JP2023062497A - 軟磁性合金、圧粉磁心、および磁性部品 - Google Patents

軟磁性合金、圧粉磁心、および磁性部品 Download PDF

Info

Publication number
JP2023062497A
JP2023062497A JP2021172506A JP2021172506A JP2023062497A JP 2023062497 A JP2023062497 A JP 2023062497A JP 2021172506 A JP2021172506 A JP 2021172506A JP 2021172506 A JP2021172506 A JP 2021172506A JP 2023062497 A JP2023062497 A JP 2023062497A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
magnetic alloy
surface layer
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021172506A
Other languages
English (en)
Inventor
暁斗 長谷川
Akito Hasegawa
智子 森
Satoko Mori
和宏 吉留
Kazuhiro Yoshitome
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2021172506A priority Critical patent/JP2023062497A/ja
Priority to US17/967,687 priority patent/US20230125339A1/en
Priority to CN202211267648.6A priority patent/CN116013632A/zh
Publication of JP2023062497A publication Critical patent/JP2023062497A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

【課題】高い耐電圧および高いm値を実現できる軟磁性合金、圧粉磁心、および、磁性部品を提供すること。【解決手段】FeおよびCoを含む軟磁性の合金組成を有する本体部と、当該本体部の表面側に位置する表層部と、を有する軟磁性合金である。表層部におけるCo濃度とFe濃度との和に対するCo濃度の比を、Co/(Fe+Co)として、表層部の厚み方向におけるCo/(Fe+Co)の分布が、極小点と、少なくとも1以上の極大点と、を有する。【選択図】図2B

