JP4117699B2 - Pump vortex prevention device - Google Patents

Pump vortex prevention device Download PDF

Info

Publication number
JP4117699B2
JP4117699B2 JP2001011624A JP2001011624A JP4117699B2 JP 4117699 B2 JP4117699 B2 JP 4117699B2 JP 2001011624 A JP2001011624 A JP 2001011624A JP 2001011624 A JP2001011624 A JP 2001011624A JP 4117699 B2 JP4117699 B2 JP 4117699B2
Authority
JP
Japan
Prior art keywords
sub
suction
flow
channel
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001011624A
Other languages
Japanese (ja)
Other versions
JP2002155898A (en
Inventor
雅 田篭
隆 榎本
強 富田
弘之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001011624A priority Critical patent/JP4117699B2/en
Publication of JP2002155898A publication Critical patent/JP2002155898A/en
Application granted granted Critical
Publication of JP4117699B2 publication Critical patent/JP4117699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • F04D29/448Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4273Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps suction eyes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばポンプの給排水設備や発電所などに利用される循環水ポンプ等のポンプ装置に係り、特にポンプピットに設置してポンプピット内の水を揚水する際に、空気吸込渦や水中渦が発生するのを防止したポンプ渦防止装置に関する。
【0002】
【従来の技術】
例えば、一般に使用されている開水路(オープン水路)にあっては、図24に示すように、ポンプピット10内に、吸込ケーシング(ポンプケーシング)12の下端に吸込ベルマウス(吸込部)14を接続したポンプを該吸込ベルマウス14の下端の吸込口14aが水中に没するように据付け、このポンプを駆動することで、ポンプピット10内の水を吸い上げるようにしている。この場合、吸込口14aの回りの水が自由表面を有するため、この没水深さSが小さい場合や、水路流速Vが大きい場合に、水面から吸込口14aに渦糸Lで繋がる空気吸込渦Aが発生したり、水面下から吸込口14aに繋がる水中渦Bが発生し、ポンプ運転に支障を来す振動や騒音が発生することがある。
【0003】
このため、図25に示すように、ポンプピット10の内部に、吸込ケーシング12の周囲を囲繞する半円状の切欠き16aを有する渦防止用水平板16をポンプピット10の周壁10aに取付けて設置したり、吸込ケーシング12の側方から吸込ベルマウス14の下方にかけて流れ方向に沿ってL字状に延びる渦防止用鉛直板(スプリッタ)18をポンプピット10の周壁10a及び底壁10bに取付けて設置することが行われている。
【0004】
また、図26及び図27に示すように、吸込管150の下端部に該吸込管150の径よりも大きい径を有する環状の枠体152を支持棒154を介して同心状に取付け、該枠体152が吸込管150の吸込口150aへ向かう水路内の流れ156を横切るようにして枠体152から吸込管150の吸込口150aに達する乱れの層158を形成し、これによって、空気吸込渦の発生を防止するようにしたものが開発されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記図25に示す従来例にあっては、渦防止用の水平板やスプリッタをポンプピットの周壁や底壁に取付けてポンプピット内に設置する必要があり、このための土木工事が別途必要となって、建設コストが非常に高くなるばかりでなく、既設のポンプピットの周壁や底壁にこのような渦防止用の水平板やスプリッタを後から追加設置するのは非常に困難な場合が多いといった問題があった。
【0006】
また、図26及び図27に示す従来例にあっては、枠体152の直ぐ内側のところを通る流れ渦糸2Aに対しては、空気吸込渦の原因となる水面付近から吸込口150aへ向かう流れ渦糸2Aの途中を乱れの層158で乱して、空気吸込渦を消滅させることができるものの、吸込管150の近傍から吸込口150aに向かう流れ渦糸1Aや,枠体152の外方から吸込口150aに向かう流れ渦糸3Aに対しては、これらの流れ渦糸1A,3Aの途中を乱れの層158で乱すことができず、しかも空気吸込渦は、障害物を避けた位置に生じることが多いため、渦防止効果は小さいと考えられる。
【0007】
本発明は上記事情に鑑みて為されたもので、比較的簡単な構成で、しかも渦対策のための土木工事等を行うことなく、空気吸込渦の発生を防止できるようにしたポンプ渦防止装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1に記載の発明は、吸込口を有し開水路に設置される吸込部の外周面との間に隙間を空け略同心状に配置されて該吸込部の外周に副流路を形成する副流路形成体を備え、前記副流路形成体は、前記吸込部の吸込口の上方を覆う位置に該吸込口と所定間隔離間して前記吸込部の外周面を包囲するように略水平に配置され、リブを介して前記吸込部の外周面に取付けられて、水面側から吸込口に向かう流れを主流と副流路に沿った副流に分流する中空円板状の副流路形成板からなることを特徴とするポンプ渦防止装置である。
【0009】
これにより、水面側から吸込部の吸込口へ向かう流れを、主流と副流路に沿って流れる副流に分流し、空気吸込渦の原因となる局部的な下向きの強い流れが生じないようにして、空気吸込渦の発生を防止することができる。しかも、副流路形成体を吸込部の外周に配置することで渦対策を施すことができ、従って、ポンプピット内に渦防止用の構造物を取付ける工事が不要となる。すなわち、ポンプピットの土木構造は単純な四角槽を用意するだけで良く、建設コストも非常に安価となる。
【0010】
請求項2に記載の発明は、吸込口を有し開水路に設置される吸込部の外周面との間に隙間を空け略同心状に配置されて該吸込部の外周に副流路を形成する副流路形成体を備え、前記副流路形成体は、略円筒状に形成されて前記吸込部の円周方向に沿った全周囲を所定間隔離間して囲繞するように配置され、リブを介して前記吸込部の外周面に取付けられて、水面側から吸込口に向かう流れを主流と副流路に沿った副流に分流する副流路形成板からなることを特徴とするポンプ渦防止装置である。
【0011】
請求項3に記載の発明は、前記吸込部の吸込口の下方には吸込コーンが配置されていることを特徴とする請求項1または2記載のポンプ渦防止装置である。
【0012】
請求項4に記載の発明は、吸込口を有し開水路に設置される吸込部の外周面との間に隙間を空け略同心状に配置されて該吸込部の外周に副流路を形成する副流路形成体を備え、前記副流路形成体は、略円筒状に形成されて前記吸込部の円周方向に沿った全周囲を所定間隔離間して囲繞するように配置され、下端に前記吸込部の吸込口側に屈曲させた案内部を一体に連接して、水面側から吸込口に向かう流れを主流と副流路に沿った副流に分流する副流路形成板からなることを特徴とするポンプ渦防止装置である。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図1乃至図23を参照して説明する。
図1及び図2は、本発明の第1の実施の形態のポンプ渦防止装置を示すもので、ポンプ装置には、内部にインペラ20等を収納した吐出ボウル(ポンプケーシング)22が備えられ、この吐出ボウル22の下端に吸込ベルマウス構造体24が接続されている。
【0016】
この吸込ベルマウス構造体24は、吸込ベルマウス(吸込部)14と、この吸込ベルマウス14の外周面に円周方向に沿った所定ピッチで配置したリブ26を介して取付けた中空円板状の副流路形成板(副流路形成体)28とを有し、この副流路形成板28は、略水平に配置されている。
【0017】
この副流路形成板28は、吸込ベルマウス14の吸込口14aの上方を覆う位置、すなわち、この副流路形成板28の中空部28a内に吸込ベルマウス14の胴部が位置し、吸込口14aがなす平面と副流路形成板28の下面との間に隙間が生じる位置で、かつ流路の最低水位LWL以下に位置するように配置されている。これによって、吸込ベルマウス14と副流路形成板28との間に副流路30が形成されるようになっている。この隙間の吸込ベルマウス径Dの位置における寸法Cは、この寸法によって形成される開口面積πD・Cが、吸込ベルマウス径Dにおけるポンプ吸込口ADの面積πD/4に対し、20〜70%程度に決めるのが適当である。
【0018】
この副流路形成板28の幅Kは、大きい方が渦防止効果は大きいが、吸込ベルマウス径Dに対して0.2〜0.3D程度以上あれば渦防止効果は顕著になる。また、図2に示すように、副流路形成板28の大きさは、吸込ベルマウス14の外周縁から張出し部Kを有するように設定されている。この副流路形成板28の幅Kから張出し部Kを除いた部分Kは、必ずしも必要ではない。
【0019】
前記リブ26は、空気吸込渦の原因となる水面付近から吸込口14aへ向かう流れを円周方向に分散する効果を有し、この枚数は、多い方が局部的に強い下向きの流れが生じ難くなって、渦防止効果が大きい。このため、例えば図に示すように8枚程度あった方が良い。
【0020】
この実施の形態によれば、ポンプ渦防止装置をポンプピット10内に据付けポンプを駆動してポンプピット10内の水の揚水を行うと、水面側から吸込口14aへ向かう流れが、主流Fと吸込ベルマウス14と副流路形成板28との間に形成された副流路30に沿った副流Gに分流され、これによって、局部的な下向きの強い流れが生じないことから、空気吸込渦の発生が防止される。しかも、副流路形成板28を取付けるリブ26は、空気吸込渦の原因となる水面付近から吸込口14aへ向かう流れを円周方向に分散する効果を有し、これによっても、局部的に強い下向きの流れを生じ難くして、渦防止効果を助長することができる。
【0021】
更に、吸込ベルマウス構造体24を吐出ボウル22の下端に接続することで渦対策を施すことができるので、ポンプピット10内に渦防止用の構造物を取付ける工事が不要となり、従って、ポンプピット10の土木構造は単純な四角槽を用意するだけで良く、建設コストも非常に安価となる。
【0022】
なお、この例では、副流路形成体として、中空円板状の副流路形成板28を使用した例を示しているが、この副流路形成板28の代わりに、図3に実線で示すように、中空部を有する矩形状の副流路形成板32、或いは多角形状ものを使用したり、図3に破線で示すように、中空部を有する楕円形状の副流路形成板34を使用したり、図3に2点鎖線で示すように、中空部を有し上流側が円形で下流側が矩形状等の任意の形状の副流路形成板36を使用しても良い。
【0023】
また、図4(a)に示すように、中空円板状の副流路形成板28に放射状のスリットを入れて、複数(図では4枚)の分割片28bに分割したり、図4(b)に示すように、この分割片28bを空気吸込渦が発生しやすいポンプ下流側等の任意の位置のみに設けるようにしても良い。
【0024】
図5は、副流路形成体として、リング状のパイプ38を使用し、このパイプ38と吸込ベルマウス14の外周面との間に副流路30を形成した例を示す。なお、この例では、リング状の4本のパイプ38を使用して、このパイプ38を平行かつ吸込ベルマウス14の外周面にやや沿った形状に配置した例を示しているが、1本でも良く、また螺旋状に巻付けても良いことは勿論である。
【0025】
図6及び図7は、本発明の第2の実施の形態のポンプ渦防止装置を示すもので、これは、吸込ベルマウス14の外周を、相似状に拡大した略円筒状の副流路形成板(副流路形成体)40でリブ42を介して所定間隔離間して囲繞して吸込ベルマウス構造体44を構成し、吸込ベルマウス14の外周面と副流路形成板40の内周面との間に、ほぼ全面に亘ってほぼ一定の寸法Cを有する隙間の副流路46を形成するようにしたものである。
【0026】
この副流路46の隙間の寸法Cは、副流路46の入口から出口までほぼ一定でも良いが、ポンプの構造によって、入口と出口の流路面積を変えた方が良い。即ち、ポンプ吸込口ADの面積πD/4に対して、副流路入口A1の面積は30〜100%、副流路出口A2の面積は50〜150%程度になるように寸法を決めるのが適当である。副流路46の高さLは、0.15D以下では渦防止効果は小さくなるため、これ以上であることが好ましい。副流路形成板40は市販のストレートパイプで代用してもよい。
【0027】
この実施の形態にあっても、揚水の際に、水面側から吸込口14aへ向かう流れが、主流Fと吸込ベルマウス14と副流路形成板40との間に形成された副流路46に沿った副流Gに分流されて、空気吸込渦Aが発達する過程の局部的な強い下向きの流れが抑制され、しかも下向きの流れが主流Fと副流Gに分かれるため、渦が不安定となって、空気吸込渦の発生が防止される。また、副流路形成板40を取付けるリブ42によっても、この分流効果が助長される。
【0028】
この実施の形態によれば、円筒状の副流路形成板40を使用することで、図7に示すように、この出口側の最大径dを小さくすることができる。また、副流路形成板40の入口径dを吐出ボウル22の最大径dより小さくすることで、副流路入口のすぐ上に渦が形成され難くして、渦防止効果を更に増大させることができる。なお、図8に示すように、吐出ボウル22の最大径dが小さいポンプの場合は、吸込ベルマウス14のフランジ14bを副流路形成板40の入口径dよりも大きくすることで、上記と同様の理由で渦防止効果を増大させることができる。この場合、吸込ベルマウス14のフランジ14bは、最低水位LWLより下に位置するように設置される。
【0029】
図9は、副流路形成板40の上方に所定の寸法Cの隙間を隔てて中空円板状の副天板136を設置し、これによって、吸込ベルマウス14のフランジ14bを大きくすることなく、前述と同様な効果を奏するようにしたものである。この副天板136は、副流路形成板40の入口径dを中心として外側と内側に張り出した大きさに設定されて、最低水位LWLより下に位置するように設置される。副流路形成板40と副天板136との寸法Cは、例えば、この寸法Cによって形成される面積が、副流路入口A1の面積の0.3〜0.8倍程度になるように設定される。また、吸込ベルマウス14の外壁と副天板136との水平方向の隙間寸法Cは、例えば、この寸法Cによって形成される面積が、副流路入口A1の面積の1/2程度に設定される。このような構造にすることによって、図8のフランジ14bに相当する渦防止効果の他に、副流Gを更に2つの分流G,Gに分けることで、渦防止効果を増大させることができる。
【0030】
ここで、図10に示すように、副流路形成板40の外方に第2のリブ42aを介して第2の副流路形成板40aを所定間隔離間して配置し、この両副流路形成板40,40aの間に、第2の副流路46aを形成するようにしても良い。
【0031】
また、図11に示すように、副流路形成板40として、その断面形状が、例えば上端が厚肉で丸みが大きく、下端に向けて徐々に薄肉となる翼形状で、副流路形成板40の表裏面に沿った流れに速度差が生じるようにしたものを使用し、リブ42として、その上縁が副流路形成板40の上端から上方に向けて円弧状に延び、かつ下縁が副流路形成板40の下端まで達する副流路形成板40の副流路46に沿った長さLが十分に長いものを使用しても良い。
【0032】
このように、副流路形成板40の表裏面に沿った流れに速度差を設けることで、この上縁部にごみが巻付くことを防止し、また、リブ42の副流路46に沿った長さLを十分に長くすることで、このリブ42の上縁にごみが巻き付くことを防止することができる。この長さLは、例えば250mm程度である。なお、リブ42として、その断面形状が、副流路形成板40と同様に、例えば翼形状で、その左右各面に沿った流れに速度差が生じるようにしたものを使用することで、リブ42の上縁にごみが巻き付くことを防止する効果を助長することができる。
【0033】
更に、図12に示すように、リブ42として、その横断面が一方向に沿った円弧状のものを使用して、副流路形成板40と吸込ベルマウス14との間の副流路46に沿った流れに周方向の予旋回流Qを与えるようにしても良い。これにより、例えば、図12に示すように、水中渦Bの旋回方向が常に一定の場合に、この水中渦Bの旋回方向と衝突する方向(相殺する方向)に向けて副流路46に沿った副流に予旋回流Qを与えることで、水中渦Bの発生を防止することができる。
【0034】
図13は、本発明の第3の実施の形態のポンプ渦防止装置を示すもので、これは、吸込ケーシング12の下端にフランジ12aを、吸込ベルマウス14の上端にもフランジ14bをそれぞれ設け、このフランジ12a,14bを介して吸込ケーシング12の下端に吸込ベルマウス14を接続し、更に第2の実施の形態における副流路形成板40の下端に吸込口14a側に屈曲させた案内部48を一体に連接して吸込ベルマウス構造体44aを構成したものである。他の構成は、第2の実施の形態と同様である。
【0035】
この実施の形態によれば、吸込ベルマウス14と副流路形成板40との間に形成された副流路46に沿った副流Gによって水面から引き込まれる空気吸込渦の形成を副流路入口の真上に設置したフランジ12a,14bで妨ぐことによって、渦防止効果を助長し、更にこの副流Gを案内部48を介して吸込口14aへスム−ズに流入させることによって、吸込口における入口損失を小さくすることができる。
【0036】
図14は、この実施の形態のポンプ渦防止装置が、水位が非常に低い状態での運転にも対応できることを示す。水位が最低水位LWL以上では一般に渦は発生しないが、図に示すように、水位が吸込ベルマウス14のフランジ14bより下に下がると渦防止効果は小さくなり、図に示すような空気吸込渦Aが発生しやすくなる。しかし、このような状況においても、副流路46の通路面積を小さくし、また円周方向に所定のピッチで配置したリブ42の数を多くして副流路46の通路を細分化すればよい。このようにすれば、例え副流路46内を通る空気吸込渦Aが発生しても弱くて小さな渦になり、また渦が羽根車を通過するときの衝撃も小さくなるため、ポンプの運転に支障のないようにすることができる。即ち、空気吸込渦を副流路形成板40及びリブ42によって分散させて吸込ベルマウス14の吸込口14aへ導くことで、空気をポンプへ注入することが可能となり、従来使用されていた空気管を使用することなく、全水位における先行待機運転も可能となる。
