WO2019239750A1 - Vertical shaft pump - Google Patents

Vertical shaft pump Download PDF

Info

Publication number
WO2019239750A1
WO2019239750A1 PCT/JP2019/018488 JP2019018488W WO2019239750A1 WO 2019239750 A1 WO2019239750 A1 WO 2019239750A1 JP 2019018488 W JP2019018488 W JP 2019018488W WO 2019239750 A1 WO2019239750 A1 WO 2019239750A1
Authority
WO
WIPO (PCT)
Prior art keywords
air supply
pipe
supply pipe
pump
air
Prior art date
Application number
PCT/JP2019/018488
Other languages
French (fr)
Japanese (ja)
Inventor
祐治 兼森
Original Assignee
株式会社酉島製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社酉島製作所 filed Critical 株式会社酉島製作所
Publication of WO2019239750A1 publication Critical patent/WO2019239750A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems

Definitions

  • the present invention relates to a vertical shaft pump.
  • the vertical shaft pump disclosed in Patent Document 1 includes an air supply pipe piped outside the pump casing.
  • a double trumpet pipe having an outer cylinder and an inner cylinder is disposed at the lower end of the pump casing, and the lower end (air supply port) of the air supply pipe is connected to the inner cylinder.
  • the upper end (intake port) of the air supply pipe is arranged above the installation floor that closes the upper part of the water absorption tank, that is, above the maximum water level determined for the water absorption tank.
  • An object of the present invention is to provide a vertical shaft pump that can secure the space between the bottom of the water absorption tank and the lower end of the pump casing and can be installed even in a shallow water absorption tank.
  • One aspect of the present invention is disposed in a water absorption tank so as to extend in the vertical direction, and has a pump casing having a trumpet pipe for sucking water in the water absorption tank at a lower end thereof, and is located at a predetermined drainage start water level of the water absorption tank.
  • a pump casing having a trumpet pipe for sucking water in the water absorption tank at a lower end thereof, and is located at a predetermined drainage start water level of the water absorption tank.
  • an impeller disposed above the trumpet pipe in the pump casing, and an intake port at one end disposed outside the pump casing so as to be positioned above a highest water level higher than the drainage start position
  • a first air supply pipe having an air supply port at the other end connected to the trumpet pipe, and the trumpet pipe is disposed in the outer cylinder so as to be positioned directly below the outer cylinder and the impeller.
  • the pump cable is Wherein the inner cylinder and outer ring is always spatially communication, it provides a vertical shaft pump.
  • the first air supply pipe is connected to the flare portion of the inner cylinder of the pump casing, and the dynamic pressure in the flare portion is lower than the dynamic pressure of the upper end opening portion of the inner cylinder.
  • the dynamic pressure in the flare portion is lower than the atmospheric pressure when the water level is higher than the drainage start water level, and becomes higher than the atmospheric pressure when the water level is lower than the drainage start water level. Therefore, the air outside the pump casing does not flow into the inner cylinder when the water level is higher than the drainage start water level, and flows into the inner cylinder when the water level becomes lower than the drainage start water level.
  • the first air supply pipe is connected to the flare portion whose dynamic pressure is lower than that of the upper end opening portion, optimum air supply is possible even if the overall length of the trumpet pipe is short. Therefore, the space
  • Sectional drawing which shows the vertical shaft pump which concerns on 1st Embodiment of this invention.
  • Sectional drawing which shows the air lock state of the pump of FIG.
  • the partially expanded sectional view of FIG. FIG. 4 is a partially enlarged sectional view of FIG. 3.
  • FIG. 4 is a plan view of FIG. 3.
  • the graph which shows the distribution curve of the pressure and speed in the inner cylinder of a trumpet pipe.
  • Sectional drawing which shows a part of vertical shaft pump of 2nd Embodiment.
  • the top view of FIG. Sectional drawing which shows a part of vertical shaft pump of 3rd Embodiment.
  • the top view of FIG. Sectional drawing which shows a part of vertical shaft pump of 4th Embodiment.
  • FIG. 1 shows a vertical shaft pump 10 (hereinafter referred to as “pump”) according to a first embodiment of the present invention.
  • This pump 10 is provided with air supply pipes 30 and 33 outside the pump casing 12, and is switched to a drainage (total water) operation, an air-water mixing operation, and an air lock (drainage shutoff) operation depending on the water level of the water absorption tank 1. It is a standby form.
  • the pump 10 includes a pump casing 12, a rotating shaft 22, and an impeller 25.
  • the water absorption tank 1 in which the pump 10 is disposed three sides between the installation floor 2 and the bottom wall 3 are closed by the side walls 4, and water is drawn from the left side without the side walls 4 in FIG. 5. Inflow.
  • the pump casing 12 is fixed to an installation floor 2 that covers the upper part of the water absorption tank 1 so as to extend in the vertical direction in the water absorption tank 1.
  • the pump casing 12 includes a pumping pipe 13 disposed in the water absorption tank 1 and a discharge pipe 20 disposed on the installation floor 2.
  • the pumping pipe 13 includes a straight pipe 14, a vane casing 15, and a bell mouth 16, which are connected in this order from the upper side to the lower side.
  • the discharge pipe 20 includes a discharge elbow 21 whose central axis is bent by 90 degrees, and is connected to the upper end of the straight pipe 14.
  • a water supply pipe (not shown) for draining downstream is connected to the outlet of the discharge elbow 21.
  • the rotary shaft 22 passes through the discharge elbow 21 and is arranged in the pump casing 12 along the axis of the pumping pipe 13. Referring to FIG. 3, the rotating shaft 22 is rotatably supported by an underwater bearing 23 disposed in a bearing casing 15 a in the straight pipe 14 and the vane casing 15. The upper end of the rotating shaft 22 protrudes outward from the discharge elbow 21, and the penetrating portion thereof is liquid-tightly sealed by a shaft seal device.
  • the impeller 25 is disposed below the bearing casing 15 a so as to be positioned above the bell mouth 16 and is attached to the lower end of the rotary shaft 22.
  • the upper end 25a of the impeller 25 is disposed at the same height as the drainage start water level LWL determined by the specifications.
  • a driving means (not shown) is mechanically connected to the upper end of the rotating shaft 22 protruding from the pump casing 12.
  • the drive means an electric motor or a diesel engine which is one of internal combustion engines is used.
  • the impeller 25 is rotated integrally with the rotary shaft 22, so that the water in the water absorption tank 1 is discharged downstream through the pump casing 12.
  • the preceding standby type pump 10 enables an air lock operation in which a water column WC is held in a pump casing 12, prevents the overwater bearing 23 from being overheated by surrounding water, and allows water to enter the water absorption tank 1.
  • the pump 10 can be continuously operated even in the absence.
  • a first air supply pipe 30 and a second air supply pipe 33 that supply air in the water absorption tank 1 into the pump casing 12 are arranged around the pump casing 12. Yes.
  • the first air supply pipe 30 is provided for switching from the drain operation to the air / water mixing operation
  • the second air supply pipe 33 is provided for switching from the air / water mixing operation to the air lock operation.
  • the state of air supply into the pump casing 12 through the air supply pipes 30 and 33 is switched by the dynamic pressure in the pump casing 12.
  • the preceding standby type pump 10 is started by an operator based on information of a local weather observation system, for example. Since the impeller 25 is in the air at the beginning when the water level in the water absorption tank 1 is lower than that of the impeller 25, the pump 10 is operated in the air without draining. When the water level rises above the lower end of the impeller 25, the water in the water absorption tank 1 is sucked up by the impeller 25 and air is sucked in through the first air supply pipe 30, so that the pump 10 is in a mixed state of water and air. Switch to air / water mixing operation. When the water level rises above the drainage start water level LWL (the upper end 25a of the impeller 25), the suction of air through the first air supply pipe 30 is shut off, so the pump 10 is switched to a drainage operation that discharges only water. Change.
  • LWL the upper end 25a of the impeller 25
  • the aforementioned drainage start water level LWL, drainage cutoff water level LLWL, and maximum water level HWL are defined as required specifications. These are defined as heights from the bottom wall 3 and are set to increase in the order of the drainage cutoff water level LLWL, the drainage start water level LWL, and the highest water level HWL, as shown in FIG.
  • At high water levels above the drainage start water level LWL it is necessary to discharge only water without mixing air.
  • At a low water level lower than the drainage start water level LWL mixing of air is allowed.
  • an ultra-low water level below the drainage cut-off water level LLWL it is necessary to shift to an air lock operation without draining.
  • connection position of the air supply pipe is set based on the set drainage start water level LWL and the maximum load in the pump casing, a long bell mouth may be required, In this case, it could not be applied to a water absorption tank having a shallow bottom. Therefore, in the present embodiment, by optimizing the connection position between the first supply pipe 30 and the pump casing 12, the first supply pipe 30 enters the pump casing 12 without increasing the overall length of the bell mouth 16. It is possible to supply air at a predetermined timing. Further, by optimizing the shape and connection position of the second air supply pipe 33, the air supply for pumping off is made more efficient.
  • the bell mouth 16 is constituted by a double trumpet tube including an outer cylinder 17 and an inner cylinder 18.
  • the 1st air supply piping 30 is connected to the flare part 18b with comparatively low dynamic pressure of the inner cylinder 18.
  • the second air supply pipe 33 is connected to the cylinder portion 18 a having a relatively high dynamic pressure in the inner cylinder 18.
  • the bell mouth 16 includes an outer cylinder 17 connected to the lower end of the vane casing 15, an inner cylinder 18 disposed in the outer cylinder 17, and two or more connecting plates 19 that connect these. Is provided.
  • the outer tube 17 includes a cylindrical tube portion 17a and a flare portion 17b continuous with the lower end of the tube portion 17a.
  • a flange portion 17c that is fastened to the vane casing 15 by a bolt is provided at the upper end of the cylindrical portion 17a.
  • the flare portion 17b has a conical cylinder shape that gradually expands from the upper end toward the lower end.
  • the inner cylinder 18 is disposed in the outer cylinder 17 so as to be located immediately below the impeller 25, and protrudes downward from the lower end of the outer cylinder 17.
  • the inner cylinder 18 includes a cylindrical tube portion 18a positioned on the same axis as the rotation shaft 22, and a flare portion 18b continuous with the lower end of the tube portion 18a.
  • the upper end of the cylinder part 18 a is located at the middle part in the vertical direction of the flare part 17 b of the outer cylinder 17, and is arranged at the same position as the pumping cutoff water level LLWL.
  • the flare portion 18b has a conical cylinder shape that gradually spreads from the upper end toward the lower end.
  • the maximum outer diameter of the flare part 18b is smaller than the minimum inner diameter of the outer cylinder 17 (cylinder part 17a).
  • the inner edge portion 19 a of the connecting plate 19 has a shape along the outer surface shape from the upper end to the lower end of the inner tube 18, and is joined to the outer surface of the inner tube 18.
  • the outer edge portion 19 b of the connecting plate 19 has a shape along the inner surface shape from the vicinity of the upper end of the outer cylinder 17 to the vicinity of the lower end thereof, and is joined to the inner surface of the outer cylinder 17.
  • a lower edge portion 19c extending from the lower end of the inner edge portion 19a to the lower end of the outer edge portion 19b protrudes downward from the outer cylinder 17 and is inclined outward from the lower side toward the upper side.
  • An upper edge portion 19d extending from the upper end of the inner edge portion 19a to the upper end of the outer edge portion 19b is accommodated in the outer cylinder 17, and is inclined outward from the lower side toward the upper side.
  • the underwater vortex is a water flow in which air is continuously or intermittently contained in the water flowing from the bottom wall 3 of the water absorption tank 1 toward the bell mouth 16. Since the underwater vortex interferes with the inner cylinder 18 and the connecting plate 19 projecting radially, the underwater vortex can be eliminated, so that the water in the water absorption tank 1 can be effectively drained to a low water level.
  • FIG. 6 is a graph showing the pressure and speed in the inner cylinder 18.
  • the horizontal axis shows the distance (m) from the lower end of the inner cylinder 18, and the vertical axis shows the magnitude of pressure and speed.
  • the internal pressure gradually increases and the internal flow rate gradually increases from the lower end of the inner cylinder 18 toward the upper end. That is, the dynamic pressure in the inner cylinder 18 is lowest at the lower end and becomes higher toward the upper end. Therefore, by adjusting the connection position of the first air supply pipe 30 with respect to the inner cylinder 18, the suction lift ⁇ Ha due to the maximum negative pressure during operation can be adjusted regardless of the depth of the water absorption tank 1.
  • the first air supply pipe 30 is a pipe having an intake port 30 a at the upper end and an air supply port 30 b at the lower end, and always makes the inside and outside of the pump casing 12 communicate spatially. Yes. Most of the first air supply pipe 30 is disposed outside the pump casing 12 and extends in the vertical direction along the pump casing 12.
  • the intake port 30a is disposed in the water absorption tank 1 and is located above the highest water level HWL.
  • a folded portion 30c that is folded in a U shape is provided on the upper portion of the first air supply pipe 30 so that the intake port 30a opens downward.
  • the inner top portion of the folded portion 30 c is the highest position in the first air supply pipe 30.
  • the height of the first air supply pipe 30 from the bottom wall 3 to the inner top portion of the folded portion 30c is set to a value obtained by adding the suction head ⁇ Ha due to the maximum negative pressure generated in the inner cylinder 18 by pumping to the maximum water level HWL. Has been.
  • connection portion 30 d that is bent toward the bell mouth 16 and is connected to the inner cylinder 18 through the outer cylinder 17 is formed at the lower portion of the first air supply pipe 30. .
  • the portion of the outer cylinder 17 through which the connection portion 30d passes is sealed in a liquid-tight manner.
  • An air supply port 30b which is the tip of the connection portion 30d is connected to the flare portion 18b of the inner cylinder 18.
  • the diameter D1 of the flare portion 18b to which the connection portion 30d (air supply port 30b) is connected is 1.4 times or more the diameter D2 of the cylindrical portion 18a. That is, the connecting portion 30d is connected to a portion of the flare portion 18b that is 1.4 times or more the diameter D2 of the cylindrical portion 18a.
  • the cross-sectional area of the connection portion of the first air supply pipe 30 is at least twice the cross-sectional area of the upper end opening of the inner cylinder 18.
  • the dynamic pressure at this connecting portion is 40% of the dynamic pressure at the upper end of the inner cylinder 18.
  • connection position of the connection part 30d with respect to the flare part 18b is set based on the following equation.
  • ⁇ Ha is a suction head (suction loss) of the inner cylinder 18
  • ⁇ a is a loss factor in the inner cylinder 18
  • Vd is a suction port speed in the inner cylinder 18
  • Vs is a suction port speed between the outer cylinder 17 and the inner cylinder 18.
  • Dd is the inner diameter of the inner cylinder 18
  • Dd is the minimum inner diameter of the outer cylinder 17.
  • the suction head ⁇ Ha at an arbitrary position of the inner cylinder 18 can be calculated from the suction port speed Vd of the inner cylinder 18 and the loss coefficient ⁇ a. Therefore, the magnitude
  • DELTA size of suction lift
  • the air supply is at a position where the dynamic pressure is higher than the atmospheric pressure.
  • the mouth 30b is connected.
  • the air outside the pump casing 12 does not flow into the inner cylinder 18 when the water level is higher than the drainage start water level LWL, and flows into the inner cylinder 18 when the water level becomes lower than the drainage start water level LWL.
  • the operation proceeds to the air-water mixing operation.
  • the intake port 30a is opened at a position higher than the maximum water level HWL, and the supply port 30b is connected to the predetermined diameter portion of the flare portion 18b. Air supply is possible. Therefore, since the space
  • the intake port 30a of the first air supply pipe 30 is opened in the water absorption tank 1, drainage does not catch up due to an unintended abnormality, and even when the water in the water absorption tank 1 flows back through the first air supply pipe 30, The water can be returned to the water absorption tank 1. Therefore, it is possible to suppress leakage of water onto the installation floor 2 on which the control base is arranged.
  • the second air supply pipe 33 is a pipe that is bent in a generally inverted U shape, and allows the inside and outside of the pump casing 12 to always communicate spatially. Most of the second air supply pipe 33 is disposed outside the pump casing 12 and extends in the vertical direction along the pump casing 12. One end of the second air supply pipe 33 constitutes the air inlet 33a, and the other end of the second air supply pipe 33 constitutes the air inlet 33b.