Description

本発明は、軟磁性合金、圧粉磁心、および、磁性部品に関する。
インダクタ、トランス、チョークコイルなどの磁性部品は、様々な電子機器の電源回路などに多用されている。近年、低炭素社会へ向けて、電源回路におけるエネルギー損失の低減や電源効率の向上が重要視されており、磁性部品の高効率化や省エネルギー化が求められている。
磁性部品に対する上記要求を満たすためには、磁性部品に含まれる磁心(コア)の比透磁率の向上が欠かせない。そして、磁心の比透磁率を向上させるためには、磁心に含まれる磁性材料の充填率を高める必要がある。そのため、磁性部品に関する分野では、磁心の充填率向上を目的として、様々な試みがなされてきた。たとえば、特許文献1では、磁性粉末の円形度を高くすることで、充填率を向上できることが開示されている。また、特許文献2では、粗大粉末と微細粉末との混合粉末を使用することで、磁性材料の充填率を高める技術が開示されている。
しかしながら、磁性材料の充填率を高めると、磁性粒子同士の接触点が増加するため、磁心の耐電圧が低下する傾向となる。つまり、充填率(比透磁率)と耐電圧とは、トレードオフの関係にある。また、充填率の増加に伴い、1粒子に対する接触点に差がうまれるため、接触点の数の違いにより耐電圧のばらつきが大きくなり、ばらつきの程度を示すm値が低下する傾向となる。したがって、磁性材料の充填率を高めた場合においても、高い耐電圧および高いm値が得られる技術の開発が求められている。
特開2018-073947号公報 特開2016-012630号公報
本発明は、上記の実情を鑑みてなされ、その目的は、高い耐電圧および高いm値を実現できる軟磁性合金、圧粉磁心、および、磁性部品を提供することである。
上記の目的を達成するために、本発明に係る軟磁性合金は、
FeおよびCoを含む軟磁性の合金組成を有する本体部と、前記本体部の表面側に位置する表層部と、を有し、
前記表層部において、Co濃度とFe濃度との和に対するCo濃度の比を、Co/(Fe+Co)として、
前記表層部の厚み方向におけるCo/(Fe+Co)の分布が、極小点と、少なくとも1以上の極大点と、を有する。
上記の特徴を有する軟磁性合金を用いることで、高い比透磁率を維持しつつ、従来よりも耐電圧およびm値を向上させることができる。
好ましくは、Co/(Fe+Co)分布における極小値および極大点が、所定の位置関係を満たす。
たとえば、少なくとも1以上の前記極大点のうち前記本体部に最も近い極大点を、第1極大点とし、前記第1極大点の次に前記本体部に近い極大点を、第2極大点とすると、前記極小点が、前記第1極大点よりも表面側に位置し、前記第2極大点が、前記極小点よりも表面側に位置することが好ましい。
もしくは、前記極小点、および、少なくとも1以上の前記極大点のうち、前記極小点が、最も合金中心側に位置していてもよい。
好ましくは、前記表層部が、酸化物相を含む。
好ましくは、前記表層部が、Si,Cr,およびAlから選択される1以上の所定元素Mを含む酸化物相を有し、
前記極小点が、前記酸化物相に存在する。
上記のように、表層部が所定元素Mの酸化物相を有する場合、
前記酸化物相は、前記所定元素Mの濃度の極大点LM maxを有する。
そして、好ましくは、Co/(Fe+Co)に関する前記極大点の1つが、前記極大点LM maxよりも表面側に存在する。
本発明の軟磁性合金の用途は、特に制限されず、各種磁性部品に適用できる。特に、本発明の軟磁性合金は、インダクタ、トランス、チョークコイルなどの磁性部品における圧粉磁心の材料として好適に用いることができる。
図1は、本発明の一実施形態に係る軟磁性合金の表面近傍を拡大した概略断面図である。 図2Aは、実施形態の軟磁性合金に関するライン分析データの一例を模したグラフである。 図2Bは、実施形態の軟磁性合金に関するライン分析データの一例を模したグラフである。 図3は、ライン分析データの一変形例を模したグラフである。 図4は、ライン分析データの一変形例を模したグラフである。 図5Aは、従来の軟磁性合金に関するライン分析データの一例を模したグラフである。 図5Bは、従来の軟磁性合金に関するライン分析データの一例を模したグラフである。 図6は、図1に示す軟磁性合金を含む圧粉磁心の一例を示す概略断面図である。 図7は、圧粉磁心を有する磁性部品の一例を示す断面図である。
以下、本発明を、図面に示す実施形態に基づき詳細に説明する。
本実施形態の軟磁性合金1は、薄帯形状、粉末形状、もしくは、その他ブロック形状等を有することができ、特に粉末形状を有することが好ましい。軟磁性合金1の寸法は特に限定されない。たとえば、軟磁性合金1が薄帯形状である場合、軟磁性合金薄帯の厚みは、15μm~100μmとすることができる。また、軟磁性合金1が粉末形状を有する場合、軟磁性合金粉末の平均粒径は、0.5μm~150μmとすることができ、0.5μm~25μmであることが好ましい。
上記の平均粒径は、レーザ回折法などの各種粒度分析法により測定することができるが、粒子画像分析装置モフォロギG3(マルバーン・パナティカル社製)を用いて測定することが好ましい。モフォロギG3では、エアーにより軟磁性合金粉末を分散させ、当該粉末を構成する粒子の投影面積を測定し、その投影面積から円相当径による粒度分布を得る。そして、得られた粒度分布において、体積基準または個数基準の累積相対度数が50%となる粒径を、平均粒径として算出すればよい。なお、軟磁性合金粉末が磁心に含まれている場合、平均粒径は、電子顕微鏡(SEM、STEMなど)を用いた断面観察により、断面に含まれる粒子の円相当径を計測することで算出すればよい。
図1は、軟磁性合金1の表面近傍を拡大した要部断面図である。図1に示すように、軟磁性合金1は、本体部2と、当該本体部2の表面側に位置する表層部10と、を有する。なお、本実施形態において、「表面側」とは、合金中心から合金表面に向かう方向において、軟磁性合金1の外側により近い側を意味する。
(本体部2)
本体部2は、軟磁性合金1の体積のうち少なくとも90vol%以上を占める基体部である。そのため、軟磁性合金1の平均組成は、本体部2の組成とみなすことができ、軟磁性合金1の結晶構造は、本体部2の結晶構造とみなすことができる。なお、上記の本体部2の体積割合は、面積割合に代替可能であり、軟磁性合金1の断面積のうち少なくとも90%以上が本体部2である。
本体部2は、FeおよびCoを含む軟磁性の合金組成を有しており、具体的な合金組成は特に限定されない。たとえば、本体部2は、Fe-Co系合金やFe-Co-V系合金、Fe-Co-Si系合金、Fe-Co-Si-Al系合金などの結晶系の軟磁性合金組成を有することができる。もしくは、本体部2は、軟磁性合金1の保磁力を低くする観点から、非晶質やナノ結晶の合金組成を有していることが好ましい。
非晶質やナノ結晶の軟磁性合金としては、Fe-Co-P-C系合金、Fe-Co-B系合金、もしくはFe-Co-B-Si系合金などがあげられる。より具体的に、本体部2は、組成式(Fe(1-(α+β)CoαNiβ)(1-(a+b))X1aX2bを満たす合金組成を有していることが好ましく、上記組成を有することで、非晶質、ヘテロアモルファス、もしくはナノ結晶の結晶構造が得られやすい。
上記組成式において、X1はB、P、C、Si、Alから選択される1種以上の元素である。X2は、Ti、Zr、Hf、Nb、Ta、Mo、W、Cr、Ga、Ag、Zn、S、Ca、Mg、V、Sn、As、Sb、Bi、N、O、Au、Cu、希土類元素、および白金族元素から選択される1種以上の元素である。希土類元素には、Sc,Yおよびランタノイドが含まれ、白金族元素には、Ru,Rh,Pd,Os,Ir,およびPtが含まれる。また、α,β,a,bは、原子数比であり、これら原子数比は、以下の要件を満足することが好ましい。
Feに対するCoの含有量(α)は、0.005≦α≦0.700であり、0.010≦α≦0.600であってもよく、0.030≦α≦0.600であってもよく、0.050≦α≦0.600であってもよい。αが上記の範囲内であることにより、軟磁性合金1の飽和磁束密度Bsおよび耐食性が向上する。Bsを向上させる観点では、0.050≦α≦0.500であることが好ましい。αが大きくなるほど耐食性が向上する傾向にあるが、αが大きすぎる場合にはBsが低下しやすくなる。
また、Feに対するNiの含有量(β)は、たとえば、0≦β≦0.200とすることができる。すなわち、軟磁性合金1はNiを含まなくてもよく、0.005≦β≦0.200であってもよい。Bsを向上させる観点では、0≦β≦0.050であってもよく、0.001≦β≦0.050であってもよく、0.005≦β≦0.010であってもよい。βが大きくなるほど耐食性が向上する傾向にあるが、βが大きすぎる場合にはBsが低下する。
さらに、軟磁性合金を構成する各元素の原子数比の和を1としたとき、Fe,Co,およびNiの合計含有量の原子数比(1-(a+b))は、0.720≦(1-(a+b))≦0.950であることが好ましく、0.780≦(1-(a+b))≦0.890であることがより好ましい。当該要件を満足することでBsが向上しやすくなる。また、0.720≦(1-(a+b))≦0.890であることにより、非晶質が得られやすく、保磁力が低下しやすくなる。
X1は不純物として含まれていてもよく、意図的に添加してもよい。X1の含有量(a)は、0≦a≦0.200であることが好ましい。Bsを向上させる観点では0≦a≦0.150であることが好ましい。
X2は不純物として含まれていてもよく、意図的に添加してもよい。X2の含有量(b)は、0≦b≦0.200であることが好ましい。Bsを向上させる観点では0≦b≦0.150であることが好ましく、0≦b≦0.100であることがさらに好ましい。
上述した本体部2の組成(すなわち軟磁性合金1の組成)は、たとえば、誘導結合プラズマ発光分光分析(ICP)を用いて分析することができる。この際、ICPで酸素量を求めることが難しい場合には、インパルス加熱溶融抽出法を併用することができる。また、ICPで炭素量および硫黄量を求めることが難しい場合には、赤外吸収法を併用することができる。
