JP2002089479A - Suction water tank for vertical shaft pump - Google Patents

Suction water tank for vertical shaft pump

Info

Publication number
JP2002089479A
JP2002089479A JP2000273978A JP2000273978A JP2002089479A JP 2002089479 A JP2002089479 A JP 2002089479A JP 2000273978 A JP2000273978 A JP 2000273978A JP 2000273978 A JP2000273978 A JP 2000273978A JP 2002089479 A JP2002089479 A JP 2002089479A
Authority
JP
Japan
Prior art keywords
suction
water tank
conical structure
pump
substantially conical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000273978A
Other languages
Japanese (ja)
Inventor
Takahide Nagahara
孝英 長原
Tadashi Sato
忠 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000273978A priority Critical patent/JP2002089479A/en
Publication of JP2002089479A publication Critical patent/JP2002089479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sewage (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent generation of a top part underwater vortex and to prevent vibration and noise of a vertical shaft pump, in a suction water tank of the vertical shaft pump. SOLUTION: This suction water tank 20 for the vertical shaft pump leading water into a pump suction pipe 6 open downward has a nearly conical structure 22 disposed below the pipe 6; a nearly cylindrical water tank part 17 forming a nearly annular flow passage 16 around the nearly conical structure 22; and a straitening restriction conduit part 19 having a flow passage area which is reduced toward the downstream side from the upstream side, for generating a swirl flow 18 along the flow passage 16. A recessed communication structure for communicating a top discharge hole 24 bored in a top part with at least one inflow hole 23 bored in a lower part of the nearly conical structure 22 is formed inside the nearly conical structure 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、立軸ポンプ機場に
設けられる立軸ポンプの吸込水槽に係わり、特に下方へ
向けて開口したポンプ吸込管へ導水する立軸ポンプの吸
込水槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical pump suction water tank provided at a vertical pump station, and more particularly to a vertical pump suction water tank for guiding water to a pump suction pipe opened downward.

【0002】[0002]

【従来の技術】近年、各地の大きな河川には、大雨増水
時における河川流域の冠水被害を防止する目的で、海や
バイパス水路などに緊急排水を行う排水ポンプ機場(以
下適宜、機場という)が建設されてきている。
2. Description of the Related Art In recent years, large rivers in various places have drainage pumping stations (hereinafter referred to as “stations” as appropriate) for urgent drainage to the sea or bypass waterways in order to prevent flooding of river basins during heavy rainfall. Is being built.

【0003】これは機場の吸込水槽に増水側の河川の水
を導水し、例えばベルマウス型に形成された吸込口をこ
の吸込水槽中において下方に開口するよう設置している
ポンプ吸込管から、立軸ポンプによって高いヘッド(揚
程)に位置する吐出水槽へ揚水し、適切な排水経路に排
水するものである。
[0003] This is achieved by introducing water from a river on the rising side to a suction water tank of the plant, for example, through a pump suction pipe provided with a bell mouth-shaped suction port opened downward in the suction water tank. The water is pumped by a vertical pump into a discharge water tank located at a high head (head), and is discharged to an appropriate drainage path.

【0004】しかし立軸ポンプを運転して吸込水槽中の
吸込口から吸い込みを始めると、流速が大きくなるにし
たがって吸込口付近には、流れの乱れに連動した渦が水
槽の底面または水面に向けて発生しやすくなる。
However, when the vertical pump is operated to start suction from the suction port in the suction tank, as the flow velocity increases, near the suction port, a vortex linked to the turbulence of the flow is directed toward the bottom or water surface of the water tank. More likely to occur.

【0005】そして、これらの渦の中心においては水圧
が極端に低くなるため空洞が発生し、水中渦や空気吸込
渦と呼ばれる渦となって立軸ポンプに対して振動や騒音
などといった悪影響を及ぼす。
At the center of these vortices, the water pressure becomes extremely low, so that cavities are generated, and they become vortices called underwater vortices or air suction vortices, which adversely affect the vertical pump such as vibration and noise.

【0006】またこれらの渦は一般的に吸込口における
吸込流速や吸込水槽の上流における流速が大きくなるほ
ど発生しやすく、したがって吸込水槽を小さくして吸込
効率を高めることは即ち吸込流速を大きくして渦の発生
を促すことになるため吸込水槽は大きく設置せざる得
ず、機場の省スペース化が望めないといった問題があっ
た。
In general, these vortices are more likely to occur as the suction flow velocity at the suction port and the flow velocity at the upstream of the suction water tank increase. Therefore, to increase the suction efficiency by making the suction water tank smaller to increase the suction flow velocity. Since the generation of vortices would be promoted, the suction water tank had to be set large, and there was a problem that the space saving of the plant could not be expected.

【0007】そこで従来は吸込口下方の吸込水槽底面に
略円錐形状の構造物(以下、略円錐構造物という)を設
置することで、吸込管の吸込口から吸込水槽底面に向け
て生じる水中渦の発生を防止し、また吸込水槽に天井を
設けることで、吸込管の吸込口から上方に向けて生じる
空気吸込渦の発生を防止する方法が取られていた。
Therefore, conventionally, a substantially conical structure (hereinafter referred to as a substantially conical structure) is provided on the bottom surface of the suction tank below the suction port, so that the submersible vortex generated from the suction port of the suction pipe toward the bottom surface of the suction tank. In addition, a method has been adopted in which the occurrence of air vortices is prevented from occurring upward from the suction port of the suction pipe by providing a ceiling in the suction water tank.

【0008】しかし、この略円錐構造物は、吸込水槽に
おける流れが幅方向に一様に流れる場合に、円錐構造物
の背後で新たに剥離渦が発生してしまうといった問題が
あった。そこで、これに対応するために、特開平11−
148498号公報に記載のように、下方に向けて開口
したポンプ吸込管内へ導水する立軸ポンプの吸込水槽に
おいて、略円錐構造物の周囲に略環状流路を形成する略
円筒型水槽部と、上流側から下方側に向かって流路面積
を小さくするとともに、略円筒型水槽部において略環状
流路に沿った旋回流を生起するように略円筒型水槽部の
上流側に接続された整流絞り水路部とを備えたもの(い
わゆるうず巻き型の水槽)が提唱されている。このよう
な構成により、上流側の水路における流れの偏りの有無
や偏りの方向に関わらず、吸込水槽における略円錐構造
物の周囲では常に一定の方向に旋回流を生じさせ、前述
の剥離渦の発生を防止する。
However, this substantially conical structure has a problem that when the flow in the suction water tank flows uniformly in the width direction, a new separation vortex is generated behind the conical structure. To cope with this, Japanese Patent Laid-Open No.
As described in JP-A-148498, in a suction water tank of a vertical shaft pump that guides water into a pump suction pipe that opens downward, a substantially cylindrical water tank part that forms a substantially annular flow path around a substantially conical structure, A rectifying throttle channel connected to the upstream side of the substantially cylindrical water tank so as to reduce the flow area from the side toward the bottom and to generate a swirl flow along the substantially annular flow path in the substantially cylindrical water tank. (A so-called spiral-shaped aquarium) has been proposed. With such a configuration, a swirling flow is always generated in a constant direction around the substantially conical structure in the suction water tank, regardless of the presence or absence of the flow deviation in the upstream water channel and the direction of the deviation. Prevent occurrence.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記従
来技術には、以下の課題が存在する。すなわち、上記の
ようにうず巻き型水槽に略円錐構造物を設置した場合で
も、流速が増大して旋回流がある程度強く生じた場合に
は、略円錐構造物の頂部からポンプ吸込管内部さらには
ポンプ羽根車にかけて新たに同軸の水中渦(以下、頂部
水中渦という)が発生する。そのため、ポンプ吸込管や
羽根車において大きな振動や騒音の発生を招く。これら
のことは更なる高流速化、すなわち吸込水槽の省スペー
ス化の妨げとなる。
However, the above prior art has the following problems. That is, even when the substantially conical structure is installed in the spiral water tank as described above, if the swirling flow is generated to some extent due to the increase in the flow velocity, the inside of the pump suction pipe from the top of the substantially conical structure and further to the pump A new coaxial underwater vortex (hereinafter referred to as a top underwater vortex) is generated across the impeller. Therefore, large vibration and noise are generated in the pump suction pipe and the impeller. These hinder the further increase in flow velocity, that is, the space saving of the suction water tank.

