JP2023057218A - マグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置 - Google Patents

マグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置 Download PDF

Info

Publication number
JP2023057218A
JP2023057218A JP2021166593A JP2021166593A JP2023057218A JP 2023057218 A JP2023057218 A JP 2023057218A JP 2021166593 A JP2021166593 A JP 2021166593A JP 2021166593 A JP2021166593 A JP 2021166593A JP 2023057218 A JP2023057218 A JP 2023057218A
Authority
JP
Japan
Prior art keywords
magnet
unit
magnetron sputtering
sputtering apparatus
magnet unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021166593A
Other languages
English (en)
Inventor
僚也 北沢
Ryoya KITAZAWA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2021166593A priority Critical patent/JP2023057218A/ja
Publication of JP2023057218A publication Critical patent/JP2023057218A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

【課題】スパッタリングの進行に伴うターゲットの侵食領域をより均等にできてターゲットの利用効率を高めることができるマグネトロンスパッタリング装置用のカソードユニットCU1の提供。【解決手段】真空チャンバ1内を臨む姿勢で配置されるターゲット41~44のスパッタ面41と背向する下方側に設けられる磁石ユニット51~55を備え、磁石ユニットが、線状に配置される中央磁石52と中央磁石の周囲を囲う周辺磁石53とをその上側の極性をかえて有し、磁場の垂直成分がゼロとなる位置を通る線が中央磁石の長手方向に沿ってのびてレーストラック状に閉じる漏洩磁場Mfをスパッタ面の上方空間に作用させる。スパッタ面の上方空間にレーストラック状のプラズマPmを発生させたときに中央磁石及び周辺磁石の上側の磁性に応じてレーストラックに沿って時計回りまたは反時計回りの周回軌道で運動するプラズマ中の電子の向きを反転自在に構成した。【選択図】図1

Description

本発明は、マグネトロンスパッタリング方式で被処理基板上に所定の薄膜を形成するためのマグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置に関する。
マグネトロンスパッタリング装置はカソードユニットを有し、カソードユニットは、一般に、被処理基板が存する真空チャンバ内を臨む姿勢で設置されるターゲットのスパッタ面と背向する下方側に磁石ユニットを備える。そして、真空雰囲気の真空チャンバ内にアルゴンガスなどの希ガスを導入し、ターゲットに負の電位を持つ直流電圧や交流電圧を印加してターゲットのスパッタ面をスパッタリングする際、スパッタ面の上方空間にて電離した電子及びスパッタリングによって生じた二次電子を捕捉して電子密度を高め、電子と希ガスのガス分子との衝突確率を高めることでプラズマ密度を高めている。
