JP2023078616A - Inspection method and inspection device of cylindrical body surface - Google Patents

Inspection method and inspection device of cylindrical body surface Download PDF

Info

Publication number
JP2023078616A
JP2023078616A JP2021191825A JP2021191825A JP2023078616A JP 2023078616 A JP2023078616 A JP 2023078616A JP 2021191825 A JP2021191825 A JP 2021191825A JP 2021191825 A JP2021191825 A JP 2021191825A JP 2023078616 A JP2023078616 A JP 2023078616A
Authority
JP
Japan
Prior art keywords
cylindrical body
light
light source
imaging means
dimensional imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021191825A
Other languages
Japanese (ja)
Inventor
忠 松本
Tadashi Matsumoto
駿 千原
Shun CHIHARA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2021191825A priority Critical patent/JP2023078616A/en
Publication of JP2023078616A publication Critical patent/JP2023078616A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

To provide an inspection method of a cylindrical body surface and an inspection device of the cylindrical body surface which can detect a minute defect even if the cylindrical body surface is made of a material that is transparent or close to transparent or determine the type of the detected defect.SOLUTION: An inspection method of a cylindrical body surface according to the present invention executes: a first step of irradiating a cylindrical body with light in such a state that the cylindrical body is rotated, receiving reflection light, which is the light emitted and reflected on the surface of the cylindrical body, with one-dimensional imaging means, and stopping the rotation of the cylindrical body when a defect on the surface of the cylindrical body is detected from an image captured by the one-dimensional imaging means; and a second step of irradiating the cylindrical body with light from an angle at which the irradiation angle to the surface of the cylindrical body is different from the irradiation angle of the light emitted to the surface of the cylindrical body in the first step in such a state that the cylindrical body is stopped, receiving reflection light, which is the light emitted and reflected on the surface of the cylindrical body, with two-dimensional imaging means and imaging the position of the defect detected in the first step with the two-dimensional imaging means.SELECTED DRAWING: Figure 1

Description

本発明は円筒体表面の欠陥を検出する方法および装置に関する。 The present invention relates to a method and apparatus for detecting imperfections in a cylinder surface.

ゴムローラー等の円筒体の製造工程において、その表面に傷や凹みなどの欠陥が発生することが問題となっている。円筒体の用途によって要求される表面性状は異なるが、フィルム製膜用のローラーなど傷や凹みを嫌う用途の場合には高精度に表面を検査する検査方法および検査装置が必要となる。 In the manufacturing process of cylindrical bodies such as rubber rollers, it is a problem that defects such as scratches and dents occur on the surface thereof. Although the required surface properties of the cylindrical body differ depending on the application, in the case of applications such as rollers for film production where scratches and dents are not desired, an inspection method and inspection apparatus for inspecting the surface with high accuracy is required.

従来このような欠陥の検査を行う場合、人間の目による目視検査のほか、円筒体表面を何らかの方法で検知し、欠陥の有無を判断することで検査を行っていた。例えば、特許文献1にあるように距離センサを用いて円筒体表面を測定する技術や、特許文献2のように、円筒体と測定用2本の円筒体を接触させた隙間から漏れ出る光を検出して表面の凹凸の有無を確認する技術がある。 Conventionally, when inspecting for such defects, in addition to visual inspection by human eyes, the inspection was performed by detecting the surface of the cylindrical body by some method and determining the presence or absence of defects. For example, as in Patent Document 1, a technique for measuring the surface of a cylindrical body using a distance sensor, and as in Patent Document 2, light leaking from a gap between a cylindrical body and two cylindrical bodies for measurement is measured. There is a technology for detecting and confirming the presence or absence of unevenness on the surface.

特開平4-303702号公報JP-A-4-303702 特開2003-149168号公報Japanese Patent Application Laid-Open No. 2003-149168

しかしながら、特許文献1、2の技術には次のような問題がある。特許文献1はレーザー光などを用いた距離計を利用しているため、円筒体表面の材質が透明またはそれに近い場合に光が透過し、円筒体表面の内部の情報、例えば内部異物などからの反射光を検知してしまい、表面との距離を正確に測ることができず大量の誤検出が発生してしまう。また、特許文献2は欠陥部からの光の漏れを検出しているが、これも円筒体表面の材質が透明なゴムなどでは円筒体欠陥部以外からも光が漏れてしまうため、凹凸を検出することはできなくなってしまう。 However, the techniques of Patent Documents 1 and 2 have the following problems. Since Patent Document 1 uses a rangefinder using a laser beam or the like, if the material of the surface of the cylinder is transparent or nearly transparent, the light is transmitted, and information on the inside of the surface of the cylinder, for example, from internal foreign matter, etc., is transmitted. Reflected light is detected, and the distance to the surface cannot be accurately measured, resulting in a large number of false detections. In addition, although Patent Document 2 detects the leakage of light from the defective portion, this also detects irregularities because light leaks from other than the defective portion of the cylindrical body if the material of the surface of the cylindrical body is transparent rubber or the like. can no longer be done.

本発明は、前記従来技術の課題を解決するもので、円筒体表面が透明または透明に近い材質であっても微小な欠陥を検出し、また検出した欠陥の種類を判別することができる円筒体表面検査装置および円筒体の検査方法を提供する。 The present invention is intended to solve the above-described problems of the prior art, and is a cylindrical body that can detect minute defects even if the surface of the cylindrical body is made of transparent or nearly transparent material, and can discriminate the type of the detected defects. A surface inspection apparatus and method for inspecting a cylinder are provided.

上記課題を解決する本発明の円筒体表面の検査方法は、円筒体の表面を検査する方法であって、
円筒体を回転させた状態で、上記円筒体に対して光を照射し、当該照射した光が上記円筒体の表面で反射した反射光を1次元撮像手段で受光し、当該1次元撮像手段が撮像した画像から上記円筒体の表面の欠陥を検出したときに当該円筒体の回転を停止させる第1の手順と、
次いで、上記円筒体を停止させた状態で、当該円筒体の表面に対する照射角度が、第1の手順において当該円筒体の表面に照射された光の照射角度とは異なる角度から、当該円筒体に対して光を照射し、当該照射した光が当該円筒体の表面で反射した反射光を2次元撮像手段で受光し、第1の手順において検出された上記欠陥の位置を当該2次元撮像手段で撮像する、第2の手順を行う。
A method for inspecting the surface of a cylindrical body according to the present invention for solving the above problems is a method for inspecting the surface of a cylindrical body,
Light is applied to the cylindrical body while the cylindrical body is rotated, and the reflected light reflected by the surface of the cylindrical body is received by a one-dimensional imaging means, and the one-dimensional imaging means receives the reflected light. a first step of stopping the rotation of the cylindrical body when a defect on the surface of the cylindrical body is detected from the captured image;
Next, while the cylindrical body is stopped, the cylindrical body is irradiated at an irradiation angle different from the irradiation angle of the light applied to the surface of the cylindrical body in the first procedure. light is applied to the surface of the cylinder, the reflected light reflected by the surface of the cylindrical body is received by the two-dimensional imaging means, and the position of the defect detected in the first procedure is detected by the two-dimensional imaging means. A second procedure of imaging is performed.