【0010】本発明の目的は、頂部水中渦の発生を防止
し、立軸ポンプの振動・騒音を防止する立軸ポンプの吸
込水槽を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a suction pump for a vertical shaft pump which prevents the generation of a vortex at the top and prevents vibration and noise of the vertical shaft pump.

【0011】[0011]

【課題を解決するための手段】(1)上記目的を達成す
るために、本発明は、下方に向けて開口したポンプ吸込
管内へ導水する立軸ポンプの吸込水槽において、前記ポ
ンプ吸込管の下方に略円錐構造物を設け、この略円錐構
造物の側面または内部に、下方部から頂部へ連通させる
凹型連通構造を形成したものとする。
(1) In order to achieve the above object, the present invention relates to a suction water tank of a vertical shaft pump for guiding water into a pump suction pipe opened downward, wherein the pump is provided below the pump suction pipe. It is assumed that a substantially conical structure is provided, and a concave communication structure for communicating from a lower portion to a top portion is formed on a side surface or inside the substantially conical structure.

【0012】略円錐構造物の頂部とポンプ羽根車との間
に頂部水中渦が発生した場合、その頂部水中渦の中心に
おける水圧はかなり低くなっているため、頂部水中渦の
中心に位置している略円錐構造物の頂部と、頂部水中渦
の外側にあって吸込水槽の底面に近い略円錐構造物の下
方部との間には大きな圧力差が生じることになる。本発
明においては、この下方部から頂部へ連通させる凹型連
通構造を形成することにより、凹型連通構造を介して略
円錐構造物の下方部から頂部へ向かう水の流れが生じ、
吸込水槽底面付近の水が頂部水中渦の中心に流れ込むよ
う作用する。その結果、頂部水中渦の中心の空洞が満た
されることになるため、頂部水中渦の発生が防止され
る。
When a top water vortex is generated between the top of the substantially conical structure and the pump impeller, the water pressure at the center of the top water vortex is considerably low. There will be a large pressure difference between the top of the substantially conical structure and the lower portion of the substantially conical structure outside the top water vortex and near the bottom of the suction tank. In the present invention, by forming the concave communication structure that communicates from the lower part to the top part, a water flow is generated from the lower part to the top part of the substantially conical structure through the concave communication structure,
It works so that the water near the bottom of the suction water tank flows into the center of the top water vortex. As a result, since the center cavity of the top water vortex is filled, the generation of the top water vortex is prevented.

【0013】このとき、吸込水槽における流速が大きく
なるほど略円錐構造物周りの旋回流及び頂部水中渦は強
くなり頂部水中渦の中心の圧力はより低下するが、頂部
水中渦の中心に位置している略円錐構造物の頂部と水槽
底面付近の下方部との間の圧力差も大きくなるため、頂
部水中渦の中心により多くの水が流入し、頂部水中渦防
止効果は維持される。
At this time, as the flow velocity in the suction water tank increases, the swirling flow around the substantially conical structure and the top water vortex increase, and the pressure at the center of the top water vortex further decreases. Since the pressure difference between the top of the substantially conical structure and the lower part near the bottom of the water tank also increases, more water flows into the center of the top water vortex, and the top water vortex prevention effect is maintained.

【0014】またこの凹型連通構造は略円錐構造物の側
面または内部に形成していることから、略円錐構造物の
周囲を流れる旋回流に対しても何ら乱れ(例えば局所的
な渦等)の発生を招くことなく、円滑に下方部から頂部
に向けて水を流通させることができる。
Further, since the concave communication structure is formed on the side surface or inside of the substantially conical structure, the swirling flow flowing around the substantially conical structure has no disturbance (for example, local vortex). Water can be smoothly circulated from the lower portion to the top without causing generation.

【0015】(2)上記(1)において、好ましくは、
前記略円錐構造物の周囲に略環状流路を形成する略円筒
型水槽部と、上流側から下流側に向かって流路面積を小
さくするとともに、前記略円筒型水槽部において前記略
環状流路に沿った旋回流を生起するように前記略円筒型
水槽部の上流側に接続された整流絞り水路部とを備えて
いるものとする。
(2) In the above (1), preferably,
A substantially cylindrical water tank that forms a substantially annular flow path around the substantially conical structure, and a flow path area that decreases from an upstream side to a downstream side, and the substantially annular flow path in the substantially cylindrical water tank part. And a rectifying throttle channel connected upstream of the substantially cylindrical water tank so as to generate a swirling flow along the flow path.

【0016】これにより、上流側の水路における流れの
偏りの有無や偏りの方向に関わらずポンプ吸込管及び略
円錐構造物の周囲に常に一定の方向に安定した旋回流を
発生させることができるため、剥離渦の発生を防止する
とともに、略円錐構造物の頂部と下方部との間の圧力差
も安定させてその間の水の流通を維持できる。
[0016] Thus, a stable swirling flow can be generated in a constant direction around the pump suction pipe and the substantially conical structure regardless of the presence or absence of the flow deviation in the upstream water channel and the direction of the deviation. In addition, the generation of separation vortex is prevented, and the pressure difference between the top and the lower part of the substantially conical structure is also stabilized, so that the flow of water therebetween can be maintained.

【0017】(3)上記(1)又は(2)において、好
ましくは、前記凹型連通構造が、前記略円錐構造物の下
方部に少なくとも1つ穿孔した流入孔と頂部に穿孔した
排出孔とを前記略円錐構造物の内部で連通させる構成で
あるものとする。
(3) In the above (1) or (2), preferably, the concave communication structure comprises at least one inflow hole drilled below the substantially conical structure and at least one discharge hole drilled at the top. It is configured to communicate inside the substantially conical structure.

【0018】(4)上記(1)又は(2)において、好
ましくは、前記凹型連通構造が、前記略円錐構造物の側
面に下方部から頂部へ少なくとも1つ設けた連通溝であ
るものとする。
(4) In the above (1) or (2), preferably, the concave communication structure is a communication groove provided at least one from a lower portion to a top portion on a side surface of the substantially conical structure. .

【0019】これにより、凹型連通構造の加工が容易で
あるため、製作コストを削減することができる。
As a result, since the processing of the concave communication structure is easy, the manufacturing cost can be reduced.

【0020】(5)上記(1)乃至(4)のいずれかに
おいて、好ましくは、前記ポンプ吸込管の吸込口がベル
マウス型に形成されているものとする。
(5) In any one of the above (1) to (4), preferably, the suction port of the pump suction pipe is formed in a bell mouth shape.

【0021】これにより、ポンプ吸込管及び略円錐構造
物の周囲の旋回流に対し、吸込口付近から円滑に吸い込
むことができる。
Thus, the swirling flow around the pump suction pipe and the substantially conical structure can be smoothly sucked from the vicinity of the suction port.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しつつ説明する。以下に、本発明の第1の実施の
形態による立軸ポンプの吸込水槽を図1〜図7により説
明する。
Embodiments of the present invention will be described below with reference to the drawings. Hereinafter, the suction tank of the vertical shaft pump according to the first embodiment of the present invention will be described with reference to FIGS.