また、ICPの他に、電子顕微鏡に付随のEDX(エネルギー分散型X線分析)やEPMA(電子プローブマイクロアナライザー)で組成分析を実施してもよい。たとえば、樹脂成分を有する圧粉磁心に含まれている軟磁性合金1については、ICPによる組成分析が難しい場合があり、この場合は、EDXやEPMAを用いて組成分析をしてもよい。また、上述したいずれの方法でも詳細な組成分析が難しい場合は、3DAP(3次元アトムプローブ)を用いて組成分析を実施してもよい。3DAPを用いる場合には、分析する領域において樹脂成分や表面酸化などの影響を除外して本体部2の組成を測定することができる。3DAPでは、軟磁性合金1の内部において小さな領域(例えばΦ20nm×100nmの領域)を設定して平均組成を測定することができるためである。
なお、EDXやEELS(電子エネルギー損失分光)を用いて、軟磁性合金1の表面近傍の断面をライン分析した場合、本体部2は、Feの濃度やCoの濃度が安定した領域として認識できる(図2A参照)。また、たとえば、本体部2のマッピング分析により得られる平均組成を、軟磁性合金1の組成とすることができる。この場合、マッピング分析は、EDXやEELSを用いて実施し、その際の測定箇所は、軟磁性合金1の表面から深さ方向に100nm以上離れた領域(本体部2に該当する領域)とし、測定視野は256nm×256nm程度の範囲とすればよい。
本体部2の結晶構造(すなわち軟磁性合金1の結晶構造)は、結晶質、ナノ結晶、非晶質とすることができ、保磁力を低くする観点では、ナノ結晶または非晶質であることが好ましい。たとえば、本体部2の非晶質化度Xは、85%以上であることが好ましい。非晶質化度Xが85%以上の結晶構造は、概ね非晶質で構成される構造、もしくは、ヘテロアモルファスからなる構造、である。ここでヘテロアモルファスからなる構造とは、非晶質中に僅かに結晶が存在する構造を意味する。すなわち、本実施形態において、「非晶質の結晶構造」とは、非晶質化度Xが85%以上の結晶構造であって、当該非晶質化度Xを満足する範囲で結晶が含まれていてもよいことを意味する。
なお、ヘテロアモルファスからなる構造の場合、非晶質中に存在する結晶の平均結晶粒径は、0.1nm以上10nm以下であることが好ましい。また、本実施形態では、「ナノ結晶」とは、非晶質化度Xが85%未満であって、かつ、平均結晶粒径が100nm以下(好ましくは3nm~50nm)である結晶構造を意味し、「結晶質」とは、非晶質化度Xが85%未満であって、かつ、平均結晶粒径が100nmを超過する結晶構造を意味する。
非晶質化度Xは、XRDを用いたX線結晶構造解析により測定することができる。具体的に、軟磁性合金1に対して、XRDによる2θ/θ測定を行い、回折チャートを得る。この際、回折角2θの測定範囲は、非晶質由来のハローが確認できる範囲に設定し、たとえば、2θ=30°~60°の範囲とすることが好ましい。
次に、下記の(2)式に示すローレンツ関数を用いて、回折チャートに対して、プロファイルフィッティングを行う。このプロファイルフィッティングでは、XRDによる実測の積分強度と、ローレンツ関数を用いて算出した積分強度との誤差を1%以内に設定することが好ましい。このプロファイルフィッティングにより、結晶性散乱積分強度Ic、および、非晶性散乱積分強度Iaを算出する。そして、ここで得られた結晶性散乱積分強度Icと非晶性散乱積分強度Iaとを下記の(1)式に導入することで、非晶質化度Xが求められる。
X=100-(Ic/(Ic+Ia)×100)…(1)
Ic:結晶性散乱積分強度
Ia:非晶性散乱積分強度
Figure 2023062497000002
なお、非晶質化度Xの測定方法は、上記のXRDを用いた方法に限定されず、EBSD(結晶方位解析)や電子線回折により測定してもよい。
(表層部10)
表層部10は、FeやCoなどの軟磁性合金の構成元素の含有率が、本体部2とは異なる領域である。表層部10は、本体部2の外周縁の少なくとも一部を覆っている。軟磁性合金1の断面において、本体部2に対する表層部10の被覆率は、特に限定されないが、たとえば、50%以上とすることができ、80%以上であることがより好ましい。
表層部10は、STEM(走査透過型電子顕微鏡)またはTEM(透過型電子顕微鏡)で軟磁性合金1の表面近傍の断面を観察し、その際にEDXまたはEELSを用いたライン分析を実施することで解析できる。ライン分析では、図1に示すように、合金表面と略垂直な方向に沿って測定線MLを引き、当該測定線上で所定の間隔で成分分析を実施することで、表面近傍における構成元素の濃度分布を得る。この際、成分分析の測定間隔は、1nmとすることが好ましく、1nm間隔で測定した生データを平均化処理してノイズを除去することが好ましい。より具体的に、平均化処理では、各測定点において、隣接する前後2点を含めた計5点の測定値を平均して、区間平均値を得ることが好ましい。そして、各測定点における区間平均値をプロットして濃度分布のグラフを得る。
たとえば、図2Aおよび図2Bに示すグラフが、軟磁性合金1の表面近傍におけるライン分析データの一例である。なお、説明の便宜上、2つのグラフ(図2A,図2B)を示しているが、図2Aおよび図2Bは、いずれも、同じ測定例を示している。グラフの横軸が特定点(界面21)からの距離であり、特定点から合金表面側(外側)に向かう方向を正方向とし、特定点から合金内側に向かう方向を負方向としている。また、グラフの第1の縦軸が、構成元素(FeおよびCo)の含有率(濃度)であり、第2の縦軸が、Co濃度とFe濃度との和に対するCo濃度の比:Co/(Fe+Co)である。
図2Aに示すように、本体部2では、FeやCoなどの構成元素の濃度が、平均濃度±1at%程度の範囲内で安定している。その本体部2よりも表面側では、構成元素の濃度が本体部2とは異なる変動域が存在しており、当該変動域が表層部10である。本実施形態では、Feの濃度分布における変化点CPFe、Coの濃度分布における変化点CPCo、および、Co/(Fe+Co)の分布における変化点CPRを特定し、これら変化点のうち最も合金内側(合金中心側)に位置する変化点を、本体部2と表層部10との「界面21」とする。
具体的に、変化点および界面21の特定方法について説明しておく。たとえば、Feの濃度分布において、本体部2におけるFeの平均濃度に一致する水平線ALFeを引く。そして、Feの濃度が、本体部2から合金表面側に向かって単調変化(図2Aでは単調減少)している領域で、近似直線TLFeを引く。この水平線ALFeと近似直線TLFeとの交点が、Feの濃度分布における変化点CPFeである。Co濃度分布の変化点CPCo、および、Co/(Fe+Co)の分布における変化点CPRについても、上記と同様の方法で特定すればよい。
上記の方法で特定した各変化点CPFe,CPCo,CPRに基づいて、本体部2と表層部10との「界面21」を特定する。図2Aでは、各変化点CPFe,CPCo,CPRのうち、Co/(Fe+Co)の変化点CPRが、最も内側に位置している。そのため、図2Aのグラフでは、Co/(Fe+Co)の変化点CPRが存在する位置を界面21とし、当該界面21をグラフ横軸におけるゼロ点に設定している。
本実施形態の軟磁性合金1では、表層部10の厚み方向におけるCo/(Fe+Co)の分布が、極小点Lminと、少なくとも1以上の極大点Lmaxとを有する。図2Bのグラフでは、極小点Lminを黒塗りの丸印で示しており、極大点Lmaxを白抜きの丸印で示している。
ここで、本実施形態における極小点(local minimum)とは、Co/(Fe+Co)の分布が、界面21から表面側に向かう正方向において、減少傾向から増加傾向に切り替わる点である。すなわち、極小点Lminは、Co/(Fe+Co)が谷状に変化している局所域における極値である。極小点Lminは、表層部10の全域における最小値(global minimum)とは異なる。また、本実施形態における極大点(local maximum)とは、Co/(Fe+Co)の分布が、界面21から表面側に向かう正方向において、増加傾向から減少傾向に切り替わる点である。すなわち、極大点Lmaxは、Co/(Fe+Co)が凸状に変化している局所域における極値である。極大点Lmaxは、複数存在する場合があり、極大点Lmaxと表層部10の全域における最大値(global maximum)とは、必ずしも一致しない。
表層部10におけるCo/(Fe+Co)の分布が、極小点Lminと、少なくとも1以上の極大点Lmaxとを有することで、本実施形態の軟磁性合金1を含む磁心では、高い比透磁率を維持しつつ、耐電圧を向上させることができる。また、耐電圧のばらつきを低減することができ(すなわちm値を高めることができ)、磁性部品の安定生産が可能となる。
極大点Lmaxの数、および、各極値(Lmin,Lmax)の配置は、特に限定されないが、特に、極小点Lminと極大点Lmaxとが、図2Bに示す様態で存在していることが好ましい。具体的に、図2Bのグラフでは、Co/(Fe+Co)の分布が、2つの極大点Lmaxを有している。この2つの極大点Lmaxのうち、最も本体部2に近い極大点(すなわち最も合金内側に位置する極大点)を、第1極大点L1maxとする。また、2つの極大点Lmaxのうち、第1極大点L1maxの次に本体部2に近い極大点(すなわち合金表面に最も近い極大点)を、第2極大点L2maxとする。この場合、極小点Lminは、第1極大点L1maxと第2極大点L2maxとの間に位置することが好ましい。換言すると、極小点Lminが、第1極大点L1maxよりも合金表面側に位置し、第2極大点L2maxが、極小点Lminよりも合金表面側に位置することが好ましい。