上記課題を解決する本発明の円筒体表面の検査装置は、
円筒体を軸周りに回転可能に支持する支持機構と、当該支持機構に支持された当該円筒体に対して光を照射する光源と、当該光源を移動させる手段であって、当該光源から照射される光の当該円筒体の表面に対する照射角度を変えられる照射角度変更手段と、1次元撮像手段および2次元撮像手段と、制御手段と、を備え、
上記制御手段が、上記支持機構で上記円筒体を回転させた状態で、上記光源から当該円筒体に対して光を照射し、当該照射した光が当該円筒体の表面で反射した反射光を上記1次元撮像手段で受光し、当該1次元撮像手段が撮像した画像から円筒体の表面の欠陥を検出したときに当該支持機構を停止させて当該円筒体の回転を停止させる第1の手順と、
次いで、上記円筒体の回転を停止させた状態で、上記光源から照射される光の当該円筒体の表面に対する照射角度を、上記第1の手順における上記照射角度とは異なる角度となるように、上記照射角度変更手段で光源を移動させ、当該光源から当該円筒体に対して光を照射し、当該照射した光が当該円筒体の表面で反射した反射光を上記2次元撮像手段で受光し、当該第1の手順において検出された欠陥の位置を当該2次元撮像手段で撮像する第2の手順を行う、ように制御する。
The apparatus for inspecting the surface of a cylindrical body according to the present invention, which solves the above problems,
A support mechanism that supports a cylindrical body rotatably about its axis, a light source that irradiates the cylindrical body supported by the support mechanism with light, and means for moving the light source, wherein the light source emits light. an irradiation angle changing means for changing the irradiation angle of the light to the surface of the cylindrical body, a one-dimensional imaging means and a two-dimensional imaging means, and a control means,
The control means irradiates the cylindrical body with light from the light source while the cylindrical body is being rotated by the support mechanism. a first procedure for receiving light with a one-dimensional imaging means and stopping the rotation of the cylindrical body by stopping the support mechanism when a defect on the surface of the cylindrical body is detected from the image captured by the one-dimensional imaging means;
Next, with the rotation of the cylindrical body stopped, the irradiation angle of the light emitted from the light source with respect to the surface of the cylindrical body is changed to an angle different from the irradiation angle in the first procedure, moving the light source with the irradiation angle changing means, irradiating the cylindrical body with light from the light source, and receiving the reflected light of the irradiated light reflected on the surface of the cylindrical body with the two-dimensional imaging means; Control is performed so that the second procedure of imaging the position of the defect detected in the first procedure by the two-dimensional imaging means is performed.

上記課題を解決する本発明の別の形態の円筒体表面の検査装置は、
円筒体を円筒体の軸周りに回転可能に支持する支持機構と、当該支持機構に支持された当該円筒体に対して光を照射する第1の光源と、当該円筒体の表面に対する照射角度が、当該第1の光源から照射される光の照射角度とは異なる角度から、当該円筒体に対して光を照射する第2の光源と、1次元撮像手段および2次元撮像手段と、制御手段と、を備え、
上記制御手段が、上記支持機構で上記円筒体を回転させた状態で、上記第1の光源から当該円筒体に対して光を照射し、当該照射した光が当該円筒体の表面で反射した反射光を上記1次元撮像手段で受光し、当該1次元撮像手段が撮像した画像から当該円筒体の表面の欠陥を検出したときに当該支持機構を停止させて当該円筒体の回転を停止させる第1の手順と、
次いで、上記円筒体の回転を停止させた状態で、上記第2の光源から当該円筒体に対して光を照射し、当該照射した光が当該円筒体の表面で反射した反射光を上記2次元撮像手段で受光し、上記第1の手順において検出された欠陥の位置を当該2次元撮像手段で撮像する第2の手順を行う、ように制御する。
Another aspect of the present invention for solving the above problems is an inspection apparatus for the surface of a cylindrical body,
A support mechanism that supports a cylindrical body rotatably around the axis of the cylindrical body, a first light source that irradiates the cylindrical body supported by the supporting mechanism with light, and an irradiation angle with respect to the surface of the cylindrical body , a second light source that irradiates the cylindrical body with light from an angle different from the irradiation angle of the light emitted from the first light source, a one-dimensional imaging means and a two-dimensional imaging means, and a control means. , and
The control means irradiates the cylindrical body with light from the first light source while the cylindrical body is rotated by the support mechanism, and the irradiated light is reflected by the surface of the cylindrical body. Light is received by the one-dimensional imaging means, and when a defect on the surface of the cylindrical body is detected from the image captured by the one-dimensional imaging means, the supporting mechanism is stopped to stop the rotation of the cylindrical body. and
Next, while the rotation of the cylindrical body is stopped, the cylindrical body is irradiated with light from the second light source, and the reflected light reflected by the surface of the cylindrical body is reflected by the two-dimensional light source. The light is received by the imaging means, and the position of the defect detected in the first procedure is imaged by the two-dimensional imaging means in a second procedure.

なお、円筒体は被検査対象であるので、本発明の円筒体表面の検査装置において、円筒体そのものは検査装置の構成には含まれない。 Since the cylindrical body is an object to be inspected, the cylindrical body itself is not included in the structure of the inspection apparatus in the inspection apparatus for the surface of the cylindrical body according to the present invention.

本発明における各用語は以下のように定義する。
「円筒体」とは例えば産業機械に用いられるローラーやその組み立て前の円筒状の部品などを言い、円筒状部品に軸を取り付けたものも含む。また、中実円柱状のローラー及びその部材も含む。
Each term in the present invention is defined as follows.
A "cylindrical body" refers to, for example, a roller used in an industrial machine or a cylindrical part before its assembly, and includes a cylindrical part with a shaft attached. Also included are solid cylindrical rollers and members thereof.

「光源」とは、光を発生する機器を言い、例えばLEDや有機EL、蛍光灯、ハロゲンランプ、HIDランプなどを言う。 A "light source" refers to a device that generates light, such as an LED, an organic EL, a fluorescent lamp, a halogen lamp, and an HID lamp.

「1次元撮像手段」とは、光の明暗を電気信号に変換する素子を一直線上に並べたものであり、一般的にはラインカメラやラインスキャンカメラと呼ばれているものを指す。 A "one-dimensional imaging means" is a linear array of elements that convert the brightness of light into an electric signal, and generally refers to what is called a line camera or a line scan camera.

「2次元撮像手段」とは、光の明暗を電気信号に変換する素子を平面上に並べたものであり、一般的にはエリアカメラやエリアスキャンカメラと呼ばれているものや、マイクロスコープと呼ばれているものを指す。 "Two-dimensional imaging means" is an arrangement of elements that convert the brightness of light into an electrical signal on a plane, and is generally called an area camera or area scan camera, or a microscope. refers to what is called

「照射角度変更手段」とは、光源を移動可能に支持し、モーターやアクチュエータなどの駆動手段によって、光源を移動させることのできる機構を指す。 The term “irradiation angle changing means” refers to a mechanism that movably supports a light source and can move the light source by driving means such as a motor and an actuator.

「制御手段」とは、光源や1次元撮像手段、2次元撮像手段、照射角度変更手段、支持機構の動作を制御する手段を指し、例えばプログラマブルロジックコントローラ(以下、PLCと呼称することがある)やパーソナルコンピューター(以下、PCと呼称することがある)、スマートフォンやタブレット型端末、およびこれらと組み合わせた電気回路やそれらと同等の機能を含む画像処理装置などを言う。 "Control means" refers to means for controlling the operation of the light source, one-dimensional imaging means, two-dimensional imaging means, irradiation angle changing means, and support mechanism, for example, a programmable logic controller (hereinafter sometimes referred to as PLC). , personal computers (hereinafter sometimes referred to as PCs), smartphones and tablet terminals, electric circuits combined with them, and image processing devices including functions equivalent to them.

「円筒体の表面の欠陥を検出したときに円筒体の回転を停止させる」とは、欠陥を検出するのと同時に円筒体を停止させる手順だけではなく、欠陥を検出してから所定の時間または回転量だけ円筒体を回転させてから停止させる手順も含む。 "Stopping the rotation of the cylinder when a defect is detected on the surface of the cylinder" means not only the procedure of stopping the cylinder at the same time as the defect is detected, but also It also includes a procedure for rotating the cylinder by the amount of rotation and then stopping.

本発明の円筒体表面の検査方法および円筒体表面の検査装置によれば、円筒体表面が透明または透明に近い材質であっても欠陥を検出することが出来る。 According to the cylindrical body surface inspection method and the cylindrical body surface inspection apparatus of the present invention, defects can be detected even if the cylindrical body surface is made of transparent or nearly transparent material.