【0023】図1(a)は、本実施の形態による立軸ポ
ンプの吸込水槽の水流方向縦断面図であり、図1(b)
は、図1(a)中I−I面から見た矢視平面図である。こ
れら図1(a)及び図1(b)において、図示しない導
水経路から河川等の水が流入される吸込水槽20と、吸
込水槽20より高いヘッドに位置している吐出水槽3
と、吸込水槽20の下流側閉端部(図中右端部)近傍で
下端のポンプ吸込口4を下方底面に向けて開口し、その
上方が略水平横方向に曲折して開口部のポンプ吐出口5
が吐出水槽3中に接続しているポンプ吸込管6と、ポン
プ吸込口4下方の吸込水槽20の底面に設置した略円錐
構造物22と、ポンプ吸込口4内部に配置され複数枚の
羽根7aを備えたポンプ羽根車7と、ポンプ吸込管6を
貫通して設けられポンプ羽根車7を先端に固定した羽根
車シャフト8と、ポンプ吸込管6の曲折部の上方に位置
し、クラッチ9を介して羽根車シャフト8に接続するポ
ンプ原動機10aを備えた駆動部10とが設けられてい
る。
FIG. 1A is a vertical sectional view in the water flow direction of the suction water tank of the vertical shaft pump according to the present embodiment, and FIG.
FIG. 2 is a plan view as seen from an II plane in FIG. 1 (a) and 1 (b), a suction water tank 20 into which water such as a river flows in from a water conveyance path (not shown), and a discharge water tank 3 located at a head higher than the suction water tank 20.
In the vicinity of the downstream closed end (the right end in the figure) of the suction water tank 20, the pump suction port 4 at the lower end is opened toward the lower bottom surface, and the upper part thereof is bent substantially horizontally and horizontally to discharge the pump discharge at the opening. Exit 5
A pump suction pipe 6 connected to the discharge water tank 3, a substantially conical structure 22 installed on the bottom surface of the suction water tank 20 below the pump suction port 4, and a plurality of blades 7a arranged inside the pump suction port 4. , A pump impeller shaft 8 provided through the pump suction pipe 6 and having the pump impeller 7 fixed to the tip thereof, and a clutch 9 located above the bent portion of the pump suction pipe 6. And a drive unit 10 having a pump motor 10a connected to the impeller shaft 8 through the drive unit 10.

【0024】吸込水槽20は、略円錐構造物13の周囲
に略環状流路16を形成する略円筒型水槽部17と、上
流側から下方側に向かって流路面積を小さくするととも
に略円筒型水槽部17において略環状流路16に沿った
旋回流18を生起するように略円筒型水槽部17の上流
側に接続された整流絞り水路部19とを備えたうず巻き
型の吸込水槽となっており、ポンプ吸込口4周囲の上方
に水面Wより低く水中に満たされる高さで天井20bが
設けられている。
The suction water tank 20 has a substantially cylindrical water tank portion 17 that forms a substantially annular flow path 16 around the substantially conical structure 13, and has a substantially cylindrical flow path area whose flow path area decreases from the upstream side to the lower side. A vortex-type suction water tank having a rectifying throttle water passage 19 connected upstream of the substantially cylindrical water tank 17 so as to generate a swirling flow 18 along the substantially annular flow path 16 in the water tank 17. A ceiling 20b is provided above the periphery of the pump inlet 4 at a height lower than the water surface W and filled with water.

【0025】ポンプ吸込口4は吸込水槽2を満たす水中
に位置して吸込水槽20からポンプ吸込管6内に導水す
るものであり、また曲線的に広がるベルマウス形状に形
成されている。ポンプ原動機10aは例えばガスタービ
ン等の原動機であり、またその出力軸10bは駆動力の
接続・切り離しを行う例えば円板型のクラッチ9を介し
て羽根車シャフト8に接続している。ポンプ吐出口5は
吐出水槽3を満たす水中に浸漬するよう吐出水槽3に接
続している。
The pump suction port 4 is located in the water filling the suction water tank 2 and guides water from the suction water tank 20 into the pump suction pipe 6, and is formed in a bell mouth shape which spreads in a curved line. The pump prime mover 10a is, for example, a prime mover such as a gas turbine, and its output shaft 10b is connected to the impeller shaft 8 via, for example, a disk-shaped clutch 9 for connecting / disconnecting the driving force. The pump discharge port 5 is connected to the discharge water tank 3 so as to be immersed in water filling the discharge water tank 3.

【0026】略円錐構造物22には、設置面である吸込
水槽20の底面20a付近に位置する下方部にて周方向
複数箇所でそれぞれ径方向に穿孔され、かつ略円錐構造
物22内部の径方向中心部まで直線的に伸びて互いに連
通結合する複数(図中では4つ)の流入孔23と略円錐
構造物22の頂点から略鉛直方向に穿孔され流入孔23
と連通する1つの頂点排出孔24とを有している。
The substantially conical structure 22 is radially perforated at a plurality of locations in the circumferential direction at a lower portion located near the bottom surface 20a of the suction water tank 20, which is an installation surface, and has a diameter inside the substantially conical structure 22. A plurality of (four in the figure) inflow holes 23 extending linearly to the center in the direction and communicating with each other, and the inflow holes 23 are drilled in a substantially vertical direction from the top of the substantially conical structure 22.
And one apex discharge hole 24 communicating with it.

【0027】なお、以上において、頂点排出孔24が特
許請求の範囲各項記載の排出孔を構成し、また、流入孔
23と頂部排出孔24が特許請求の範囲各項記載の凹型
連通構造を構成している。
In the above description, the top discharge hole 24 constitutes the discharge hole described in each claim, and the inflow hole 23 and the top discharge hole 24 form the concave communication structure described in each claim. Make up.

【0028】次に、本実施の形態の作用を説明する。ま
ず、本発明の背景原理を、図2〜図7を用いて説明す
る。以下、これら図2〜図7までにおいて、図1と同符
号のものは同一部分を示す。
Next, the operation of the present embodiment will be described. First, the background principle of the present invention will be described with reference to FIGS. Hereinafter, in FIGS. 2 to 7, the same reference numerals as those in FIG. 1 indicate the same parts.

【0029】図2は一般的な立軸ポンプの吸込水槽の構
造を表す縦断面図である。図2において、吸込水槽2は
略長方形の形状で図中左方向に伸びて設置している。先
の図1(a)と同様、ポンプ吸込口4は吸込水槽2を満
たす水中に位置して吸込水槽2からポンプ吸込管6内に
導水できるようになっている。
FIG. 2 is a longitudinal sectional view showing a structure of a suction water tank of a general vertical shaft pump. In FIG. 2, the suction water tank 2 has a substantially rectangular shape and extends in the left direction in the figure. As in FIG. 1A, the pump suction port 4 is located in the water filling the suction water tank 2 so that water can be guided from the suction water tank 2 into the pump suction pipe 6.

【0030】上記構成において、ポンプ羽根車7が回転
駆動され揚水開始されると、図2の要部拡大図である図
3(a)及び図3(a)中III−III断面による水平断面
図である図3(b)に示すように、ポンプ吸込口4周囲
の水がポンプ羽根車7の回転と連動して流速Vbでポン
プ吸込管6の中へ吸い込まれるとともに、吸込水槽2中
の水が図中左側からポンプ吸込管6に向かって流速Vs
で流れる。
In the above configuration, when the pump impeller 7 is driven to rotate to start pumping, a horizontal sectional view taken along the line III-III in FIGS. 3 (a) and 3 (a), which is an enlarged view of a main part of FIG. As shown in FIG. 3B, the water around the pump suction port 4 is sucked into the pump suction pipe 6 at a flow velocity Vb in conjunction with the rotation of the pump impeller 7, and the water in the suction water tank 2 is Is the flow velocity Vs from the left side in the figure toward the pump suction pipe 6.
Flows in

【0031】そしてこの流速Vbまたは流速Vsが大き
くなるにしたがい、ポンプ吸込口4には吸込水槽2の底
面2aから、または水面Wから渦が発生し、さらに流速
Vb,Vsが大きくなった場合には、それぞれの渦の中
心の圧力が極度に低くなるため空洞となって図示するよ
うな空気吸込渦11及び水中渦12となる。
As the flow velocity Vb or Vs increases, a vortex is generated in the pump suction port 4 from the bottom surface 2a of the suction water tank 2 or from the water surface W, and the flow velocity Vb or Vs further increases. Since the pressure at the center of each vortex becomes extremely low, the vortex becomes a cavity and becomes an air suction vortex 11 and a water vortex 12 as shown in the figure.