【0037】
図15は、本発明の第4の実施の形態のポンプ渦防止装置を示すもので、これは、吸込ケーシング12の下端に、第1の実施の形態と同様な構成の副流路形成板28を取付け、更にこの副流路形成板28の上面及び下面に流れ方向に沿って直線状に延び鉛直方向に拡がる上部旋回流防止板52及び下部旋回流防止板54をそれぞれ取付けて吸込ベルマウス構造体24aを構成したものである。他の構成は、第1の実施の形態と同様である。
【0038】
この実施の形態によれば、上部旋回流防止板52及び下部旋回流防止板54によって、ポンプの回りに旋回流Rが生じても、この旋回流Rによる空気吸込渦や水中渦の発生を防止することができる。なお、第2の実施の形態における円筒状の副流路形成板の外周面に、このような構成の旋回流防止板を取付けることによっても、このような同様の効果を得ることができる。
【0039】
図16は、本発明の第5の実施の形態のポンプ渦防止装置を示すもので、これは、吸込コーン60を有する底板62をリブ64を介して吊下げ支持した吸込ベルマウス14に、第1の実施の形態と同様な構成の副流路形成板28を取付けて吸込ベルマウス構造体24bを構成したものである。他の構成は、第1の実施の形態と同様である。
【0040】
図17は、ポンプを水槽底面に設置するようにした本発明の第6の実施の形態のポンプ渦防止装置を示す。これは、吸込コーン60を有する底板62の周縁部に、円周方向に沿った所定のピッチでポンプ据付脚を兼ねた整流リブ65を取付け、この整流リブ65の上端にフランジ66を連結してポンプ架台67を構成し、このポンプ架台67のフランジ66とフランジ12aをボルト止めして一体化するようにしたものである。そして、吸込ベルマウス14の吸込口14aの周囲を囲繞するように、各整流リブ65の間に副流路形成板68を取付け、これによって、水面下から吸込口14aへ向かう流れを、副流路形成板68の下側を通る主流Fと、上側を通る副流Gに分流するようにしている。
【0041】
この実施の形態では、副流路形成板68を吸込ベルマウス14に直接取付けることなく、ポンプ架台67の各整流リブ65の間に取付けた構造になっている。このように構成することにより、副流路形成板68による空気吸込渦の発生の防止だけでなく、吸込コーン60によって水中渦の発生も防止し、しかも整流を兼ねた整流リブ65によってポンプ回りの旋回流も抑制することができて、総合的に優れた渦対策となる。また、副流路形成板68を直接吸込ベルマウス14に取付ける必要がないため、構造上及びコストの点で優位となる。
【0042】
図18は、本発明の第7の実施の形態のポンプ渦防止装置を示すもので、これは、吐出ボウル22の下端に接続した吸込ベルマウス(吸込部)14の吸込口14aの周囲を円筒状の副流路形成板(副流路形成体)70で包囲して、吸込ベルマウス14と副流路形成板70との間に略鉛直方向に延びる副流路72を形成するとともに、この副流路形成板70を円周方向に所定のピッチで配置したリブ74を介して吸込ベルマウス14に固定したものである。このリブ74は、その上部が副流路形成板70の上縁から上方に突出するように構成されて、その長さ(高さ)が吸込ベルマウス14の高さとほぼ同じになるように設定されている。
【0043】
この実施の形態によれば、リブ74の長さを長くすることで、リブ74の上縁にごみが巻き付くのを防止し、しかも、リブ74の上部が水槽内に露出するようにすることで、ポンプの回りに旋回流R(図15参照)が生じても、この旋回流Rによる空気吸込渦や水中渦の発生を防止することができる。
【0044】
なお、図19に示すように、図18に示す副流路形成板70の代わりに、多孔板製の副流路形成板76を使用しても良く、このように、多孔板製の副流路形成板76を使用することで、軽量化を図ることができる。また、図示しないが、短尺円筒状の副流路形成板を所定間隔離間させて複数段に配置するようにしても良い。
【0045】
図20は、他のポンプ渦防止装置を示すもので、これは、吐出ボウル22の下端に接続した吸込ベルマウス(吸込部)14に上下に連通する多数の通孔14cを設け、この吸込ベルマウス14の外周端部に円筒状の副流路形成板(副流路形成体)80を連結して、吸込ベルマウス14の外周面と副流路形成板80との間から吸込ベルマウス14に設けた通孔14cの内部を通過する副流路82を形成したものである。
【0046】
この例によれば、副流路形成板80を固定するためのリブを不要となして、構造の簡素化を図ることができる。なお、この例では、吸込ベルマウス14に円形の通孔14cを設けた例を示しているが、円周方向に延びる長穴状或いは矩形状の通孔を設けても良いことは勿論である。
【0047】
図21は、本発明の第の実施の形態のポンプ渦防止装置を示すもので、これは、吐出ボウル22の下端に接続した吸込ベルマウス(吸込部)14の吸込口14aの周囲を円筒状の副流路形成板(副流路形成体)90で包囲して、吸込ベルマウス14と副流路形成板90との間に略鉛直方向に延びる副流路92を形成するとともに、この副流路形成板90を円周方向に所定のピッチで配置したリブ94を介して吸込ベルマウス14に固定し、更に、副流路形成板90の上端に、中空円板状の流入量調整板96を取付けたものである。
【0048】
この実施の形態によれば、副流路92に流入する水の量を流入量調整板96で調整することで、副流路92に多量の水が流入して、副流路92のところで空気吸込渦が発生することを防止することができる。
【0049】
図22は、更に他のポンプ渦防止装置を示すもので、これは、吐出ボウル(吸込部)22の外周に支持板100を取付け、この支持板100に一端を回転自在に連結した複数のリンク102の他端に分割タイプの副流路形成板(副流路形成体)104をそれぞれ回転自在に連結し、更に、支持板100のリンク102の下方にこの回転を規制するストッパ106を取付け、更に、副流路形成板104にワイヤ108を接続したものである。
【0050】
これによって、ワイヤ108を上方に引っ張ることで、各リンク102を上方に揺動させて、副流路形成板104をほぼ平行な状態で上方に縮径させながら移動させ、ワイヤ108を緩めることで、副流路形成板104の自重によって、各リンク102を下方に揺動させて副流路形成板104をほぼ平行な状態で下方に拡径させながら移動させ、各リンク102をストッパ106に当接させることで、その動きを規制して、吐出ボウル22の外周面と副流路形成板104との間に副流路110を形成するようになっている。
【0051】
この例によれば、例えば、後付けで渦対策を施す際、吐出ボウル22の外周に副流路形成板104を取付け、ワイヤ108を引っ張って副流路形成板104を縮径させておき、この状態でポンプ据付け台112の開口部112a内を挿通させて吐出ボウル22を閉水路に据付け、しかる後、ワイヤ108を緩めて副流路形成板104を拡径させて吐出ボウル22と副流路形成板104との間に副流路110を形成することで、吐出ボウル22を挿通させる開口部112aの開口寸法Dより大径の副流路形成板104を吐出ボウル22の外周に配置することができる。
【0052】
なお、図23に示すように、例えば、吸込ケーシング12のフランジ12aと吸込ベルマウス14のフランジ14bとの間に支持体120を固定し、この支持体120に取付けた枢軸122で分割タイプの副流路形成板124を揺動自在に支承するとともに、副流路形成板124の自由端にワイヤ128を接続し、これによって、ワイヤ128を上方に引っ張ることで副流路形成板124を上方に揺動させて縮径させ、ワイヤ128を緩めることで、副流路形成板124をその自重で下方に揺動させて拡径させ、ストッパ130に当接させてその動きを規制するようにしても良い。
【0053】
【発明の効果】
以上説明したように、本発明によれば、従来のポンプピット内でのコンクリ−ト構造物の施工による渦対策を施すことなく、吸込部の外周に副流路形成体を配置することで渦対策を施すことができ、これにより、ポンプピットは四角水槽のみ用意するだけでよく、渦対策のための追加の土木費用は必要ない。しかも、副流路形成体は、現地での据付けも簡単であるので、納期も大幅に短縮され、土木費用も大幅な削減となる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態のポンプ渦防止装置の要部を示し、(a)は側断面図、(b)は(a)のY−Y線断面図である。
【図2】図1の要部拡大図である。
【図3】本発明の第1の実施の形態のポンプ渦防止装置の変形例を示す図1(b)相当図である。
【図4】同じく、それぞれ異なる他の変形例を示す図1(b)相当図である。
【図5】 副流路形成体としてリング状のパイプを使用したポンプ渦防止装置の要部を示す側断面図である。
【図6】本発明の第2の実施の形態のポンプ渦防止装置の要部を示し、(a)は側断面図、(b)は(a)のY−Y線断面図である。
【図7】図6の要部拡大図である。
【図8】本発明の第2の実施の形態のポンプ渦防止装置の変形例を示す図7相当図である。
【図9】同じく、他の変形例を示し、(a)は側断面図、(b)は(a)のY−Y線断面図である。
【図10】同じく、更に他の変形例を示す図7相当図である。
【図11】同じく、更に他の変形例を示す図7相当図である。
【図12】同じく、更に他の変形例を示し、(a)は側断面図、(b)は(a)のY−Y線断面図である。
【図13】本発明の第3の実施の形態のポンプ渦防止装置の要部を示し、(a)は側断面図、(b)は平面図である。
【図14】同じく、水位が低い状態での運転に対応するようにした例を示し、(a)は側断面図、(b)は平面図である。
【図15】本発明の第4の実施の形態のポンプ渦防止装置の要部を示し、(a)は側断面図、(b)は(a)のY−Y線断面図である。
【図16】本発明の第5の実施の形態のポンプ渦防止装置の要部を示し、(a)は側断面図、(b)は(a)のY−Y線断面図である。
【図17】本発明の第6の実施の形態のポンプ渦防止装置の変形例を示し、(a)は側断面図、(b)は(a)のY−Y線断面図である。
【図18】本発明の第7の実施の形態のポンプ渦防止装置の要部を示し、(a)は側断面図、(b)は(a)のY−Y線断面図である。
【図19】本発明の第7の実施の形態のポンプ渦防止装置の変形例を示す図18(a)相当図である。
【図20】 他のポンプ渦防止装置の要部を示し、(a)は側断面図、(b)は(a)のY−Y線断面図である。
【図21】 本発明の第の実施の形態のポンプ渦防止装置の要部を示し、(a)は側断面図、(b)は(a)のY−Y線断面図である。
【図22】 更に他のポンプ渦防止装置の要部を示し、(a)は側断面図、(b)は分割タイプの副流路形成版の平面図である。
【図23】 更に他のポンプ渦防止装置の変形例の要部を示す側断面図である。
【図24】従来の開水路に排水ポンプを据付けた状態を示し、(a)は側断面図、(b)は平面図である。
【図25】図24に示す開水路に渦対策を施した従来例を示し、(a)は側断面図、(b)は平面図である。
【図26】同じく、他の従来例を示し、(a)は側面図、(b)は(a)の底面図である。
【図27】同じく、その作用の説明に付する図である。
【符号の説明】
10 ポンプピット
12 吸込ケーシング(ポンプケーシング)
14 吸込ベルマウス(吸込部)
14a 吸込口
22 吐出ボウル
24,24a,24b,44,44a 吸込ベルマウス構造体
26,42,64,74,94,126 リブ
28,32,34,36,40,68,70、76,80,90,104,124 副流路形成板(副流路形成体)
30,46,72,82,92,110 副流路
38 パイプ(副流路形成体)
48 案内部
52 上部旋回流防止板
54 下部旋回流防止板
65 整流リブ
67 ポンプ架台
96 流入量調整板
100 支持板
102 リンク
106,130 ストッパ
108,128 ワイヤ
120 支持体
122 枢軸
F 主流
G 副流
LWL 最低水位
R 旋回流
V 水路流速
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pump device such as a circulating water pump used in, for example, a pump water supply / drainage facility, a power plant, and the like, and in particular, when pumping up water in the pump pit by installing it in a pump pit, The present invention relates to a pump vortex prevention device that prevents the generation of vortices.
[0002]
[Prior art]
For example, in a generally used open water channel (open water channel), as shown in FIG. 24, a suction bell mouth (suction part) 14 is provided at the lower end of a suction casing (pump casing) 12 in the pump pit 10. The connected pump is installed so that the suction port 14a at the lower end of the suction bell mouth 14 is submerged in water, and by driving this pump, the water in the pump pit 10 is sucked up. In this case, since the water around the suction port 14a has a free surface, the air suction vortex A connected from the water surface to the suction port 14a by the vortex L when the submerged depth S is small or the channel flow velocity V is large. May occur, or an underwater vortex B connected from the bottom of the water surface to the suction port 14a may be generated, resulting in vibration and noise that hinders pump operation.
[0003]
Therefore, as shown in FIG. 25, a vortex prevention horizontal plate 16 having a semicircular notch 16a surrounding the suction casing 12 is installed inside the pump pit 10 and attached to the peripheral wall 10a of the pump pit 10. Or a vortex prevention vertical plate (splitter) 18 extending in an L shape along the flow direction from the side of the suction casing 12 to the lower side of the suction bell mouth 14 is attached to the peripheral wall 10a and the bottom wall 10b of the pump pit 10. It is done to install.
[0004]
Further, as shown in FIGS. 26 and 27, an annular frame 152 having a diameter larger than the diameter of the suction pipe 150 is concentrically attached to the lower end portion of the suction pipe 150 via a support rod 154. A turbulent layer 158 from the frame 152 to the suction port 150a of the suction pipe 150 is formed so that the body 152 crosses the flow 156 in the water channel toward the suction port 150a of the suction pipe 150, and thereby the air suction vortex The one that prevents the occurrence has been developed.
[0005]
[Problems to be solved by the invention]
However, in the conventional example shown in FIG. 25, it is necessary to install a vortex prevention horizontal plate or splitter on the peripheral wall or bottom wall of the pump pit and install it in the pump pit. When it becomes necessary and the construction cost becomes very high, it is very difficult to add such a vortex prevention horizontal plate or splitter later on the peripheral wall or bottom wall of the existing pump pit There was a problem that there were many.
[0006]
Further, in the conventional example shown in FIGS. 26 and 27, the flow vortex 2A passing immediately inside the frame body 152 is directed from the vicinity of the water surface causing the air suction vortex to the suction port 150a. Although the air vortex 2A can be disturbed by the turbulent layer 158 to eliminate the air suction vortex, the flow vortex 1A from the vicinity of the suction pipe 150 toward the suction port 150a and the outside of the frame 152 The flow vortex 3A heading toward the suction port 150a cannot be disturbed by the turbulent layer 158 in the middle of the flow vortex 1A, 3A, and the air suction vortex is at a position avoiding the obstacle. Since it often occurs, the vortex prevention effect is considered to be small.