ガラス基板などの矩形の輪郭を持つ被処理基板に成膜するような場合、通常は、ターゲットとして被処理基板と同等の輪郭を持つものが利用される。このときの磁石ユニットとしては、ターゲットに平行に設けられる矩形の支持板(ヨーク)の一方の面に線状に配置される中央磁石と、この中央磁石両側に等間隔で且つ平行に延びる直線部及び両直線部の両自由端を夫々橋し渡す橋渡し部を有して中央磁石の周囲を囲う周辺磁石とを上側(ターゲット側)の極性をかえて備えるものが一般に利用される(特許文献1参照)。これにより、中央磁石の長手方向をX軸方向、X軸方向に直交するY軸方向とした場合、磁場の垂直成分がゼロとなる位置を通る線がX軸方向にのびてレーストラック状に閉じるようにスパッタ面の上方空間に漏洩磁場が作用し、スパッタ面と被処理基板との間の空間(スパッタ面の上方空間)にレーストラック状のプラズマが発生する。
プラズマ中の電子(二次電子を含む)は、磁石ユニットのX軸方向両端部で電磁場によって曲げられて向きを変えながら、中央磁石及び周辺磁石の上側の磁性に応じて、レーストラックに沿って時計回りまたは反時計回りの周回軌道で運動する。このとき、プラズマ中の電子が電磁場によって曲げられて向きを変える際に惰性的な運動が残ることが知られている。このような場合、惰性的な運動が残る、対角線上に位置するターゲットの角部領域では、プラズマが(Y軸方向に)拡がり易くなって、惰性的な運動が残らない他の角部領域に比べてより広範囲に侵食され易くなるという問題がある。このため、プラズマ中の電子をレーストラックに沿って時計回りまたは反時計回りの一定の周回軌道で運動させていると、ターゲットのスパッタ面が片減りしてターゲットの利用効率が悪くなるという問題がある。
特開2008-127601号公報
本発明は、以上の点に鑑み、スパッタリングの進行に伴うターゲットの侵食領域をより均等にできてターゲットの利用効率を高めることができるマグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置を提供することをその課題とするものである。
上記課題を解決するために、本発明は、真空チャンバ内を臨む姿勢で配置されるターゲットのスパッタ面と背向する下方側に設けられる磁石ユニットを備え、磁石ユニットが、線状に配置される中央磁石とこの中央磁石の周囲を囲う周辺磁石とをその上側の極性をかえて有し、磁場の垂直成分がゼロとなる位置を通る線が中央磁石の長手方向に沿ってのびてレーストラック状に閉じる漏洩磁場をスパッタ面の上方空間に作用させるマグネトロンスパッタリング装置用のカソードユニットにおいて、スパッタ面の上方空間にレーストラック状のプラズマを発生させたときに中央磁石及び周辺磁石の上側の磁性に応じてレーストラックに沿って時計回りまたは反時計回りの周回軌道で運動するプラズマ中の電子の向きを反転自在に構成したことを特徴とする。
本発明によれば、プラズマ中の電子の向きを反転自在として、電子の惰性的な運動が残る方向をX軸回りに反転できる構成を採用したため、例えば、当初は、時計回りの周回軌道でプラズマ中の電子を運動させることで、電子の惰性的な運動が残る、対角線上に位置するターゲットの角部領域にて広範囲に侵食されてくると、反時計回りの周回軌道で運動するようにプラズマ中の電子の向きを反転させる。これにより、他の対角線上に位置するターゲットの角部領域を広範囲に侵食することができ、その結果、上記従来例のものと比較して、ターゲットの片減りが抑制されてスパッタリングの進行に伴うターゲットの侵食領域をより均等にすることができる。このとき、磁石ユニットをY軸方向に所定のストローク長で往復動させれば、より効果的である。なお、プラズマ中の電子の向きの反転は、例えば、一枚または規定枚数の被処理基板への成膜が終了する毎に、または、ターゲットへの積算電力が所定値に達したときなど、適宜実施することができる。