【0032】このように中心が空洞となってポンプ吸込
口4に発生する渦は、ポンプ吸込口4やその内部で回転
するポンプ羽根車7に対して大きな振動や騒音を与える
原因となる。そのためVb,Vsが制限され、その結果
同一流量を確保するためにはこの幅方向寸法を大きく取
らざる得なくなるため、水槽2自体の省スペース化が妨
げられることになる。
As described above, the vortex generated in the pump suction port 4 with its center being hollow causes large vibrations and noise to the pump suction port 4 and the pump impeller 7 rotating inside the pump suction port 4. For this reason, Vb and Vs are limited. As a result, in order to secure the same flow rate, it is necessary to increase the width dimension, which hinders space saving of the water tank 2 itself.

【0033】これを解決するためには、ポンプ吸込口4
周囲に渦の発生を防ぐための何かしらの構成を設けるこ
とが考えられる。図4は上記空気吸込渦11及び水中渦
12の発生をそれぞれ防止するために天井及び略円錐構
造物を設けた場合の水流方向断面図であり、上記水中渦
12の発生を防ぐための有効な構成としてポンプ吸込口
4下方の吸込水槽2の底面に略円錐構造物13が設置さ
れ、上記空気吸込渦11の発生を防ぐための有効な構成
としてポンプ吸込口4周囲の吸込水槽2の上方に水面W
より低く水中に満たされる高さで天井2bが設けられて
いる。
To solve this, the pump suction port 4
It is conceivable to provide some configuration around the periphery to prevent the generation of vortices. FIG. 4 is a sectional view in the water flow direction in the case where a ceiling and a substantially conical structure are provided to prevent the occurrence of the air suction vortex 11 and the underwater vortex 12, respectively. As a configuration, a substantially conical structure 13 is installed on the bottom surface of the suction water tank 2 below the pump suction port 4, and as an effective configuration for preventing the generation of the air suction vortex 11 above the suction water tank 2 around the pump suction port 4. Water surface W
The ceiling 2b is provided at a lower height to be filled with water.

【0034】これら天井2b及び略円錐構造物13を設
置することによってそれぞれ上記の空気吸込渦11およ
び水中渦12の発生を防ぐことができるものの、このう
ち略円錐構造物13を設置したことで、図4の要部拡大
図である図5(a)及び図5(a)中V−V断面による水
平断面図である図5(b)に示すように、略円錐構造物
13を通過した時点で水の流れが剥離し、略円錐構造物
13の背後の左右2箇所で剥離渦14が発生する。これ
は、特に吸込水槽2における流れが幅方向に一様に流れ
る場合に顕著である。
The installation of the ceiling 2b and the substantially conical structure 13 can prevent the occurrence of the air suction vortex 11 and the underwater vortex 12, respectively. As shown in FIG. 5A, which is an enlarged view of a main part of FIG. 4, and FIG. 5B, which is a horizontal sectional view taken along the line VV in FIG. As a result, the flow of water is separated, and separation vortices 14 are generated at two places on the left and right behind the substantially conical structure 13. This is remarkable especially when the flow in the suction water tank 2 flows uniformly in the width direction.

【0035】これを解決するためには略円錐構造物13
に流入するときの流れを幅方向に一様でなく、どちらか
一方側に偏らせることが考えられる。
In order to solve this, a substantially conical structure 13 is used.
It is conceivable that the flow at the time of inflow is not uniform in the width direction and is biased to one side.

【0036】図6(a)は上記剥離渦14を防止するた
めにうず巻き型の水槽とした場合の水流方向側断面図で
あり、図6(b)は図6(a)中VI−VI断面からの矢視
平面図である。
FIG. 6A is a cross-sectional view in the water flow direction when a spiral-wound water tank is used to prevent the separation vortex 14, and FIG. 6B is a cross-sectional view taken along the line VI-VI in FIG. FIG.

【0037】これら図6(a)及び図6(b)におい
て、略円筒型水槽部17と、この略円筒型水槽部17の
上流側に整流絞り水路部19を接続したうず巻き型の吸
込水槽20に略円錐構造物13を設置している。このよ
うな構成により、上流側の整流絞り水路部19における
流れの偏りの有無や偏りの方向に関わらず、略円筒型水
槽部17における略円錐構造物13の周囲では常に一定
の方向に安定した旋回流18を生じさせ、前述の剥離渦
14の発生を防止する。
6 (a) and 6 (b), a spirally wound suction water tank 20 having a substantially cylindrical water tank portion 17 and a rectifying throttle water passage portion 19 connected upstream of the substantially cylindrical water tank portion 17 is shown. , A substantially conical structure 13 is provided. With such a configuration, regardless of whether or not the flow is biased in the upstream rectifying throttle channel portion 19 and the direction of the bias, the flow is always stabilized in a constant direction around the substantially conical structure 13 in the substantially cylindrical water tank portion 17. The swirling flow 18 is generated to prevent the generation of the separation vortex 14 described above.

【0038】しかし他方で、流速Vsがさらに増大する
などによりこの旋回流18がさらに強くなった場合に
は、図7(a)及び図7(b)に示すように略円錐構造
物13の頂部からポンプ吸込管6内部さらにはポンプ羽
根車7にかけて新たに同軸の頂部水中渦15が発生する
可能性がある。
On the other hand, if the swirling flow 18 becomes stronger due to a further increase in the flow velocity Vs, as shown in FIGS. There is a possibility that a coaxial top water vortex 15 is newly generated from the inside to the inside of the pump suction pipe 6 and further to the pump impeller 7.

【0039】そこで以上に基づき、図1に示した本実施
の形態による立軸ポンプの吸込水槽20では、前述した
ように略円錐構造物22の下方部と頂部を連通させる流
入孔23と頂点排出孔24をその内部に設けることによ
り、頂部水中渦15の発生を防止する。
Therefore, based on the above, in the suction water tank 20 of the vertical shaft pump according to the present embodiment shown in FIG. 1, the inflow hole 23 and the apex discharge hole for communicating the lower part and the top part of the substantially conical structure 22 as described above. By providing the inside 24, generation of the top water vortex 15 is prevented.

【0040】すなわち、図1において、前述のように略
円錐構造物22の周囲の略環状流路16に沿って強い旋
回流18が生じて頂部水中渦15が発生した場合、その
頂部水中渦15の中心における水圧はかなり低くなって
いるため、頂部水中渦15の中心に位置している略円錐
構造物22の頂部と、頂部水中渦15の外側にあって吸
込水槽20の底面に近い略円錐構造物22の下方部との
間には大きな圧力差が生じている。そこで上記のように
流入孔23と頂点排出孔24を設けることでそれら流入
孔23と頂点排出孔24を介して略円錐構造物22の下
方部から頂部へ向かう水の流れが生じ、吸込水槽20底
面20a付近の水が頂部水中渦15の中心に流れ込む。
その結果、頂部水中渦15の中心の空洞が満たされるこ
とになるため、頂部水中渦15の発生が防止される。
That is, in FIG. 1, when the strong swirling flow 18 is generated along the substantially annular flow path 16 around the substantially conical structure 22 and the top water vortex 15 is generated as described above, the top water vortex 15 is generated. The water pressure at the center of the bottom water vortex 15 is considerably low, so that the top of the substantially conical structure 22 located at the center of the top water vortex 15 and the substantially cone outside the top water vortex 15 and close to the bottom surface of the suction water tank 20 There is a large pressure difference between the lower part of the structure 22 and the lower part. Therefore, by providing the inflow hole 23 and the apex discharge hole 24 as described above, a water flow from the lower portion to the top of the substantially conical structure 22 is generated through the inflow hole 23 and the apex discharge hole 24, and the suction water tank 20 is formed. Water near the bottom surface 20a flows into the center of the top water vortex 15.
As a result, the center cavity of the top water vortex 15 is filled, so that the generation of the top water vortex 15 is prevented.

