記載の立軸ポンプ。 The vertical pump according to any one of claims 1 to 4, wherein the one end of the first intake pipe is opened in a direction intersecting with a water surface in the water absorption tank.
  6.  前記第1縦パイプ及び前記第1吸気パイプの関係は、以下の式(1)を満たし、
     前記横パイプ、前記第1吸気パイプ及び前記給気パイプの関係は、以下の式(2)を満たし、
     前記給気パイプ及び前記第1吸気パイプの関係は、以下の式(3),(4)を満たす、請求項1から5のいずれか1項に記載の立軸ポンプ。
    Figure JPOXMLDOC01-appb-I000002
    The relationship between the first vertical pipe and the first intake pipe satisfies the following formula (1):
    The relationship between the horizontal pipe, the first intake pipe, and the air supply pipe satisfies the following formula (2):
    The vertical shaft pump according to any one of claims 1 to 5, wherein a relationship between the supply pipe and the first intake pipe satisfies the following expressions (3) and (4).
    Figure JPOXMLDOC01-appb-I000002
PCT/JP2019/001233 2018-03-08 2019-01-17 Vertical shaft pump WO2019171774A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020504830A JP7094357B2 (en) 2018-03-08 2019-01-17 Vertical pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-042086 2018-03-08
JP2018042086 2018-03-08

Publications (1)

Publication Number Publication Date
WO2019171774A1 true WO2019171774A1 (en) 2019-09-12

Family

ID=67845927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001233 WO2019171774A1 (en) 2018-03-08 2019-01-17 Vertical shaft pump

Country Status (2)

Country Link
JP (1) JP7094357B2 (en)
WO (1) WO2019171774A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476998U (en) * 1990-11-19 1992-07-06
JP2004239215A (en) * 2003-02-07 2004-08-26 Ebara Corp Vertical shaft pump
JP2009203806A (en) * 2008-02-26 2009-09-10 Kubota Corp Preceding standby operation pump and method for operating same
CN102094742A (en) * 2009-12-09 2011-06-15 株式会社石垣 Siphon type hydraulic generating set
JP2013217217A (en) * 2012-04-05 2013-10-24 Torishima Pump Mfg Co Ltd Pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476998U (en) * 1990-11-19 1992-07-06
JP2004239215A (en) * 2003-02-07 2004-08-26 Ebara Corp Vertical shaft pump
JP2009203806A (en) * 2008-02-26 2009-09-10 Kubota Corp Preceding standby operation pump and method for operating same
CN102094742A (en) * 2009-12-09 2011-06-15 株式会社石垣 Siphon type hydraulic generating set
JP2013217217A (en) * 2012-04-05 2013-10-24 Torishima Pump Mfg Co Ltd Pump

Also Published As

Publication number Publication date
JP7094357B2 (en) 2022-07-01
JPWO2019171774A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
JP5628384B2 (en) Vortex prevention device and pump device
JP5620208B2 (en) Double suction vertical pump with vortex prevention device
JP6504247B2 (en) Suction cover used for horizontal axis submersible pump and horizontal axis submersible pump
JP2003013898A (en) Axial-flow type fluid machine
US6527509B2 (en) Turbo machines
JP2013209961A (en) Pump device including separation prevention structure
JP2002155898A (en) Pump vortex breaker
WO2019171774A1 (en) Vertical shaft pump
JP2005069048A (en) Vertical shaft pump and method for operating the same
US6302643B1 (en) Turbo machines
JP2007032037A (en) Horizontal pump, pump gate facility, and drainage pumping station
JP4463484B2 (en) Vertical shaft pump
JP5345123B2 (en) Vertical shaft pump
JP3862135B2 (en) Turbomachine and pump station using it
JP4839974B2 (en) Resin submersible pump
WO2019239750A1 (en) Vertical shaft pump
JP7186119B2 (en) Operation method of suction cover, horizontal shaft pump, pump gate and pump gate
JP5486707B2 (en) Vertical shaft pump
JP2002089479A (en) Suction water tank for vertical shaft pump
JP5322459B2 (en) Advance standby operation pump and operation method thereof
JP5188366B2 (en) Advance standby operation pump
JP4348120B2 (en) Pump equipment
JP4537786B2 (en) Pumping station
JP7261142B2 (en) pump
JP2010048191A (en) Vertical-shaft pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19765030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504830

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19765030

Country of ref document: EP

Kind code of ref document: A1