[0007]
The present invention has been made in view of the above circumstances, and is a pump vortex prevention device capable of preventing the generation of air suction vortices with a relatively simple configuration and without performing civil engineering work for vortex countermeasures. The purpose is to provide.
[0008]
[Means for Solving the Problems]
The invention described in claim 1 A sub-flow channel forming body that has a suction port and is arranged substantially concentrically with a gap between the suction unit and the outer peripheral surface of the suction unit installed in the open channel, and forms a sub-channel on the outer periphery of the suction unit, The sub-flow channel forming body is disposed substantially horizontally at a position covering the upper portion of the suction port of the suction portion so as to surround the outer peripheral surface of the suction portion at a predetermined distance from the suction port, and via a rib. It is attached to the outer peripheral surface of the suction part, and is composed of a hollow disk-shaped sub-channel forming plate that divides the flow from the water surface side toward the suction port into a main flow and a sub-flow along the sub-channel. This is a pump vortex prevention device.
[0009]
As a result, the flow from the water surface side toward the suction port of the suction portion is divided into a main flow and a side flow that flows along the sub flow path, so that a strong local downward flow that causes air suction vortices does not occur. Thus, the generation of air suction vortices can be prevented. Moreover, vortex countermeasures can be taken by disposing the sub-flow channel forming body on the outer periphery of the suction portion, and therefore construction for installing a structure for preventing vortices in the pump pit becomes unnecessary. In other words, the civil structure of the pump pit only requires a simple square tank, and the construction cost is very low.
[0010]
The invention described in claim 2 A sub-flow channel forming body that has a suction port and is arranged substantially concentrically with a gap between the suction unit and the outer peripheral surface of the suction unit installed in the open channel, and forms a sub-channel on the outer periphery of the suction unit, The sub-flow channel forming body is formed in a substantially cylindrical shape and is disposed so as to surround the entire circumference along the circumferential direction of the suction portion with a predetermined interval therebetween, and through the rib, the outer peripheral surface of the suction portion And a sub-flow path forming plate that divides the flow from the water surface side toward the suction port into a main flow and a sub-flow along the sub-flow path. It is a pump vortex prevention device.
[0011]
The invention according to claim 3 A suction cone is disposed below the suction port of the suction part. Claims 1 or 2 It is a pump vortex prevention device of description.
[0012]
The invention according to claim 4 A sub-flow channel forming body that has a suction port and is arranged substantially concentrically with a gap between the suction unit and the outer peripheral surface of the suction unit installed in the open channel, and forms a sub-channel on the outer periphery of the suction unit, The sub-flow channel forming body is formed in a substantially cylindrical shape and is disposed so as to surround the entire circumference along the circumferential direction of the suction part with a predetermined interval, and at the lower end on the suction port side of the suction part It is characterized by comprising a sub-flow channel forming plate that integrally connects the bent guide portions and divides the flow from the water surface side toward the suction port into a main flow and a sub-flow along the sub-flow channel. It is a pump vortex prevention device.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS.
1 and 2 show a pump vortex prevention device according to a first embodiment of the present invention, and the pump device includes a discharge bowl (pump casing) 22 in which an impeller 20 and the like are housed. A suction bell mouth structure 24 is connected to the lower end of the discharge bowl 22.
[0016]
The suction bell mouth structure 24 includes a suction bell mouth (suction portion) 14 and a hollow disc-like shape attached to the outer peripheral surface of the suction bell mouth 14 via ribs 26 arranged at a predetermined pitch along the circumferential direction. The sub-channel forming plate (sub-channel forming body) 28 is disposed substantially horizontally.
[0017]
The sub-flow channel forming plate 28 is positioned so as to cover the upper side of the suction port 14a of the suction bell mouth 14, that is, the trunk portion of the suction bell mouth 14 is positioned in the hollow portion 28a of the sub-flow channel forming plate 28. It is arranged at a position where a gap is generated between the plane formed by the opening 14a and the lower surface of the sub-flow path forming plate 28, and is positioned below the lowest water level LWL of the flow path. As a result, the auxiliary flow path 30 is formed between the suction bell mouth 14 and the auxiliary flow path forming plate 28. Dimension C at the position of suction bell mouth diameter D of this gap 1 Is the opening area πD · C formed by this dimension 1 Is the area πD of the pump suction port AD at the suction bell mouth diameter D 2 For / 4, it is appropriate to determine the ratio to about 20 to 70%.
[0018]
The larger the width K of the auxiliary flow path forming plate 28 is, the larger the vortex preventing effect is. However, if the width K of the suction bell mouth diameter D is about 0.2 to 0.3 D or more, the vortex preventing effect becomes remarkable. In addition, as shown in FIG. 2, the size of the auxiliary flow path forming plate 28 is such that the protruding portion K extends from the outer peripheral edge of the suction bell mouth 14. 1 Is set to have. The overhanging portion K extends from the width K of the sub flow path forming plate 28. 1 Part K excluding 2 Is not necessarily required.
[0019]
The ribs 26 have the effect of dispersing the flow from the vicinity of the water surface, which causes air suction vortices, toward the suction port 14a in the circumferential direction. A larger number of the ribs 26 makes it difficult to generate a locally strong downward flow. Therefore, the vortex prevention effect is great. For this reason, it is better to have about 8 sheets as shown in the figure.
[0020]
According to this embodiment, when the pump vortex prevention device is installed in the pump pit 10 and the pump is driven to pump the water in the pump pit 10, the flow from the water surface toward the suction port 14a is the main flow F and Since it is divided into a substream G along the subchannel 30 formed between the suction bell mouth 14 and the subchannel forming plate 28, a strong local downward flow does not occur. Vortex generation is prevented. In addition, the rib 26 for attaching the sub-flow channel forming plate 28 has an effect of dispersing the flow from the vicinity of the water surface that causes air suction vortex toward the suction port 14a in the circumferential direction, and this is also strong locally. It is difficult to generate a downward flow, and the vortex prevention effect can be promoted.
[0021]
Further, since the suction bell mouth structure 24 can be connected to the lower end of the discharge bowl 22 to take measures against vortices, the work of installing a structure for preventing vortices in the pump pit 10 becomes unnecessary. The civil engineering structure of 10 only needs to prepare a simple square tank, and the construction cost is very low.
[0022]
In this example, an example in which a hollow disk-shaped sub-channel forming plate 28 is used as the sub-channel forming body is shown, but instead of this sub-channel forming plate 28, a solid line in FIG. As shown, a rectangular sub-channel forming plate 32 having a hollow portion or a polygonal shape is used, or an elliptical sub-channel forming plate 34 having a hollow portion is used as shown by a broken line in FIG. Alternatively, as shown by a two-dot chain line in FIG. 3, an auxiliary flow path forming plate 36 having a hollow portion and having an arbitrary shape such as a circular shape on the upstream side and a rectangular shape on the downstream side may be used.