【0041】このとき、吸込水槽20における流速Vs
(図1参照)が大きくなるほど略円錐構造物22周りの
旋回流18、及び頂部水中渦15は強くなり、頂部水中
渦15の中心の圧力はより低下するが、頂部水中渦15
の中心に位置している略円錐構造物22の頂部と吸込水
槽20底面20a付近の下方部との間の圧力差も大きく
なるため、頂部水中渦15の中心により多くの水が流入
し、頂部水中渦15防止効果は維持される。
At this time, the flow velocity Vs in the suction water tank 20
As FIG. 1 (see FIG. 1) increases, the swirling flow 18 around the substantially conical structure 22 and the top water vortex 15 become stronger, and the pressure at the center of the top water vortex 15 is further reduced.
The pressure difference between the top of the substantially conical structure 22 located at the center of the bottom and the lower part near the bottom surface 20a of the suction water tank 20 also increases, so that more water flows into the center of the top water vortex 15, and The effect of preventing the underwater vortex 15 is maintained.

【0042】また上記の流入孔23、頂点排出孔24に
よる連通構造は略円錐構造物22の内部に形成している
ことから、略円錐構造物22の周囲を流れる旋回流18
に対しても例えば局所的な渦等の乱れの発生を招くこと
なく円滑に下方部から頂部に向けて水を流通させること
ができる。
Since the communication structure formed by the inflow hole 23 and the apex discharge hole 24 is formed inside the substantially conical structure 22, the swirling flow 18 flowing around the substantially conical structure 22 is formed.
For example, water can be smoothly circulated from the lower part to the top without causing the occurrence of disturbance such as local vortex.

【0043】さらにポンプ吸込口4がベルマウス形状に
形成されていることで、ポンプ吸込管6及び略円錐構造
物22の周囲の旋回流18に対し、ポンプ吸込口4付近
から円滑に吸い込むことができる。
Further, since the pump suction port 4 is formed in a bell mouth shape, the pump suction pipe 6 and the swirling flow 18 around the substantially conical structure 22 can be sucked smoothly from the vicinity of the pump suction port 4. it can.

【0044】なお、本発明による略円錐構造物22にお
いて、上記流入孔23の構成は上記図1に示すように縦
と横の径が同じ丸い孔に限られず、例えば縦の径に比べ
て横の径を円周方向に広く形成した構成としてもよい。
これにより高い圧力となっている下方部からより多くの
水を流入して渦中心に排出することができるため、より
確実に頂部水中渦15の発生を防止することができる。
In the substantially conical structure 22 according to the present invention, the configuration of the inflow hole 23 is not limited to a round hole having the same vertical and horizontal diameters as shown in FIG. May be formed to have a larger diameter in the circumferential direction.
As a result, more water can flow in from the lower part where the pressure is high and can be discharged to the center of the vortex, so that the generation of the top water vortex 15 can be more reliably prevented.

【0045】また、略円錐構造物22内部における上記
流入孔23の流路形状についても図1(b)に示すよう
に円周上から内部の中心点に向かう直線形状に限られ
ず、例えば旋回流と同じ方向に傾斜した螺旋形状で略円
錐構造物22の中心点に向かって連通集合する構成とし
てもよい。これにより旋回流の動的エネルギーをも利用
してより多くの水を流入孔23へ円滑に流入することが
でき、より高い水圧で頂部水中渦15中心に排出するこ
とが可能となる。
Further, the shape of the flow passage of the inflow hole 23 inside the substantially conical structure 22 is not limited to a linear shape extending from the circumference to the central point as shown in FIG. It may be configured to communicate and gather toward the center point of the substantially conical structure 22 in a spiral shape inclined in the same direction as the above. As a result, more water can smoothly flow into the inflow hole 23 by utilizing the dynamic energy of the swirling flow, and the water can be discharged to the center of the top water vortex 15 at a higher water pressure.

【0046】また上記本発明の第1の実施の形態におい
て、流入孔23は略円錐構造物22の周方向複数箇所
(図中では4箇所)設けた構成となっているがこれに限
られず、少なくとも1つ設けていれば略円錐構造物22
下方部から頂部への水の移送、頂部水中渦15中心への
排出を行うことができ、頂部水中渦15の発生を防止で
きる。
In the first embodiment of the present invention, the inflow holes 23 are provided at a plurality of locations (four locations in the figure) in the circumferential direction of the substantially conical structure 22, but the invention is not limited to this. A substantially conical structure 22 if at least one is provided
The water can be transferred from the lower part to the top and discharged to the center of the top water vortex 15, so that the generation of the top water vortex 15 can be prevented.

【0047】次に本発明の第2の実施の形態による吸込
水槽を図8(a)及び図8(b)により説明する。本実
施の形態は、前述した本発明の第1の実施の形態におけ
る略円錐構造物22の内部に設けた連通構造に、さらに
頂点付近の頂部において側方に向けて複数の排出孔を円
周上に穿孔したものである。
Next, a suction tank according to a second embodiment of the present invention will be described with reference to FIGS. 8 (a) and 8 (b). In the present embodiment, the communication structure provided inside the substantially conical structure 22 in the above-described first embodiment of the present invention further includes a plurality of discharge holes circumferentially extending laterally at the top near the apex. Perforated above.

【0048】図8(a)は本実施の形態による立軸ポン
プの吸込水槽の水流方向縦断面図であり、図8(b)は
図8(a)中VIII−VIII断面からみた矢視平面図であ
る。これら図8(a)及び図8(b)において、図1
(a)及び図1(b)と同符号のものは同一部分を示
し、適宜説明を省略する。
FIG. 8 (a) is a vertical sectional view in the water flow direction of the suction water tank of the vertical shaft pump according to the present embodiment, and FIG. 8 (b) is a plan view taken along the line VIII-VIII in FIG. 8 (a). It is. In FIGS. 8A and 8B, FIG.
1A and 1B denote the same parts, and a description thereof will not be repeated.

【0049】図8(a)及び図8(b)において、吸込
水槽20には略円錐構造物22Aが備えられており、こ
の略円錐構造物22Aには、上述した複数の流入孔23
及び頂点排出孔24と、略鉛直方向に配設された頂点排
出孔24の上部から斜め上方に分岐して設けられ、流入
孔23の頂点付近の側部に至る複数(図中では4つ)の
円周排出孔25とを設けられている。
8A and 8B, the suction water tank 20 is provided with a substantially conical structure 22A, and the substantially conical structure 22A has a plurality of inflow holes 23 described above.
And a plurality of (four in the figure) reaching the side near the apex of the inflow hole 23, provided diagonally upward from the top of the apex discharge hole 24 and the apex discharge hole 24 arranged in a substantially vertical direction. And a circumferential discharge hole 25.

【0050】本実施の形態によっても、上記第1の実施
の形態と同様にして、頂部水中渦15の発生が防止され
る。
According to the present embodiment, as in the first embodiment, the generation of the top water vortex 15 is prevented.

【0051】また上記に加え、本実施の形態の連通構造
によれば、略円錐構造物22Aの頂部に接する渦中心が
若干移動しても、頂部周方向4箇所に設けた複数の円周
排出孔25のうちのどれか1つに接する可能性が大きく
なるため、渦の発生防止効果がより確実となるという効
果がある。
In addition to the above, according to the communication structure of the present embodiment, even if the center of the vortex in contact with the top of the substantially conical structure 22A moves slightly, a plurality of circumferential discharges provided at four locations in the circumferential direction of the top are provided. Since the possibility of contact with any one of the holes 25 increases, there is an effect that the effect of preventing the generation of eddies becomes more reliable.

【0052】なお、上記第2の実施の形態においては、
流入孔23及び円周排出孔25はそれぞれ略円錐構造物
22Aの下方部および頂部の周方向複数箇所(図中では
4箇所ずつ)設けた構成となっているがこれに限られ
ず、それぞれ少なくとも1つ設けていれば足り、同様の
効果を得ることができる。
Note that in the second embodiment,
The inflow holes 23 and the circumferential discharge holes 25 are provided at a plurality of locations (four locations in the figure) at the lower portion and the top portion of the substantially conical structure 22A, respectively, but are not limited thereto. If one is provided, the same effect can be obtained.