  • the intake port 33 a is formed at the lower end of the first pipe portion 33 c located away from the pump casing 12.
  • the intake port 33a is preferably arranged at a height equal to or lower than the pumping cutoff water level LLWL, and is arranged at the same height in this embodiment. That is, the first pipe portion 33c is disposed outside the pump casing 12 so that the intake port 33a is disposed at a predetermined position.
  • the air supply port 33b is formed at the end of the second pipe portion 33d located closer to the pump casing 12 than the first pipe portion 33c.
  • the first tube portion 33c and the second tube portion 33d are continuous via a folded portion 33e that is folded back in a U shape. Similar to the folded portion 30c of the first air supply pipe 30, the height of the second air supply pipe 33 from the bottom wall 3 to the inner top portion of the folded portion 33e is set to a value obtained by adding the suction head ⁇ Ha to the maximum water level HWL. Has been.
  • connection portion 33 f that is bent toward the bell mouth 16 and is connected to the inner tube 18 through the outer tube 17 is formed at the lower portion of the second tube portion 33 d.
  • the portion through which the connecting portion 33f of the outer cylinder 17 penetrates is liquid-tightly sealed.
  • the connecting portion 33f is located at the same height as the pumping cutoff water level LLWL and extends horizontally in the radial direction of the pump casing 12.
  • the air supply port 33b which is the tip of the connection portion 33f is connected to the upper end of the cylindrical portion 18a of the inner cylinder 18 so as to be positioned above the air supply port 30b of the first air supply pipe 30.
  • the second air supply pipe 33 is arranged such that the intake port 33a is positioned at a height equal to or lower than the pumping cutoff water level LLWL, and the air supply port 33b is connected to the inner cylinder 18. Therefore, since the air can be supplied from the intake port 33a into the pump casing 12 only when the water level drops to the pumping cutoff water level LLWL, the pump 10 can be shifted from the air / water mixing operation to the air lock operation.
  • the air supply port 33b of the second air supply pipe 33 is disposed above the air supply port 30b and is connected to the upper end of the inner cylinder 18, so that turbulent flow and separation flow (inner It is not influenced by the water flow faster than the water flow around the cylinder 18. Therefore, it is possible to promptly shift to the pumping off operation.
  • the second air supply pipe 33 includes the connection portion 33f positioned at the pumping cutoff water level and has the air supply port 33b at the tip thereof, the air flow resistance can be reduced, and the air for shutting off the pumping water is efficiently used. Can supply.
  • each air supply piping (Arrangement of each air supply piping) Referring to FIG. 5, two first air supply pipes 30 are arranged so as to be located upstream of the pump casing 12 in the water inflow direction F. Two second air supply pipes 33 are arranged so as to be located downstream of the pump casing 12 in the inflow direction F. A total of four air supply pipes 30 and 33 are arranged radially about the axis of the pump casing 12.
  • the supply pipes 30 and 33 and the pump casing 12 are preferably connected by a known connecting member (for example, a stay).
  • a portion of the first air supply pipe 30 above the connection portion 30d and the pipe parts 33c and 33d of the second air supply pipe 33 are located at the position where the air suction vortex is generated, which is assumed by actual measurement or calculation.
  • the pump casing 12 is arranged at a predetermined interval.
  • the air suction vortex is a water flow in which the air in the water absorption tank 1 is continuously or intermittently contained in the water flowing from the water surface side toward the suction port of the bell mouth 16. This air suction vortex is generated when the water level in the water absorption tank 1 is lowered and the flow velocity on the water surface reaches a certain level.
  • the water flow from the water surface toward the bell mouth 16 interferes with the air supply pipes 30 and 33, so that the water flow can be eliminated before the air is sucked.
  • the pump 10 thus configured has the functions of suppressing the generation of submerged vortices, suppressing the generation of air suction vortices, and the preceding standby operation, the pump 10 does not have the first air supply pipe 30 and the second air supply pipe 33. Effective drainage at low water levels.
  • the generation of air suction vortices can be suppressed by the air supply pipes 30 and 33.
  • the generation of underwater vortices can be suppressed by the bell mouth 16 formed of a double trumpet tube. Therefore, vibration of the pump casing 12 due to the sucked air colliding with the impeller 25 can be prevented.
  • the air in the water absorption tank 1 can be supplied from the first air supply pipe 30 into the pump casing 12 by the suction force of the pump 10 (dynamic pressure of the inner cylinder 18). Therefore, although the amount of water absorption from the bell mouth 16 is reduced, the flow velocity on the water surface in the water absorption tank 1 is slowed, so that the generation of air suction vortex can be suppressed and the water level that can be drained can be lowered. However, even in this case, as the water level becomes lower, the water surface eventually becomes a flow velocity at which air suction vortices are generated, but the generation of air suction vortices at this time can also be suppressed by the air supply pipes 30 and 33.
  • the amount of water absorbed from the bell mouth 16 is further reduced by sucking air from the second air supply pipe 33. Therefore, drainage from the pump casing 12 to the downstream side can be stopped reliably, and the state in which the water column WC is held in the pump casing 12 can be maintained as shown in FIG.
  • the water column WC cools the submersible bearing 23 which is a sliding component in the pump casing 12 and prevents overheating. Therefore, a standby operation in which the pump 10 is continuously driven can be realized.
  • the first air supply pipe 30 is connected to a portion where the dynamic pressure of the inner cylinder 18 is low. Is possible. Therefore, even if it is the shallow water absorption tank 1, the pump 10 can be installed reliably.
  • the bell mouth 16 composed of a double trumpet pipe can suppress the generation of underwater vortices, and the four air supply pipes 30 and 33 can suppress the generation of air suction vortices, the water level that can be drained by the pump 10 is effective. Can be lowered.
  • the total height of the first air supply pipe 30 and the second air supply pipe 33 is set to be higher than the maximum water level HWL plus the suction lift ⁇ Ha, so that water is sucked up over the folded portions 30c and 33e. It will never be done. Therefore, it is possible to prevent dust and the like from flowing into the first air supply pipe 30 and the second air supply pipe 33 and clogging at the folded portions 30c and 33e.
  • the air supplied to the inner cylinder 18 is introduced into the central portion of the impeller 25, the load on the impeller 25 due to air injection can be made smaller than when it is introduced from the outer periphery. Therefore, vibration of the pump 10 due to switching of the operation state can be suppressed.
  • (Second Embodiment) 7 and 8 show the pump 10 of the second embodiment.
  • the second air supply pipe 40 for switching the pump 10 from the air / water mixing operation to the air lock operation is incorporated in the vortex prevention pipe 35 for suppressing the generation of the air suction vortex. It is different from the embodiment.
  • the vortex prevention pipe 35 includes an annular horizontal pipe 36 that surrounds the pump casing 12 below the drainage start water level LWL, and a straight tubular pipe that is disposed outside the pump casing 12 so as to extend in the vertical direction. And a vertical pipe 37.
  • the second air supply pipe 40 of the second embodiment includes an intake pipe 41 arranged in the vertical pipe 37 and an air supply pipe 42 arranged between the horizontal pipe 36 and the pump casing 12.
  • the horizontal pipe 36 is a hollow annular pipe and is disposed on the outer periphery of the bell mouth 16.
  • the inner diameter of the horizontal pipe 36 is substantially the same as the maximum outer diameter of the outer cylinder 17.
  • the horizontal pipe 36 is disposed at the same height as the minimum outer diameter portion of the outer cylinder 17 so as to be positioned coaxially with the pump casing 12 and is connected by a rib (not shown). Thereby, a defined gap (flow path) is formed between the horizontal pipe 36 and the outer cylinder 17.
  • the vertical pipe 37 is a hollow straight pipe, and its upper end is closed liquid-tight and air-tightly by a cover 37a.
  • the lower end of the vertical pipe 37 is connected to the horizontal pipe 36 so as to communicate with the horizontal pipe 36 spatially.
  • four vertical pipes 37 are arranged at a predetermined interval in the circumferential direction around the pump casing 12.
  • the upper end of the vertical pipe 37 is disposed at a position higher than the upper end (exhaust port 41c) of the intake pipe 41.
  • the first air supply pipe 30 of the second embodiment is arranged so as to be located outside the horizontal pipe 36.
  • the connection portion 30d is bent at the same height as the horizontal pipe 36, and the air supply port 30b at the tip is connected to the flare portion 18b of the inner cylinder 18 as in the first embodiment.
  • the intake pipe 41 of the second air supply pipe 40 is a substantially straight pipe disposed in the vertical pipe 37.
  • a bent portion 41 b that is bent outward is provided at the lower end of the intake pipe 41.
  • the bent portion 41b passes through the horizontal pipe 36 located at the drainage cutoff water level LLWL, and the portion of the horizontal pipe 36 through which the bent portion 41b passes is liquid-tightly sealed.
  • the air inlet 41a at the tip of the bent portion 41b is located at the same height as the drain cutoff water level LLWL and is exposed in the water absorption tank 1.
  • the intake pipe 41 extends to a position higher than a position obtained by adding the suction lift ⁇ Ha to the highest water level HWL, and an exhaust port 41 c at the upper end opens in the vertical pipe 37.
  • the air supply pipe 42 of the second air supply pipe 40 is a straight pipe, the air supply port 42 a at the inner end is connected to the cylindrical portion 17 a of the outer cylinder 17, and the connection port 42 b at the outer end is connected to the inner side of the horizontal pipe 36. Connected to the lap.
  • the air supply pipe 42 communicates with the intake pipe 41 via the vertical pipe 37 and the horizontal pipe 36, and the second air supply pipe 40 also uses the vortex prevention pipe 35 as a flow path.
  • the air supply port 42 a of the air supply pipe 42 is connected to the outer cylinder 17 constituting the bell mouth 16 so as to be positioned above the air supply port 30 b of the first air supply pipe 30.
  • intake pipes 41 are arranged in four vertical pipes 37, respectively.
  • Four air supply pipes 42 are arranged at equal intervals in the circumferential direction with the pump casing 12 as the center.
  • the four air supply pipes 42 and the four vertical pipes 37 are arranged at intervals in the circumferential direction, and are configured such that the angular positions in plan view do not coincide with each other.
  • the air flowing into the horizontal pipe 36 from the vertical pipe 37 does not flow directly to the air supply pipe 42 but always flows through the horizontal pipe 36 to the air supply pipe 42, and from the air supply pipe 42 to the inside of the bell mouth 16.
  • the vibration of the pump 10 due to the supply air being biased locally is suppressed.
  • the pump 10 of the second embodiment in the drainage operation, even if the water level in the water absorption tank 1 becomes the vortex generation water level, the generation of the air suction vortex can be suppressed by the vortex prevention pipe 35. Further, in the air / water mixing operation, the air in the water absorption tank 1 can be supplied from the first air supply pipe 30 into the pump casing 12 by the suction force of the pump 10. In the air lock operation, the air sucked from the intake port 41 a is supplied into the pump casing 12 via the intake pipe 41, the vertical pipe 37, the horizontal pipe 36, and the air supply pipe 42.
  • the distance between the bottom wall 3 of the water absorption tank 1 and the lower end of the pump casing 12 can be secured as in the first embodiment, and the shallow water absorption tank 1 is used. Even the pump 10 can be installed. Further, since the bell mouth 16 composed of a double trumpet pipe can suppress the generation of underwater vortices, and the four vertical pipes 37 constituting the vortex prevention pipe 35 can suppress the generation of air suction vortices. The water level can be effectively lowered.
  • (Third embodiment) 9 and 10 show the pump 10 of the third embodiment.
  • the third embodiment is different from the second embodiment in that the first air supply pipe 45 that switches the pump 10 from the drain operation to the air / water mixing operation is incorporated in the vortex prevention pipe 35.
  • the vortex prevention pipe 35 includes one horizontal pipe 36 and four vertical pipes 37 as in the second embodiment.
  • one vertical pipe 37 ⁇ / b> A located on the upstream side in the inflow direction F is connected to the horizontal pipe 36 so as not to spatially communicate with the inside of the horizontal pipe 36.
  • the remaining vertical pipe 37 ⁇ / b> B is connected to the horizontal pipe 36 so as to communicate spatially with the inside of the horizontal pipe 36.
  • the intake pipe 41 and the supply pipe 42 which comprise the 2nd supply pipe 40 are connected to the vertical pipe 37B and the horizontal pipe 36 similarly to 2nd Embodiment.
  • the first air supply pipe 45 of the third embodiment has a configuration in which the vertical pipe 37A of the vortex prevention pipe 35 is also used as an intake pipe, and the air supply pipe 46 is connected to the lower end of the vertical pipe 37A.
  • the upper end of the vertical pipe 37A constituting the intake pipe is closed by a cover 37a as in the first embodiment.
  • the vertical pipe 37A is provided with an intake port 37b so as to be positioned above the highest water level HWL.
  • the air supply pipe 46 is connected to the lower end of the vertical pipe 37 so as to be spatially continuous with the inside of the vertical pipe 37A.
  • two air supply pipes 46 are used, and air can be supplied to the flare portion 18b of the inner cylinder 18 from different positions spaced by 45 degrees.
  • each air supply pipe 46 includes a continuous portion 46 b that extends in the circumferential direction around the rotation shaft 22, and a connection portion 46 c that is bent from the tip of the continuous portion 46 b.
  • the connection part 46c penetrates the outer cylinder 17 similarly to each embodiment, and the air supply port 46a at the tip is connected to the flare part 18b of the inner cylinder 18.
  • the operation is switched to the drainage operation, the air / water mixing operation, and the air lock operation according to the water level in the water absorption tank 1. Therefore, the same operation and effect as each embodiment can be obtained. Further, the first air supply pipe 45 that switches from the drain operation to the air / water mixing operation and the second air supply pipe 40 that switches from the air / water mixing operation to the air lock operation suppress the generation of the air suction vortex 35. Therefore, the piping structure arranged outside the pump casing 12 can be simplified.
  • FIG.11 and FIG.12 shows the pump 10 of 4th Embodiment.
  • the fourth embodiment is different from the third embodiment in that the fluidity of air supplied via the vortex prevention pipe 35 is improved.
  • the vortex prevention pipe 35 of the fourth embodiment includes an annular horizontal pipe 36 and four vertical pipes 37A and 37B, as in the third embodiment.
  • a bent portion 37 c that is bent inward in the radial direction of the pump casing 12 toward the bell mouth 16 is provided below the vertical pipes 37 ⁇ / b> A and 37 ⁇ / b> B.
  • the inclination angle of the bent portion 37c with respect to the portion extending along the axis of the pump casing 12 is set in a range wider than 90 degrees and narrower than 180 degrees, and is set to 157.5 degrees in this embodiment.
  • the air supply pipe 46 of the first air supply pipe 45 is connected to the lower end of the vertical pipe 37A as in the third embodiment.
  • the intake pipe 41 of the second air supply pipe 40 passes through the bent portion 37c of the vertical pipe 37B, and is arranged so that the intake port 41a is located at the drainage cutoff water level LLWL.
  • the portion of the bent portion 37c that penetrates the intake pipe 41 is liquid-tightly sealed.
  • the same operations and effects as those of the third embodiment can be obtained.
  • the bent portions 37c are provided in the vertical pipes 37A and 37B, the flow resistance of air to the outer cylinder 17 and the inner cylinder 18 can be reduced. Therefore, the air for switching to the air / water mixing operation and the air lock operation can be efficiently supplied.
  • the vertical shaft pump 10 of the present invention is not limited to the configuration of the above embodiment, and various modifications can be made.
  • the inner cylinder 18 of the bell mouth 16 may be configured not to protrude downward from the outer cylinder 17.
  • the intake ports 30 a and 37 b of the air supply pipes 30 and 45 may be arranged on the installation floor 2.
  • the air supply pipe 42 of the second air supply pipe 40 shown in the second to fourth embodiments may be connected to the inner cylinder 18 through the outer cylinder 17, as in the first embodiment.
  • the first supply pipes 30 and 45 and the second supply pipes 33 and 40 may be provided with orifices (throttles). Even when the vortex prevention pipe 35 is arranged, the first air supply pipe 30 and the second air supply pipe 33 shown in the first embodiment may be independently piped.
  • Inlet port 42b Connection port 45 ... First Air supply pipes 46 ... air supply pipe 46a ... air supply port 46b ... continuous portion 46c ... connecting portion LWL ... drainage starting level LLWL ... drainage blocking level HWL ... High Water WC ... water column