[0023]
Further, as shown in FIG. 4 (a), radial slits are inserted into the hollow disk-shaped sub-channel forming plate 28 to divide it into a plurality (four in the figure) of divided pieces 28b, or FIG. As shown in b), the divided piece 28b may be provided only at an arbitrary position such as the downstream side of the pump where the air suction vortex is likely to be generated.
[0024]
FIG. A ring-shaped pipe 38 is used as the sub-flow path forming body, and the sub-flow path 30 is formed between the pipe 38 and the outer peripheral surface of the suction bell mouth 14. Example . In this example, four ring-shaped pipes 38 are used, and the pipes 38 are arranged in parallel and slightly along the outer peripheral surface of the suction bell mouth 14. Of course, it may be wound spirally.
[0025]
6 and 7 show a pump vortex prevention device according to a second embodiment of the present invention, which is formed with a substantially cylindrical sub-flow passage in which the outer periphery of the suction bell mouth 14 is enlarged in a similar manner. A suction bell mouth structure 44 is formed by surrounding a plate (sub-flow passage forming body) 40 with a predetermined interval therebetween via a rib 42, and an outer peripheral surface of the suction bell mouth 14 and an inner periphery of the sub-flow passage forming plate 40. A substantially constant dimension C across the entire surface. 2 A sub-flow channel 46 having a gap is formed.
[0026]
Dimension C of the gap of the sub flow path 46 2 May be substantially constant from the inlet to the outlet of the sub-channel 46, but it is better to change the area of the inlet and outlet channels depending on the structure of the pump. That is, the area πD of the pump suction port AD 2 For / 4, it is appropriate to determine the dimensions so that the area of the sub-channel inlet A1 is about 30 to 100% and the area of the sub-channel outlet A2 is about 50 to 150%. The height L of the auxiliary flow path 46 1 Is less than 0.15D, since the vortex prevention effect is small. The secondary flow path forming plate 40 may be replaced with a commercially available straight pipe.
[0027]
Even in this embodiment, during pumping, the flow from the water surface side toward the suction port 14a is formed between the main flow F, the suction bell mouth 14 and the sub flow channel forming plate 40. The flow is divided into the substream G along the line, and the local strong downward flow in the process of developing the air suction vortex A is suppressed, and the downward flow is divided into the main flow F and the subflow G, so the vortex is unstable. Thus, generation of air suction vortex is prevented. In addition, the diversion effect is also promoted by the rib 42 for attaching the sub flow path forming plate 40.
[0028]
According to this embodiment, by using the cylindrical secondary flow path forming plate 40, as shown in FIG. 4 Can be reduced. In addition, the inlet diameter d of the sub-channel forming plate 40 3 The maximum diameter d of the discharge bowl 22 2 By making it smaller, it is difficult to form a vortex just above the sub-channel inlet, and the vortex prevention effect can be further increased. As shown in FIG. 8, the maximum diameter d of the discharge bowl 22 2 In the case of a small pump, the flange 14b of the suction bell mouth 14 is connected to the inlet diameter d of the auxiliary flow path forming plate 40. 3 By making it larger than this, the vortex prevention effect can be increased for the same reason as described above. In this case, the flange 14b of the suction bell mouth 14 is installed so as to be positioned below the lowest water level LWL.
[0029]
FIG. 9 shows a predetermined dimension C above the auxiliary flow path forming plate 40. 3 A hollow disk-shaped sub-top plate 136 is installed with a gap therebetween, and thereby the same effect as described above can be achieved without increasing the flange 14b of the suction bell mouth 14. The auxiliary top plate 136 has an inlet diameter d of the auxiliary flow path forming plate 40. 3 It is set to a size that protrudes outward and inward from the center, and is placed below the lowest water level LWL. Dimension C between the sub flow path forming plate 40 and the sub top plate 136 3 For example, this dimension C 3 Is set to be about 0.3 to 0.8 times the area of the sub-channel inlet A1. Further, the horizontal gap dimension C between the outer wall of the suction bell mouth 14 and the auxiliary top plate 136 is shown. 4 For example, this dimension C 4 Is set to about ½ of the area of the sub-channel inlet A1. With such a structure, in addition to the vortex prevention effect corresponding to the flange 14b of FIG. 1 , G 2 By dividing into two, the vortex prevention effect can be increased.
[0030]
Here, as shown in FIG. 10, the second auxiliary flow path forming plate 40a is arranged outside the auxiliary flow path forming plate 40 via the second rib 42a with a predetermined interval therebetween, and both the auxiliary flow forming plates 40 You may make it form the 2nd subchannel 46a between the path | route formation plates 40 and 40a.
[0031]
Further, as shown in FIG. 11, the sub-channel forming plate 40 has a cross-sectional shape, for example, a wing shape in which the upper end is thick and rounded, and gradually becomes thinner toward the lower end. 40 having a velocity difference in the flow along the front and back surfaces, and the rib 42 has an upper edge extending in an arc shape upward from the upper end of the auxiliary flow path forming plate 40 and a lower edge. The length L along the sub-flow path 46 of the sub-flow path forming plate 40 that reaches the lower end of the sub-flow path forming plate 40 2 A sufficiently long one may be used.
[0032]
In this way, by providing a speed difference in the flow along the front and back surfaces of the sub-channel forming plate 40, it is possible to prevent dust from being wound around the upper edge portion, and along the sub-channel 46 of the rib 42. Length L 2 By making the length sufficiently long, dust can be prevented from being wound around the upper edge of the rib 42. This length L 2 Is, for example, about 250 mm. As the rib 42, the cross-sectional shape is, for example, a wing shape, similar to the sub-channel forming plate 40, and a velocity difference is generated in the flow along each of the left and right surfaces. The effect of preventing dust from winding around the upper edge of 42 can be promoted.
[0033]
Further, as shown in FIG. 12, the rib 42 having an arc-shaped cross section in one direction is used as the rib 42, and the sub-channel 46 between the sub-channel forming plate 40 and the suction bell mouth 14 is used. A circumferential pre-swirl flow Q may be given to the flow along the line. Thereby, for example, as shown in FIG. 12, when the swirling direction of the submerged vortex B is always constant, the sub-fluid 46 follows the sub-flow path 46 in the direction of colliding with the swirling direction of the submerged vortex B (the direction to cancel). The generation of the underwater vortex B can be prevented by giving the pre-swirl flow Q to the secondary flow.
[0034]
FIG. 13 shows a pump vortex prevention device according to a third embodiment of the present invention, which is provided with a flange 12a at the lower end of the suction casing 12 and a flange 14b at the upper end of the suction bell mouth 14, A suction bell mouth 14 is connected to the lower end of the suction casing 12 through the flanges 12a and 14b, and the guide portion 48 is further bent to the suction port 14a side at the lower end of the auxiliary flow path forming plate 40 in the second embodiment. Are integrally connected to form the suction bell mouth structure 44a. Other configurations are the same as those of the second embodiment.
[0035]
According to this embodiment, the formation of the air suction vortex drawn from the water surface by the substream G along the subchannel 46 formed between the suction bell mouth 14 and the subchannel forming plate 40 is performed. By obstructing by the flanges 12a and 14b installed just above the inlet, the vortex prevention effect is promoted, and further, the side flow G is smoothly flowed into the suction port 14a via the guide portion 48, thereby Inlet loss at the mouth can be reduced.