図2BのCo/(Fe+Co)の分布を有する表層部10において、界面21から第1極大点L1maxまでの距離をD1とし、界面21から極小点Lminまでの距離をD2とし、界面21から第2極大点L2maxまでの距離をD3とする。各極値までの距離(D1~D3)は、特に限定されず、たとえば、D1は10nm以下であることが好ましく、D2は20nm以下であることが好ましく、D3は30nm以下であることが好ましい。なお、各極値の間隔(D2-D1,D3-D2)は、特に限定されず、たとえば1nm以上10nm以下であることが好ましい。
なお、軟磁性合金1の表層部10におけるCo/(Fe+Co)の分布は、図2Bに示す様態に限定されず、たとえば、表層部10が、図3に示すようなCo/(Fe+Co)の分布を有していてもよい。図3のグラフでは、界面21と極小点Lminとの間に極大点Lmaxが存在せず、複数の極値のうち、極小点Lminが最も合金中心側(すなわち表層部10の内側)に位置している。換言すると、図3に示すCo/(Fe+Co)の分布は、1つの極大点Lmaxを有しており、この1つの極大点Lmaxは、極小点Lminよりも合金表面側に位置する。
図3に示す界面21から極小点Lminまでの距離D2'は、特に限定されず、図2BのD2と同様に、20nm以下であることが好ましい。また、図3に示す界面21から極大点Lmaxまでの距離D3'は、特に限定されず、図2BのD3と同様に、30nm以下であることが好ましい。なお、極値の間隔「D3'- D2'」についても、特に限定されず、たとえば、1nm以上10nm以下であることが好ましい。
なお、図2A、図2Bおよび図3では、FeおよびCoの濃度分布を示しているが、表層部10には、上記元素以外に、Si、Cr、Al、B、Pなどの軟磁性合金1の平均組成を構成する元素が含まれていてもよい。
また、表層部10は、金属相、酸化物相、酸化物以外の金属化合物相などとすることができ、酸化物相を含むことが好ましい。表層部10が酸化物相を含む場合、表層部10では、本体部2よりも高濃度の酸素が検出される。たとえば、図4に示すグラフが、酸化物相を含む表層部10のライン分析データの一例である。
図4に示すように、表層部10における酸素の濃度が、本体部2よりも高くなっている場合、表層部10が酸化物相12を含む。このように、表層部10が酸化物相12を含む場合、Co/(Fe+Co)の分布における極小点Lmaxは、この酸化物相12に存在する。
表層部10における酸化物相12の厚みは、特に限定されない。たとえば、図4のグラフでは、酸素濃度の変化点CPOxから表層部10の外面10aまでの範囲が酸化物相12である。酸化物相12の合金内側の始点である変化点CPOxは、本体部2と表層部10との界面21とは必ずしも一致せずに、界面21よりも表面側に位置していてもよい。
酸化物相12には、Si、Cr、およびAlから選択される1種以上の所定元素Mが含まれていてもよく、所定元素MとしてSiが含まれることが好ましい。酸化物相12が所定元素Mを含む場合、酸化物相12には、所定元素Mの濃度が本体部2よりも高い領域が存在し、所定元素Mの極大点LM maxが存在する。そして、Co/(Fe+Co)分布の極大点Lmaxのうち、表面側に位置する第2極大点L2maxは、所定元素Mの極大点LM maxよりも表面側に位置することが好ましい。
表層部10が、図4に示すような酸化物相12を有することで、磁心における耐電圧およびm値をより向上させることができる。
本実施形態の軟磁性合金1において、表層部10の厚みTは、特に限定されないが、たとえば、1nm以上30nm以下とすることができ好ましく、5nm以上20nm以下とすることがより好ましい。この表層部10の厚みTは、界面21から表層部10の外面10aまでの距離として算出することができる。厚みTの測定において、界面21は、前述のとおり、所定の変化点CPに基づいて特定することができ、外面10aは、以下に示すような方法で特定すればよい。
たとえば、図2Aおよび図2Bのグラフでは、表層部10の外面10aが、軟磁性合金1の最表面を構成している。この場合、軟磁性合金1の最表面は、TEM像やSTEM像において視認できるため、TEM像やSTEM像を、図2A,図2Bに示す濃度分布のグラフに照らし合わせることで、濃度分布のグラフにおける外面10aを特定することができる。
また、軟磁性合金1は、表層部10を覆う絶縁被膜を有していてもよい。絶縁被膜は、表層部10の形成後に、コーティングなどにより形成する被膜であって、その平均厚みは、1nm以上100nm以下であることが好ましく、50nm以下であることがより好ましい。絶縁被膜は、TEM像やSTEM像において、本体部2や表層部10とはコントラストが異なる領域として認識できる場合がある。この場合、表層部10の外面10aは、TEM像やSTEM像におけるコントラストに基づいて特定することができる。もしくは、表層部10の外面10aは、絶縁被膜に特有の元素Eに関する濃度分布に基づいて特定してもよい。ライン分析結果では、特有元素Eの濃度が、表層部10から絶縁被膜に切り替わる領域において増加するため、特有元素Eが増加する変化点を、表層部10の外面10aと規定してもよい。
(軟磁性合金1の製造方法)
以下、製造方法の一例として、粉末状の軟磁性合金1(軟磁性合金粉末)を製造する方法について説明する。本実施形態に係る軟磁性合金1は、周知の方法で粉末を作製した後に、所定の表面改質処理を実施することで製造できる。
表面改質処理を施す前の軟磁性合金粉末の作製方法は、特に限定されない。たとえば、水アトマイズ法やガスアトマイズ法などのアトマイズ法により軟磁性合金粉末を作製してもよい。また、金属塩の蒸発、還元、熱分解のうち少なくとも1種以上を用いたCVD法などの合成法により軟磁性合金粉末を作製してもよい。また、電解法やカーボニル法を用いて軟磁性合金粉末を作製してもよい。さらに、薄帯状や薄板上の出発合金を粉砕することで軟磁性合金粉末を作製してもよい。なお、作製後の粉末については、適宜、分級して、軟磁性合金粉末の粒度を調製してもよい。
上記の軟磁性合金粉末の構成粒子は、所定の表面改質処理が施されていない状態であり、当該構成粒子の表面近傍は、たとえば、図5Aに示すような濃度分布を有する。図5Aに示すように、表面改質処理前の構成粒子では、表面近傍のCo/(Fe+Co)の分布が、極小点および極大点を有していない。
従来、リン酸塩水溶液やシランカップリング剤などを用いて軟磁性合金粉末に対して化成処理を施すことが知られている。ただし、従来の化成処理により被膜を形成しても、粒子本体の表面近傍におけるCo/(Fe+Co)の分布は、図5Aに示す様態からほとんど変化しない。つまり、従来の化成処理のみでは、Co/(Fe+Co)の極小点および極大点を有する表層部10を形成することは困難である。
また、従来、化成処理以外の表面処理方法として、熱処理が知られている。熱処理時の酸素濃度を適切に制御して酸化被膜を形成すると、粒子本体の表面近傍が、図5Bに示すような濃度分布を有する場合がある。図5BのCo/(Fe+Co)の分布は、極大点を有しているが、極小点を有していない。つまり、熱処理のみによる表面処理を実施したとしても、Co/(Fe+Co)の極小点と極大点とを有する表層部10を形成することは困難である。
本発明者らは、鋭意検討した結果、軟磁性合金に対して、酸素分圧を制御した雰囲気下でメカノケミカル法による表面改質処理を施すことで、図2B,図3,または図4に示すような濃度分布を有する表層部10を形成できることを見出した。以下、メカノケミカル法について説明する。
メカノケミカル法とは、メカノフュージョン装置を軟磁性合金の表面改質に応用する方法である。メカノフュージョン装置は、従来、各種粉末のコーティング処理に用いられてきた装置である。このメカノフュージョン装置を、従来のコーティング処理とは異なる方法で、軟磁性合金の表面相形成に用いることで、所望の表層部10を、組成種が異なる軟磁性合金に対しても画一的に形成することができる。
メカノケミカル法では、まず、メカノフュージョン装置の内部を所望の酸化雰囲気とする。例えば、装置内に充填する雰囲気ガスとして、ArガスとAirの混合ガスを用い、当該混合ガスにおけるArガスとAirの分圧を制御することで、装置内の酸素分圧を調整することができる。装置内の酸素分圧は、たとえば、100ppm~10000ppmとすることが好ましく、500ppm~3000ppmとすることがより好ましく、500ppm~1000ppmとすることがさらに好ましい。なお、混合ガスでは、Airの代わりに酸素ガスを用いてもよく、Arガスの代わりに窒素ガスやヘリウムがるなどの不活性ガスを用いてもよい。
次に、軟磁性合金粉末を、メカノフュージョン装置の回転ロータ内に導入し、回転ロータを回転させる。回転ロータの内部には、プレスヘッドが設置されており、回転ロータを回転させると、軟磁性合金粉末が、回転ロータの内壁面とプレスヘッドとの隙間で圧縮される。この際に、軟磁性合金粉末と回転ロータの内壁面との間に摩擦が生じ、軟磁性合金粉末が局所的に高温になる。この摩擦熱により、本体部2の表面に表層部10が形成され、当該表層部10は、図2B(=図2A),図3,または図4に示すような濃度分布を有する。特に、上記のメカノケミカル法では、酸化物相12を含む表層部10が形成され易い。
なお、メカノケミカル法では、酸素分圧を適切な範囲に制御すると共に、回転ロータの回転数、および、回転ロータの内壁面とプレスヘッドとの間隔(ギャップ)を適切に制御することが好ましい。たとえば、回転数が低いと発生する摩擦熱も小さくなり、表層部10が形成され難くなる。一方で、回転数が高すぎると粉末に加わる圧縮応力が大きくなり、表層部10は形成され易くなるが、本体部2や表層部10が破壊されやすく、磁気特性の低下を招くことがある。また、回転ロータの内壁面とプレスヘッドとのギャップが大きすぎると発生する摩擦熱が小さくなり、表層部10が形成され難くなる。一方で、回転ロータの内壁面とプレスヘッドとのギャップが狭いほど、粉末に加わる圧縮応力が大きくなり、表層部10が形成され易くなるが、本体部2や表層部10が破壊されやすくなる。