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

This vertical shaft pump 10 is provided with: a pump casing 12 which is disposed in a water suction tank 1 so as to extend in the vertical direction; a vane wheel 25 which is disposed in an upper part of a duct tube 16 inside the pump casing 12; and a first air supply pipe 30 which is disposed outside the pump casing 12. An air intake opening 30a of the first air supply pipe 30 is positioned higher than a highest water level that is higher than a water discharge initiation position LWL, while an air supply opening 30b of the first air supply pipe 30 is connected to the duct tube 16. The duct tube 16 is provided with an outer tube 17 and an inner tube 18 having a flared portion 18b, while the air supply opening 30b of the first air supply pipe 30 is connected to this flared portion 18b of the inner tube 18.

Description

立軸ポンプVertical shaft pump
 本発明は、立軸ポンプに関する。 The present invention relates to a vertical shaft pump.
 吸水槽内に水が流入する前に予め始動される先行待機形の立軸ポンプが知られている。特許文献1に開示された立軸ポンプは、ポンプケーシングの外部に配管された給気管を備える。ポンプケーシングの下端には外筒と内筒を有する二重ラッパ管が配置され、内筒に給気管の下端(給気口)が接続されている。給気管の上端(吸気口)は、吸水槽の上部を塞ぐ据付床の上方、つまり吸水槽の定められた最高水位よりも上方に配置されている。 There is known a stand-by type vertical shaft pump which is started in advance before water flows into the water absorption tank. The vertical shaft pump disclosed in Patent Document 1 includes an air supply pipe piped outside the pump casing. A double trumpet pipe having an outer cylinder and an inner cylinder is disposed at the lower end of the pump casing, and the lower end (air supply port) of the air supply pipe is connected to the inner cylinder. The upper end (intake port) of the air supply pipe is arranged above the installation floor that closes the upper part of the water absorption tank, that is, above the maximum water level determined for the water absorption tank.
特許4690134号公報Japanese Patent No. 4690134
 特許文献1のポンプでは、ラッパ管の下端と吸水槽の底との間隔を確保することについて、何も考慮されていない。詳しくは、特許文献1では、排水開始水位を基準として、ポンプケーシング内の動圧による最大負荷分を下げた位置を、給気管の接続位置としている。よって、ポンプの流量が大きい場合、ラッパ管の全長を長くしなければ、給気管を接続できない。しかし、底が浅い吸水槽の場合、全長が長いラッパ管を用いたポンプは設置できない。 In the pump of Patent Document 1, nothing is taken into consideration to ensure the distance between the lower end of the trumpet pipe and the bottom of the water absorption tank. Specifically, in Patent Document 1, the position where the maximum load due to the dynamic pressure in the pump casing is lowered with the drainage start water level as a reference is the connection position of the supply pipe. Therefore, when the flow rate of the pump is large, the air supply pipe cannot be connected unless the overall length of the trumpet pipe is increased. However, in the case of a water absorption tank with a shallow bottom, a pump using a trumpet pipe having a long overall length cannot be installed.
 本発明は、吸水槽の底とポンプケーシングの下端との間隔を確保でき、浅い吸水槽であっても設置可能な立軸ポンプを提供することを課題とする。 An object of the present invention is to provide a vertical shaft pump that can secure the space between the bottom of the water absorption tank and the lower end of the pump casing and can be installed even in a shallow water absorption tank.
 本発明の一態様は、上下方向へ延びるように吸水槽に配置され、下端に前記吸水槽内の水を吸い込むラッパ管を有するポンプケーシングと、前記吸水槽の定められた排水開始水位に位置するように、前記ポンプケーシング内の前記ラッパ管の上方に配置された羽根車と、前記排水開始位置よりも高い最高水位よりも上方に位置するように前記ポンプケーシング外に配置された一端の吸気口と、前記ラッパ管に接続された他端の給気口とを有する第1給気配管とを備え、前記ラッパ管は、外筒と、前記羽根車の直下に位置するように前記外筒内に配置され、上端から下端に向けて次第に広がったフレア部を有する内筒とを備え、前記第1給気配管の前記給気口は前記内筒の前記フレア部に接続され、前記第1給気配管によって前記ポンプケーシング外と前記内筒内が常に空間的に連通している、立軸ポンプを提供する。 One aspect of the present invention is disposed in a water absorption tank so as to extend in the vertical direction, and has a pump casing having a trumpet pipe for sucking water in the water absorption tank at a lower end thereof, and is located at a predetermined drainage start water level of the water absorption tank. As described above, an impeller disposed above the trumpet pipe in the pump casing, and an intake port at one end disposed outside the pump casing so as to be positioned above a highest water level higher than the drainage start position And a first air supply pipe having an air supply port at the other end connected to the trumpet pipe, and the trumpet pipe is disposed in the outer cylinder so as to be positioned directly below the outer cylinder and the impeller. And an inner cylinder having a flare portion gradually spreading from the upper end toward the lower end, and the air supply port of the first air supply pipe is connected to the flare portion of the inner cylinder, The pump cable is Wherein the inner cylinder and outer ring is always spatially communication, it provides a vertical shaft pump.
 この立軸ポンプによれば、第1給気配管はポンプケーシングの内筒のフレア部に接続されており、このフレア部内の動圧は、内筒の上端開口部分の動圧よりも低い。また、フレア部内の動圧は、水位が排水開始水位よりも高い場合には大気圧よりも低く、水位が排水開始水位よりも低くなると大気圧よりも高くなる。よって、ポンプケーシング外の空気は、水位が排水開始水位よりも高い場合には内筒内には流入せず、水位が排水開始水位よりも低くなると内筒内に流入する。その結果、水位が排水開始水位よりも高い場合には水のみの排水が可能であり、水位が排水開始水位よりも低くなると気水混合運転に移行することが可能である。このように、第1給気配管を内筒のフレア部に接続することで、ラッパ管の全長を長くすることなく、最適な給気が可能である。よって、吸水槽の底とポンプケーシングの下端との間隔を確保でき、浅い吸水槽であっても確実にポンプを設置できる。 According to this vertical shaft pump, the first air supply pipe is connected to the flare portion of the inner cylinder of the pump casing, and the dynamic pressure in the flare portion is lower than the dynamic pressure of the upper end opening portion of the inner cylinder. The dynamic pressure in the flare portion is lower than the atmospheric pressure when the water level is higher than the drainage start water level, and becomes higher than the atmospheric pressure when the water level is lower than the drainage start water level. Therefore, the air outside the pump casing does not flow into the inner cylinder when the water level is higher than the drainage start water level, and flows into the inner cylinder when the water level becomes lower than the drainage start water level. As a result, when the water level is higher than the drainage start water level, only water can be drained, and when the water level becomes lower than the drainage start water level, it is possible to shift to the air-water mixing operation. In this manner, by connecting the first air supply pipe to the flare portion of the inner cylinder, optimal air supply is possible without increasing the overall length of the trumpet pipe. Therefore, the space | interval of the bottom of a water absorption tank and the lower end of a pump casing can be ensured, and even if it is a shallow water absorption tank, a pump can be installed reliably.
 本発明の立軸ポンプでは、上端開口部分よりも動圧が低いフレア部に第1給気配管が接続されているため、ラッパ管の全長が短くても最適な給気が可能である。よって、吸水槽の底とポンプケーシングの下端との間隔を確保でき、浅い吸水槽であっても確実にポンプを設置できる。 In the vertical shaft pump of the present invention, since the first air supply pipe is connected to the flare portion whose dynamic pressure is lower than that of the upper end opening portion, optimum air supply is possible even if the overall length of the trumpet pipe is short. Therefore, the space | interval of the bottom of a water absorption tank and the lower end of a pump casing can be ensured, and even if it is a shallow water absorption tank, a pump can be installed reliably.
本発明の第1実施形態に係る立軸ポンプを示す断面図。Sectional drawing which shows the vertical shaft pump which concerns on 1st Embodiment of this invention. 図1のポンプのエアロック状態を示す断面図。Sectional drawing which shows the air lock state of the pump of FIG. 図1の一部拡大断面図。The partially expanded sectional view of FIG. 図3の一部拡大断面図。FIG. 4 is a partially enlarged sectional view of FIG. 3. 図3の平面図。FIG. 4 is a plan view of FIG. 3. ラッパ管の内筒での圧力と速度の分布曲線を示すグラフ。The graph which shows the distribution curve of the pressure and speed in the inner cylinder of a trumpet pipe. 第2実施形態の立軸ポンプの一部を示す断面図。Sectional drawing which shows a part of vertical shaft pump of 2nd Embodiment. 図7の平面図。The top view of FIG. 第3実施形態の立軸ポンプの一部を示す断面図。Sectional drawing which shows a part of vertical shaft pump of 3rd Embodiment. 図9の平面図。The top view of FIG. 第4実施形態の立軸ポンプの一部を示す断面図。Sectional drawing which shows a part of vertical shaft pump of 4th Embodiment. 図11の平面図。The top view of FIG.
 以下、本発明の実施の形態を図面に従って説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1実施形態)
 図1は、本発明の第1実施形態に係る立軸ポンプ10(以下「ポンプ」と言う。)を示す。このポンプ10は、ポンプケーシング12の外側に給気配管30,33を備え、吸水槽1の水位によって、排水(全水)運転、気水混合運転、エアロック(排水遮断)運転に切り換わる先行待機形である。
(First embodiment)
FIG. 1 shows a vertical shaft pump 10 (hereinafter referred to as “pump”) according to a first embodiment of the present invention. This pump 10 is provided with air supply pipes 30 and 33 outside the pump casing 12, and is switched to a drainage (total water) operation, an air-water mixing operation, and an air lock (drainage shutoff) operation depending on the water level of the water absorption tank 1. It is a standby form.
(立軸ポンプの概要)
 図1に示すように、ポンプ10は、ポンプケーシング12、回転軸22、及び羽根車25を備える。図5を参照すると、ポンプ10を配置する吸水槽1は、据付床2と底壁3の間の3方が側壁4によって塞がれており、水は、図5において側壁4が無い左側から流入する。
(Outline of vertical shaft pump)
As shown in FIG. 1, the pump 10 includes a pump casing 12, a rotating shaft 22, and an impeller 25. Referring to FIG. 5, in the water absorption tank 1 in which the pump 10 is disposed, three sides between the installation floor 2 and the bottom wall 3 are closed by the side walls 4, and water is drawn from the left side without the side walls 4 in FIG. 5. Inflow.
 図1を参照すると、ポンプケーシング12は、吸水槽1内で上下方向に延びるように、吸水槽1の上部を覆う据付床2に固定されている。ポンプケーシング12は、吸水槽1内に配置された揚水管13と、据付床2上に配置された吐出し管20とを備える。揚水管13は、直管14、ベーンケーシング15、及びベルマウス16を備え、この順で上側から下側へ接続されている。吐出し管20は、中心軸が90度湾曲した吐出エルボ21を備え、直管14の上端に接続されている。吐出エルボ21の出口には、下流側へ排水するための送水管(図示せず)が接続されている。 Referring to FIG. 1, the pump casing 12 is fixed to an installation floor 2 that covers the upper part of the water absorption tank 1 so as to extend in the vertical direction in the water absorption tank 1. The pump casing 12 includes a pumping pipe 13 disposed in the water absorption tank 1 and a discharge pipe 20 disposed on the installation floor 2. The pumping pipe 13 includes a straight pipe 14, a vane casing 15, and a bell mouth 16, which are connected in this order from the upper side to the lower side. The discharge pipe 20 includes a discharge elbow 21 whose central axis is bent by 90 degrees, and is connected to the upper end of the straight pipe 14. A water supply pipe (not shown) for draining downstream is connected to the outlet of the discharge elbow 21.
 回転軸22は、吐出エルボ21を貫通し、揚水管13の軸線に沿ってポンプケーシング12内に配置されている。図3を参照すると、回転軸22は、直管14内及びベーンケーシング15内の軸受ケーシング15aに配置された水中軸受23に、回転可能に支持されている。回転軸22の上端は吐出エルボ21から外側へ突出されており、その貫通部分は軸封装置によって液密にシールされている。 The rotary shaft 22 passes through the discharge elbow 21 and is arranged in the pump casing 12 along the axis of the pumping pipe 13. Referring to FIG. 3, the rotating shaft 22 is rotatably supported by an underwater bearing 23 disposed in a bearing casing 15 a in the straight pipe 14 and the vane casing 15. The upper end of the rotating shaft 22 protrudes outward from the discharge elbow 21, and the penetrating portion thereof is liquid-tightly sealed by a shaft seal device.
 羽根車25は、ベルマウス16の上方に位置するように、軸受ケーシング15aの下側に配置され、回転軸22の下端に取り付けられている。羽根車25の上端25aは、仕様によって定められた排水開始水位LWLと同一高さに配置されている。 The impeller 25 is disposed below the bearing casing 15 a so as to be positioned above the bell mouth 16 and is attached to the lower end of the rotary shaft 22. The upper end 25a of the impeller 25 is disposed at the same height as the drainage start water level LWL determined by the specifications.
 ポンプケーシング12から突出した回転軸22の上端には、駆動手段(図示せず)が機械的に接続されている。駆動手段には、電動モータ又は内燃機関の1つであるディーゼル機関が用いられる。駆動手段を駆動すると、回転軸22と一体に羽根車25が回転されることで、吸水槽1内の水がポンプケーシング12内を通って下流側へ排出される。 A driving means (not shown) is mechanically connected to the upper end of the rotating shaft 22 protruding from the pump casing 12. As the drive means, an electric motor or a diesel engine which is one of internal combustion engines is used. When the driving means is driven, the impeller 25 is rotated integrally with the rotary shaft 22, so that the water in the water absorption tank 1 is discharged downstream through the pump casing 12.
 図2に示すように、先行待機形のポンプ10は、ポンプケーシング12内に水柱WCを保持したエアロック運転を可能とし、周囲の水によって水中軸受23の過熱を防ぎ、吸水槽1に水が無い状態でもポンプ10を継続運転可能とする。このエアロック運転を実現するために、ポンプケーシング12の周囲には、ポンプケーシング12内に吸水槽1内の空気を供給する第1給気配管30と第2給気配管33とが配置されている。 As shown in FIG. 2, the preceding standby type pump 10 enables an air lock operation in which a water column WC is held in a pump casing 12, prevents the overwater bearing 23 from being overheated by surrounding water, and allows water to enter the water absorption tank 1. The pump 10 can be continuously operated even in the absence. In order to realize this air lock operation, a first air supply pipe 30 and a second air supply pipe 33 that supply air in the water absorption tank 1 into the pump casing 12 are arranged around the pump casing 12. Yes.
 第1給気配管30は、排水運転から気水混合運転に切り換えるために設けられ、第2給気配管33は、気水混合運転からエアロック運転に切り換えるために設けられている。給気配管30,33を通したポンプケーシング12内への給気状態は、ポンプケーシング12内の動圧によって切り換わる。 The first air supply pipe 30 is provided for switching from the drain operation to the air / water mixing operation, and the second air supply pipe 33 is provided for switching from the air / water mixing operation to the air lock operation. The state of air supply into the pump casing 12 through the air supply pipes 30 and 33 is switched by the dynamic pressure in the pump casing 12.
 この先行待機形のポンプ10は、例えば地域気象観測システムの情報に基づいて、オペレータによって始動される。吸水槽1内の水位が羽根車25よりも低い当初では、羽根車25が気中にあるため、ポンプ10は排水を行うことのない気中運転になる。水位が羽根車25の下端よりも上がると、吸水槽1内の水が羽根車25によって吸い上げられるとともに、第1給気配管30を通して空気が吸い込まれるため、ポンプ10は、水と空気を混合状態で排出する気水混合運転に切り換わる。水位が排水開始水位LWL(羽根車25の上端25a)よりも上がると、第1給気配管30を通した空気の吸い込みが遮断されるため、ポンプ10は、水のみを排出する排水運転に切り換わる。 The preceding standby type pump 10 is started by an operator based on information of a local weather observation system, for example. Since the impeller 25 is in the air at the beginning when the water level in the water absorption tank 1 is lower than that of the impeller 25, the pump 10 is operated in the air without draining. When the water level rises above the lower end of the impeller 25, the water in the water absorption tank 1 is sucked up by the impeller 25 and air is sucked in through the first air supply pipe 30, so that the pump 10 is in a mixed state of water and air. Switch to air / water mixing operation. When the water level rises above the drainage start water level LWL (the upper end 25a of the impeller 25), the suction of air through the first air supply pipe 30 is shut off, so the pump 10 is switched to a drainage operation that discharges only water. Change.