本発明において、前記スパッタ面の上方空間に前記漏洩磁場を作用させているものを第1の磁石ユニット、第1の磁石ユニットの中央磁石及び周辺磁石からそれらの上側の磁性をかえたものを第2の磁石ユニットとし、第1の磁石ユニットと第2の磁石ユニットとの間でスパッタ面の上方空間に作用する漏洩磁場をスワップするスワップ手段を設けて前記プラズマ中の電子の向きを反転自在とした構成を採用すれば、レーストラックに沿って時計回りまたは反時計回りの周回軌道で運動するプラズマ中の電子の向きを定期的に反転する構成が実現できる。この場合、前記第1の磁石ユニットと前記第2の磁石ユニットとを同一平面内に並設し、同一平面内の一方向に前記第1の磁石ユニットと前記第2の磁石ユニットとを一体に移動させる駆動ユニットを設けて前記スワップ手段を構成するか、または、前記第1の磁石ユニットと前記第2の磁石ユニットとを支持板の表裏両面に夫々設け、支持体を回転させる回転ユニットを設けて前記スワップ手段を構成すればよい。他方で、前記磁石ユニットの中央磁石と周辺磁石とを電磁石で構成し、各電磁石に流す電流の向きを変えることでプラズマ中の電子の向きを反転自在とする構成を採用することもできる。
上記課題を解決するために、本発明のマグネトロンスパッタリング装置は、上記マグネトロンスパッタリング装置用のカソードユニットと、カソードユニットのターゲットがその内部を臨む姿勢で設置されると共にスパッタ面の前方空間に被処理基板が対向配置される真空チャンバと、ターゲットに電力投入するスパッタ電源と、真空雰囲気中の真空チャンバ内へのスパッタガスの導入を可能とするガス導入手段とを備え、ターゲットへの積算電力に応じてプラズマ中の電子の向きを反転させるように構成したことを特徴とする。
第1の実施形態のカソードユニットを備えるマグネトロンスパッタリング装置の模式断面図。 図1に示すカソードユニットの要部を示す平面図。 図2に示すカソードユニットの一部の拡大平面図。 第2の実施形態のカソードユニットを備えるマグネトロンスパッタリング装置の模式断面図。 (a)~(d)は、プラズマ中の電子の向きを反転させる手順を説明する図。
以下、図面を参照して、被処理基板をフラットパネルディスプレイの製造に利用される大面積のガラス基板(以下、「基板Sw」という)とし、一方向に矩形の輪郭を持つ複数枚のターゲットを等間隔で並設した所謂マルチターゲット式のマグネトロンスパッタリング装置を例に本発明のマグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置の実施形態を説明する。以下において、上、下といった方向を示す用語は、マグネトロンスパッタリング装置SMの設置姿勢である図1を基準にし、ターゲットのスパッタ面から基板Swに向かう上下方向をZ軸方向、後述の中央磁石の長手方向をX軸方向、X軸方向に直交するY軸方向とする。
図1及び図2を参照して、本実施形態のマグネトロンスパッタリング装置SMは、成膜室11を画成する真空チャンバ1を備える。真空チャンバ1の壁面には排気口12が開設され、排気口12には、ロータリーポンプ、ドライポンプ、ターボ分子ポンプなどで構成される真空排気ユニットPuからの排気管13が接続され、成膜室11内を真空排気して所定圧力(例えば、1×10-5Pa)に保持することができる。真空チャンバ1の壁面にはまた、ガス供給口21a,21bが開設され、ガス供給口21a,21bには、マスフローコントローラ22a,22bが介設されたガス管23a,23bが夫々接続され、成膜室11内に流量制御されたアルゴンガス等の希ガスと、必要に応じて酸素ガスなどの反応ガスとを導入することができ、これらが本実施形態のガス導入手段を構成する。
真空チャンバ1内の上部空間には、基板搬送手段3が設けられている。基板搬送手段3は、基板Swをその下面(成膜面)を開放して保持するキャリア31と、キャリア31をY軸方向に搬送自在な図外の駆動源とを備える。なお、基板搬送手段3としては公知のものを利用できるため、ここでは詳細な説明を省略する。そして、成膜室11内の所定位置に搬送されたキャリア31で保持された基板Swに対向させて、真空チャンバ1内の下部には、第1の実施形態のカソードユニットCUが設けられている。カソードユニットCUは、未使用時の上面(スパッタ面41)がXY平面内に位置するようにY軸方向に等間隔で並設される4枚のターゲット4~4と、ターゲット4~4の設置枚数より少なくとも1個多い数(本実施形態では5個)でターゲット4~4の(真空チャンバ外)下方空間に夫々配置される磁石ユニット5~5とを備える。