[0036]
FIG. 14 shows that the pump vortex prevention device of this embodiment can cope with operation in a state where the water level is very low. In general, vortices are not generated when the water level is higher than the minimum water level LWL. However, as shown in the figure, when the water level falls below the flange 14b of the suction bell mouth 14, the vortex prevention effect is reduced, and the air suction vortex A as shown in the figure. Is likely to occur. However, even in such a situation, if the passage area of the sub-channel 46 is reduced by reducing the passage area of the sub-channel 46 and increasing the number of ribs 42 arranged at a predetermined pitch in the circumferential direction. Good. In this way, even if the air suction vortex A passing through the sub-flow channel 46 is generated, it becomes a weak and small vortex, and the impact when the vortex passes through the impeller is also reduced. It can be made without trouble. That is, the air suction vortex is dispersed by the auxiliary flow path forming plate 40 and the rib 42 and guided to the suction port 14a of the suction bell mouth 14, so that the air can be injected into the pump, and the conventionally used air pipe It is also possible to perform a preliminary standby operation at all water levels without using.
[0037]
FIG. 15 shows a pump vortex preventing device according to a fourth embodiment of the present invention, which is arranged at the lower end of the suction casing 12 at the sub-flow passage forming plate 28 having the same configuration as that of the first embodiment. And an upper swirl prevention plate 52 and a lower swirl flow prevention plate 54 that extend linearly along the flow direction and expand in the vertical direction are respectively attached to the upper and lower surfaces of the sub flow path forming plate 28. The body 24a is configured. Other configurations are the same as those of the first embodiment.
[0038]
According to this embodiment, even if the swirl flow R is generated around the pump, the upper swirl flow prevention plate 52 and the lower swirl flow prevention plate 54 prevent the air suction vortex and the underwater vortex from being generated by the swirl flow R. can do. It is to be noted that the same effect can be obtained by attaching the swirl flow preventing plate having such a configuration to the outer peripheral surface of the cylindrical sub-channel forming plate in the second embodiment.
[0039]
FIG. 16 shows a pump vortex preventing device according to a fifth embodiment of the present invention. This device is provided on a suction bell mouth 14 in which a bottom plate 62 having a suction cone 60 is suspended and supported via a rib 64. The suction bell mouth structure 24b is configured by attaching the sub flow path forming plate 28 having the same configuration as that of the first embodiment. Other configurations are the same as those of the first embodiment.
[0040]
FIG. 17 shows a pump vortex preventing device according to a sixth embodiment of the present invention in which a pump is installed on the bottom of a water tank. This is because a rectifying rib 65 that also serves as a pump mounting leg is attached to a peripheral edge portion of a bottom plate 62 having a suction cone 60 at a predetermined pitch along the circumferential direction, and a flange 66 is connected to an upper end of the rectifying rib 65. The pump mount 67 is configured, and the flange 66 and the flange 12a of the pump mount 67 are bolted and integrated. And the auxiliary flow path formation board 68 is attached between each rectifying rib 65 so that the circumference | surroundings of the inlet 14a of the inlet bellmouth 14 may be enclosed, and, thereby, the flow which goes to the inlet 14a from under the water surface is The flow is divided into a main flow F passing through the lower side of the path forming plate 68 and a substream G passing through the upper side.
[0041]
In this embodiment, the auxiliary flow path forming plate 68 is not directly attached to the suction bell mouth 14, but is attached between the rectifying ribs 65 of the pump mount 67. With this configuration, not only the air suction vortex is prevented from being generated by the auxiliary flow path forming plate 68 but also the generation of underwater vortices is prevented by the suction cone 60, and the rectification rib 65 that also serves as a rectifier further The swirl flow can also be suppressed, providing a comprehensive vortex countermeasure. Further, since it is not necessary to directly attach the auxiliary flow path forming plate 68 to the suction bell mouth 14, it is advantageous in terms of structure and cost.
[0042]
FIG. 18 shows a pump vortex preventing device according to a seventh embodiment of the present invention, which is a cylinder around a suction port 14 a of a suction bell mouth (suction part) 14 connected to the lower end of the discharge bowl 22. A sub-channel 72 is formed that is surrounded by a circular sub-channel forming plate (sub-channel forming body) 70 and extends in a substantially vertical direction between the suction bell mouth 14 and the sub-channel forming plate 70. The auxiliary flow path forming plate 70 is fixed to the suction bell mouth 14 via ribs 74 arranged at a predetermined pitch in the circumferential direction. The rib 74 is configured such that the upper portion protrudes upward from the upper edge of the sub-flow channel forming plate 70 and the length (height) is set to be substantially the same as the height of the suction bell mouth 14. Has been.
[0043]
According to this embodiment, by increasing the length of the rib 74, it is possible to prevent dust from winding around the upper edge of the rib 74 and to expose the upper portion of the rib 74 in the water tank. Thus, even if a swirling flow R (see FIG. 15) is generated around the pump, it is possible to prevent the air suction vortex and the underwater vortex from being generated by the swirling flow R.
[0044]
In addition, as shown in FIG. 19, instead of the secondary flow path forming plate 70 shown in FIG. 18, a secondary flow path forming plate 76 made of a porous plate may be used. By using the path forming plate 76, the weight can be reduced. Although not shown, the short cylindrical sub-channel forming plates may be arranged in a plurality of stages at a predetermined interval.
[0045]
FIG. other This shows a pump vortex prevention device, which is provided with a plurality of through holes 14c communicating with the suction bell mouth (suction part) 14 connected to the lower end of the discharge bowl 22 in the vertical direction, and the outer peripheral end of the suction bell mouth 14 A cylindrical sub-channel forming plate (sub-channel forming body) 80 is connected to the through-hole 14 c provided in the suction bell mouth 14 from between the outer peripheral surface of the suction bell mouth 14 and the sub-channel forming plate 80. The sub-flow path 82 which passes through the inside of this is formed.
[0046]
This example Accordingly, the rib for fixing the auxiliary flow path forming plate 80 becomes unnecessary, and the structure can be simplified. In this example, the suction bell mouth 14 is provided with a circular through hole 14c. However, it goes without saying that a long hole or a rectangular through hole extending in the circumferential direction may be provided. .
[0047]
FIG. 21 shows the first of the present invention. 8 The pump vortex preventing device according to the embodiment of the present invention is configured by a cylindrical sub-channel forming plate (sub-portion) around the suction port 14a of the suction bell mouth (suction portion) 14 connected to the lower end of the discharge bowl 22. A sub-flow channel 92 that is surrounded by a flow channel forming body 90 and extends in a substantially vertical direction is formed between the suction bell mouth 14 and the sub-flow channel forming plate 90. It is fixed to the suction bell mouth 14 via ribs 94 arranged at a predetermined pitch in the direction, and further, a hollow disk-shaped inflow amount adjusting plate 96 is attached to the upper end of the auxiliary flow path forming plate 90.
[0048]
According to this embodiment, by adjusting the amount of water flowing into the sub-flow channel 92 with the inflow amount adjusting plate 96, a large amount of water flows into the sub-flow channel 92, and the air is It is possible to prevent the suction vortex from being generated.