 排水により、吸水槽1内の水位が排水開始水位LWLよりも下がると、第1給気配管30を通して再び空気が吸い込まれるため、ポンプ10は、気水混合運転に切り換わる。水位が排水遮断水位LLWLよりも下がると、第2給気配管33からも空気が吸い込まれるため、ポンプ10は、排水することなく水柱WCを保持したエアロック運転に切り換わる。その後、水位が排水遮断水位LLWLよりも上がると、ポンプ10は、再び気水混合運転に切り換わる。つまり、ポンプ10は、オペレータが停止するまで、エアロック運転、気水混合運転、排水運転、気水混合運転、エアロック運転の順で運転状態が切り換わる。  When the water level in the water absorption tank 1 falls below the drainage start water level LWL due to drainage, air is sucked again through the first air supply pipe 30, and the pump 10 is switched to the air / water mixing operation. When the water level falls below the drain cut-off water level LLWL, air is also sucked from the second air supply pipe 33, so that the pump 10 switches to the air lock operation that holds the water column WC without draining. Thereafter, when the water level rises above the drainage cutoff water level LLWL, the pump 10 switches to the air / water mixing operation again. That is, the operation state of the pump 10 is switched in the order of air lock operation, air / water mixing operation, drainage operation, air / water mixing operation, and air lock operation until the operator stops. *
 前述した排水開始水位LWL、排水遮断水位LLWL、及び最高水位HWLは、要求仕様として定められている。これらは、底壁3からの高さとして定義されており、図1に示すように、排水遮断水位LLWL、排水開始水位LWL、及び最高水位HWLの順で高くなるように設定されている。排水開始水位LWL以上の高水位では、空気を混入することなく、水だけを排出する必要がある。排水開始水位LWL未満の低水位では、空気の混入が許容される。排水遮断水位LLWL未満の超低水位では、排水を行わないエアロック運転に移行する必要がある。 The aforementioned drainage start water level LWL, drainage cutoff water level LLWL, and maximum water level HWL are defined as required specifications. These are defined as heights from the bottom wall 3 and are set to increase in the order of the drainage cutoff water level LLWL, the drainage start water level LWL, and the highest water level HWL, as shown in FIG. At high water levels above the drainage start water level LWL, it is necessary to discharge only water without mixing air. At a low water level lower than the drainage start water level LWL, mixing of air is allowed. At an ultra-low water level below the drainage cut-off water level LLWL, it is necessary to shift to an air lock operation without draining.
 従来の先行待機形のポンプでは、定められた排水開始水位LWLと、ポンプケーシング内の最大負荷とに基づいて給気管の接続位置を設定していたため、長いベルマウスが必要になることがあり、この場合には底が浅い吸水槽には適用できなかった。そこで、本実施形態では、第1給気配管30とポンプケーシング12の接続位置を最適化することで、ベルマウス16の全長を長くすることなく、第1給気配管30からポンプケーシング12内へ所定のタイミングで給気可能とする。また、第2給気配管33の形状と接続位置を最適化することで、揚水遮断のための給気を効率化する。 In the conventional advance standby type pump, since the connection position of the air supply pipe is set based on the set drainage start water level LWL and the maximum load in the pump casing, a long bell mouth may be required, In this case, it could not be applied to a water absorption tank having a shallow bottom. Therefore, in the present embodiment, by optimizing the connection position between the first supply pipe 30 and the pump casing 12, the first supply pipe 30 enters the pump casing 12 without increasing the overall length of the bell mouth 16. It is possible to supply air at a predetermined timing. Further, by optimizing the shape and connection position of the second air supply pipe 33, the air supply for pumping off is made more efficient.
 具体的には、ベルマウス16を外筒17と内筒18とを備える二重ラッパ管によって構成する。そして、内筒18のうちの比較的動圧が低いフレア部18bに第1給気配管30を接続する。また、内筒18のうちの比較的動圧が高い筒部18aに第2給気配管33を接続する。これにより、運転切り換えに最適な給気を実行可能とする。詳しくは以下の通りである。 Specifically, the bell mouth 16 is constituted by a double trumpet tube including an outer cylinder 17 and an inner cylinder 18. And the 1st air supply piping 30 is connected to the flare part 18b with comparatively low dynamic pressure of the inner cylinder 18. As shown in FIG. In addition, the second air supply pipe 33 is connected to the cylinder portion 18 a having a relatively high dynamic pressure in the inner cylinder 18. As a result, it is possible to execute air supply optimal for operation switching. Details are as follows.
(ベルマウスの詳細)
 図4に示すように、ベルマウス16は、ベーンケーシング15の下端に接続される外筒17と、外筒17内に配置された内筒18と、これらを連結する2以上の連結板19とを備える。
(Details of Bellmouth)
As shown in FIG. 4, the bell mouth 16 includes an outer cylinder 17 connected to the lower end of the vane casing 15, an inner cylinder 18 disposed in the outer cylinder 17, and two or more connecting plates 19 that connect these. Is provided.
 外筒17は、円筒状の筒部17aと、筒部17aの下端に連続したフレア部17bとを備える。筒部17aの上端には、ボルトによってベーンケーシング15に締結されるフランジ部17cが設けられている。フレア部17bは、上端から下端に向けて次第に広がった円錐筒状である。 The outer tube 17 includes a cylindrical tube portion 17a and a flare portion 17b continuous with the lower end of the tube portion 17a. A flange portion 17c that is fastened to the vane casing 15 by a bolt is provided at the upper end of the cylindrical portion 17a. The flare portion 17b has a conical cylinder shape that gradually expands from the upper end toward the lower end.
 内筒18は、羽根車25の直下に位置するように外筒17内に配置され、外筒17の下端から下向きに突出している。内筒18は、回転軸22と同一軸線上に位置する円筒状の筒部18aと、筒部18aの下端に連続したフレア部18bとを備える。図1を併せて参照すると、筒部18aの上端は、外筒17のフレア部17bの上下方向における中間部分に位置し、揚水遮断水位LLWLと同じ位置に配置されている。フレア部18bは、上端から下端に向けて次第に広がった円錐筒状である。フレア部18bの最大外径は、外筒17(筒部17a)の最小内径よりも小さい。 The inner cylinder 18 is disposed in the outer cylinder 17 so as to be located immediately below the impeller 25, and protrudes downward from the lower end of the outer cylinder 17. The inner cylinder 18 includes a cylindrical tube portion 18a positioned on the same axis as the rotation shaft 22, and a flare portion 18b continuous with the lower end of the tube portion 18a. Referring also to FIG. 1, the upper end of the cylinder part 18 a is located at the middle part in the vertical direction of the flare part 17 b of the outer cylinder 17, and is arranged at the same position as the pumping cutoff water level LLWL. The flare portion 18b has a conical cylinder shape that gradually spreads from the upper end toward the lower end. The maximum outer diameter of the flare part 18b is smaller than the minimum inner diameter of the outer cylinder 17 (cylinder part 17a).
 連結板19は、本実施形態では4枚有し、回転軸22の軸線を中心として90度間隔をあけて放射状に配置されている。連結板19の内縁部19aは、内筒18の上端から下端までの外面形状に沿った形状を有し、内筒18の外面に接合されている。連結板19の外縁部19bは、外筒17の上端近傍から下端近傍までの内面形状に沿った形状を有し、外筒17の内面に接合されている。内縁部19aの下端から外縁部19bの下端にかけて延びる下縁部19cは、外筒17から下方に突出し、下側から上側に向けて外向きに傾斜している。内縁部19aの上端から外縁部19bの上端にかけて延びる上縁部19dは、外筒17内に収まっており、下側から上側に向けて外向きに傾斜している。 In the present embodiment, four connecting plates 19 are provided, and are arranged radially with an interval of 90 degrees about the axis of the rotating shaft 22. The inner edge portion 19 a of the connecting plate 19 has a shape along the outer surface shape from the upper end to the lower end of the inner tube 18, and is joined to the outer surface of the inner tube 18. The outer edge portion 19 b of the connecting plate 19 has a shape along the inner surface shape from the vicinity of the upper end of the outer cylinder 17 to the vicinity of the lower end thereof, and is joined to the inner surface of the outer cylinder 17. A lower edge portion 19c extending from the lower end of the inner edge portion 19a to the lower end of the outer edge portion 19b protrudes downward from the outer cylinder 17 and is inclined outward from the lower side toward the upper side. An upper edge portion 19d extending from the upper end of the inner edge portion 19a to the upper end of the outer edge portion 19b is accommodated in the outer cylinder 17, and is inclined outward from the lower side toward the upper side.
 このように、外筒17から内筒18を突出させたベルマウス16によれば、ポンプケーシング12の下方に位置する底壁3での水中渦の発生を抑制できる。水中渦とは吸水槽1の底壁3からベルマウス16に向けて流れる水に、空気が連続的又は断続的に含まれる水流である。内筒18と放射状に突出する連結板19とに水中渦が干渉することによって、水中渦を消滅できるため、吸水槽1内の水を低水位まで効果的に排水できる。 Thus, according to the bell mouth 16 in which the inner cylinder 18 is protruded from the outer cylinder 17, it is possible to suppress the generation of underwater vortices in the bottom wall 3 located below the pump casing 12. The underwater vortex is a water flow in which air is continuously or intermittently contained in the water flowing from the bottom wall 3 of the water absorption tank 1 toward the bell mouth 16. Since the underwater vortex interferes with the inner cylinder 18 and the connecting plate 19 projecting radially, the underwater vortex can be eliminated, so that the water in the water absorption tank 1 can be effectively drained to a low water level.
 図6は内筒18内の圧力と速度を表すグラフである。横軸は内筒18の下端からの距離(m)を示し、縦軸は圧力と速度の大きさを示している。この図6を参照すると、内筒18の下端から上端に向かうに従って、内部の圧力は次第に高くなり、内部の流速は次第に早くなることが分かる。つまり、内筒18内の動圧は、下端が最も低く、上端に向かうに従って高くなる。よって、この内筒18に対する第1給気配管30の接続位置を調整することで、吸水槽1の深さに拘わらず、運転時の最大負圧による吸込揚程ΔHaを調節できる。 FIG. 6 is a graph showing the pressure and speed in the inner cylinder 18. The horizontal axis shows the distance (m) from the lower end of the inner cylinder 18, and the vertical axis shows the magnitude of pressure and speed. Referring to FIG. 6, it can be seen that the internal pressure gradually increases and the internal flow rate gradually increases from the lower end of the inner cylinder 18 toward the upper end. That is, the dynamic pressure in the inner cylinder 18 is lowest at the lower end and becomes higher toward the upper end. Therefore, by adjusting the connection position of the first air supply pipe 30 with respect to the inner cylinder 18, the suction lift ΔHa due to the maximum negative pressure during operation can be adjusted regardless of the depth of the water absorption tank 1.
(第1給気配管の詳細)
 図1に示すように、第1給気配管30は、上側の端に吸気口30aを備え、下端に給気口30bを備えるパイプであり、ポンプケーシング12の内外を常に空間的に連通させている。第1給気配管30の大部分は、ポンプケーシング12の外部に配置され、ポンプケーシング12に沿って上下方向に延びている。
(Details of the first air supply piping)
As shown in FIG. 1, the first air supply pipe 30 is a pipe having an intake port 30 a at the upper end and an air supply port 30 b at the lower end, and always makes the inside and outside of the pump casing 12 communicate spatially. Yes. Most of the first air supply pipe 30 is disposed outside the pump casing 12 and extends in the vertical direction along the pump casing 12.
 吸気口30aは、吸水槽1内に配置され、最高水位HWLよりも上方に位置している。吸気口30aが下向きに開口するように、第1給気配管30の上部にはU字状に折り返した折返部30cが設けられている。折返部30cの内側頂部が、第1給気配管30において最も高い位置である。底壁3から折返部30cの内側頂部までの第1給気配管30の高さは、最高水位HWLに、揚水によって内筒18内で発生する最大負圧による吸込揚程ΔHaを加えた値に設定されている。 The intake port 30a is disposed in the water absorption tank 1 and is located above the highest water level HWL. A folded portion 30c that is folded in a U shape is provided on the upper portion of the first air supply pipe 30 so that the intake port 30a opens downward. The inner top portion of the folded portion 30 c is the highest position in the first air supply pipe 30. The height of the first air supply pipe 30 from the bottom wall 3 to the inner top portion of the folded portion 30c is set to a value obtained by adding the suction head ΔHa due to the maximum negative pressure generated in the inner cylinder 18 by pumping to the maximum water level HWL. Has been.
 図4を併せて参照すると、第1給気配管30の下部には、ベルマウス16に向けて屈曲し、外筒17を貫通して内筒18に接続される接続部30dが形成されている。外筒17の接続部30dが貫通した部分は、液密にシールされている。接続部30dの先端である給気口30bは、内筒18のフレア部18bに接続されている。 Referring also to FIG. 4, a connection portion 30 d that is bent toward the bell mouth 16 and is connected to the inner cylinder 18 through the outer cylinder 17 is formed at the lower portion of the first air supply pipe 30. . The portion of the outer cylinder 17 through which the connection portion 30d passes is sealed in a liquid-tight manner. An air supply port 30b which is the tip of the connection portion 30d is connected to the flare portion 18b of the inner cylinder 18.
 図4を参照すると、接続部30d(給気口30b)が接続された部分のフレア部18bの直径D1は、筒部18aの直径D2の1.4倍以上である。つまり、接続部30dは、フレア部18bにおいて、筒部18aの直径D2の1.4倍以上となる部分に接続されている。面積比で言い換えると、第1給気配管30の接続部分の断面積は、内筒18の上端開口の断面積の2倍以上である。図6を併せて参照すると、この接続部分の動圧は、内筒18の上端の動圧の40%である。 Referring to FIG. 4, the diameter D1 of the flare portion 18b to which the connection portion 30d (air supply port 30b) is connected is 1.4 times or more the diameter D2 of the cylindrical portion 18a. That is, the connecting portion 30d is connected to a portion of the flare portion 18b that is 1.4 times or more the diameter D2 of the cylindrical portion 18a. In other words, the cross-sectional area of the connection portion of the first air supply pipe 30 is at least twice the cross-sectional area of the upper end opening of the inner cylinder 18. Referring also to FIG. 6, the dynamic pressure at this connecting portion is 40% of the dynamic pressure at the upper end of the inner cylinder 18.
 より具体的に説明すると、フレア部18bに対する接続部30dの接続位置は、以下の式に基づいて設定される。ΔHaは内筒18の吸込揚程(吸込ロス)、ζaは内筒18内での損失係数、Vdは内筒18内の吸込口速度、Vsは外筒17と内筒18の間の吸込口速度、ddは内筒18の内径、Ddは外筒17の最小内径である。 More specifically, the connection position of the connection part 30d with respect to the flare part 18b is set based on the following equation. ΔHa is a suction head (suction loss) of the inner cylinder 18, ζa is a loss factor in the inner cylinder 18, Vd is a suction port speed in the inner cylinder 18, and Vs is a suction port speed between the outer cylinder 17 and the inner cylinder 18. , Dd is the inner diameter of the inner cylinder 18, and Dd is the minimum inner diameter of the outer cylinder 17.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式のように、内筒18の任意の位置の吸込揚程ΔHaは、内筒18の吸込口速度Vdと損失係数ζaとで演算できる。よって、内筒18の適切な位置に接続部30d(給気口30b)を接続することで、吸込揚程ΔHaの大きさを必要に応じて調整できる。その結果、浅い吸水槽1であっても、所定のタイミングでポンプケーシング12内に空気を供給でき、気水混合運転を実行できる。具体的には、排水開始水位LWLよりも高水位の場合には大気圧よりも動圧が低く、排水開始水位LWLよりも低水位になると大気圧よりも動圧が高くなる位置に、給気口30bを接続する。これにより、ポンプケーシング12外の空気は、水位が排水開始水位LWLよりも高い場合には内筒18内には流入せず、水位が排水開始水位LWLよりも低くなると内筒18内に流入する。その結果、水位が排水開始水位LWLよりも高い場合には水のみの排水が可能であり、水位が排水開始水位LWLよりも低くなると気水混合運転に移行する。 As shown in the above equation, the suction head ΔHa at an arbitrary position of the inner cylinder 18 can be calculated from the suction port speed Vd of the inner cylinder 18 and the loss coefficient ζa. Therefore, the magnitude | size of suction lift (DELTA) Ha can be adjusted as needed by connecting the connection part 30d (supply port 30b) to the appropriate position of the inner cylinder 18. FIG. As a result, even in the shallow water absorption tank 1, air can be supplied into the pump casing 12 at a predetermined timing, and an air-water mixing operation can be executed. Specifically, when the water level is higher than the drainage start water level LWL, the dynamic pressure is lower than the atmospheric pressure, and when the water level is lower than the drainage start water level LWL, the air supply is at a position where the dynamic pressure is higher than the atmospheric pressure. The mouth 30b is connected. Thereby, the air outside the pump casing 12 does not flow into the inner cylinder 18 when the water level is higher than the drainage start water level LWL, and flows into the inner cylinder 18 when the water level becomes lower than the drainage start water level LWL. . As a result, when the water level is higher than the drainage start water level LWL, only water can be drained, and when the water level becomes lower than the drainage start water level LWL, the operation proceeds to the air-water mixing operation.
 このように、最高水位HWLよりも高い位置で吸気口30aを開口させ、フレア部18bの所定直径部分に給気口30bを接続しているため、ベルマウス16の全長を長くすることなく、最適な給気が可能である。よって、吸水槽1の底壁3とポンプケーシング12の下端との間隔を確保できるため、浅い吸水槽1であっても確実にポンプ10を設置できる。 As described above, the intake port 30a is opened at a position higher than the maximum water level HWL, and the supply port 30b is connected to the predetermined diameter portion of the flare portion 18b. Air supply is possible. Therefore, since the space | interval of the bottom wall 3 of the water absorption tank 1 and the lower end of the pump casing 12 can be ensured, even if it is the shallow water absorption tank 1, the pump 10 can be installed reliably.