本発明の円筒体表面の検査装置の第1の実施形態を円筒体の中心軸方向から見た概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a first embodiment of a cylindrical body surface inspection apparatus according to the present invention, viewed from the central axis direction of a cylindrical body; 支持機構、光源からの光の照射角度の一例を説明する概略図である。It is a schematic diagram explaining an example of a support mechanism and an irradiation angle of light from a light source. 本発明の円筒体の表面検査装置の第2の実施形態を円筒体の中心軸方向から見た概略図である。It is the schematic which looked at 2nd Embodiment of the surface inspection apparatus of the cylindrical body of this invention from the center-axis direction of a cylindrical body. 本発明の円筒体表面の検査装置の第3の実施形態を平面方向から見た概略図である。It is the schematic which looked at 3rd Embodiment of the test|inspection apparatus of the surface of a cylinder of this invention from the planar direction.

以下、本発明の実施形態の例を、図面を参照しながら説明する。 Hereinafter, examples of embodiments of the present invention will be described with reference to the drawings.

[第1の実施形態]
図1を参照する。図1は本発明の円筒体表面の検査装置の第1の実施形態を円筒体の中心軸方向から見た概略図である。第1の実施形態の検査装置1a(以下、単に「検査装置1a」と称する)は、円筒体2を軸周りに回転可能に支持する支持機構(図1では図示せず)、円筒体2に対して光を照射する光源5、光源5が照射した光が円筒体2の表面で反射した反射光を受光する1次元撮像手段3、光源5の位置を変更する照射角度変更手段(図示せず)、位置が変更した光源5’が照射した光が円筒体2の表面で反射した反射光を受光する2次元撮像手段4、および支持機構、光源5(5’)、1次元画像手段3、2次元画像手段5、照射角度変更手段を制御する制御手段(図示せず)を備えている。
[First embodiment]
Please refer to FIG. FIG. 1 is a schematic view of the first embodiment of the inspection apparatus for the surface of a cylindrical body according to the present invention, viewed from the direction of the central axis of the cylindrical body. An inspection apparatus 1a (hereinafter simply referred to as "inspection apparatus 1a") of the first embodiment includes a support mechanism (not shown in FIG. A light source 5 for irradiating light, a one-dimensional imaging means 3 for receiving light reflected by the surface of the cylindrical body 2 from the light emitted by the light source 5, and an irradiation angle changing means (not shown) for changing the position of the light source 5. ), a two-dimensional imaging means 4 for receiving the light emitted by the light source 5' whose position has been changed and reflected by the surface of the cylindrical body 2, a support mechanism, a light source 5 (5'), a one-dimensional imaging means 3, A control means (not shown) for controlling the two-dimensional image means 5 and the irradiation angle changing means is provided.

検査装置1aが検査対象とする円筒体2としては、あらゆる円筒体に適用可能であるが、外径100mm以上1000mm以下、面長0.5m以上10m以下の円筒体に好適に用いられる。例えば、製紙装置、プラスチックフィルムの製膜装置、金属の圧延装置、およびウェブのコーティングや蒸着等の後加工設備、印刷や複写装置に用いられるローラーなどが挙げられる。特に、検査装置1aを用いれば大型の円筒体であっても微細な表面欠陥を検出可能なため、円筒体表面の微細欠陥が製品欠陥に直結する用途、例えば熱可塑性樹脂を2本のローラーで挟圧冷却し、プラスチックフィルムを得る製膜装置で用いるローラーの微小な表面欠陥を好適に検出することができる。 As the cylindrical body 2 to be inspected by the inspection apparatus 1a, any cylindrical body can be applied, but a cylindrical body having an outer diameter of 100 mm or more and 1000 mm or less and a surface length of 0.5 m or more and 10 m or less is preferably used. Examples include paper manufacturing equipment, plastic film manufacturing equipment, metal rolling equipment, post-processing equipment such as web coating and vapor deposition, and rollers used in printing and copying equipment. In particular, if the inspection device 1a is used, fine surface defects can be detected even on a large cylinder, so that fine defects on the surface of the cylinder directly lead to product defects, such as thermoplastic resin with two rollers. It is possible to preferably detect minute surface defects of a roller used in a film-forming apparatus that performs clamping and cooling to obtain a plastic film.

制御手段は、先ず、支持機構で円筒体2を回転させた状態で、光源5から円筒体2に対して光を照射し、照射した光が円筒体2の表面で反射した反射光を1次元撮像手段3で受光し、1次元撮像手段3が撮像した画像から円筒体2の表面の欠陥を検出するのと同時に支持機構を停止させて円筒体2の回転を停止させる第1の手順を行うように制御する。 First, the control means irradiates the cylindrical body 2 with light from the light source 5 while the cylindrical body 2 is being rotated by the support mechanism. The light is received by the imaging means 3, and a defect on the surface of the cylindrical body 2 is detected from the image captured by the one-dimensional imaging means 3. At the same time, the support mechanism is stopped to stop the rotation of the cylindrical body 2. A first procedure is performed. to control.

図2を参照する。図2は支持機構を説明する概略図である。支持機構6は、円筒体2の回転軸を中心として円筒体2を回転可能に支持し回転させる。支持機構6は円筒体2の少なくとも2カ所を支持する。2か所を回転可能に支持する方法は特に限定されないが、例えば、ベアリングの内輪に軸を嵌合して支持したものを2個並べて回転可能に支持し、それらベアリングの外輪上に円筒体2を乗せて支持するものや、単に円筒体2の軸にベアリングを嵌合してそのベアリングを支持するものを使用してもよい。円筒体2を回転させる方法は特に限定されないが、例えば、ACモーターやDCモーターといった一般的なモーターを用いることができ、必要に応じて変速機構を設けてもよい。支持機構6によって一定の速度で円筒体2を回転させながら1次元撮像手段3で撮像することによって、円筒体2の回転方向Drに対して一定のスケールで撮像することができる。また、回転速度が速すぎることで、1次元撮像手段3の測定可能速度を超えてしまい測定漏れが起きることを防ぐことが出来る。 Please refer to FIG. FIG. 2 is a schematic diagram for explaining the support mechanism. The support mechanism 6 rotatably supports and rotates the cylindrical body 2 around the rotation axis of the cylindrical body 2 . The support mechanism 6 supports at least two portions of the cylindrical body 2 . The method of rotatably supporting the two parts is not particularly limited, but for example, two bearings supported by fitting the shaft to the inner ring are rotatably supported side by side, and the cylindrical body 2 is mounted on the outer ring of the bearing. , or simply fitting a bearing to the shaft of the cylindrical body 2 to support the bearing. A method for rotating the cylindrical body 2 is not particularly limited, but for example, a general motor such as an AC motor or a DC motor can be used, and a transmission mechanism may be provided as necessary. By taking an image with the one-dimensional imaging means 3 while rotating the cylindrical body 2 at a constant speed by the support mechanism 6, it is possible to take an image on a constant scale in the rotating direction Dr of the cylindrical body 2. FIG. In addition, it is possible to prevent omission of measurement due to exceeding the measurable speed of the one-dimensional imaging means 3 due to the rotation speed being too fast.

再び図1を参照する。光源5による光の照射方法は特に限定されないが、1次元撮像手段3での撮像中は、光源5、1次元撮像手段3、および1次元撮像手段3が撮像する円筒体2の表面の相互の位置関係が変わらないように照射されていると、一定の見え方で撮像できるため好ましい。 Refer to FIG. 1 again. The method of irradiating the light from the light source 5 is not particularly limited. It is preferable to irradiate so that the positional relationship does not change, because an image can be captured with a constant appearance.