[0049]
FIG. Yet another This shows a pump vortex prevention device, which is provided with a support plate 100 on the outer periphery of a discharge bowl (suction part) 22 and is divided into a plurality of links 102 each having one end rotatably connected to the support plate 100. The sub flow path forming plates (sub flow path forming bodies) 104 are rotatably connected to each other, and a stopper 106 for restricting the rotation is attached below the link 102 of the support plate 100. A wire 108 is connected to 104.
[0050]
Accordingly, by pulling the wires 108 upward, the links 102 are swung upward, the sub-channel forming plate 104 is moved while being reduced in diameter in a substantially parallel state, and the wires 108 are loosened. The sub-flow passage forming plate 104 is swung downward by the weight of the sub-flow passage forming plate 104 to move the sub-flow passage forming plate 104 while expanding the diameter downward in a substantially parallel state. By making contact, the movement is restricted, and the secondary flow path 110 is formed between the outer peripheral surface of the discharge bowl 22 and the secondary flow path forming plate 104.
[0051]
This example For example, when vortex countermeasures are taken later, the secondary flow path forming plate 104 is attached to the outer periphery of the discharge bowl 22, and the secondary flow path forming plate 104 is reduced in diameter by pulling the wire 108. The discharge bowl 22 is installed in a closed channel by passing through the opening 112a of the pump mounting base 112, and then the wire 108 is loosened to expand the diameter of the sub-flow path forming plate 104 and the discharge bowl 22 and the sub-flow path forming plate. By forming the sub-flow channel 110 between the opening portion 112a and the opening portion 112a, the opening dimension D of the opening portion 112a through which the discharge bowl 22 is inserted is formed. 1 A larger-diameter sub-channel forming plate 104 can be disposed on the outer periphery of the discharge bowl 22.
[0052]
As shown in FIG. 23, for example, a support body 120 is fixed between the flange 12a of the suction casing 12 and the flange 14b of the suction bell mouth 14, and a split type sub-axis is attached to the pivot 122 attached to the support body 120. The flow path forming plate 124 is supported in a swingable manner, and the wire 128 is connected to the free end of the sub flow path forming plate 124, thereby pulling the wire 128 upward to move the sub flow path forming plate 124 upward. By swinging and reducing the diameter, and loosening the wire 128, the sub-channel forming plate 124 is swung downward by its own weight to increase the diameter, and is brought into contact with the stopper 130 to restrict its movement. Also good.
[0053]
【The invention's effect】
As described above, according to the present invention, the vortex can be obtained by arranging the sub-flow channel forming body on the outer periphery of the suction portion without taking vortex countermeasures by applying the concrete structure in the conventional pump pit. Measures can be taken, so that the pump pit only needs to be prepared for a square tank, and no additional civil engineering costs are required for vortex countermeasures. Moreover, since the sub-flow channel forming body is easy to install on site, the delivery time is greatly shortened and the civil engineering cost is also greatly reduced.
[Brief description of the drawings]
1A and 1B show a main part of a pump vortex preventing device according to a first embodiment of the present invention, in which FIG. 1A is a side sectional view and FIG. 1B is a sectional view taken along line YY in FIG.
FIG. 2 is an enlarged view of a main part of FIG.
FIG. 3 is a view corresponding to FIG. 1B, showing a modification of the pump vortex preventing device according to the first embodiment of the present invention.
FIG. 4 is also a view corresponding to FIG. 1 (b) showing another modified example different from each other.
[Figure 5] A ring-shaped pipe was used as the secondary flow path forming body. It is a sectional side view which shows the principal part of a pump vortex prevention apparatus.
6A and 6B show a main part of a pump vortex preventing device according to a second embodiment of the present invention, in which FIG. 6A is a side sectional view and FIG. 6B is a sectional view taken along line YY in FIG.
7 is an enlarged view of a main part of FIG.
FIG. 8 is a view corresponding to FIG. 7 showing a modification of the pump vortex preventing device according to the second embodiment of the present invention.
9A and 9B show another modification example, in which FIG. 9A is a side sectional view, and FIG. 9B is a sectional view taken along line YY of FIG.
FIG. 10 is also a view corresponding to FIG. 7 showing still another modified example.
FIG. 11 is also a view corresponding to FIG. 7 showing still another modification.
12A and 12B show still another modification, in which FIG. 12A is a side sectional view and FIG. 12B is a sectional view taken along line YY of FIG.
FIGS. 13A and 13B show a main part of a pump vortex preventing device according to a third embodiment of the present invention, where FIG. 13A is a side sectional view and FIG. 13B is a plan view.
14 shows an example corresponding to the operation in a state where the water level is low, (a) is a sectional side view, and (b) is a plan view. FIG.
15A and 15B show a main part of a pump vortex preventing device according to a fourth embodiment of the present invention, where FIG. 15A is a side sectional view and FIG. 15B is a sectional view taken along line YY of FIG.
16A and 16B show a main part of a pump vortex preventing device according to a fifth embodiment of the present invention, where FIG. 16A is a side sectional view and FIG. 16B is a sectional view taken along line YY of FIG.
17A and 17B show a modification of the pump vortex preventing device according to the sixth embodiment of the present invention, in which FIG. 17A is a side sectional view and FIG. 17B is a sectional view taken along line YY of FIG.
18A and 18B show a main part of a pump vortex preventing device according to a seventh embodiment of the present invention, where FIG. 18A is a side sectional view and FIG. 18B is a sectional view taken along line YY of FIG.
FIG. 19 is a view corresponding to FIG. 18 (a) showing a modification of the pump vortex preventing device according to the seventh embodiment of the present invention.
FIG. 20 other The principal part of a pump vortex prevention device is shown, (a) is a sectional side view, (b) is a sectional view along line YY in (a).
FIG. 21 shows the first of the present invention. 8 The principal part of the pump vortex prevention device of embodiment of this is shown, (a) is a sectional side view, (b) is the YY sectional view taken on the line (a).
FIG. 22 Yet another The principal part of a pump vortex prevention apparatus is shown, (a) is a sectional side view, (b) is a plan view of a divided type sub-channel forming plate.
FIG. 23 Yet another It is a sectional side view which shows the principal part of the modification of a pump vortex prevention apparatus.
FIGS. 24A and 24B show a state in which a drainage pump is installed in a conventional open channel, wherein FIG. 24A is a side sectional view and FIG. 24B is a plan view.
FIGS. 25A and 25B show a conventional example in which a vortex countermeasure is applied to the open channel shown in FIG. 24, wherein FIG. 25A is a side sectional view and FIG. 25B is a plan view.
26 shows another conventional example, in which (a) is a side view and (b) is a bottom view of (a). FIG.
FIG. 27 is also a diagram for explaining the operation thereof.
[Explanation of symbols]
10 Pump pit
12 Suction casing (pump casing)
14 Suction bell mouth (suction part)
14a Suction port
22 Dispensing bowl
24, 24a, 24b, 44, 44a Suction bell mouth structure
26, 42, 64, 74, 94, 126 ribs
28, 32, 34, 36, 40, 68, 70, 76, 80, 90, 104, 124 Sub-channel forming plate (sub-channel forming body)
30, 46, 72, 82, 92, 110
38 pipe (sub-flow channel forming body)
48 Guide
52 Upper swirl prevention plate
54 Lower swirl prevention plate
65 Rectification rib
67 Pump stand
96 Inflow adjustment plate
100 Support plate
102 links
106,130 stopper
108,128 wire
120 Support
122 Axis
F mainstream
G side stream
LWL minimum water level
R swirl flow
V Channel flow velocity