基板Swの下面に成膜しようとする膜の組成に応じて製作される各ターゲット4~4は、同一の略直方体形状を有し、基板Swに正対させたときに、並設された各ターゲット4~4の輪郭が基板Swより一回り大きくなるように各ターゲット4~4の寸法(X軸方向の長さとY軸方向の幅)が夫々設定されている。各ターゲット4~4の下面には、銅製のバッキングプレート42がインジウムなどのボンディング材(図示せず)を介して夫々接合され、電気的に絶縁された状態でかつ冷却可能な状態で真空チャンバ1内に設置される。互いに隣接するターゲット4,4及び4,4を夫々対とし、各対のターゲット4~4には、スパッタ電源としての交流電源6からの出力61が夫々接続され、交流電源6により夫々対をなすターゲット4,4及び4,4の間に所定周波数(例えば、1kHz~100kHz)の交流電力を投入することができる。なお、ターゲット種によっては、例えば、負の電位を持つ直流電力をターゲット4~4毎に投入することもできる。
各磁石ユニット5~55は、同一の形態を有し、バッキングプレート42に平行に設けられ、磁性材料製の平板から構成される支持板51(ヨーク)を備える。支持板51の上面中央には、Y軸方向に線状に配置される中央磁石52と、この中央磁石52両側に等間隔で且つ平行に延びる直線部53a,53b及び両直線部53a,53bの両自由端を夫々橋し渡す橋渡し部53cを有して中央磁石52の周囲を囲う周辺磁石53とをターゲット側の極性をかえて(例えば、中央磁石52がS極、周辺磁石53がN極)備える。中央磁石52及び周辺磁石53は、ネオジム磁石等で一体に製作されたもの、または、ネオジム磁石等での磁石片を列設して構成され、中央磁石52と周辺磁石53とは同磁化に換算したときの体積が同程度になるように設計される。これにより、各ターゲット4~4のスパッタ面41と基板Swの下面の間の成膜室11内の空間に、磁場の垂直成分がゼロとなる位置を通る線がY軸方向にのびてレーストラック状に閉じる漏洩磁場Mfを夫々作用させる。また、各磁石ユニット5~5の支持板51の下面にはナット部材54が夫々突設され、各ナット部材54には、モータMtに連結された送りねじFsが螺合し、スパッタリング時に、各磁石ユニット5~5を所定ストローク長でY軸方向に往復動することができ、これらモータMt及び送りねじFsが本実施形態の駆動ユニットを構成する。なお、各磁石ユニット5~5を所定ストローク長でX軸方向にも往復動できるようにしてもよい。
上記マグネトロンスパッタリング装置SMを用いて基板Swの下面に成膜する場合には、基板搬送手段3により各ターゲット4~4に正対する成膜室11内の所定位置に基板Swを搬送し、成膜室11を所定圧力まで真空排気する。成膜室11が所定圧力に達すると、マスフローコントローラ22a,22bで流量制御しながら希ガス(必要に応じて反応ガス)を導入し、交流電源6により夫々対をなす各ターゲット4~4の間に交流電力を投入する。すると、各ターゲット4~4のスパッタ面41上方にレーストラック状のプラズマPmが夫々発生する。そして、プラズマPmで電離した希ガスのイオンによりスパッタ面41がスパッタリングされ、所定の余弦則に従いスパッタ面41から飛散するスパッタ粒子が基板Swの下面に付着、堆積して成膜される。
ここで、図3に示すように、プラズマPm中の電子(二次電子)は、各磁石ユニット5~5のX軸方向両端部で電磁場によって曲げられて向きを変えながら、中央磁石52及び周辺磁石53の上側の磁性に応じて、レーストラックに沿って時計回りまたは反時計回りの周回軌道で運動するが、プラズマPm中の電子が電磁場によって曲げられて向きを変える際に惰性的な運動が残る(なお、図3中、一点鎖線は電子の軌道周回を模式的に示す)。このような場合、惰性的な運動が残る、対角線上に位置するターゲット4~4の角部領域(図3中、左上の領域)では、プラズマPmがY軸方向に拡がり易くなることで、惰性的な運動が残らない他の角部領域に比べてより広範囲に侵食され易くなるという問題がある。このため、ターゲット4~4のスパッタ面41が片減りしてターゲット4~4の利用効率が悪くならないようにする必要がある。