 第1給気配管30の吸気口30aは吸水槽1で開口されているため、意図しない異常によって排水が追い付かず、吸水槽1内の水が第1給気配管30内を逆流した場合でも、その水を吸水槽1内に戻すことができる。よって、制御基盤等が配置された据付床2上への水の漏出を抑制できる。 Since the intake port 30a of the first air supply pipe 30 is opened in the water absorption tank 1, drainage does not catch up due to an unintended abnormality, and even when the water in the water absorption tank 1 flows back through the first air supply pipe 30, The water can be returned to the water absorption tank 1. Therefore, it is possible to suppress leakage of water onto the installation floor 2 on which the control base is arranged.
(第2給気配管の詳細)
 図1に示すように、第2給気配管33は、概ね逆U字形状に屈曲されたパイプであり、ポンプケーシング12の内外を常に空間的に連通させている。第2給気配管33の大部分は、ポンプケーシング12の外部に配置され、ポンプケーシング12に沿って上下方向に延びている。第2給気配管33の一端が吸気口33aを構成し、第2給気配管33の他端が給気口33bを構成する。
(Details of second air supply piping)
As shown in FIG. 1, the second air supply pipe 33 is a pipe that is bent in a generally inverted U shape, and allows the inside and outside of the pump casing 12 to always communicate spatially. Most of the second air supply pipe 33 is disposed outside the pump casing 12 and extends in the vertical direction along the pump casing 12. One end of the second air supply pipe 33 constitutes the air inlet 33a, and the other end of the second air supply pipe 33 constitutes the air inlet 33b.
 吸気口33aは、ポンプケーシング12から離れて位置する第1管部33cの下端に形成されている。吸気口33aは、揚水遮断水位LLWL以下の高さに配置されることが好ましく、本実施形態では同じ高さに配置されている。つまり、第1管部33cは、吸気口33aが所定位置に配置されるように、ポンプケーシング12外に配置されている。 The intake port 33 a is formed at the lower end of the first pipe portion 33 c located away from the pump casing 12. The intake port 33a is preferably arranged at a height equal to or lower than the pumping cutoff water level LLWL, and is arranged at the same height in this embodiment. That is, the first pipe portion 33c is disposed outside the pump casing 12 so that the intake port 33a is disposed at a predetermined position.
 給気口33bは、第1管部33cよりもポンプケーシング12側に位置する第2管部33dの端に形成されている。第1管部33cと第2管部33dは、U字状に折り返した折返部33eを介して連続している。第1給気配管30の折返部30cと同様に、底壁3から折返部33eの内側頂部までの第2給気配管33の高さは、最高水位HWLに吸込揚程ΔHaを加えた値に設定されている。 The air supply port 33b is formed at the end of the second pipe portion 33d located closer to the pump casing 12 than the first pipe portion 33c. The first tube portion 33c and the second tube portion 33d are continuous via a folded portion 33e that is folded back in a U shape. Similar to the folded portion 30c of the first air supply pipe 30, the height of the second air supply pipe 33 from the bottom wall 3 to the inner top portion of the folded portion 33e is set to a value obtained by adding the suction head ΔHa to the maximum water level HWL. Has been.
 図4を併せて参照すると、第2管部33dの下部には、ベルマウス16に向けて屈曲し、外筒17を貫通して内筒18に接続される接続部33fが形成されている。外筒17の接続部33fが貫通した部分は、液密にシールされている。接続部33fは、揚水遮断水位LLWLと同じ高さに位置し、ポンプケーシング12の径方向へ水平に延びている。接続部33fの先端である給気口33bは、第1給気配管30の給気口30bよりも上側に位置するように、内筒18の筒部18aの上端に接続されている。 Referring also to FIG. 4, a connection portion 33 f that is bent toward the bell mouth 16 and is connected to the inner tube 18 through the outer tube 17 is formed at the lower portion of the second tube portion 33 d. The portion through which the connecting portion 33f of the outer cylinder 17 penetrates is liquid-tightly sealed. The connecting portion 33f is located at the same height as the pumping cutoff water level LLWL and extends horizontally in the radial direction of the pump casing 12. The air supply port 33b which is the tip of the connection portion 33f is connected to the upper end of the cylindrical portion 18a of the inner cylinder 18 so as to be positioned above the air supply port 30b of the first air supply pipe 30.
 このように、第2給気配管33は、吸気口33aが揚水遮断水位LLWL以下の高さに位置するように配置され、給気口33bが内筒18に接続されている。よって、水位が揚水遮断水位LLWLに低下した場合のみ、吸気口33aからポンプケーシング12内へ空気を供給できるため、ポンプ10を気水混合運転からエアロック運転に移行できる。 Thus, the second air supply pipe 33 is arranged such that the intake port 33a is positioned at a height equal to or lower than the pumping cutoff water level LLWL, and the air supply port 33b is connected to the inner cylinder 18. Therefore, since the air can be supplied from the intake port 33a into the pump casing 12 only when the water level drops to the pumping cutoff water level LLWL, the pump 10 can be shifted from the air / water mixing operation to the air lock operation.
 第2給気配管33の給気口33bは、給気口30bよりも上側に配置され、内筒18の上端に接続されているため、内筒18の出口での乱流及び剥離流(内筒18の周囲の水流よりも速い水流)の影響を受けない。よって、速やかに揚水遮断運転に移行できる。 The air supply port 33b of the second air supply pipe 33 is disposed above the air supply port 30b and is connected to the upper end of the inner cylinder 18, so that turbulent flow and separation flow (inner It is not influenced by the water flow faster than the water flow around the cylinder 18. Therefore, it is possible to promptly shift to the pumping off operation.
 しかも、第2給気配管33は揚水遮断水位に位置する接続部33fを備え、その先端に給気口33bを有するため、空気の流動抵抗を軽減でき、揚水を遮断するための空気を効率的に供給できる。 In addition, since the second air supply pipe 33 includes the connection portion 33f positioned at the pumping cutoff water level and has the air supply port 33b at the tip thereof, the air flow resistance can be reduced, and the air for shutting off the pumping water is efficiently used. Can supply.
(各給気配管の配置)
 図5を参照すると、第1給気配管30は、ポンプケーシング12に対して水の流入方向Fの上流側に位置するように、2本配置されている。第2給気配管33は、ポンプケーシング12に対して流入方向Fの下流側に位置するように、2本配置されている。合計で4本の給気配管30,33は、ポンプケーシング12の軸線を中心として放射状に配置されている。なお、給気配管30,33とポンプケーシング12は、周知の連結部材(例えばステー)によって連結することが好ましい。
(Arrangement of each air supply piping)
Referring to FIG. 5, two first air supply pipes 30 are arranged so as to be located upstream of the pump casing 12 in the water inflow direction F. Two second air supply pipes 33 are arranged so as to be located downstream of the pump casing 12 in the inflow direction F. A total of four air supply pipes 30 and 33 are arranged radially about the axis of the pump casing 12. The supply pipes 30 and 33 and the pump casing 12 are preferably connected by a known connecting member (for example, a stay).
 第1給気配管30における接続部30dよりも上側の部分と、第2給気配管33の管部33c,33dとは、実測又は演算によって想定される空気吸込渦の発生位置に位置するように、ポンプケーシング12に対して定められた間隔をあけて配置されている。空気吸込渦とは、水面側からベルマウス16の吸込口に向けて流れる水に、吸水槽1内の空気が連続的又は断続的に含まれる水流である。この空気吸込渦は、吸水槽1内の水位が低下し、水面の流速が一定レベルに達することで発生する。水面側からベルマウス16へ向かう水流が給気配管30,33に干渉することで、空気を吸い込む前に水流を消滅できる。 A portion of the first air supply pipe 30 above the connection portion 30d and the pipe parts 33c and 33d of the second air supply pipe 33 are located at the position where the air suction vortex is generated, which is assumed by actual measurement or calculation. The pump casing 12 is arranged at a predetermined interval. The air suction vortex is a water flow in which the air in the water absorption tank 1 is continuously or intermittently contained in the water flowing from the water surface side toward the suction port of the bell mouth 16. This air suction vortex is generated when the water level in the water absorption tank 1 is lowered and the flow velocity on the water surface reaches a certain level. The water flow from the water surface toward the bell mouth 16 interferes with the air supply pipes 30 and 33, so that the water flow can be eliminated before the air is sucked.
 このようにしたポンプ10は、水中渦の発生抑制、空気吸込渦の発生抑制、及び先行待機運転の機能を併せ持つため、第1給気配管30及び第2給気配管33が無いポンプよりも、低水位での排水を効果的に実現できる。 Since the pump 10 thus configured has the functions of suppressing the generation of submerged vortices, suppressing the generation of air suction vortices, and the preceding standby operation, the pump 10 does not have the first air supply pipe 30 and the second air supply pipe 33. Effective drainage at low water levels.
 詳しくは、排水運転では、吸水槽1内の水位が渦発生水位になっても、給気配管30,33によって空気吸込渦の発生を抑制できる。また、二重ラッパ管からなるベルマウス16によって、水中渦の発生を抑制できる。よって、吸い込んだ空気が羽根車25に衝突することによるポンプケーシング12の振動を防止できる。 Specifically, in the drainage operation, even if the water level in the water absorption tank 1 becomes a vortex generation water level, the generation of air suction vortices can be suppressed by the air supply pipes 30 and 33. Moreover, the generation of underwater vortices can be suppressed by the bell mouth 16 formed of a double trumpet tube. Therefore, vibration of the pump casing 12 due to the sucked air colliding with the impeller 25 can be prevented.
 気水混合運転では、ポンプ10の吸引力(内筒18の動圧)によって、吸水槽1内の空気を第1給気配管30からポンプケーシング12内へ供給できる。よって、ベルマウス16からの吸水量は減るが、吸水槽1内の水面での流速が遅くなるため、空気吸込渦の発生を抑制し、排水可能な水位を下げることができる。但し、この場合でも、水位が低くなるに従って、やがて水面は空気吸込渦が生じる流速になるが、この時の空気吸込渦の発生も給気配管30,33によって抑制できる。 In the air-water mixing operation, the air in the water absorption tank 1 can be supplied from the first air supply pipe 30 into the pump casing 12 by the suction force of the pump 10 (dynamic pressure of the inner cylinder 18). Therefore, although the amount of water absorption from the bell mouth 16 is reduced, the flow velocity on the water surface in the water absorption tank 1 is slowed, so that the generation of air suction vortex can be suppressed and the water level that can be drained can be lowered. However, even in this case, as the water level becomes lower, the water surface eventually becomes a flow velocity at which air suction vortices are generated, but the generation of air suction vortices at this time can also be suppressed by the air supply pipes 30 and 33.
 エアロック運転では、第2給気配管33からも空気を吸い込むことで、ベルマウス16からの吸水量が更に減る。よって、ポンプケーシング12から下流側への排水を確実に停止し、図2に示すようにポンプケーシング12内では水柱WCを保持した状態を維持できる。この水柱WCによってポンプケーシング12内の摺動部品である水中軸受23が冷却され、過熱が防止されるため、ポンプ10の駆動を継続した待機運転を実現できる。 In the air lock operation, the amount of water absorbed from the bell mouth 16 is further reduced by sucking air from the second air supply pipe 33. Therefore, drainage from the pump casing 12 to the downstream side can be stopped reliably, and the state in which the water column WC is held in the pump casing 12 can be maintained as shown in FIG. The water column WC cools the submersible bearing 23 which is a sliding component in the pump casing 12 and prevents overheating. Therefore, a standby operation in which the pump 10 is continuously driven can be realized.
 以上のように、本実施形態のポンプ10では、内筒18の動圧が低いに部分に第1給気配管30が接続されているため、ベルマウス16の全長が短くても最適な給気が可能である。よって、浅い吸水槽1であっても確実にポンプ10を設置できる。また、二重ラッパ管からなるベルマウス16によって水中渦の発生を抑制でき、4本の給気配管30,33によって空気吸込渦の発生を抑制できるため、ポンプ10によって排水可能な水位を効果的に低くできる。 As described above, in the pump 10 of the present embodiment, the first air supply pipe 30 is connected to a portion where the dynamic pressure of the inner cylinder 18 is low. Is possible. Therefore, even if it is the shallow water absorption tank 1, the pump 10 can be installed reliably. In addition, since the bell mouth 16 composed of a double trumpet pipe can suppress the generation of underwater vortices, and the four air supply pipes 30 and 33 can suppress the generation of air suction vortices, the water level that can be drained by the pump 10 is effective. Can be lowered.
 また、第1給気配管30と第2給気配管33の全高は、最高水位HWLに吸込揚程ΔHaを加えた高さよりも高く設定されているため、折返部30c,33eを越えて水が吸い上げられることはない。よって、第1給気配管30と第2給気配管33にゴミなどが流入し、折返部30c,33eで詰まることを抑制できる。 In addition, the total height of the first air supply pipe 30 and the second air supply pipe 33 is set to be higher than the maximum water level HWL plus the suction lift ΔHa, so that water is sucked up over the folded portions 30c and 33e. It will never be done. Therefore, it is possible to prevent dust and the like from flowing into the first air supply pipe 30 and the second air supply pipe 33 and clogging at the folded portions 30c and 33e.
 また、内筒18に供給された空気は羽根車25の中心部に導入されるため、外周から導入する場合よりも空気注入による羽根車25の負荷を小さくできる。よって、運転状態の切り換えによるポンプ10の振動を抑制できる。 Further, since the air supplied to the inner cylinder 18 is introduced into the central portion of the impeller 25, the load on the impeller 25 due to air injection can be made smaller than when it is introduced from the outer periphery. Therefore, vibration of the pump 10 due to switching of the operation state can be suppressed.
(第2実施形態)
 図7及び図8は第2実施形態のポンプ10を示す。この第2実施形態では、ポンプ10を気水混合運転からエアロック運転に切り換える第2給気配管40を、空気吸込渦の発生を抑制するための渦防止配管35に組み込んだ点で、第1実施形態と相違する。
(Second Embodiment)
7 and 8 show the pump 10 of the second embodiment. In the second embodiment, the second air supply pipe 40 for switching the pump 10 from the air / water mixing operation to the air lock operation is incorporated in the vortex prevention pipe 35 for suppressing the generation of the air suction vortex. It is different from the embodiment.
 具体的には、渦防止配管35は、排水開始水位LWLよりも下側でポンプケーシング12を取り囲む環状の横パイプ36と、上下方向へ延びるようにポンプケーシング12の外側に配置された直管状の縦パイプ37とを備える。第2実施形態の第2給気配管40は、縦パイプ37内に配置された吸気パイプ41と、横パイプ36とポンプケーシング12の間に配置された給気パイプ42とを備える。 Specifically, the vortex prevention pipe 35 includes an annular horizontal pipe 36 that surrounds the pump casing 12 below the drainage start water level LWL, and a straight tubular pipe that is disposed outside the pump casing 12 so as to extend in the vertical direction. And a vertical pipe 37. The second air supply pipe 40 of the second embodiment includes an intake pipe 41 arranged in the vertical pipe 37 and an air supply pipe 42 arranged between the horizontal pipe 36 and the pump casing 12.
 横パイプ36は、中空状の円環パイプであり、ベルマウス16の外周に配置されている。横パイプ36の内径は、外筒17の最大外径と概ね同一である。横パイプ36は、ポンプケーシング12と同軸に位置するように、外筒17の最小外径部分と同じ高さに配置され、リブ(図示せず)によって連結されている。これにより、横パイプ36と外筒17の間には定められた隙間(流路)が形成されている。 The horizontal pipe 36 is a hollow annular pipe and is disposed on the outer periphery of the bell mouth 16. The inner diameter of the horizontal pipe 36 is substantially the same as the maximum outer diameter of the outer cylinder 17. The horizontal pipe 36 is disposed at the same height as the minimum outer diameter portion of the outer cylinder 17 so as to be positioned coaxially with the pump casing 12 and is connected by a rib (not shown). Thereby, a defined gap (flow path) is formed between the horizontal pipe 36 and the outer cylinder 17.
 縦パイプ37は、中空状の直管パイプであり、上端がカバー37aによって液密かつ気密に塞がれている。縦パイプ37の下端は、横パイプ36に空間的に連通するように、横パイプ36に接続されている。本実施形態では4本の縦パイプ37が、ポンプケーシング12を中心として周方向に所定間隔をあけて配置されている。縦パイプ37の上端は、吸気パイプ41の上端(排気口41c)よりも高い位置に配置されている。 The vertical pipe 37 is a hollow straight pipe, and its upper end is closed liquid-tight and air-tightly by a cover 37a. The lower end of the vertical pipe 37 is connected to the horizontal pipe 36 so as to communicate with the horizontal pipe 36 spatially. In the present embodiment, four vertical pipes 37 are arranged at a predetermined interval in the circumferential direction around the pump casing 12. The upper end of the vertical pipe 37 is disposed at a position higher than the upper end (exhaust port 41c) of the intake pipe 41.
 第2実施形態の第1給気配管30は、横パイプ36の外側に位置するように配置されている。接続部30dは、横パイプ36と同じ高さで屈曲され、第1実施形態と同様に、先端の給気口30bが内筒18のフレア部18bに接続されている。 The first air supply pipe 30 of the second embodiment is arranged so as to be located outside the horizontal pipe 36. The connection portion 30d is bent at the same height as the horizontal pipe 36, and the air supply port 30b at the tip is connected to the flare portion 18b of the inner cylinder 18 as in the first embodiment.