また、前処理として熱処理を実施してから、上述したメカノケミカル法による表面改質処理を実施してもよい。この場合、熱処理の温度は、軟磁性合金粉末の組成に応じて適宜決定すればよい。たとえば、アモルファス系合金の熱処理温度は、結晶化温度より低い300℃~500℃、ナノ結晶系合金の熱処理温度は、400℃~700℃、結晶系合金の熱処理温度は、600℃~1000℃の範囲内とすることができる。また、前処理における熱処理の雰囲気は、不活性ガスを用いた不活性雰囲気、もしくは、不活性ガスと水素の混合ガスを用いた還元雰囲気とすることが好ましい。メカノケミカル法の前処理として上記のような熱処理を実施することにより、図3に示すような濃度分布が形成され易くなる。
なお、表層部10の形成方法は、必ずしも上記のメカノケミカル法に限定されない。たとえば、CVD法を応用することで、所定の特徴を有する表層部10を形成できる場合があると考えられる。
また、メカノケミカル法による表面改質した後、メカノケミカル法により生じた応力を除去するために、表面構造が変化しない雰囲気において熱処理をおこなってもよい。
表層部10の上に絶縁被覆を形成する場合には、上記のメカノケミカル法による表面改質処理の後に、リン酸塩処理、メカニカルアロイング、シランカップリング処理、水熱合成などの被膜形成処理を施せばよい。形成する絶縁被膜の材質としては、リン酸塩、ケイ酸塩、ソーダ石灰ガラス、ホウケイ酸ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウ酸塩ガラス、硫酸塩ガラスなどが挙げられる。なお、リン酸塩としては、たとえば、リン酸マグネシウム、リン酸カルシウム、リン酸亜鉛、リン酸マンガン、リン酸化カドミウムなどが挙げられ、ケイ酸塩としては、ケイ酸ナトリウムなどが挙げられる。
以上の工程により、表層部10を有する軟磁性合金1が得られる。
(軟磁性合金1の用途)
本実施形態に係る軟磁性合金1の用途は、特に限定されず、各種磁性部品に適用することができる。特に、軟磁性合金1は、インダクタ、トランス、チョークコイルなどの磁性部品における圧粉磁心の材料として好適に用いることができる。以下、図6および図7に基づいて、軟磁性合金1を含む圧粉磁心および磁性部品の一例を説明する。
(圧粉磁心40)
軟磁性合金1を含む圧粉磁心40は、所定の形状を有するように形成されていればよく、その外形寸法や形状は特に限定されない。図6の概略断面図に示すように、圧粉磁心40は、磁性粉末3と、結合剤としての樹脂4とを含み、磁性粉末3の構成粒子(1a,1b)が樹脂4を介して結合することにより所定の形状に固定されている。
圧粉磁心40における磁性粉末3は、表層部10を有する主粒子1aを含んでおり、当該主粒子1aが、上述した本実施形態の軟磁性合金1である。磁性粉末3は主粒子1aのみで構成してあってもよいが、図6に示すように、表層部10を有する主粒子1aと、主粒子1aよりも平均粒径が小さい微粒子1bとを混ぜ合わせて構成してあることが好ましい。この場合、主粒子1aの平均粒径は5μm以上25μm以下とすることが好ましく、微粒子1bの平均粒径は、5μm未満とすることが好ましい。また、微粒子1bの材質は、特に限定されず、たとえば純鉄、Fe-Ni合金などとすることができる。なお、図6に示す微粒子1bは、絶縁被膜を有していないが、微粒子1bの表面に絶縁被膜を形成してもよい。
圧粉磁心40における主粒子1a(軟磁性合金1)と微粒子1bとの割合は、特に限定されない。たとえば、「主粒子1a:微粒子1b」で示す質量比は、10:90~90:10の範囲とすることができ、60:40~90:10の範囲内であることが好ましい。
樹脂4の材質は、特に限定されず、たとえば、エポキシ樹脂などの熱硬化性樹脂とすることができる。また、圧粉磁心40における樹脂4の含有率は、特に限定されず、たとえば、1.0質量%~2.5質量%であることが好ましい。
圧粉磁心40における磁性粉末3の充填率は、成形圧などの製造条件や樹脂4の含有率などにより制御でき、たとえば、70vol%~90vol%とすることができる。比透磁率を高める観点では、磁性粉末3の充填率は、80vol%以上とすることが好ましい。
図5Aまたは図5Bに示すような表層構造を有する従来の軟磁性合金を用いて、圧粉磁心を作製した場合、当該圧粉磁心では、磁性粉末の充填率を高くすると、比透磁率が高くなる一方で、耐電圧が低下してしまう。つまり、従来の圧粉磁心では、比透磁率と耐電圧との両立が困難であった。これに対して、本実施形態の圧粉磁心40では、磁性粉末3の主粒子1aが、図2B,図3,または図4に示すような表層部10を有することで、80vol%以上の高い充填率の場合でも、耐電圧およびm値を向上させることができる。すなわち、本実施形態の圧粉磁心40では、高い比透磁率を確保しつつ、耐電圧特性を向上させることができる。
なお、圧粉磁心40の製造方法は特に限定されない。たとえば、メカノケミカル法による表面改質処理を施した主粒子1aと、微粒子1bとを混合した後、得られた混合粉末と熱硬化性樹脂とを混錬して樹脂コンパウンドを得る。そして、樹脂コンパウンドを金型に充填し、加圧成形し、その後、熱硬化性樹脂を硬化させることで、図6に示すような圧粉磁心40が得られる。
(磁性部品100)
図7に示す磁性部品100では、素体が、図6に示すような圧粉磁心40で構成してある。素体である圧粉磁心40の内部には、コイル50が埋設してあり、コイル50の端部50a,50bは、それぞれ、圧粉磁心40の端面に引き出されている。また、圧粉磁心40の端面には、一対の外部電極60,80が形成してあり、一対の外部電極60,80は、それぞれ、コイル50の端部50a,50bと電気的に接続してある。
本実施形態の磁性部品100は、素体を構成している圧粉磁心40の耐電圧特性が良好であるため、電源回路に用いられるパワーインダクタなどに好適である。なお、軟磁性合金1を含む磁性部品は、図7に示すような様態に限定されず、所定形状の圧粉磁心の表面にワイヤが所定の巻き数だけ巻回されてなる磁性部品であってもよい。
以上、本発明の実施形態について説明してきたが、本発明は上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。
以下、具体的な実施例に基づいて、本発明をさらに詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。なお、下記に示す表において、※を付した試料番号が比較例である。
(実験1)
実験1では、表1に示す6種類の軟磁性合金粉末(粉末A~粉末F)を作製した。粉末A~粉末Fは、いずれも、以下に示す手順で作製した。
まず、Fe、Co、および、その他副成分などの純金属原料を準備し、溶解後に所望の組成となるように当該純金属原料を秤量した。そして、秤量した純金属原料を、真空引きしたチャンバー内で、高周波加熱により溶解し、母合金を得た。次に、作製した母合金を1500℃で加熱して再溶融させた後、高圧水アトマイズ法により、所定の組成を有する粉末を得た。アトマイズ後、得られた粉末を、所定の方法で分級し、粉末の粒度を調整した。なお、上記の方法で作製した粉末A~粉末Fの平均粒径(D50)は、いずれも、15μm~25μmの範囲内であった。
Figure 2023062497000003
次に、各粉末A~粉末Fを、それぞれ複数の試料に分割し、各試料に対して、表2に示すいずれかの条件で表面処理を施した。
条件1~5では、酸素分圧を表2に示す範囲に制御しつつ、粉末試料に対して熱処理を施した。当該熱処理の温度は、粉末A~粉末Fの組成に応じて最適な範囲に設定した。
条件6~10では、粉末試料に対してメカノケミカル法による表面改質処理を施した。この際、メカノフュージョン装置としてホソカワミクロン株式会社製:AMS-Labを用い、回転ロータ内の酸素分圧を表2に示す範囲内に制御した。
Figure 2023062497000004
次に、条件1~10のいずれかの表面処理を施した粉末試料を用いて、以下に示す手順で圧粉磁心を作製した。実験1では、条件1~10のいずれかの表面処理を施した粉末試料を、主粉として、当該主粉に対して微粉を混ぜ合わせることで、圧粉磁心用の磁性粉末を得た。実験1の全ての試料では、平均粒径(D50)が1μmのFe系軟磁性合金を微粉として用い、主粉と微粉の質量比は、主粉:微粉=80:20とした。
そして、上記の磁性粉末とエポキシ樹脂とを、混錬することで、樹脂コンパウンドを得た。磁性粉末とエポキシ樹脂との配合比は、実験1の全ての試料において、圧粉磁心中の樹脂含有率が2.5wt%となるように制御した。上記の樹脂コンパウンドを、金型に充填し加圧することで、トロイダル形状の成形体を得た。この際、成形圧は、1~10ton/cm2の範囲内とし、実験1の全ての試料において、磁性粉末の充填率が少なくとも80vol%以上となるように成形圧を制御した。そして、上記の成形体を、180℃で60分間、加熱処理することで、成形体中のエポキシ樹脂を硬化させ、トロイダル形状(外形11mm、内径6.5mm、厚み2.5mm)の圧粉磁心を得た。
実験1の各試料では、作製した粉末試料(主粉)および圧粉磁心に対して、以下に示す評価を実施した。
(主粉の表層構造の解析)
所定の表面処理を施した軟磁性合金粉末(主粉である粉末A~粉末F)の表面構造を、TEM-EDXを用いたライン分析により解析した。当該ライン分析では、軟磁性合金(主粒子)の表面近傍におけるCo/(Fe+Co)の分布を取得し、当該分布中に極小点Lminおよび極大点Lmaxが存在するか否かを調査した。
(圧粉磁心における磁性粉末の充填率)
作製した圧粉磁心の寸法および質量を計測し、当該寸法および質量から圧粉磁心の密度ρを算出した。また、圧粉磁心が磁性粉末のみで構成してあると仮定して、磁性粉末の比重から圧粉磁心の理論密度を算出した。そして、上記の密度ρを、理論密度で除すことで、圧粉磁心における磁性粉末の充填率を算出した。
(圧粉磁心の比透磁率)