光源5、1次元撮像手段3、および1次元撮像手段3が撮像する円筒体2の表面の相互の位置関係は、円筒体2の表面材質や検出したい欠陥の形状、光源の種類などによって、適宜調整し決定される。特に表面が透明または透明に近い材質である円筒体2を検査する際には、図1に示すように円筒体2の中心軸方向に向けて1次元撮像手段3で撮像し、1次元撮像手段3が撮像している部分における円筒体2の表面の接線方向と、1次元撮像手段3が撮像している表面部分と光源5の位置を結んだ線とのなす角θが0~30度になるよう配置すると微小な欠陥も検知しやすくなるため好ましい。また、1次元撮像手段3は円筒体2の中心軸方向に向けてもよいし、0~10°程度傾けてもよい。 The mutual positional relationship between the light source 5, the one-dimensional imaging means 3, and the surface of the cylindrical body 2 imaged by the one-dimensional imaging means 3 is appropriately determined depending on the surface material of the cylindrical body 2, the shape of the defect to be detected, the type of light source, and the like. adjusted and determined. In particular, when inspecting the cylindrical body 2 whose surface is transparent or nearly transparent, as shown in FIG. The angle θ formed between the tangential direction of the surface of the cylindrical body 2 in the part imaged by 3 and the line connecting the surface part imaged by the one-dimensional imaging means 3 and the position of the light source 5 is 0 to 30 degrees. It is preferable to arrange so that even a minute defect can be easily detected. Also, the one-dimensional imaging means 3 may be oriented in the direction of the central axis of the cylindrical body 2, or may be tilted by about 0 to 10 degrees.

光源5は、LEDや有機EL、蛍光灯、ハロゲンランプやHIDランプなど一般的に入手可能な光源を適宜選択して用いることができる。LEDや有機ELは照射範囲の形状や照射する光の色を撮像手段や円筒体2の材質などに合わせて変更することができるため好ましく用いることができる。 As the light source 5, generally available light sources such as LEDs, organic ELs, fluorescent lamps, halogen lamps, and HID lamps can be appropriately selected and used. LEDs and organic ELs can be preferably used because the shape of the irradiation range and the color of the irradiated light can be changed according to the imaging means, the material of the cylindrical body 2, and the like.

1次元撮像手段4は、光の明暗を電気信号に変換する素子(以下、撮像素子と呼称することがある)を一直線上に並べたものであり、一般的にはラインカメラやラインスキャンカメラと呼ばれているものを指す。撮像素子はCCDやCMOSなどが一般的に用いられ、素子数は要求する分解能や視野によって適宜選択されるが、例えば、大きさ100μm以下の欠陥を10mm以上の視野で検知したい場合、素子数は2000個以上が好ましく、4000個以上がより好ましい。また、要求する分解能や視野に適したレンズを用いて拡大率や視野を調整することが好ましい。 The one-dimensional imaging means 4 is a linear array of elements that convert the brightness of light into an electric signal (hereinafter sometimes referred to as an imaging element), and is generally a line camera or a line scan camera. refers to what is called CCD, CMOS, etc. are generally used as imaging devices, and the number of elements is appropriately selected according to the required resolution and field of view. 2000 or more are preferable, and 4000 or more are more preferable. Also, it is preferable to adjust the magnification and the field of view by using a lens suitable for the required resolution and field of view.

円筒体2を回転させながら連続的に1次元撮像手段3で撮像し、得られた1次元の撮像データを解析することで、欠陥を検出することができる。また、得られた1次元の撮像データを並べることで2次元の画像データを得て、得られた2次元の画像データを解析することでも欠陥を検出することができる。これらは例えば市販の画像処理装置やコンピュータープログラムによって実現することが可能であるが、手段は特に限定されない。 Defects can be detected by continuously capturing images with the one-dimensional imaging means 3 while rotating the cylindrical body 2 and analyzing the obtained one-dimensional image data. Further, by arranging the obtained one-dimensional image data to obtain two-dimensional image data and analyzing the obtained two-dimensional image data, the defect can be detected. These can be realized by, for example, a commercially available image processing device or computer program, but the means is not particularly limited.

制御手段は、次いで、円筒体2の回転を停止させた状態で、光源5から照射される円筒体2の表面に対する照射角度を、第1の手順における照射角度とは異なる角度となるように、照射角度変更手段で光源5を符号5’の位置まで移動させ、光源5’から円筒体2に対して光を照射し、照射した光が円筒体2の表面で反射した反射光を2次元撮像手段4で受光し、第1の手順において検出された欠陥の位置を2次元撮像手段4で撮像する第2の手順を行うように制御する。 Next, the control means changes the irradiation angle of the surface of the cylindrical body 2 irradiated from the light source 5 to an angle different from the irradiation angle in the first procedure, while the rotation of the cylindrical body 2 is stopped. The light source 5 is moved to the position 5' by the irradiation angle changing means, the light source 5' irradiates the cylindrical body 2, and the reflected light reflected on the surface of the cylindrical body 2 is imaged two-dimensionally. The light is received by the means 4, and the position of the defect detected in the first procedure is imaged by the two-dimensional imaging means 4, and the second procedure is performed.

なお、上記照射角度は、図1に示す1次元撮像手段3が撮像している部分における円筒体2の表面の接線方向と、1次元撮像手段3が撮像している表面部分と光源5の位置を結んだ線とのなす角θのほか、図2に示す円筒体2の表面の撮像部における法線周りにおける円筒体2の軸方向と光源5の光の照射方向のなす角φも含む。 The irradiation angle is determined by the tangential direction of the surface of the cylindrical body 2 in the portion imaged by the one-dimensional imaging means 3 shown in FIG. In addition to the angle θ formed by the line connecting , the angle φ formed between the axial direction of the cylindrical body 2 and the irradiation direction of the light from the light source 5 around the normal to the imaging portion of the surface of the cylindrical body 2 shown in FIG.

照射角度変更手段は、光源5を符号5’の位置に移動させて、円筒体2の表面にある欠陥に光を照射する角度を変えることができる。照射角度変更手段としては特に限定されないが、光源5を移動可能に支持し、リニアアクチュエータやサーボモータで移動させるものなど使用することができる。 The irradiation angle changing means can move the light source 5 to the position 5 ′ to change the angle at which the defect on the surface of the cylindrical body 2 is irradiated with light. Although the irradiation angle changing means is not particularly limited, a means for movably supporting the light source 5 and moving it by a linear actuator or a servomotor can be used.

2次元撮像手段4は撮像素子を平面上に並べたものであり、一般的にはエリアカメラやエリアスキャンカメラと呼ばれているものや、マイクロスコープと呼ばれているものを指す。撮像素子はCCDやCMOSなどが一般的に用いられ、素子数は要求する分解能や視野によって適宜選択されるが、例えば大きさ100μm以下の欠陥を□10mm以上の視野で検知したい場合、素子数は200万個以上が好ましく、400万個以上がより好ましい。また、要求する分解能や視野に適したレンズを用いて拡大率や視野を調整することが好ましい。 The two-dimensional image pickup means 4 is an image pickup device arranged on a plane, and generally refers to what is called an area camera or an area scan camera, or what is called a microscope. CCD, CMOS, etc. are generally used for the imaging device, and the number of elements is appropriately selected according to the required resolution and field of view. 2 million or more are preferable, and 4 million or more are more preferable. Also, it is preferable to adjust the magnification and the field of view by using a lens suitable for the required resolution and field of view.

2次元撮像手段4での撮像は2次元撮像手段4と欠陥と光源5の位置関係が固定された状態で撮像するため、得られた撮像データから容易に欠陥のサイズを測定することができる。 Since the two-dimensional image pickup means 4 picks up images in a state where the positional relationship between the two-dimensional image pickup means 4, the defect, and the light source 5 is fixed, the size of the defect can be easily measured from the obtained image data.