【0053】次に本発明の第3の実施の形態による立軸
ポンプの吸込水槽を図9(a)及び図9(b)により説
明する。本実施の形態は、前述した本発明の第1の実施
の形態において略円錐構造物22の連通構造を下方部か
ら頂部へ水を流通する孔(流入孔23及び頂点排出孔2
4)として内部に設ける代わりに、略円錐構造物の側面
において下方部から頂部へ水の流通可能な溝として設け
たものである。
Next, a suction tank of a vertical shaft pump according to a third embodiment of the present invention will be described with reference to FIGS. 9 (a) and 9 (b). In the present embodiment, the communication structure of the substantially conical structure 22 in the above-described first embodiment of the present invention is provided with holes (flow-in holes 23 and apex discharge holes 2) through which water flows from the lower part to the upper part.
Instead of being provided inside as 4), a groove through which water can flow from the lower portion to the top portion on the side surface of the substantially conical structure is provided.

【0054】図9(a)は本実施の形態による立軸ポン
プの吸込水槽の水流方向縦断面図であり、図9(b)は
図9(a)中IX−IX断面から見た矢視平面図である。こ
れら図9(a)及び図9(b)において、図1(a)及
び図1(b)と同符号のものは同一部分を示し、適宜説
明を省略する。
FIG. 9 (a) is a vertical sectional view in the water flow direction of the suction water tank of the vertical shaft pump according to the present embodiment, and FIG. 9 (b) is a plan view taken along the line IX-IX in FIG. 9 (a). FIG. In FIGS. 9A and 9B, the same reference numerals as those in FIGS. 1A and 1B denote the same parts, and a description thereof will not be repeated.

【0055】これら図9(a)及び図9(b)におい
て、吸込水槽20には略円錐構造物22Bが備えられて
おり、この略円錐構造物22Bには、最下方に位置する
底部外縁部からその頂点を目指して直線的に設けた連通
溝26を側面上に複数(図中では4つ)備えている。
9 (a) and 9 (b), the suction water tank 20 is provided with a substantially conical structure 22B, and the substantially conical structure 22B has a bottom outer edge located at the lowest position. A plurality of (four in the figure) communication grooves 26 are provided on the side surface in a straight line so as to reach the apex.

【0056】なお、以上において、連通溝26が特許請
求の範囲4項記載の略円錐構造物の側面に下方部から頂
部へ少なくとも1つ設けた連通溝を構成している。
In the above, the communication groove 26 constitutes at least one communication groove provided from the lower part to the top part on the side surface of the substantially conical structure described in claim 4.

【0057】本実施の形態によっても、上記第1の実施
の形態と同様の原理で、上記の連通溝26に沿って略円
錐構造物22Bの下方部から頂部へ向かう水の流れが生
じ、頂部水中渦15の中心の空洞に水が流れ込むことで
頂部水中渦15の発生が防止される。
According to the present embodiment, the water flows from the lower portion of the substantially conical structure 22B to the top along the communication groove 26 on the same principle as that of the first embodiment, and The flow of water into the central cavity of the underwater vortex 15 prevents the top water vortex 15 from being generated.

【0058】また上記に加え本実施の形態の場合、略円
錐構造物22Bの側面に溝を加工形成するだけでよく、
上記第1及び第2の実施の形態のように内部に連通孔を
設ける構成よりも格段に簡便であるため製作コストを大
幅に削減できるメリットがある。このことは特に大型の
立軸ポンプの吸込水槽に設置する場合に大きく効果が発
揮される。
In addition to the above, in the case of the present embodiment, it is only necessary to form a groove on the side surface of the substantially conical structure 22B.
Since the configuration is much simpler than the configuration in which the communication holes are provided inside as in the first and second embodiments, there is an advantage that the manufacturing cost can be greatly reduced. This is particularly effective when installed in the suction water tank of a large vertical pump.

【0059】なお上記第3の実施の形態において、連通
溝26は略円錐構造物22Bの円周方向複数箇所(図中
では4つ)に設けた構成となっているがこれに限られ
ず、円周上に少なくとも1つ設けていれば足り、このよ
うな場合も同様の効果を得る。
In the third embodiment, the communication grooves 26 are provided at a plurality of positions (four in the figure) in the circumferential direction of the substantially conical structure 22B, but the present invention is not limited to this. It is sufficient if at least one is provided on the circumference, and in such a case, a similar effect is obtained.

【0060】次に本発明の第4の実施の形態による吸込
水槽を図10により説明する。本実施の形態は、連通構
造として、略円錐構造物全体を円周方向に分割するよう
その底部から頂点まで直線的に形成される切り通しを設
けたものである。
Next, a suction tank according to a fourth embodiment of the present invention will be described with reference to FIG. In the present embodiment, as the communication structure, there is provided a cutout that is formed linearly from the bottom to the top so as to divide the entire substantially conical structure in the circumferential direction.

【0061】図10(a)は本実施の形態による立軸ポ
ンプの吸込水槽の水流方向縦断面図であり、図10
(b)は図10(a)中X−X断面から見た矢視平面図で
ある。これら図10(a)及び図10(b)において、
図9(a)及び図9(b)と同符号のものは同一部分を
示し、適宜説明を省略する。
FIG. 10 (a) is a vertical sectional view in the water flow direction of the suction water tank of the vertical shaft pump according to this embodiment.
FIG. 10B is a plan view as viewed from an arrow X-X in FIG. In these FIGS. 10A and 10B,
9A and 9B denote the same parts, and a description thereof will not be repeated.

【0062】図10(a)及び図10(b)において、
吸込水槽20には略円錐構造物22Cが備えられてお
り、この略円錐構造物22Cには、吸込水槽20の底面
から略円錐構造物22Cの頂点まで直線的に至る複数
(図中では円周方向に直交するような位置に設けた4
つ)の切り通し27が、中心軸から略円錐構造物22C
全体を周方向に分割するよう(この場合4等分するよう
に)配置されている。
In FIG. 10A and FIG. 10B,
The suction water tank 20 is provided with a substantially conical structure 22C. The plurality of substantially conical structures 22C linearly extend from the bottom surface of the suction water tank 20 to the apex of the substantially conical structure 22C (in FIG. 4 provided at a position orthogonal to the direction
) Through the substantially conical structure 22C from the central axis.
It is arranged so as to divide the whole in the circumferential direction (in this case, to divide into four).

【0063】本実施の形態によっても、上記第1〜第3
の実施の形態と同様、上記の切り通し27を通り抜けて
略円錐構造物22Cの下方部から頂部へ向かう水の流れ
が生じ、頂部水中渦15の中心の空洞に水が流れ込むこ
とで頂部水中渦15の発生が防止される。
According to the present embodiment, the above-mentioned first to third
Similarly to the embodiment, the water flows from the lower part of the substantially conical structure 22C to the top through the cut-through 27, and flows into the central cavity of the top water vortex 15, whereby the top water vortex 15 is formed. Is prevented from occurring.

【0064】また、上記に加え本実施の形態の場合、略
円錐構造物22Cを中心から円周方向に幾つかのピース
に分割したものを、適当な隙間を取って設置すればよ
く、上記第1及び第2の実施の形態のように内部に連通
孔を設ける構成よりも格段に簡便であるため、製作コス
トを大幅に削減できるメリットがある。このことはまた
大型の立軸ポンプの吸込水槽に設置する場合に特に大き
く効果が発揮される。
In addition to the above, in the case of the present embodiment, the substantially conical structure 22C divided into several pieces in the circumferential direction from the center may be installed with an appropriate gap therebetween. Since the configuration is much simpler than the configuration in which the communication holes are provided inside as in the first and second embodiments, there is an advantage that the manufacturing cost can be greatly reduced. This is particularly effective when installed in the suction tank of a large vertical pump.