 第2給気配管40の吸気パイプ41は、縦パイプ37内に配置された概ね直管状のパイプからなる。吸気パイプ41の下端には、外向きに屈曲された屈曲部41bが設けられている。屈曲部41bは排水遮断水位LLWLに位置する横パイプ36を貫通し、横パイプ36の屈曲部41bが貫通する部分は液密にシールされている。屈曲部41bの先端の吸気口41aは、排水遮断水位LLWLと同じ高さに位置し、吸水槽1内に露出している。吸気パイプ41は、最高水位HWLに吸込揚程ΔHaを加えた位置よりも高い位置まで延び、上端の排気口41cが縦パイプ37内で開口している。 The intake pipe 41 of the second air supply pipe 40 is a substantially straight pipe disposed in the vertical pipe 37. A bent portion 41 b that is bent outward is provided at the lower end of the intake pipe 41. The bent portion 41b passes through the horizontal pipe 36 located at the drainage cutoff water level LLWL, and the portion of the horizontal pipe 36 through which the bent portion 41b passes is liquid-tightly sealed. The air inlet 41a at the tip of the bent portion 41b is located at the same height as the drain cutoff water level LLWL and is exposed in the water absorption tank 1. The intake pipe 41 extends to a position higher than a position obtained by adding the suction lift ΔHa to the highest water level HWL, and an exhaust port 41 c at the upper end opens in the vertical pipe 37.
 第2給気配管40の給気パイプ42は直管状のパイプであり、内端の給気口42aが外筒17の筒部17aに接続され、外端の接続口42bが横パイプ36の内周に接続されている。つまり、給気パイプ42は、縦パイプ37と横パイプ36を介して吸気パイプ41に連通しており、第2給気配管40は渦防止配管35を流路として兼用している。また、給気パイプ42の給気口42aは、第1給気配管30の給気口30bよりも上側に位置するように、ベルマウス16を構成する外筒17に接続されている。 The air supply pipe 42 of the second air supply pipe 40 is a straight pipe, the air supply port 42 a at the inner end is connected to the cylindrical portion 17 a of the outer cylinder 17, and the connection port 42 b at the outer end is connected to the inner side of the horizontal pipe 36. Connected to the lap. In other words, the air supply pipe 42 communicates with the intake pipe 41 via the vertical pipe 37 and the horizontal pipe 36, and the second air supply pipe 40 also uses the vortex prevention pipe 35 as a flow path. Further, the air supply port 42 a of the air supply pipe 42 is connected to the outer cylinder 17 constituting the bell mouth 16 so as to be positioned above the air supply port 30 b of the first air supply pipe 30.
 図8に最も明瞭に示すように、本実施形態では4本の縦パイプ37内に吸気パイプ41がそれぞれ配置されている。また、4本の給気パイプ42が、ポンプケーシング12を中心として周方向に等間隔で配置されている。4本の給気パイプ42と4本の縦パイプ37とは、周方向に間隔をあけて配置され、平面視での角度位置が互いに一致しないように構成されている。これにより、縦パイプ37から横パイプ36に流入した空気は、給気パイプ42に直接流れることなく、必ず横パイプ36内を通って給気パイプ42に流れ、給気パイプ42からベルマウス16内に均等に供給される。その結果、給気が局部に偏ることによるポンプ10の振動を抑制する。 As shown most clearly in FIG. 8, in this embodiment, intake pipes 41 are arranged in four vertical pipes 37, respectively. Four air supply pipes 42 are arranged at equal intervals in the circumferential direction with the pump casing 12 as the center. The four air supply pipes 42 and the four vertical pipes 37 are arranged at intervals in the circumferential direction, and are configured such that the angular positions in plan view do not coincide with each other. Thus, the air flowing into the horizontal pipe 36 from the vertical pipe 37 does not flow directly to the air supply pipe 42 but always flows through the horizontal pipe 36 to the air supply pipe 42, and from the air supply pipe 42 to the inside of the bell mouth 16. Are evenly supplied. As a result, the vibration of the pump 10 due to the supply air being biased locally is suppressed.
 この第2実施形態のポンプ10によれば、排水運転では、吸水槽1内の水位が渦発生水位になっても、渦防止配管35によって空気吸込渦の発生を抑制できる。また、気水混合運転では、ポンプ10の吸引力によって、吸水槽1内の空気を第1給気配管30からポンプケーシング12内へ供給できる。エアロック運転では、吸気口41aから吸い込まれた空気は、吸気パイプ41、縦パイプ37、横パイプ36、及び給気パイプ42を介してポンプケーシング12内に供給される。 According to the pump 10 of the second embodiment, in the drainage operation, even if the water level in the water absorption tank 1 becomes the vortex generation water level, the generation of the air suction vortex can be suppressed by the vortex prevention pipe 35. Further, in the air / water mixing operation, the air in the water absorption tank 1 can be supplied from the first air supply pipe 30 into the pump casing 12 by the suction force of the pump 10. In the air lock operation, the air sucked from the intake port 41 a is supplied into the pump casing 12 via the intake pipe 41, the vertical pipe 37, the horizontal pipe 36, and the air supply pipe 42.
 以上のように構成された第2実施形態のポンプ10では、第1実施形態と同様に、吸水槽1の底壁3とポンプケーシング12の下端との間隔を確保でき、浅い吸水槽1であってもポンプ10を設置できる。また、二重ラッパ管からなるベルマウス16によって水中渦の発生を抑制でき、渦防止配管35を構成する4本の縦パイプ37によって空気吸込渦の発生を抑制できるため、ポンプ10によって排水可能な水位を効果的に低くできる。 In the pump 10 of the second embodiment configured as described above, the distance between the bottom wall 3 of the water absorption tank 1 and the lower end of the pump casing 12 can be secured as in the first embodiment, and the shallow water absorption tank 1 is used. Even the pump 10 can be installed. Further, since the bell mouth 16 composed of a double trumpet pipe can suppress the generation of underwater vortices, and the four vertical pipes 37 constituting the vortex prevention pipe 35 can suppress the generation of air suction vortices. The water level can be effectively lowered.
(第3実施形態)
 図9及び図10は第3実施形態のポンプ10を示す。この第3実施形態では、ポンプ10を排水運転から気水混合運転に切り換える第1給気配管45を、渦防止配管35に組み込んだ点で第2実施形態と相違する。
(Third embodiment)
9 and 10 show the pump 10 of the third embodiment. The third embodiment is different from the second embodiment in that the first air supply pipe 45 that switches the pump 10 from the drain operation to the air / water mixing operation is incorporated in the vortex prevention pipe 35.
 具体的には、渦防止配管35は、第2実施形態と同様に、1本の横パイプ36と、4本の縦パイプ37を備える。そのうち、流入方向Fの上流側に位置する一方の縦パイプ37Aは、横パイプ36内と空間的に連通しないように、横パイプ36に接続されている。残りの縦パイプ37Bは、横パイプ36内と空間的に連通するように、横パイプ36に接続されている。そして、縦パイプ37Bと横パイプ36には、第2実施形態と同様に、第2給気配管40を構成する吸気パイプ41と給気パイプ42とが接続されている。 Specifically, the vortex prevention pipe 35 includes one horizontal pipe 36 and four vertical pipes 37 as in the second embodiment. Among them, one vertical pipe 37 </ b> A located on the upstream side in the inflow direction F is connected to the horizontal pipe 36 so as not to spatially communicate with the inside of the horizontal pipe 36. The remaining vertical pipe 37 </ b> B is connected to the horizontal pipe 36 so as to communicate spatially with the inside of the horizontal pipe 36. And the intake pipe 41 and the supply pipe 42 which comprise the 2nd supply pipe 40 are connected to the vertical pipe 37B and the horizontal pipe 36 similarly to 2nd Embodiment.
 第3実施形態の第1給気配管45は、渦防止配管35の縦パイプ37Aを吸気パイプとして兼用し、この縦パイプ37Aの下端に給気パイプ46を接続した構成である。 The first air supply pipe 45 of the third embodiment has a configuration in which the vertical pipe 37A of the vortex prevention pipe 35 is also used as an intake pipe, and the air supply pipe 46 is connected to the lower end of the vertical pipe 37A.
 吸気パイプを構成する縦パイプ37Aの上端は、第1実施形態と同様に、カバー37aによって塞がれている。縦パイプ37Aには、最高水位HWLよりも上方に位置するように、吸気口37bが設けられている。 The upper end of the vertical pipe 37A constituting the intake pipe is closed by a cover 37a as in the first embodiment. The vertical pipe 37A is provided with an intake port 37b so as to be positioned above the highest water level HWL.
 給気パイプ46は、縦パイプ37A内と空間的に連続するように、縦パイプ37の下端に接続されている。本実施形態では2本の給気パイプ46を用い、45度間隔をあけた異なる位置から内筒18のフレア部18bに空気を供給可能としている。図10に最も明瞭に示すように、個々の給気パイプ46は、回転軸22を中心として周方向に延びる連続部46bと、連続部46bの先端から屈曲された接続部46cとを備える。接続部46cは、各実施形態と同様に外筒17を貫通され、先端の給気口46aが内筒18のフレア部18bに接続されている。 The air supply pipe 46 is connected to the lower end of the vertical pipe 37 so as to be spatially continuous with the inside of the vertical pipe 37A. In the present embodiment, two air supply pipes 46 are used, and air can be supplied to the flare portion 18b of the inner cylinder 18 from different positions spaced by 45 degrees. As shown most clearly in FIG. 10, each air supply pipe 46 includes a continuous portion 46 b that extends in the circumferential direction around the rotation shaft 22, and a connection portion 46 c that is bent from the tip of the continuous portion 46 b. The connection part 46c penetrates the outer cylinder 17 similarly to each embodiment, and the air supply port 46a at the tip is connected to the flare part 18b of the inner cylinder 18.
 この第3実施形態のポンプ10によれば、各実施形態と同様に、吸水槽1内の水位に応じて排水運転、気水混合運転及びエアロック運転に切り換わる。よって、各実施形態と同様の作用及び効果を得ることができる。また、排水運転から気水混合運転に切り換える第1給気配管45と、気水混合運転からエアロック運転に切り換える第2給気配管40とが、空気吸込渦の発生を抑制する渦防止配管35に組み込まれているため、ポンプケーシング12の外側に配置する配管構造を簡素化できる。 According to the pump 10 of the third embodiment, similarly to each embodiment, the operation is switched to the drainage operation, the air / water mixing operation, and the air lock operation according to the water level in the water absorption tank 1. Therefore, the same operation and effect as each embodiment can be obtained. Further, the first air supply pipe 45 that switches from the drain operation to the air / water mixing operation and the second air supply pipe 40 that switches from the air / water mixing operation to the air lock operation suppress the generation of the air suction vortex 35. Therefore, the piping structure arranged outside the pump casing 12 can be simplified.
(第4実施形態)
 図11及び図12は第4実施形態のポンプ10を示す。この第4実施形態では、渦防止配管35を介して供給される空気の流動性を向上した点で、第3実施形態と相違する。
(Fourth embodiment)
FIG.11 and FIG.12 shows the pump 10 of 4th Embodiment. The fourth embodiment is different from the third embodiment in that the fluidity of air supplied via the vortex prevention pipe 35 is improved.
 詳しくは、第4実施形態の渦防止配管35は、第3実施形態と同様に、円環状の横パイプ36と4本の縦パイプ37A,37Bとを備える。そのうち、縦パイプ37A,37Bの下部には、ベルマウス16に向けてポンプケーシング12の径方向内向きに屈曲した屈曲部37cが設けられている。ポンプケーシング12の軸線に沿って延びる部分に対する屈曲部37cの傾斜角度は、90度よりも広く180度よりも狭い範囲に設定され、本実施形態では157.5度としている。 Specifically, the vortex prevention pipe 35 of the fourth embodiment includes an annular horizontal pipe 36 and four vertical pipes 37A and 37B, as in the third embodiment. Among them, a bent portion 37 c that is bent inward in the radial direction of the pump casing 12 toward the bell mouth 16 is provided below the vertical pipes 37 </ b> A and 37 </ b> B. The inclination angle of the bent portion 37c with respect to the portion extending along the axis of the pump casing 12 is set in a range wider than 90 degrees and narrower than 180 degrees, and is set to 157.5 degrees in this embodiment.
 第1給気配管45の給気パイプ46は、第3実施形態と同様に、縦パイプ37Aの下端に接続されている。第2給気配管40の吸気パイプ41は、縦パイプ37Bの屈曲部37cを貫通し、吸気口41aが排水遮断水位LLWLに位置するように、配管されている。屈曲部37cにおける吸気パイプ41の貫通部分は液密にシールされている。 The air supply pipe 46 of the first air supply pipe 45 is connected to the lower end of the vertical pipe 37A as in the third embodiment. The intake pipe 41 of the second air supply pipe 40 passes through the bent portion 37c of the vertical pipe 37B, and is arranged so that the intake port 41a is located at the drainage cutoff water level LLWL. The portion of the bent portion 37c that penetrates the intake pipe 41 is liquid-tightly sealed.
 この第4実施形態のポンプ10によれば、第3実施形態と同様の作用及び効果を得ることができる。しかも、縦パイプ37A,37Bに屈曲部37cが設けられているため、外筒17及び内筒18への空気の流動抵抗を軽減できる。よって、気水混合運転及びエアロック運転に切り換えるための空気を効率的に供給できる。 According to the pump 10 of the fourth embodiment, the same operations and effects as those of the third embodiment can be obtained. In addition, since the bent portions 37c are provided in the vertical pipes 37A and 37B, the flow resistance of air to the outer cylinder 17 and the inner cylinder 18 can be reduced. Therefore, the air for switching to the air / water mixing operation and the air lock operation can be efficiently supplied.
 なお、本発明の立軸ポンプ10は、前記実施形態の構成に限定されず、種々の変更が可能である。 In addition, the vertical shaft pump 10 of the present invention is not limited to the configuration of the above embodiment, and various modifications can be made.
 例えば、第1給気配管30,45を内筒18のフレア部18bに接続すれば、ベルマウス16の内筒18は外筒17から下方に突出しない構成としてもよい。また、給気配管30,45の吸気口30a,37bは、据付床2上に配置してもよい。第2実施形態から第4実施形態に示す第2給気配管40の給気パイプ42は、第1実施形態と同様に、外筒17を貫通させて内筒18に接続してもよい。 For example, if the first air supply pipes 30 and 45 are connected to the flare portion 18 b of the inner cylinder 18, the inner cylinder 18 of the bell mouth 16 may be configured not to protrude downward from the outer cylinder 17. Further, the intake ports 30 a and 37 b of the air supply pipes 30 and 45 may be arranged on the installation floor 2. The air supply pipe 42 of the second air supply pipe 40 shown in the second to fourth embodiments may be connected to the inner cylinder 18 through the outer cylinder 17, as in the first embodiment.
 ポンプケーシング12の内外が常に空間的に連通していれば、第1給気配管30,45と第2給気配管33,40にはオリフィス(絞り)を設けてもよい。渦防止配管35を配置する場合であっても、第1実施形態に示す第1給気配管30と第2給気配管33を、独立して配管してもよい。 If the inside and outside of the pump casing 12 are always in spatial communication, the first supply pipes 30 and 45 and the second supply pipes 33 and 40 may be provided with orifices (throttles). Even when the vortex prevention pipe 35 is arranged, the first air supply pipe 30 and the second air supply pipe 33 shown in the first embodiment may be independently piped.
 1…吸水槽
 2…据付床
 3…底壁
 4…側壁
 10…ポンプ
 12…ポンプケーシング
 13…揚水管
 14…直管
 15…ベーンケーシング
 15a…軸受ケーシング
 16…ベルマウス(ラッパ管)
 17…外筒
 17a…筒部
 17b…フレア部
 17c…フランジ部
 18…内筒
 18a…筒部
 18b…フレア部
 19…連結板
 19a…内縁部
 19b…外縁部
 19c…下縁部
 19d…上縁部
 20…吐出し管
 21…吐出エルボ
 22…回転軸
 23…水中軸受
 25…羽根車
 25a…上端
 30…第1給気配管
 30a…吸気口
 30b…給気口
 30c…折返部
 30d…接続部
 33…第2給気配管
 33a…吸気口
 33b…給気口
 33c…第1管部
 33d…第2管部
 33e…折返部
 33f…接続部
 35…渦防止配管
 36…横パイプ
 37…縦パイプ
 37a…カバー
 37b…吸気口
 37c…屈曲部
 40…第2給気配管
 41…吸気パイプ
 41a…吸気口
 41b…屈曲部
 41c…排気口
 42…給気パイプ
 42a…給気口
 42b…接続口
 45…第1給気配管
 46…給気パイプ
 46a…給気口
 46b…連続部
 46c…接続部
 LWL…排水開始水位
 LLWL…排水遮断水位
 HWL…最高水位
 WC…水柱
DESCRIPTION OF SYMBOLS 1 ... Water absorption tank 2 ... Installation floor 3 ... Bottom wall 4 ... Side wall 10 ... Pump 12 ... Pump casing 13 ... Pumping pipe 14 ... Straight pipe 15 ... Vane casing 15a ... Bearing casing 16 ... Bellmouth (trumpet pipe)
17 ... Outer tube 17a ... Tube portion 17b ... Flare portion 17c ... Flange portion 18 ... Inner tube 18a ... Tube portion 18b ... Flare portion 19 ... Connecting plate 19a ... Inner edge portion 19b ... Outer edge portion 19c ... Lower edge portion 19d ... Upper edge portion DESCRIPTION OF SYMBOLS 20 ... Discharge pipe | tube 21 ... Discharge elbow 22 ... Rotating shaft 23 ... Underwater bearing 25 ... Impeller 25a ... Upper end 30 ... 1st air supply piping 30a ... Intake port 30b ... Air supply port 30c ... Folding part 30d ... Connection part 33 ... 2nd air supply piping 33a ... Inlet port 33b ... Air supply port 33c ... 1st pipe part 33d ... 2nd pipe part 33e ... Folding part 33f ... Connection part 35 ... Eddy prevention pipe 36 ... Horizontal pipe 37 ... Vertical pipe 37a ... Cover 37b ... Intake port 37c ... Bent part 40 ... Second air supply pipe 41 ... Intake pipe 41a ... Intake port 41b ... Bent part 41c ... Exhaust port 42 ... Air supply pipe 42a ... Inlet port 42b ... Connection port 45 ... First Air supply pipes 46 ... air supply pipe 46a ... air supply port 46b ... continuous portion 46c ... connecting portion LWL ... drainage starting level LLWL ... drainage blocking level HWL ... High Water WC ... water column