トロイダル形状の圧粉磁心に対して、ポリウレタン銅線(UEW線)を巻回した。そして、周波数100kHzにおける圧粉磁心のインダクタンスを、LCRメータ(アジレント・テクノロジー社製4284A)を用いて測定し、当該インダクタンスに基づいて圧粉磁心の比透磁率(単位なし)を算出した。
(圧粉磁心の耐電圧特性)
耐電圧特性の測定では、円柱状の試験用コアを、上記のトロイダルコアと同様の方法で作製し、当該試験用コアの両端面にそれぞれIn-Ga電極を形成した。次に、耐電圧試験機(多摩電測製THK-2011ADMPT)を用いて、試験用コアに対して電圧を印加し、1mAの電流が流れた際の電圧値を測定した。そして、測定した電圧値を試験用コアの長さ(端面間の距離)で除すことにより、試験用コアの耐電圧を測定した。
上記の耐電圧の測定は、各試料につき20個の試験用コアに対して実施し、20個の試験用コアの平均値を、各試料における耐電圧とした。そして、各試料の耐電圧は、基準試料の耐電圧を用いて相対的に評価した。具体的に、表2に示す表面処理を実施していない粉末を用いて圧粉磁心を作成し、当該圧粉磁心を基準試料とした。そして、基準試料の耐電圧に対して、1.3倍未満の耐電圧を示す試料を「不合格(F)」、1.3倍以上1.5未満の耐電圧を示す試料を「良好(G)」、1.5倍以上の耐電圧を示す試料を「特に良好(VG)」と判断した。
また、20個の試験用コアの耐電圧データを母集団として、ワイブルプロットを得て、当該ワイブルプロットから、各試料のm値(単位なし)を算出した。m値は、耐電圧のバラツキの程度を示す指標であり、3.0以上を良好、5.5以上を特に良好と判断した。
実験1における各試料の評価結果を、表3~5に示す。表3はアモルファス系の主粉(粉末Aまたは粉末B)を用いた試料の評価結果であり、表4はナノ結晶系の主粉(粉末Cまたは粉末D)を用いた試料の評価結果であり、表5は結晶質系の主粉(粉末Eまたは粉末F)を用いた試料の評価結果である。各表における表面処理手法の欄の「-」は、表2に示す表面処理を実施していないことを意味する。
Figure 2023062497000005
Figure 2023062497000006
Figure 2023062497000007
試料A-2~A-3,C-2~C-3,E-2~E-3では、Coを含まない主粉(粉末A、粉末C、または粉末E)に対して、熱処理、または、メカノケミカル処理を実施した。これらの試料では、耐電圧特性が基準試料と同程度であり、耐電圧特性が向上しなかった。
また、試料B-2~B-6,D-2~D-6,F-2~F-6では、Coを含む主粉(粉末B、粉末D、または粉末F)に対して熱処理を実施した。当該試料では、軟磁性合金(主粒子)の表層が、極大点Lmaxを有していたものの、極小点Lminを有していなかった。このような極大点Lmaxのみを有する試料の耐電圧特性は、基準試料と同程度であり、耐電圧特性が向上しなかった。
一方、試料B-8~B-11,D-8~D-11,F-8~F-11では、Coを含む主粉(粉末B、粉末D、または粉末F)に対して、100ppm~10000ppmの酸素分圧でメカノケミカル処理を実施した。当該試料では、軟磁性合金(主粒子)の表層部10が、1以上の極大点Lmaxおよび極小点Lminを有していた。表3~表5に示すように、所定の表層部10を有する上記試料では、基準試料と同程度の高い比透磁率を確保でき、なおかつ、高い耐電圧および高いm値が得られた。この結果から、軟磁性合金の表層部10が、1以上の極大点Lmaxおよび極小点Lminを有することで、高い比透磁率を維持しつつ、耐電圧およびm値を向上できることがわかった。
なお、試料B-8~B-11,D-8~D-11,F-8~F-11では、軟磁性合金(主粒子)の表層部10が、Siを含む酸化物相を有していた。そして、酸化物相には、Si濃度の極大点LSi maxが存在しており、Co/(Fe+Co)の極大点Lmaxが、Siの極大点LSi maxよりも表面側に存在していた。
(実験2)
実験2では、実験1とは異なる微粉と、主粉(粉末B、粉末D、または粉末F)と、を用いて圧粉磁心を作製した。具体的に、実験2では、微粉として、平均粒径(D50)が1μmのFeNi系軟磁性合金粉末を用いた。実験2において、微粉の種類以外の実験条件は、実験1と同様であり、実験1と同様の評価を実施した。実験2の評価結果を表6~8に示す。なお、表6~表8には、実験2の結果と共に、Fe系の微粉を用いた実験1の評価結果も併記している。
Figure 2023062497000008
Figure 2023062497000009
Figure 2023062497000010
表6~表8の結果から、微粉の種類を変えることで、比透磁率が変化する場合があることがわかった。1以上の極大点Lmaxおよび極小点Lminを有する試料では、微粉種の変更によって比透磁率が変動した場合であっても、耐電圧特性が低下することはなく、高い耐電圧と高いm値とが得られた。
(実験3)
実験3では、圧粉磁心における樹脂含有率を変更した。具体的に、樹脂含有率が、2.5vol%、2.0vol%、1.5vol%、または、1.0vol%となるように、エポキシ樹脂と、所定の主粉(粉末B、粉末D、または粉末F)を含む磁性粉末とを混錬した。実験3において、樹脂含有率以外の実験条件は、実験1と同様であり、実験1と同様の評価を実施した。実験3の評価結果を、表9~表11に示す。
Figure 2023062497000011
Figure 2023062497000012
Figure 2023062497000013
表9~表11に示すように、所定のメカノケミカル処理を実施していない試料(表層部10を形成していない試料)では、樹脂含有率を低減することで、比透磁率が向上するものの、耐電圧およびm値が減少してしまう結果となった。これに対して、所定のメカノケミカル処理を実施した試料(表層部10を形成した試料)では、樹脂含有率を低減しても、高い耐電圧および高いm値が得られた。つまり、1以上の極大点Lmaxおよび極小点Lminを有する試料では、樹脂含有率を低減しても、高い比透磁率と、高い耐電圧特性とを両立して実現できることがわかった。
(実験4)
実験4では、リン酸塩系化合物からなる絶縁被膜を、リン酸塩処理により、主粉(粉末B、粉末D、または粉末F)の粒子表面に形成した。具体的に、メカノケミカル処理を実施することなく上記の絶縁被膜のみを形成した試料(B4-1,D4-1,F4-1)と、メカノケミカル処理を実施したうえで上記の絶縁被膜を形成した試料(B4-2,D4-2,F4-2)と、を作製した。なお、実験4の全ての試料において、絶縁被膜の平均厚みは、1nm~50nmの範囲内とし、樹脂含有率は、1.0vol%とした。実験4における上記以外の実験条件は、実験1と同様であり、実験1と同様の評価を実施した。実験4の評価結果を表12に示す。
Figure 2023062497000014
表15の結果から、表層部10の外面にさらに絶縁被膜を形成することで、耐電圧特性がさらに向上することがわかった。
(実験5)
実験5では、前処理として熱処理を実施してから、メカノケミカル処理を実施した。具体的に、熱処理の条件は、熱処理温度:300℃、雰囲気:Arガスによる不活性雰囲気として、当該条件で粉末Bに対して熱処理を施した。そして、熱処理後に、表2の条件8でメカノケミカル処理を実施した。実験5における上記以外の実験条件は、実験1と同様であり、実験1と同様の評価を実施した。実験5の評価結果を表13に示す。なお、表13には、実験5の結果と共に、前処理を実施していない実験1の評価結果(試料B-1,B-4,B-9)も併記している。
Figure 2023062497000015
前処理を実施していない試料B-9では、軟磁性合金(主粒子)の表層部10が、2つの極大点Lmaxと、極小点Lminとを有しており、極小点Lminが、2つの極大点Lmaxの間に存在していた(図2Bに相当)。一方、前処理として熱処理を実施した試料B5-1では、軟磁性合金(主粒子)の表層部10が、1つの極大点Lmaxと、極小点Lminとを有していた。そして、極小点Lminが、極大点Lmaxよりも合金中心側に位置していた(図3に相当)。試料B-9および試料B5-1では、いずれも、高い耐電圧と高いm値が得られた。この結果から、極大点Lmaxの数は、単数でも複数でもよく、図2Bや図3に示すような表層構造を有することで、優れた耐電圧特性が得られることがわかった。
1 … 軟磁性合金
2 … 本体部
10 … 表層部
10a … 外面
12 … 酸化物相
21 … 界面
3 … 磁性粉末
1a … 主粒子
1b … 微粉
4 … 樹脂
40 … 圧粉磁心
50 … コイル
50a,50b … 端部
60,80 … 外部電極
100 … 磁性部品
実験3では、圧粉磁心における樹脂含有率を変更した。具体的に、樹脂含有率が、2.5wt%、2.0wt%、1.5wt%、または、1.0wt%となるように、エポキシ樹脂と、所定の主粉(粉末B、粉末D、または粉末F)を含む磁性粉末とを混錬した。実験3において、樹脂含有率以外の実験条件は、実験1と同様であり、実験1と同様の評価を実施した。実験3の評価結果を、表9~表11に示す。
Figure 2023062497000025
Figure 2023062497000026
Figure 2023062497000027
(実験4)
実験4では、リン酸塩系化合物からなる絶縁被膜を、リン酸塩処理により、主粉(粉末B、粉末D、または粉末F)の粒子表面に形成した。具体的に、メカノケミカル処理を実施することなく上記の絶縁被膜のみを形成した試料(B4-1,D4-1,F4-1)と、メカノケミカル処理を実施したうえで上記の絶縁被膜を形成した試料(B4-2,D4-2,F4-2)と、を作製した。なお、実験4の全ての試料において、絶縁被膜の平均厚みは、1nm~50nmの範囲内とし、樹脂含有率は、1.0wt%とした。実験4における上記以外の実験条件は、実験1と同様であり、実験1と同様の評価を実施した。実験4の評価結果を表12に示す。
Figure 2023062497000028