【0065】なお上記第4の実施の形態において、切り
通し27は略円錐構造物22Cの周方向に複数(図中で
は4つ)設けた構成となっているがこれに限られず、周
方向に少なくとも1つ設けていれば足り、このような場
合も同様の効果を得る。
In the fourth embodiment, a plurality of cutouts 27 (four in the figure) are provided in the circumferential direction of the substantially conical structure 22C. However, the present invention is not limited to this, and at least the cutouts 27 are provided in the circumferential direction. It is sufficient if one is provided, and in such a case, a similar effect is obtained.

【0066】なお、以上においては、本発明を略円筒型
水槽部17の上流側に整流絞り水路部19を接続したう
ず巻き型の吸込水槽20に適用した実施の形態を例にと
って説明したが、これに限られるものではない。すなわ
ち、前述の頂部水中渦15の発生は、略円錐構造物13
を上記うず巻き型の吸込水槽20に設置した場合のみに
限らず、例えば図5(a)及び図5(b)に示したよう
な長方形の吸込水槽2であっても設置形態等に基づき上
流で幅方向に大きな偏流が起こり、図11(a)及び図
11(b)に示すように略円錐構造物13の周囲に強い
旋回流18が生じて頂部水中渦15が発生する場合があ
る。このような場合も上述したような連通構造を略円錐
構造物13に設けることにより、同様の効果を得る。
In the above description, the present invention has been described by taking as an example an embodiment in which the present invention is applied to a spiral-wound suction water tank 20 in which a rectifying throttle water passage section 19 is connected upstream of a substantially cylindrical water tank section 17. It is not limited to. That is, the generation of the above-mentioned top water vortex 15 is caused by the substantially conical structure 13.
The present invention is not limited to the case where is installed in the above-mentioned vortex-shaped suction water tank 20. For example, even in the case of a rectangular suction water tank 2 as shown in FIGS. A large drift occurs in the width direction, and a strong swirling flow 18 is generated around the substantially conical structure 13 as shown in FIGS. In such a case, similar effects can be obtained by providing the above-described communication structure in the substantially conical structure 13.

【0067】[0067]

【発明の効果】本発明によれば、頂部水中渦の中心と吸
込水槽の底面付近との間に生じる大きな圧力差を利用し
て、吸込水槽底面付近の水を頂部水中渦の中心に流し込
み空洞を満たすことで頂部水中渦の発生を防止できる。
According to the present invention, the water near the bottom of the suction tank is poured into the center of the top water vortex by utilizing the large pressure difference generated between the center of the top water vortex and the vicinity of the bottom of the suction tank. By satisfying the above condition, it is possible to prevent the generation of a vortex in the top water.

【0068】これにより、渦によって生じていた立軸ポ
ンプの振動・騒音を防止できることから、吸込水槽中に
おける水流の更なる高流速化、すなわち吸込水槽の省ス
ペース化が可能となり、立軸ポンプ機場全体の建設費を
削減することができる。
As a result, the vibration and noise of the vertical shaft pump caused by the vortex can be prevented, so that the water flow in the suction water tank can be further increased, that is, the space of the suction water tank can be reduced, and the entire vertical shaft pump station can be saved. Construction costs can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の立軸ポンプの吸込水槽の第1の実施の
形態の水流方向縦断面図、及び図1(a)中I−I面から
見た矢視平面図である。
FIG. 1 is a longitudinal sectional view in a water flow direction of a suction water tank of a vertical shaft pump according to a first embodiment of the present invention, and a plan view seen from an II plane in FIG. 1 (a).

【図2】一般的な立軸ポンプの吸込水槽の水流方向縦断
面図である。
FIG. 2 is a vertical cross-sectional view in a water flow direction of a suction water tank of a general vertical shaft pump.

【図3】図2の要部である吸込水槽を拡大した水流方向
縦断面図、及び図3(a)中III−III面から見た矢視平
面図である。
FIG. 3 is an enlarged vertical sectional view in a water flow direction of a suction water tank, which is a main part of FIG. 2, and a plan view seen from an arrow III-III in FIG. 3 (a).

【図4】空気吸込渦及び水中渦の発生を防止するための
天井及び略円錐構造物を設置した吸込水槽の水流方向断
面図である。
FIG. 4 is a sectional view in a water flow direction of a suction water tank provided with a ceiling and a substantially conical structure for preventing generation of an air suction vortex and a water vortex.

【図5】略円錐構造を設置した吸込水槽に剥離渦が発生
する様子を説明する水流方向断面図、及び図5(a)中
V−V面から見た矢視平面図である。
FIG. 5 is a sectional view in a water flow direction for explaining a state in which a separation vortex is generated in a suction water tank having a substantially conical structure, and FIG.
FIG. 5 is a plan view seen from an arrow VV.

【図6】剥離渦を防止するためにうず巻き型とした吸込
水槽の水流方向側断面図、及び図6(a)中VI−VI断面
から見た矢視平面図である。
FIG. 6 is a sectional view taken along a water flow direction of a suction water tank of a spiral shape for preventing a separation vortex, and a plan view seen from a section taken along line VI-VI in FIG. 6 (a).

【図7】略円錐構造物を設置したうず巻き型の吸込水槽
に頂部水中渦が発生する様子を説明する水流方向断面
図、及び図7(a)中VII−VIIから見た矢視平面図であ
る。
FIG. 7 is a cross-sectional view in a water flow direction for explaining a state in which a top water vortex is generated in a spiral-shaped suction water tank in which a substantially conical structure is installed, and a plan view seen from an arrow VII-VII in FIG. is there.

【図8】本発明の立軸ポンプの吸込水槽の第2の実施の
形態の水流方向縦断面図、及び図8(a)中VIII−VIII
面から見た矢視平面図である。
FIG. 8 is a vertical sectional view in a water flow direction of a suction water tank of a vertical shaft pump according to a second embodiment of the present invention, and VIII-VIII in FIG. 8 (a).
FIG. 3 is a plan view as viewed from an arrow direction.

【図9】本発明の立軸ポンプの吸込水槽の第3の実施の
形態の水流方向縦断面図、及び図9(a)中IX−IX面か
ら見た矢視平面図である。
FIG. 9 is a longitudinal sectional view in a water flow direction of a suction water tank of a vertical shaft pump according to a third embodiment of the present invention, and a plan view seen from an IX-IX plane in FIG.

【図10】本発明の立軸ポンプの吸込水槽の第4の実施
の形態の水流方向縦断面図、及び図10(a)中X−X面
から見た矢視平面図である。
FIG. 10 is a vertical sectional view in a water flow direction of a suction water tank of a vertical shaft pump according to a fourth embodiment of the present invention, and is a plan view seen from a plane XX in FIG. 10 (a).

【図11】図5に示した長方形の吸込水槽に頂部水中渦
が発生する様子を説明する水流方向断面図、及び図11
(a)中XI−XI面から見た矢視平面図である。
11 is a sectional view in the water flow direction for explaining a state in which a top water vortex is generated in the rectangular suction water tank shown in FIG. 5, and FIG.
(A) It is an arrow plan view seen from the middle XI-XI plane.