Claims (9)

  1.  上下方向へ延びるように吸水槽に配置され、下端に前記吸水槽内の水を吸い込むラッパ管を有するポンプケーシングと、
     前記吸水槽の定められた排水開始水位に位置するように、前記ポンプケーシング内の前記ラッパ管の上方に配置された羽根車と、
     前記排水開始位置よりも高い最高水位よりも上方に位置するように前記ポンプケーシング外に配置された一端の吸気口と、前記ラッパ管に接続された他端の給気口とを有する第1給気配管と
     を備え、
     前記ラッパ管は、外筒と、前記羽根車の直下に位置するように前記外筒内に配置され、上端から下端に向けて次第に広がったフレア部を有する内筒とを備え、
     前記第1給気配管の前記給気口は前記内筒の前記フレア部に接続され、前記第1給気配管によって前記ポンプケーシング外と前記内筒内が常に空間的に連通している、立軸ポンプ。
    A pump casing that is disposed in the water absorption tank so as to extend in the vertical direction, and has a trumpet pipe that sucks water in the water absorption tank at a lower end;
    An impeller disposed above the trumpet pipe in the pump casing so as to be located at a predetermined drainage start water level of the water absorption tank;
    A first air supply having an intake port at one end disposed outside the pump casing so as to be located above the highest water level higher than the drainage start position, and an air supply port at the other end connected to the trumpet pipe. With air piping,
    The trumpet tube includes an outer cylinder, and an inner cylinder that is disposed in the outer cylinder so as to be positioned directly below the impeller and has a flare portion that gradually spreads from the upper end toward the lower end,
    The air supply port of the first air supply pipe is connected to the flare portion of the inner cylinder, and the outside of the pump casing and the inside of the inner cylinder are always in spatial communication by the first air supply pipe. pump.
  2.  前記フレア部の前記第1給気配管が接続された部分の直径は、前記内筒の上端開口の直径の1.4倍以上である、請求項1に記載の立軸ポンプ。 The vertical pump according to claim 1, wherein a diameter of a portion of the flare portion to which the first air supply pipe is connected is 1.4 times or more a diameter of an upper end opening of the inner cylinder.
  3.  前記内筒の下端は、前記外筒の下端から突出しており、
     前記内筒と前記外筒は、放射状に配置された2以上の連結板によって連結されている、請求項1又は2に記載の立軸ポンプ。
    The lower end of the inner cylinder protrudes from the lower end of the outer cylinder,
    The vertical shaft pump according to claim 1 or 2, wherein the inner cylinder and the outer cylinder are connected by two or more connecting plates arranged radially.
  4.  前記第1給気配管の前記吸気口は、前記吸水槽内に配置されている、請求項1から3のいずれか1項に記載の立軸ポンプ。 The vertical shaft pump according to any one of claims 1 to 3, wherein the intake port of the first air supply pipe is disposed in the water absorption tank.
  5.  前記排水開始位置よりも低い揚水遮断水位以下の高さに位置するように前記ポンプケーシング外に配置された一端の吸気口と、前記ラッパ管に接続された他端の給気口とを有する第2給気配管を備える、請求項1から4のいずれか1項に記載の立軸ポンプ。 A first intake port disposed outside the pump casing so as to be located at a height equal to or lower than a pumping cutoff water level lower than the drainage start position, and a second supply port connected to the trumpet pipe. The vertical shaft pump according to any one of claims 1 to 4, comprising two air supply pipes.
  6.  前記第2給気配管の前記給気口は、前記ラッパ管における前記内筒の上端以下の部分に接続されている、請求項5に記載の立軸ポンプ。 The vertical pump according to claim 5, wherein the air supply port of the second air supply pipe is connected to a portion below the upper end of the inner cylinder in the trumpet pipe.
  7.  前記第2給気配管の前記給気口は、前記第1給気配管の前記給気口よりも上側に配置されている、請求項5又は6に記載の立軸ポンプ。 The vertical shaft pump according to claim 5 or 6, wherein the air supply port of the second air supply pipe is disposed above the air supply port of the first air supply pipe.
  8.  前記第2給気配管は、前記給気口を含む前記他端側に、前記揚水遮断水位に位置し、前記ポンプケーシングの径方向に延びる部分を有する、請求項5から7のいずれか1項に記載の立軸ポンプ。 8. The second air supply pipe according to claim 5, wherein the second air supply pipe includes a portion that is located at the pumping cutoff water level and extends in a radial direction of the pump casing on the other end side including the air supply port. Vertical shaft pump described in 1.
  9.  前記ポンプケーシングの前記排水開始水位よりも下側を取り囲む環状の横パイプと、
     上下方向へ延びるように前記ポンプケーシングの外側に配置され、下端が前記横パイプに接続され、上端が塞がれた縦パイプと
     を有する渦防止配管を備え、
     前記第2給気配管は、
     前記縦パイプ内に配置され、前記吸気口を構成する下端が前記縦パイプ外に露出された吸気パイプと、
     一端が前記横パイプに接続され、前記給気口を構成する他端が前記ラッパ管に接続された給気パイプと
     を有し、前記渦防止配管が前記第2給気配管の一部を兼ねる、請求項5から8のいずれか1項に記載の立軸ポンプ。
    An annular horizontal pipe that surrounds the lower side of the drainage start water level of the pump casing;
    A vortex prevention pipe having a vertical pipe that is disposed outside the pump casing so as to extend in the vertical direction, has a lower end connected to the horizontal pipe, and a closed upper end.
    The second air supply pipe is
    An intake pipe disposed in the vertical pipe and having a lower end constituting the intake port exposed outside the vertical pipe;
    One end is connected to the horizontal pipe, and the other end constituting the air supply port is connected to the trumpet pipe, and the vortex prevention pipe also serves as a part of the second air supply pipe The vertical shaft pump according to any one of claims 5 to 8.
PCT/JP2019/018488 2018-06-13 2019-05-09 Vertical shaft pump WO2019239750A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018112939A JP6985985B2 (en) 2018-06-13 2018-06-13 Pre-standby pump
JP2018-112939 2018-06-13