Claims (8)

  1. FeおよびCoを含む軟磁性の合金組成を有する本体部と、前記本体部の表面側に位置する表層部と、を有し、
    前記表層部において、Co濃度とFe濃度との和に対するCo濃度の比を、Co/(Fe+Co)として、
    前記表層部の厚み方向におけるCo/(Fe+Co)の分布が、極小点と、少なくとも1以上の極大点と、を有する軟磁性合金。
  2. 少なくとも1以上の前記極大点のうち前記本体部に最も近い極大点を、第1極大点とし、前記第1極大点の次に前記本体部に近い極大点を、第2極大点として、
    前記極小点が、前記第1極大点よりも表面側に位置し、
    前記第2極大点が、前記極小点よりも表面側に位置する請求項1に記載の軟磁性合金。
  3. 前記極小値、および、少なくとも1以上の前記極大点のうち、前記極小点が最も合金中心側に位置する請求項1に記載の軟磁性合金。
  4. 前記表層部が、酸化物相を含む請求項1~3のいずれかに記載の軟磁性合金。
  5. 前記表層部が、Si,Cr,およびAlから選択される1以上の所定元素を含む酸化物相を有し、
    前記極小点が、前記酸化物相に存在する請求項1~3のいずれかに記載の軟磁性合金。
  6. 前記酸化物相は、前記所定元素の濃度の極大点LM maxを有しており、
    Co/(Fe+Co)に関する前記極大点の1つが、前記極大点LM maxよりも表面側に存在する請求項5に記載の軟磁性合金。
  7. 請求項1~6のいずれかに記載の軟磁性合金を含む圧粉磁心。
  8. 請求項1~6のいずれかに記載の軟磁性合金を含む磁性部品。
JP2021172506A 2021-10-21 2021-10-21 軟磁性合金、圧粉磁心、および磁性部品 Pending JP2023062497A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021172506A JP2023062497A (ja) 2021-10-21 2021-10-21 軟磁性合金、圧粉磁心、および磁性部品
US17/967,687 US20230125339A1 (en) 2021-10-21 2022-10-17 Soft magnetic alloy, dust core, and magnetic device
CN202211267648.6A CN116013632A (zh) 2021-10-21 2022-10-17 软磁性合金、压粉磁芯及磁性部件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021172506A JP2023062497A (ja) 2021-10-21 2021-10-21 軟磁性合金、圧粉磁心、および磁性部品