Claims (4)

吸込口を有し開水路に設置される吸込部の外周面との間に隙間を空け略同心状に配置されて該吸込部の外周に副流路を形成する副流路形成体を備え、
前記副流路形成体は、前記吸込部の吸込口の上方を覆う位置に該吸込口と所定間隔離間して前記吸込部の外周面を包囲するように略水平に配置され、リブを介して前記吸込部の外周面に取付けられて、水面側から吸込口に向かう流れを主流と副流路に沿った副流に分流する中空円板状の副流路形成板からなることを特徴とするポンプ渦防止装置。
A sub-flow channel forming body that has a suction port and is arranged substantially concentrically with a gap between the suction unit and the outer peripheral surface of the suction unit installed in the open channel, and forms a sub-channel on the outer periphery of the suction unit,
The sub-flow channel forming body is disposed substantially horizontally at a position covering the upper portion of the suction port of the suction portion so as to surround the outer peripheral surface of the suction portion at a predetermined distance from the suction port, and via a rib. It is attached to the outer peripheral surface of the suction part, and is composed of a hollow disk-shaped sub-channel forming plate that divides the flow from the water surface side toward the suction port into a main flow and a sub-flow along the sub-channel. Pump vortex prevention device.
吸込口を有し開水路に設置される吸込部の外周面との間に隙間を空け略同心状に配置されて該吸込部の外周に副流路を形成する副流路形成体を備え、
前記副流路形成体は、略円筒状に形成されて前記吸込部の円周方向に沿った全周囲を所定間隔離間して囲繞するように配置され、リブを介して前記吸込部の外周面に取付けられて、水面側から吸込口に向かう流れを主流と副流路に沿った副流に分流する副流路形成板からなることを特徴とするポンプ渦防止装置。
A sub-flow channel forming body that has a suction port and is arranged substantially concentrically with a gap between the suction unit and the outer peripheral surface of the suction unit installed in the open channel, and forms a sub-channel on the outer periphery of the suction unit,
The sub-flow channel forming body is formed in a substantially cylindrical shape and is disposed so as to surround the entire circumference along the circumferential direction of the suction portion with a predetermined interval therebetween, and through the rib, the outer peripheral surface of the suction portion A pump vortex prevention device comprising a sub-flow channel forming plate that is attached to the sub-flow channel and divides the flow from the water surface side toward the suction port into a main flow and a sub-flow along the sub-flow channel .
前記吸込部の吸込口の下方には吸込コーンが配置されていることを特徴とする請求項1または2記載のポンプ渦防止装置。The pump vortex prevention device according to claim 1 or 2, wherein a suction cone is disposed below the suction port of the suction portion . 吸込口を有し開水路に設置される吸込部の外周面との間に隙間を空け略同心状に配置されて該吸込部の外周に副流路を形成する副流路形成体を備え、
前記副流路形成体は、略円筒状に形成されて前記吸込部の円周方向に沿った全周囲を所定間隔離間して囲繞するように配置され、下端に前記吸込部の吸込口側に屈曲させた案内部を一体に連接して、水面側から吸込口に向かう流れを主流と副流路に沿った副流に分流する副流路形成板からなることを特徴とするポンプ渦防止装置。
A sub-flow channel forming body that has a suction port and is arranged substantially concentrically with a gap between the suction unit and the outer peripheral surface of the suction unit installed in the open channel, and forms a sub-channel on the outer periphery of the suction unit,
The sub-flow channel forming body is formed in a substantially cylindrical shape and is disposed so as to surround the entire circumference along the circumferential direction of the suction part with a predetermined interval, and at the lower end on the suction port side of the suction part A pump vortex prevention device characterized by comprising a sub-flow path forming plate that integrally connects bent guide portions and divides the flow from the water surface side toward the suction port into a main flow and a sub-flow along the sub-flow path. .
JP2001011624A 2000-06-23 2001-01-19 Pump vortex prevention device Expired - Lifetime JP4117699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001011624A JP4117699B2 (en) 2000-06-23 2001-01-19 Pump vortex prevention device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000189950 2000-06-23
JP2000-275465 2000-09-11
JP2000-189950 2000-09-11
JP2000275465 2000-09-11
JP2001011624A JP4117699B2 (en) 2000-06-23 2001-01-19 Pump vortex prevention device