第1の手順と第2の手順で得られた撮像データ、すなわち欠陥に対する光の照射角度の異なる撮像データを比較することで、欠陥の種類の特定が容易となる。例えば、突起や付着物などの凸状欠陥とキズや打痕などの凹状欠陥では、光の照射角度を変えたときの影の移動の仕方が異なる。また、円筒体2が透明または半透明である場合には、同様に表面の欠陥と内部の欠陥で影の見え方が異なるためこれらを判別することが可能となる。 By comparing the imaging data obtained in the first procedure and the second procedure, that is, the imaging data with different light irradiation angles to the defect, it becomes easy to identify the type of the defect. For example, convex defects such as protrusions and deposits and concave defects such as scratches and dents move differently when the light irradiation angle is changed. Further, when the cylindrical body 2 is transparent or translucent, similarly, since the appearance of the shadow differs between surface defects and internal defects, it is possible to distinguish between them.

また、第2の手順の前に第1の手順と同じ光の照射角度で2次元撮像手段4を用いて撮像する手順を追加しても良いし、第2の手順の後、さらに光の照射角度を1回ないし複数回変更して2次元撮像手段4で撮像する手順を追加し、得られた撮像データを比較すると、さらに高精度に欠陥の種類の判別が可能になるため、好ましい。 In addition, before the second procedure, a procedure of imaging using the two-dimensional imaging means 4 at the same irradiation angle of light as in the first procedure may be added, and after the second procedure, further irradiation of light may be added. It is preferable to add a procedure of imaging with the two-dimensional imaging means 4 while changing the angle once or several times and compare the obtained imaging data, because it is possible to determine the type of defect with higher accuracy.

制御手段は、光源5、1次元撮像手段3、2次元撮像手段4、照射角度変更手段、および支持機構6の動作を制御する。制御手段は特に限定されないが、例えばPLCやPC、スマートフォンやタブレット型端末、およびこれらと組み合わせた電気回路やそれらと同等の機能を含む画像処理装置などを用いることができる。 The control means controls operations of the light source 5 , the one-dimensional imaging means 3 , the two-dimensional imaging means 4 , the irradiation angle changing means, and the support mechanism 6 . Although the control means is not particularly limited, for example, a PLC, a PC, a smart phone, a tablet terminal, an electric circuit combined with them, an image processing device including functions equivalent thereto, or the like can be used.

検査装置1aでは、照射角度変更手段5で光源5の位置を自動的に移動させているが、手動で光源5を動かしてもよい。ただし、自動で制御した方が、光源5による照射位置が正確になるので好ましい。 In the inspection apparatus 1a, the position of the light source 5 is automatically moved by the irradiation angle changing means 5, but the light source 5 may be moved manually. However, automatic control is preferable because the irradiation position by the light source 5 is more accurate.

検査装置1aでは、第1の手順において欠陥を検出するのと同時に支持機構を停止させて円筒体2の回転を停止し、第2の手順において、1次元画像手段3で撮像していた撮像位置とおおよそ一致する位置を、光源5’で照射しつつ2次元撮像手段4で撮像しているが、この方法には限る必要はない。第1の手順において欠陥を検出してから所定の時間または回転量だけ円筒体2を回転させてから支持機構を停止し、第2の手順において、1次元画像手段3で検出した欠陥の場所、つまり1次元画像手段3が撮像している位置とは異なる位置を、光源5’で照射しつつ2次元撮像手段4で撮像してもよい。 In the inspection apparatus 1a, the support mechanism is stopped at the same time that the defect is detected in the first procedure to stop the rotation of the cylindrical body 2. The two-dimensional imaging means 4 captures an image of the position roughly corresponding to , while the light source 5' is illuminating the position, but the method is not limited to this method. After detecting the defect in the first procedure, rotate the cylindrical body 2 for a predetermined time or amount of rotation, then stop the support mechanism, and in the second procedure, the location of the defect detected by the one-dimensional image means 3, In other words, a position different from the position imaged by the one-dimensional imaging means 3 may be imaged by the two-dimensional imaging means 4 while being illuminated by the light source 5'.

[第2の実施形態]
図3を参照する。図3は本発明の円筒体表面の検査装置の第2の実施形態を円筒体の中心軸方向から見た概略図である。第2の実施形態の検査装置1b(以下、単に「検査装置1b」と称する)は、第1の実施形態の検査装置1aが備えていた光源5の代わりに、第1の光源51と第1の光源とは異なる角度から光を照射する第2の光源52を備えている。また、検査装置1bは光源を機械的に動かさないので、検査装置1aが備えていた照射角度変更手段は備えていなくてもよい。そのため、検査査装置1bは照射角度変更手段を必要としないので、制御手段で照射角度変更手段を制御する必要もない。検査装置1bは、これらの違い以外は検査装置1aを同じ構成を備えている。
[Second embodiment]
Please refer to FIG. FIG. 3 is a schematic view of the second embodiment of the cylindrical body surface inspection apparatus of the present invention, viewed from the central axis direction of the cylindrical body. The inspection apparatus 1b of the second embodiment (hereinafter simply referred to as "inspection apparatus 1b") has a first light source 51 and a first A second light source 52 is provided to irradiate light from an angle different from that of the light source of the second light source. Further, since the inspection apparatus 1b does not mechanically move the light source, the irradiation angle changing means provided in the inspection apparatus 1a may not be provided. Therefore, since the inspection apparatus 1b does not require irradiation angle changing means, it is not necessary to control the irradiation angle changing means by the control means. The inspection apparatus 1b has the same configuration as the inspection apparatus 1a except for these differences.

第2の光源52は、円筒体2の表面に対する照射角度が、第1の光源51から照射される光の照射角度とは異なる角度から円筒体2に対して光を照射する。 The second light source 52 irradiates the cylindrical body 2 with light from an angle different from the irradiation angle of the light emitted from the first light source 51 with respect to the surface of the cylindrical body 2 .

制御手段は、先ず、支持機構で円筒体2を回転させた状態で、第1の光源51から円筒体2の表面に光を照射し、その照射した光が円筒体2の表面で反射した反射光を1次元画像手段3で受光し、1次元撮像手段3が撮像した画像から欠陥を検出してから所定の時間または回転量だけ円筒体2を回転させてから支持機構を停止させる第1の手順を行うように制御する。 First, the control means irradiates the surface of the cylindrical body 2 with light from the first light source 51 while the cylindrical body 2 is being rotated by the support mechanism, and the irradiated light is reflected by the surface of the cylindrical body 2. Light is received by the one-dimensional imaging means 3, a defect is detected from the image picked up by the one-dimensional imaging means 3, the cylindrical body 2 is rotated by a predetermined time or amount of rotation, and then the support mechanism is stopped. Control to do the procedure.

制御手段は、次いで、円筒体2の回転を停止させた状態で、第1の光源51を消灯し第2の光源52を点灯することで円筒体2に対する照射角度を変更し、照射した光が円筒体2の表面で反射した反射光を2次元画像手段で受光し、2次元撮像手段4で第1の手順において検出された欠陥部を撮像する第2の手順を行うように制御する。なお、2次元画像手段4による撮像に支障が出ないのであれば、第1の光源51は点灯させたままでもよい。 Next, the control means turns off the first light source 51 and turns on the second light source 52 while the rotation of the cylindrical body 2 is stopped, thereby changing the irradiation angle with respect to the cylindrical body 2 so that the irradiated light is The light reflected by the surface of the cylindrical body 2 is received by the two-dimensional imaging means, and the two-dimensional imaging means 4 is controlled to perform the second procedure of imaging the defect detected in the first procedure. It should be noted that the first light source 51 may be left on as long as it does not hinder the imaging by the two-dimensional image means 4 .