Publications (1)

Publication Number Publication Date
JP2023062497A true JP2023062497A (ja) 2023-05-08

Family

ID=86023601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021172506A Pending JP2023062497A (ja) 2021-10-21 2021-10-21 軟磁性合金、圧粉磁心、および磁性部品

Country Status (3)

Country Link
US (1) US20230125339A1 (ja)
JP (1) JP2023062497A (ja)
CN (1) CN116013632A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023062495A (ja) * 2021-10-21 2023-05-08 Tdk株式会社 軟磁性合金粉末、圧粉磁心、および磁性部品

Also Published As

Publication number Publication date
CN116013632A (zh) 2023-04-25
US20230125339A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
JP5368686B2 (ja) 軟磁性材料、圧粉磁心、軟磁性材料の製造方法、および圧粉磁心の製造方法
US10008324B2 (en) Method for manufacturing powder magnetic core, powder magnetic core, and coil component
WO2016204008A1 (ja) 磁性体粉末とその製造方法、磁心コアとその製造方法、及びコイル部品
EP3537461A1 (en) Soft magnetic alloy powder, dust core, and magnetic component
US8236087B2 (en) Powder core and iron-base powder for powder core
JP5050745B2 (ja) リアクトル用コアとその製造方法およびリアクトル
US20130277601A1 (en) Composite, soft-magnetic powder and its production method, and dust core formed thereby
EP3537458A1 (en) Soft magnetic metal powder, dust core, and magnetic component
JP2023062497A (ja) 軟磁性合金、圧粉磁心、および磁性部品
CN110246648B (zh) 软磁性金属粉末、压粉磁芯及磁性部件
JP2012238866A (ja) リアクトル用コアとその製造方法およびリアクトル
JP2023062495A (ja) 軟磁性合金粉末、圧粉磁心、および磁性部品
US12073989B2 (en) Method for producing powder magnetic core and powder magnetic core
JP7268522B2 (ja) 軟磁性粉末、磁心および電子部品
JP2022157041A (ja) 軟磁性合金および磁性部品。
JP2022157026A (ja) 軟磁性合金および磁性部品。
JP2022157035A (ja) 軟磁性合金および磁性部品。
US20230178275A1 (en) Soft magnetic metal powder, dust core, magnetic component, and electronic component
JP7447640B2 (ja) 圧粉磁心の製造方法および圧粉磁心
JP7268521B2 (ja) 軟磁性粉末、磁心および電子部品
US20240047109A1 (en) Magnetic core and magnetic component
US20240177902A1 (en) Magnetic core and magnetic component
WO2022209497A1 (ja) 軟磁性粉末および磁性体コア
JP2022150492A (ja) 軟磁性粉末、磁性体コアおよび磁性部品
JP2024001709A (ja) 磁気コアおよび磁性部品

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220801