Publications (2)

Publication Number Publication Date
JP2002155898A JP2002155898A (en) 2002-05-31
JP4117699B2 true JP4117699B2 (en) 2008-07-16

Family

ID=27343833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001011624A Expired - Lifetime JP4117699B2 (en) 2000-06-23 2001-01-19 Pump vortex prevention device

Country Status (1)

Country Link
JP (1) JP4117699B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083273A (en) * 2013-02-13 2013-05-09 Torishima Pump Mfg Co Ltd Vertical shaft pump

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069048A (en) * 2003-08-21 2005-03-17 Ebara Corp Vertical shaft pump and method for operating the same
JP4680706B2 (en) * 2005-07-22 2011-05-11 株式会社ミゾタ Submersible pump with vortex generator
ES2628353T3 (en) 2007-05-21 2017-08-02 Weir Minerals Australia Ltd Centrifugal pump impeller with auxiliary blades on the front cover, adjacent to the impeller inlet opening
US8272836B1 (en) 2008-01-25 2012-09-25 Lynx Product Group, LLC Pump suction assembly
JP5221176B2 (en) * 2008-03-18 2013-06-26 株式会社荏原製作所 Fluid flow direction changer
JP5323529B2 (en) * 2009-02-20 2013-10-23 株式会社酉島製作所 Pump suction vortex prevention member
FR2975683B1 (en) * 2011-05-27 2014-03-14 Snecma LIQUID VACUUM DEVICE COMPRISING A BIT FOR LIMITING THE SUCTION VORTEX FORMATION
JP5789487B2 (en) 2011-11-10 2015-10-07 株式会社日立製作所 Pit barrel type pump and its incorporation method
JP6892373B2 (en) * 2017-12-14 2021-06-23 株式会社荏原製作所 Pump with anti-vortex device
JP6953317B2 (en) * 2018-01-30 2021-10-27 株式会社荏原製作所 Pump with vortex suppressor
JP6656782B1 (en) * 2019-03-08 2020-03-04 健斗 瀧田 Drainage pump
JP7186119B2 (en) * 2019-03-27 2022-12-08 株式会社クボタ Operation method of suction cover, horizontal shaft pump, pump gate and pump gate
JP7476071B2 (en) 2020-09-30 2024-04-30 株式会社日立インダストリアルプロダクツ Vertical Pump

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547601A (en) * 1977-06-20 1979-01-20 Ebara Corp Vortex pevention device for vortex in suction tank
JPS5728182U (en) * 1980-07-24 1982-02-15
JPH0269100U (en) * 1988-11-11 1990-05-25
JP2955818B2 (en) * 1994-08-30 1999-10-04 株式会社クボタ Pump suction pipe
JP3302529B2 (en) * 1995-04-28 2002-07-15 株式会社クボタ Rectifier for pump suction tank
JP3882409B2 (en) * 1999-07-26 2007-02-14 株式会社日立プラントテクノロジー Pump device with vortex generation prevention device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083273A (en) * 2013-02-13 2013-05-09 Torishima Pump Mfg Co Ltd Vertical shaft pump

Also Published As

Publication number Publication date
JP2002155898A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
US6533543B2 (en) Vortex prevention apparatus in pump
JP4117699B2 (en) Pump vortex prevention device
JP3491342B2 (en) Axial fan
EP2484917B1 (en) Anti-vortex device and double-suction vertical pump provided with the anti-vortex device
JP2010249120A (en) Vortex prevention device and pump device
JP6892373B2 (en) Pump with anti-vortex device
JP6953317B2 (en) Pump with vortex suppressor
JP2006299944A (en) Vertical pump
US7549442B2 (en) Intake for vertical wet pit pump
JP6426908B2 (en) Vertical pump
JP2009222003A (en) Fluid flow direction changing device
JP2009287427A (en) Centrifugal blower
JP5345123B2 (en) Vertical shaft pump
JP3882409B2 (en) Pump device with vortex generation prevention device
JP5486707B2 (en) Vertical shaft pump
JPH10238490A (en) Suction passage for vertical shaft pump
JP6523097B2 (en) Vertical pump
JP7157692B2 (en) Pump with foreign matter removal device
JP2002089479A (en) Suction water tank for vertical shaft pump
JP2004239215A (en) Vertical shaft pump
JP7476071B2 (en) Vertical Pump
JP7178260B2 (en) Pump with vortex suppressor
JP3168313B2 (en) Vertical pump suction channel
JP6997641B2 (en) Pump with vortex suppressor
JP7339017B2 (en) pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4117699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term