本実施形態では、上述したように、磁石ユニット5~5の設置数をターゲット4~4の設置枚数より1個多くすると共に、磁石ユニット5~5の中央磁石52と周辺磁石53とのターゲット4~4側の極性が、互いに隣接する磁石ユニット5~5で互いに異なるように構成した(図1、2参照)。そして、スパッタリングによる基板Swへの成膜時には、駆動ユニットMt,Fsにより各ターゲット4~4に夫々対応させて磁石ユニット5~5をその下方に位置させると共に、何れか1個の磁石ユニット5は、Y軸方向一端(図2中、左端)に位置するターゲット4の一側端からその外方に位置させる。この場合、1個の磁石ユニット5からの漏洩磁場Mfがターゲット4のスパッタ面41に作用ない状態で各磁石ユニット5~5を所定ストローク長でX軸方向にも往復動してもよい。そして、例えば、交流電源6で計測したターゲット4~4への積算電力が所定値に達すると、駆動手段Mt,Fsにより各ターゲット4~4に夫々対応させて磁石ユニット5~5をその下方に位置させると共に、何れか1個の磁石ユニット5は、Y軸方向他端(図2中、右端)に位置するターゲット4の他側端からその外方に位置させる。これにより、各ターゲット4~4の上方空間に夫々発生したプラズマPm中の電子は、例えば、時計回りの周回軌道で運動する状態から、反時計回りの周回軌道で運動する状態にその向きが反転される。
このように本実施形態では、Y軸方向他側に位置する磁石ユニット5が第1の磁石ユニット、Y軸方向一側に位置する磁石ユニット5が第2の磁石ユニットとなり、駆動ユニットMt,Fsが第1の磁石ユニット5と第2の磁石ユニット5との間でスパッタ面41の上方空間に作用する漏洩磁場Mfをスワップするスワップ手段を構成し、プラズマ中の電子の向きが反転自在になる。これにより、当初は、時計回りの周回軌道でプラズマ中の電子を運動させることで、電子の惰性的な運動が残る、対角線上に位置する各ターゲット4~4の角部領域(図3でいうところの左上の領域)にて広範囲に侵食されてくると、反時計回りの周回軌道で運動するようにプラズマ中の電子の向きを反転させ、他の対角線上に位置するターゲット4~4の角部領域(図3でいうところの右上の領域)を広範囲に侵食することができる。結果として、上記従来例のものと比較して各ターゲット4~4の片減りが抑制されてスパッタリングの進行に伴う各ターゲット4~4の侵食領域をより均等にすることができる。なお、プラズマPm中の電子の向きの反転は、例えば、一枚または規定枚数の基板Swへの成膜が終了する毎に、または、各ターゲット4~4への積算電力が所定値に達したときなど、適宜実施することができる。
以上、本発明の実施形態について説明したが、本発明の技術思想の範囲を逸脱しない限り、種々の変形が可能である。上記実施形態では、Y軸方向他側に位置する磁石ユニット5を第1の磁石ユニット、Y軸方向一側に位置する磁石ユニット5を第2の磁石ユニットとし、XY平面内で磁石ユニット5と磁石ユニット5とを他の磁石ユニット5~5を含め一体に移動させる駆動ユニットMt,Fsをスパッタ面41の上方空間に作用する漏洩磁場Mfをスワップするスワップ手段としたものを例に説明したが、これに限定されるものではない。例えば、各磁石ユニット5~5を独立してY軸方向に移動できるように構成してもよい。
また、同一の部材、要素に同一の符号を付した図4,5に示すように、第2の実施形態のカソードユニットCuは磁石ユニット50~50を備え、磁石ユニット50~50は支持体500を夫々備える。支持体500の表裏両面には、支持板51が夫々設けられ、各支持板51には中央磁石52と周辺磁石53とが支持体500の表裏で互いに極性をかえて夫々設けられる。この場合、支持体500には、X軸方向にのびる回転軸501が連結され、回転軸501がモータ502に接続されている。これら回転軸501、モータ502といった部品が本実施形態の回転ユニットを構成する。また、特に詳細には図示していないが、磁石ユニット50~50には、他の部品との干渉をさけて磁石ユニット50~50を上下反転できるように、Z軸方向に上下動する駆動手段が設けられている。そして、図5(a)~図5(d)に従い、回転ユニット501,502により支持体500を回転させると、各磁石ユニット50~50の中央磁石52と周辺磁石53とのターゲット4~4側の極性が入れ替わることで、時計回りまたは反時計回りの周回軌道で運動するようにプラズマ中の電子の向きを反転させることができる。