検査装置1aによる検査と同様に、この検査装置1bの検査においても、第1の手順と第2の手順で得られた撮像データ、すなわち欠陥に対する光の照射角度の異なる撮像データを比較することで、欠陥の種類の特定が容易となる。 第1の光源1を消灯する前に2次元撮像手段4で撮像する手順を追加してもよく、第2の光源52を複数設けて、各々の第2の光源からの光の照射毎に複数回にわたって2次元撮像手段4で撮像する手順を追加してもよい。 Similar to the inspection by the inspection apparatus 1a, also in the inspection by the inspection apparatus 1b, by comparing the imaging data obtained in the first procedure and the second procedure, that is, the imaging data with different irradiation angles of light to the defect, , it becomes easier to identify the type of defect. A procedure for imaging with the two-dimensional imaging means 4 before turning off the first light source 1 may be added. You may add the procedure of imaging with the two-dimensional imaging means 4 for several times.

第2の光源52は少なくとも1つあればよいが、複数備えていてもよい。例えば、図3に示すように、第2の光源52をリング形状の分割点灯可能なLEDとして、照射部位を90度ずつ4分割し、それを切り替えることで照射角度を変更する方式などを好適に用いることができる。 At least one second light source 52 is sufficient, but a plurality of second light sources 52 may be provided. For example, as shown in FIG. 3, the second light source 52 is a ring-shaped LED capable of split lighting, and the irradiation part is divided into four by 90 degrees, and the irradiation angle is changed by switching between them. can be used.

検査装置1bでは、第1の手順において欠陥を検出してから所定の時間または回転量だけ円筒体2を回転させてから支持機構を停止し、第2の手順において、1次元画像手段3で検出した欠陥の場所、つまり1次元画像手段3が撮像している位置とは異なる位置を、第2の光源52で照射しつつ2次元撮像手段4で撮像しているが、この方法には限る必要はない。第1の手順において欠陥を検出するのと同時に支持機構を停止させて円筒体2の回転を停止し、第2の手順において、1次元画像手段3で撮像していた撮像位置とおおよそ一致する位置を、第2の光源52で照射しつつ2次元撮像手段4で撮像してもよい。 In the inspection apparatus 1b, after detecting a defect in the first procedure, the cylindrical body 2 is rotated by a predetermined time or amount of rotation, and then the supporting mechanism is stopped. The position of the detected defect, that is, the position different from the position imaged by the one-dimensional imaging means 3 is imaged by the two-dimensional imaging means 4 while being illuminated by the second light source 52, but it is necessary to limit this method. no. At the same time when the defect is detected in the first procedure, the support mechanism is stopped to stop the rotation of the cylindrical body 2, and in the second procedure, the position roughly coincides with the image pickup position picked up by the one-dimensional image means 3. may be imaged by the two-dimensional imaging means 4 while being irradiated by the second light source 52 .

また、検査装置1bでは、第1の光源51と第2の光源52の2つの光源を備えているが、1次元撮像手段3と2次元撮像手段4の撮像部分を一致させて、分割点灯可能な1つの光源でこの撮像部分を照射してもよい。この場合、第1の手順において点灯させる箇所が第1の光源51に、第2の手順において点灯させる箇所が第2の光源52となる。このような分割点灯可能な光源としては、例えばリング形状の分割点灯可能なLEDライトが挙げられる。 Also, the inspection apparatus 1b has two light sources, the first light source 51 and the second light source 52, and the imaging portions of the one-dimensional imaging means 3 and the two-dimensional imaging means 4 can be matched to enable split lighting. A single light source may illuminate the imaged portion. In this case, the first light source 51 is turned on in the first procedure, and the second light source 52 is turned on in the second procedure. As such a light source capable of split lighting, for example, there is a ring-shaped LED light capable of split lighting.

[第3の実施形態]
図4を参照する。図4は本発明の円筒体表面の検査装置の第3の実施形態を平面方向から見た概略図である。第3の実施形態の検査装置1c(以下、単に「検査装置1c」と称する)は第2の実施形態の検査装置1bの構成を変えた実施形態である。
[Third embodiment]
Please refer to FIG. FIG. 4 is a schematic plan view of a third embodiment of the apparatus for inspecting the surface of a cylindrical body according to the present invention. An inspection apparatus 1c of the third embodiment (hereinafter simply referred to as "inspection apparatus 1c") is an embodiment in which the configuration of the inspection apparatus 1b of the second embodiment is changed.

検査装置1cでは、1次元撮像手段3と2次元撮像手段4の撮像部分を一致させ、第1の光源51と第2の光源52の2つの光源を備える代わりに、分割点灯可能な1つの分割点灯可能な光源5でこの撮像部分を照射している。第1と第2の手順とで光源5の別の箇所を点灯させることで、第1の手順において点灯させる箇所で第1の光源51を、第2の手順において点灯させる箇所で第2の光源52を代用している。 In the inspection apparatus 1c, the imaging portions of the one-dimensional imaging means 3 and the two-dimensional imaging means 4 are matched, and instead of being provided with two light sources, the first light source 51 and the second light source 52, one divided light source capable of split lighting is provided. A light source 5 that can be turned on illuminates this imaging portion. By lighting different parts of the light source 5 in the first and second procedures, the first light source 51 is turned on in the first procedure, and the second light source is turned on in the second procedure. 52 is substituted.

検査装置1cでは、1次元撮像手段3と2次元撮像手段4の撮像部分を一致させているので、第1の手順において、欠陥を検出するのと同時に支持機構6を停止させて円筒体2の回転を停止させる。 In the inspection apparatus 1c, the imaging portions of the one-dimensional imaging means 3 and the two-dimensional imaging means 4 are matched, so in the first procedure, the support mechanism 6 is stopped at the same time as the defect is detected, and the cylindrical body 2 is inspected. stop the rotation.

また、検査装置1cは移動支持機構7を備えており、検査装置1c全体を移動支持機構7に固定しているので、検査装置1c全体を円筒体2の中心軸と平行に移動させることが出来る。円筒体2を回転させながら、移動支持機構7によって検査装置1cを円筒体2の回転軸と平行に移動させることによって、検査装置1cは円筒体2の表面を円筒体2の回転方向Drに対して斜めに走査することが可能となり、円筒体2の表面全面を円滑に検査することが可能となる。また、移動支持機構7は円筒体2の回転角に連動して移動する機構も備えているので、円筒体2が1回転する間に撮像機構7が円筒体2の回転軸と平行な方向に1次元撮像手段3の円筒体2回転軸方向Dpの測定範囲以下の距離だけ進むようにすることで、円筒体2の表面の全面をくまなく測定することが出来る。移動支持機構7としては市販のリニアガイドやリニアアクチュエータ、リニアベアリングとシャフトの組み合わせ、およびラックピニオンやボールネジなどを好適に用いることが出来る。 Moreover, since the inspection device 1c is provided with a movement support mechanism 7 and the whole inspection device 1c is fixed to the movement support mechanism 7, the whole inspection device 1c can be moved in parallel with the central axis of the cylindrical body 2. . While rotating the cylindrical body 2, the inspection device 1c is moved parallel to the rotation axis of the cylindrical body 2 by the movement support mechanism 7, so that the inspection device 1c moves the surface of the cylindrical body 2 in the rotational direction Dr of the cylindrical body 2. It is possible to scan obliquely with the laser beam, and the entire surface of the cylindrical body 2 can be inspected smoothly. In addition, since the moving support mechanism 7 also has a mechanism that moves in conjunction with the rotation angle of the cylindrical body 2, the imaging mechanism 7 moves in a direction parallel to the rotation axis of the cylindrical body 2 while the cylindrical body 2 rotates once. By setting the distance equal to or less than the measurement range of the one-dimensional imaging means 3 in the rotation axis direction Dp of the cylindrical body 2, the entire surface of the cylindrical body 2 can be measured all over. As the movement support mechanism 7, commercially available linear guides, linear actuators, combinations of linear bearings and shafts, rack pinions, ball screws, and the like can be suitably used.