Publications (1)

Publication Number Publication Date
WO2019239750A1 true WO2019239750A1 (en) 2019-12-19

Family

ID=68842120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018488 WO2019239750A1 (en) 2018-06-13 2019-05-09 Vertical shaft pump

Country Status (2)

Country Link
JP (1) JP6985985B2 (en)
WO (1) WO2019239750A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417850A (en) * 1982-12-20 1983-11-29 Allis-Chalmers Corporation Vertical column pump
JP2004176567A (en) * 2002-11-25 2004-06-24 Torishima Pump Mfg Co Ltd Previous standby vertical shaft pump
JP2004239215A (en) * 2003-02-07 2004-08-26 Ebara Corp Vertical shaft pump
JP2004308508A (en) * 2003-04-04 2004-11-04 Ebara Corp Submergible motor pump and method for operating submergible motor pump
JP4690134B2 (en) * 2005-07-19 2011-06-01 株式会社荏原製作所 Vertical shaft pump and pump station
JP2012052440A (en) * 2010-08-31 2012-03-15 Torishima Pump Mfg Co Ltd Pump station

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417850A (en) * 1982-12-20 1983-11-29 Allis-Chalmers Corporation Vertical column pump
JP2004176567A (en) * 2002-11-25 2004-06-24 Torishima Pump Mfg Co Ltd Previous standby vertical shaft pump
JP2004239215A (en) * 2003-02-07 2004-08-26 Ebara Corp Vertical shaft pump
JP2004308508A (en) * 2003-04-04 2004-11-04 Ebara Corp Submergible motor pump and method for operating submergible motor pump
JP4690134B2 (en) * 2005-07-19 2011-06-01 株式会社荏原製作所 Vertical shaft pump and pump station
JP2012052440A (en) * 2010-08-31 2012-03-15 Torishima Pump Mfg Co Ltd Pump station

Also Published As

Publication number Publication date
JP2019214976A (en) 2019-12-19
JP6985985B2 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
JP3872966B2 (en) Axial fluid machine
JP5620208B2 (en) Double suction vertical pump with vortex prevention device
US7059824B2 (en) Self priming centrifugal pump
WO2019239750A1 (en) Vertical shaft pump
KR101393054B1 (en) Adapter for preventing cavitaion and centrifugal pump having adapter
JP2013209961A (en) Pump device including separation prevention structure
JP2005069048A (en) Vertical shaft pump and method for operating the same
JP7094357B2 (en) Vertical pump
JP4463484B2 (en) Vertical shaft pump
JP4839974B2 (en) Resin submersible pump
JP6420594B2 (en) pump
JP7211874B2 (en) Pump with vortex suppressor
JP5188366B2 (en) Advance standby operation pump
JP6934780B2 (en) Vertical pump
JP5322459B2 (en) Advance standby operation pump and operation method thereof
JP2002089479A (en) Suction water tank for vertical shaft pump
JP7398405B2 (en) vertical shaft pump
KR102239431B1 (en) Submersible pump with vortex prevention device
JP4422438B2 (en) Vertical shaft pump
JP7306971B2 (en) pump
JP2013148051A (en) Vertical type double suction volute pump
JP2011007091A (en) Pump
JP4537786B2 (en) Pumping station
JP2000303995A (en) Turbo machine restraining blade inlet re-circulating flow and blade rotating stall
JP2020020292A (en) Preceding standby operation pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819051

Country of ref document: EP

Kind code of ref document: A1