【符号の説明】[Explanation of symbols]

2 吸込水槽 4 ポンプ吸込口(吸込口) 6 ポンプ吸込管 16 略環状流路 17 略円筒型水槽部 18 旋回流 19 整流絞り水路部 20 吸込水槽 22 略円錐構造物 22A〜C 略円錐構造物 23 流入孔(凹型連通構造) 24 頂点排出孔(凹型連通構造、排出孔) 25 円周排出孔(凹型連通構造、排出孔) 26 連通溝(凹型連通構造) 27 切り通し(凹型連通構造) 2 Suction Water Tank 4 Pump Suction Port (Suction Port) 6 Pump Suction Pipe 16 Substantially Annular Channel 17 Substantially Cylindrical Water Tank 18 Swirling Flow 19 Rectifying Restriction Water Channel 20 Suction Water Tank 22 Substantially Conical Structure 22A-C Substantially Conical Structure 23 Inlet hole (concave communication structure) 24 Apex discharge hole (concave communication structure, discharge hole) 25 Circumferential discharge hole (concave communication structure, discharge hole) 26 communication groove (concave communication structure) 27 Cut-through (concave communication structure)

フロントページの続き Fターム(参考) 2D063 AA03 DC04 3H034 AA01 AA20 BB01 BB08 BB12 BB16 CC07 DD02 DD28 EE06 EE08 EE12 Continued on the front page F term (reference) 2D063 AA03 DC04 3H034 AA01 AA20 BB01 BB08 BB12 BB16 CC07 DD02 DD28 EE06 EE08 EE12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】下方に向けて開口したポンプ吸込管内へ導
水する立軸ポンプの吸込水槽において、 前記ポンプ吸込管の下方に略円錐構造物を設け、この略
円錐構造物の側面または内部に、下方部から頂部へ連通
させる凹型連通構造を形成したことを特徴とする立軸ポ
ンプの吸込水槽。
1. A suction water tank of a vertical shaft pump for guiding water into a pump suction pipe opened downward, wherein a substantially conical structure is provided below the pump suction pipe, and a side surface or an inside of the substantially conical structure is provided with a lower part. A suction tank for a vertical shaft pump, wherein a concave communication structure for communicating from a part to a top part is formed.
【請求項2】請求項1記載の立軸ポンプの吸込水槽にお
いて、 前記略円錐構造物の周囲に略環状流路を形成する略円筒
型水槽部と、 上流側から下流側に向かって流路面積を小さくするとと
もに、前記略円筒型水槽部において前記略環状流路に沿
った旋回流を生起するように前記略円筒型水槽部の上流
側に接続された整流絞り水路部とを備えていることを特
徴とする立軸ポンプの吸込水槽。
2. The suction water tank of a vertical shaft pump according to claim 1, wherein a substantially cylindrical water tank portion forming a substantially annular flow path around the substantially conical structure, and a flow passage area from an upstream side to a downstream side. And a rectifying throttle channel connected to the upstream side of the substantially cylindrical water tank so as to generate a swirling flow along the substantially annular flow path in the substantially cylindrical water tank. A vertical suction pump suction tank.
【請求項3】請求項1又は2記載の立軸ポンプの吸込水
槽において、前記凹型連通構造が、前記略円錐構造物の
下方部に少なくとも1つ穿孔した流入孔と頂部に穿孔し
た排出孔とを前記略円錐構造物の内部で連通させる構成
であることを特徴とする立軸ポンプの吸込水槽。
3. The suction water tank of a vertical shaft pump according to claim 1, wherein said concave communication structure has at least one inflow hole formed in a lower portion of said substantially conical structure and a discharge hole formed in a top portion thereof. A suction water tank of a vertical shaft pump, wherein the suction water tank is configured to communicate inside the substantially conical structure.
【請求項4】請求項1又は2記載の立軸ポンプの吸込水
槽において、前記凹型連通構造が、前記略円錐構造物の
側面に下方部から頂部へ少なくとも1つ設けた連通溝で
あることを特徴とする立軸ポンプの吸込水槽。
4. The suction water tank of a vertical shaft pump according to claim 1, wherein the concave communication structure is a communication groove provided at least one from a lower portion to a top portion on a side surface of the substantially conical structure. The vertical pump suction water tank.
【請求項5】請求項1乃至4のいずれか1項記載の立軸
ポンプの吸込水槽において、前記ポンプ吸込管の吸込口
がベルマウス型に形成されていることを特徴とする立軸
ポンプの吸込水槽。
5. A suction tank for a vertical shaft pump according to claim 1, wherein the suction port of the pump suction pipe is formed in a bell mouth shape. .
JP2000273978A 2000-09-08 2000-09-08 Suction water tank for vertical shaft pump Pending JP2002089479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000273978A JP2002089479A (en) 2000-09-08 2000-09-08 Suction water tank for vertical shaft pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000273978A JP2002089479A (en) 2000-09-08 2000-09-08 Suction water tank for vertical shaft pump

Publications (1)

Publication Number Publication Date
JP2002089479A true JP2002089479A (en) 2002-03-27

Family

ID=18759821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000273978A Pending JP2002089479A (en) 2000-09-08 2000-09-08 Suction water tank for vertical shaft pump

Country Status (1)

Country Link
JP (1) JP2002089479A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102345646A (en) * 2011-07-19 2012-02-08 平安电气股份有限公司 External taper cylinder muffler for mine ventilator
CN104818699A (en) * 2015-04-01 2015-08-05 扬州大学 1/4 elliptic cone conical table eddy eliminating device and method for closed intake pool
CN109469155A (en) * 2018-11-15 2019-03-15 扬州大学 A kind of water inlet structure control whirlpool device based on equal difference variable diameter circular arc line
JP2021502520A (en) * 2017-11-09 2021-01-28 フロリダ・ステイト・ユニバーシティ・リサーチ・ファウンデイション・インコーポレイテッド Systems and methods for active control of vortices in fluids
JP7233145B1 (en) 2022-09-15 2023-03-06 株式会社松浦機械製作所 Coolant processor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102345646A (en) * 2011-07-19 2012-02-08 平安电气股份有限公司 External taper cylinder muffler for mine ventilator
CN104818699A (en) * 2015-04-01 2015-08-05 扬州大学 1/4 elliptic cone conical table eddy eliminating device and method for closed intake pool
JP2021502520A (en) * 2017-11-09 2021-01-28 フロリダ・ステイト・ユニバーシティ・リサーチ・ファウンデイション・インコーポレイテッド Systems and methods for active control of vortices in fluids
JP7274178B2 (en) 2017-11-09 2023-05-16 フロリダ・ステイト・ユニバーシティ・リサーチ・ファウンデイション・インコーポレイテッド Systems and methods for active control of vortices in fluids
CN109469155A (en) * 2018-11-15 2019-03-15 扬州大学 A kind of water inlet structure control whirlpool device based on equal difference variable diameter circular arc line
JP7233145B1 (en) 2022-09-15 2023-03-06 株式会社松浦機械製作所 Coolant processor
EP4338886A1 (en) * 2022-09-15 2024-03-20 Matsuura Machinery Corporation Coolant processing apparatus
JP2024042297A (en) * 2022-09-15 2024-03-28 株式会社松浦機械製作所 Coolant treatment apparatus
US11951580B1 (en) 2022-09-15 2024-04-09 Matsuura Machinery Corporation Coolant processing apparatus

Similar Documents

Publication Publication Date Title
US6290458B1 (en) Turbo machines
US6736594B2 (en) Axial-flow type hydraulic machine
CN201326579Y (en) Device and system used for improving flow in pumping system
KR101811779B1 (en) Anti-vortex device and double-suction vertical pump provided with the anti-vortex device
JP2008180130A (en) Axial flow water turbine and its operation method
JP4117699B2 (en) Pump vortex prevention device
JP4844414B2 (en) Tubular pump
JP2009133267A (en) Impeller of compressor
JP2001263296A (en) Turbo machine
JP2002089479A (en) Suction water tank for vertical shaft pump
KR20070095186A (en) Centrifugal type turbo machine
JP2005069048A (en) Vertical shaft pump and method for operating the same
JP2010025041A (en) Centrifugal fluid machine
JP2011137407A (en) Water turbine
JP5345123B2 (en) Vertical shaft pump
JP4348120B2 (en) Pump equipment
JP4422438B2 (en) Vertical shaft pump
JP3771794B2 (en) Centrifugal pump
WO2019171774A1 (en) Vertical shaft pump
EP3904695A1 (en) Bowl pump and vertical bowl pump arrangement
JP2641807B2 (en) Vertical pump
JP7476071B2 (en) Vertical Pump
JP2004044409A (en) Water turbine and runner therefor
JPH10238490A (en) Suction passage for vertical shaft pump
JP2000303995A (en) Turbo machine restraining blade inlet re-circulating flow and blade rotating stall