[その他]
検査装置1a、1b、1cでは、支持機構6で円筒体2を自動制御で回転させているが、円筒体2の両端をベアリングなど回転可能な支持方法で支持し、手回しで回転させてもよい。ただし、一定速度で回転させることで一定の縮尺で撮像できることから駆動手段によって回転させることが好ましく、回転に要する労力も削減できる。
[others]
In the inspection apparatuses 1a, 1b, and 1c, the support mechanism 6 rotates the cylindrical body 2 by automatic control. Alternatively, both ends of the cylindrical body 2 may be supported by a rotatable support method such as bearings, and rotated by hand. . However, since it is possible to pick up an image at a constant scale by rotating at a constant speed, it is preferable to rotate by a driving means, and the labor required for rotation can be reduced.


図4に示す検査装置1cを用いて、円筒体2として外径300mm、面長2m、表面材質が透明なシリコーンゴムであるローラーの表面検査を行った。1次元撮像手段3として、キーエンス製ラインカメラ(XG―HL04M)を用い、2次元撮像手段4としてANMO社製デジタルマイクロスコープ(Dino-Lite Edge AMR)を用いた。光源5としてはリング状LEDライトを用い、1次元撮像手段3が撮像する際には円周における1/4を点灯させ、点灯させた部分を第1の光源51として1次元撮像手段3が撮像している部分における円筒体2の表面の接線方向と、1次元撮像手段3が撮像している部分と光源5の位置を結んだ線とのなす角θが10度、円筒体2の表面の撮像部における法線周りにおける円筒体2の軸方向と光源5の光の照射方向のなす角φが90度になるよう配置した。1次元撮像手段3での撮影時にはローラーの回転速度を2rpmとし、移動支持機構7は円筒体2が1回転する間に円筒体2の軸方向と平行に15mm移動させるよう設定した。1次元撮像手段3の測定結果をコンピュータープログラムにて整列することで平面画像とし、その画像において明領域となっている部分を欠陥と判定し検出した。検出と同時に円筒体2の回転と移動支持機構7による平行移動を停止し、欠陥を2次元撮像手段4を用いて撮像した。この時、リング状LEDの円周の1/4ずつを点灯させて切り替え円筒体2の表面の撮像部における法線周りにおける円筒体2の軸方向と光源5の光の照射方向のなす角φを90度ずつ変更し、一つの欠陥に対し計4枚を撮像した。

Using the inspection device 1c shown in FIG. 4, the surface of a roller having an outer diameter of 300 mm, a surface length of 2 m and a surface material of transparent silicone rubber as the cylindrical body 2 was inspected. As the one-dimensional imaging means 3, a keyence line camera (XG-HL04M) was used, and as the two-dimensional imaging means 4, a digital microscope (Dino-Lite Edge AMR) manufactured by ANMO was used. A ring-shaped LED light is used as the light source 5, and when the one-dimensional imaging means 3 picks up an image, 1/4 of the circumference is lit, and the one-dimensional imaging means 3 picks up the lighted portion as the first light source 51. The angle θ between the tangential direction of the surface of the cylindrical body 2 in the portion where the image is taken and the line connecting the position of the light source 5 and the portion being imaged by the one-dimensional imaging means 3 is 10 degrees, and the surface of the cylindrical body 2 The angle φ between the axial direction of the cylindrical body 2 and the light irradiation direction of the light source 5 around the normal to the imaging unit was set to 90 degrees. When photographing with the one-dimensional imaging means 3, the rotational speed of the roller was set to 2 rpm, and the moving support mechanism 7 was set to move the cylindrical body 2 in parallel with its axial direction by 15 mm while the cylindrical body 2 rotates once. A planar image was obtained by aligning the measurement results of the one-dimensional imaging means 3 by a computer program, and a bright area in the image was determined and detected as a defect. Simultaneously with the detection, the rotation of the cylindrical body 2 and the parallel movement by the movement support mechanism 7 were stopped, and the defect was imaged using the two-dimensional imaging means 4 . At this time, the angle φ between the axial direction of the cylindrical body 2 and the irradiation direction of the light from the light source 5 around the normal to the imaging unit on the surface of the cylindrical body 2 is switched by turning on the 1/4 of the circumference of the ring-shaped LED. was changed by 90 degrees, and a total of four images were taken for one defect.

一つの欠陥当たり4枚の画像を確認し、欠陥の内側に影が伸びているものをキズや凹み、欠陥の外側に影が伸びているものを突起や付着異物、影がほとんど見えないものを内部異物と判定し分類した。一方で、1次元撮像手段3の画像からは欠陥の特徴がはっきりせず欠陥を判定することはできなかった。 Four images are checked for each defect, and if the shadow extends inside the defect, it is a scratch or a dent. It was judged as an internal foreign matter and classified. On the other hand, the image of the one-dimensional imaging means 3 did not clearly show the characteristics of the defect, so the defect could not be determined.

次いで、確認としてシリコーンゴムローラーの各欠陥部を切り取り、オリンパス社製レーザー顕微鏡(LEXT OLS4000)にて観察し、欠陥の種類を特定した。その結果、検出した欠陥15点中14点において正しい判定ができていた。 Then, for confirmation, each defective portion of the silicone rubber roller was cut out and observed with a laser microscope (LEXT OLS4000) manufactured by Olympus to identify the type of defect. As a result, correct determination was made for 14 out of 15 detected defects.

本発明は、フィルム製膜用ローラーなどの産業用ローラーを測定対象とする円筒体表面形状測定装置に限らず、プリンターなどの民生用装置に用いられるローラーなどを測定対象とする測定装置などにも応用することができるが、その応用範囲が、これらに限られるものではない。 The present invention is not limited to cylindrical body surface shape measuring devices for measuring industrial rollers such as film-forming rollers, but is also applicable to measuring devices for measuring rollers used in consumer devices such as printers. However, the scope of application is not limited to these.

1a、1b、1c 円筒体表面の検査装置
2 円筒体
3 1次元撮像手段
4 2次元撮像手段
5、5’ 光源
51 第1の光源
52 第2の光源
6 支持機構
7 移動支持機構
Dr 円筒体回転方向
Dp 円筒体中心軸方向
θ 円筒体の接線と光照射方向のなす角
φ 円筒体の軸と光照射方向のなす角
1a, 1b, 1c cylinder surface inspection apparatus 2 cylinder 3 one-dimensional imaging means 4 two-dimensional imaging means 5, 5' light source 51 first light source 52 second light source 6 support mechanism 7 movement support mechanism Dr cylinder rotation Direction Dp Direction of central axis of cylinder θ Angle between tangent to cylinder and direction of light irradiation φ Angle between axis of cylinder and direction of light irradiation

Claims (3)

円筒体の表面を検査する方法であって、
円筒体を回転させた状態で、
前記円筒体に対して光を照射し、
前記照射した光が前記円筒体の表面で反射した反射光を1次元撮像手段で受光し、
前記1次元撮像手段が撮像した画像から前記円筒体の表面の欠陥を検出したときに当該円筒体の回転を停止させる、第1の手順と、
次いで、前記円筒体を停止させた状態で、
前記円筒体の表面に対する照射角度が、前記第1の手順において当該円筒体の表面に照射された光の照射角度とは異なる角度から、当該円筒体に対して光を照射し、
前記照射した光が前記円筒体の表面で反射した反射光を2次元撮像手段で受光し、
前記第1の手順において検出された前記欠陥の位置を前記2次元撮像手段で撮像する、第2の手順と、
を行う、円筒体表面の検査方法。
A method of inspecting a surface of a cylinder, comprising:
With the cylinder rotated,
irradiating the cylindrical body with light;
receiving reflected light of the irradiated light reflected on the surface of the cylindrical body by a one-dimensional imaging means;
a first step of stopping the rotation of the cylindrical body when a defect on the surface of the cylindrical body is detected from the image captured by the one-dimensional imaging means;
Next, with the cylindrical body stopped,
irradiating the cylindrical body with light from an angle where the irradiation angle with respect to the surface of the cylindrical body is different from the irradiation angle of the light irradiated on the surface of the cylindrical body in the first step;
receiving reflected light of the irradiated light reflected on the surface of the cylindrical body by a two-dimensional imaging means;
a second step of imaging the position of the defect detected in the first step with the two-dimensional imaging means;
A method for inspecting the surface of a cylindrical body.
円筒体の表面を検査する装置であって、
円筒体を当該円筒体の軸周りに回転可能に支持する支持機構と、
前記支持機構に支持された前記円筒体に対して光を照射する光源と、
前記光源を移動させる手段であって、当該光源から照射される光の前記円筒体の表面に対する照射角度を変えられる照射角度変更手段と、
1次元撮像手段および2次元撮像手段と、
制御手段と、を備え、
前記制御手段が、
前記支持機構で前記円筒体を回転させた状態で、前記光源から当該円筒体に対して光を照射し、当該照射した光が当該円筒体の表面で反射した反射光を前記1次元撮像手段で受光し、当該1次元撮像手段が撮像した画像から当該円筒体の表面の欠陥を検出したときに当該支持機構を停止させて当該円筒体の回転を停止させる、第1の手順と、
次いで、前記円筒体の回転を停止させた状態で、前記光源から照射される光の当該円筒体の表面に対する照射角度を、前記第1の手順における照射角度とは異なる角度となるように、前記照射角度変更手段で当該光源を移動させ、当該光源から当該円筒体に対して光を照射し、当該照射した光が当該円筒体の表面で反射した反射光を前記2次元撮像手段で受光し、前記第1の手順において検出された前記欠陥の位置を当該2次元撮像手段で撮像する、第2の手順と、
を行うように制御する、
円筒体表面の検査装置。
An apparatus for inspecting the surface of a cylinder, comprising:
a support mechanism that supports the cylindrical body so as to be rotatable around the axis of the cylindrical body;
a light source that irradiates the cylindrical body supported by the support mechanism with light;
means for moving the light source, the irradiation angle changing means for changing the irradiation angle of the light emitted from the light source with respect to the surface of the cylindrical body;
a one-dimensional imaging means and a two-dimensional imaging means;
a control means;
The control means is
While the cylindrical body is rotated by the support mechanism, the light source irradiates the cylindrical body with light, and the reflected light reflected by the surface of the cylindrical body is captured by the one-dimensional imaging means. a first step of stopping the rotation of the cylindrical body by stopping the support mechanism when a defect on the surface of the cylindrical body is detected from the image captured by the one-dimensional imaging means;
Next, while the rotation of the cylindrical body is stopped, the irradiation angle of the light emitted from the light source with respect to the surface of the cylindrical body is changed to an angle different from the irradiation angle in the first step. moving the light source by the irradiation angle changing means, irradiating the cylindrical body with light from the light source, and receiving the reflected light of the irradiated light reflected on the surface of the cylindrical body by the two-dimensional imaging means; a second procedure of imaging the position of the defect detected in the first procedure with the two-dimensional imaging means;
control to do
Cylinder surface inspection equipment.
円筒体の表面を検査する装置であって、
円筒体を当該円筒体の軸周りに回転可能に支持する支持機構と、
前記支持機構に支持された前記円筒体に対して光を照射する第1の光源と、
前記円筒体の表面に対する照射角度が、前記第1の光源から照射される光の照射角度とは異なる角度から、当該円筒体に対して光を照射する第2の光源と、
1次元撮像手段および2次元撮像手段と、
制御手段と、を備え、
前記制御手段が、
前記支持機構で前記円筒体を回転させた状態で、前記第1の光源から当該円筒体に対して光を照射し、当該照射した光が当該円筒体の表面で反射した反射光を前記1次元撮像手段で受光し、当該1次元撮像手段が撮像した画像から当該円筒体の表面の欠陥を検出したときに当該支持機構を停止させて当該円筒体の回転を停止させる、第1の手順と、
次いで、前記円筒体の回転を停止させた状態で、前記第2の光源から当該円筒体に対して光を照射し、当該照射した光が当該円筒体の表面で反射した反射光を前記2次元撮像手段で受光し、前記第1の手順において検出された前記欠陥の位置を当該2次元撮像手段で撮像する、第2の手順と、
を行うように制御する、
円筒体表面の検査装置。
An apparatus for inspecting the surface of a cylinder, comprising:
a support mechanism that supports the cylindrical body so as to be rotatable around the axis of the cylindrical body;
a first light source that irradiates the cylindrical body supported by the support mechanism with light;
a second light source that irradiates the cylindrical body with light from an angle different from the irradiation angle of the light emitted from the first light source with respect to the surface of the cylindrical body;
a one-dimensional imaging means and a two-dimensional imaging means;
a control means;
The control means is
In a state where the cylindrical body is rotated by the support mechanism, the cylindrical body is irradiated with light from the first light source, and the reflected light reflected by the surface of the cylindrical body is converted into the one-dimensional light. a first procedure of stopping the rotation of the cylindrical body by stopping the support mechanism when a defect on the surface of the cylindrical body is detected from the image captured by the one-dimensional imaging means;
Next, while the rotation of the cylindrical body is stopped, the cylindrical body is irradiated with light from the second light source, and the reflected light reflected by the surface of the cylindrical body is reflected by the two-dimensional light source. a second procedure of receiving light with an imaging means and imaging the position of the defect detected in the first procedure with the two-dimensional imaging means;
control to do
Cylinder surface inspection equipment.
JP2021191825A 2021-11-26 2021-11-26 Inspection method and inspection device of cylindrical body surface Pending JP2023078616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021191825A JP2023078616A (en) 2021-11-26 2021-11-26 Inspection method and inspection device of cylindrical body surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021191825A JP2023078616A (en) 2021-11-26 2021-11-26 Inspection method and inspection device of cylindrical body surface

Publications (1)

Publication Number Publication Date
JP2023078616A true JP2023078616A (en) 2023-06-07

Family

ID=86646306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021191825A Pending JP2023078616A (en) 2021-11-26 2021-11-26 Inspection method and inspection device of cylindrical body surface

Country Status (1)

Country Link
JP (1) JP2023078616A (en)

Similar Documents

Publication Publication Date Title
US8363101B2 (en) Method and device for optically measuring external threads
CN107449779B (en) Appearance inspection device and appearance inspection method
US20110128368A1 (en) Hole Inspection Method and Apparatus
JP6772084B2 (en) Surface defect inspection equipment and surface defect inspection method
EP2158447A1 (en) A surface inspection device and an arrangement for inspecting a surface
JP2008131025A (en) Wafer backside inspection device
JP2018025439A (en) Appearance inspection method and appearance inspection apparatus
JP5224288B2 (en) Surface inspection apparatus and surface inspection method
JP2012502316A (en) Apparatus and method for optically converting a three-dimensional object into a two-dimensional planar image
WO2022030325A1 (en) Inspection device, inspection method, and piston manufacturing method
JP2014074631A (en) Exterior appearance inspection apparatus and exterior appearance inspection method
JP5794895B2 (en) Cylindrical appearance inspection device
WO2004072628A1 (en) Defect inspection device and method therefor
JP2020106295A (en) Sheet defect inspection device
JP2023078616A (en) Inspection method and inspection device of cylindrical body surface
JP2010151473A (en) Apparatus for inspecting screw-top bottle
KR20160121716A (en) Surface inspection apparatus based on hybrid illumination
JP3870140B2 (en) Driving transmission belt inspection method
JP2007285869A (en) Surface inspection system and surface inspection method
JP2021139630A (en) Surface inspection device and surface inspection method
JP2011106909A (en) Visual inspection apparatus of pipe
JP2009085883A (en) Defect inspection device
KR102493209B1 (en) Image detecting apparatus for visual inspection system based on ai
JP6014386B2 (en) Glass plate lighting device and processing device
JP2018189517A (en) Measurement device and method for manufacturing articles