また、上記実施形態では、各磁石ユニット5~5を構成する中央磁石52及び周辺磁石53は、ネオジム磁石等の永久磁石を用いるものを例に説明したが、これに限定されるものではなく、中央磁石52と周辺磁石53とを電磁石で構成することができる。この場合、電流が流れる向きを変えるだけで、各磁石ユニット5~5の中央磁石52と周辺磁石53とのターゲット4~4側の極性を入れ替えることができて、時計回りまたは反時計回りの周回軌道で運動するようにプラズマ中の電子の向きを反転させることができる。更に、上記実施形態では、一方向に矩形の輪郭を持つ複数枚のターゲットを等間隔で並設し、各ターゲットに対応させて磁石ユニットを設けた所謂マルチターゲット式のマグネトロンスパッタリング装置に適用したものを例に説明したが、これに限定されるものではなく、一枚のターゲットの下方空間に複数個の磁石ユニットを設けた所謂マルチマグネット式のマグネトロンスパッタリング装置にも本発明は適用することができる。
Cu,Cu…カソードユニット、SM…マグネトロンスパッタリング装置、1…真空チャンバ、4~4…ターゲット、41…スパッタ面、5~5,50~50…磁石ユニット、Mf…漏洩磁場、52…中央磁石、53…周辺磁石、Pm…プラズマ、5…第1の磁石ユニット(スワップ手段の構成要素)、5…第2の磁石ユニット(スワップ手段の構成要素)、Fs…送りねじ(駆動ユニットの構成要素)、Mt…モータ(駆動ユニットの構成要素)、500…支持体,501…回転軸(回転ユニットの構成要素),502…モータ(回転ユニットの構成要素),6…交流電源(スパッタ電源)、22a,22b…マスフローコントローラ(ガス導入手段の構成要素)、23a,23b…ガス管(ガス導入手段の構成要素)。

Claims (6)

  1. 真空チャンバ内を臨む姿勢で設置されるターゲットのスパッタ面と背向する下方側に設けられる磁石ユニットを備え、磁石ユニットが、線状に配置される中央磁石とこの中央磁石の周囲を囲う周辺磁石とをその上側の極性をかえて有し、磁場の垂直成分がゼロとなる位置を通る線が中央磁石の長手方向に沿ってのびてレーストラック状に閉じる漏洩磁場をスパッタ面の上方空間に作用させるマグネトロンスパッタリング装置用のカソードユニットにおいて、
    スパッタ面の上方空間にレーストラック状のプラズマを発生させたときに中央磁石及び周辺磁石の上側の磁性に応じてレーストラックに沿って時計回りまたは反時計回りの周回軌道で運動するプラズマ中の電子の向きを反転自在に構成したことを特徴とするマグネトロンスパッタリング装置用のカソードユニット。
  2. 前記スパッタ面の上方空間に前記漏洩磁場を作用させているものを第1の磁石ユニット、第1の磁石ユニットの中央磁石及び周辺磁石からそれらの上側の磁性をかえたものを第2の磁石ユニットとし、第1の磁石ユニットと第2の磁石ユニットとの間でスパッタ面の上方空間に作用する漏洩磁場をスワップするスワップ手段を設けて前記プラズマ中の電子の向きを反転自在としたことを特徴とする請求項1記載のマグネトロンスパッタリング装置用のカソードユニット。
  3. 前記第1の磁石ユニットと前記第2の磁石ユニットとを同一平面内に並設し、同一平面内の一方向に前記第1の磁石ユニットと前記第2の磁石ユニットとを一体に移動させる駆動ユニットを設けて前記スワップ手段を構成したことを特徴とする請求項2記載のマグネトロンスパッタリング装置用のカソードユニット。
  4. 前記第1の磁石ユニットと前記第2の磁石ユニットとを支持体の表裏両面に夫々設け、支持体を回転させる回転ユニットを設けて前記スワップ手段を構成したことを特徴とする請求項2記載のマグネトロンスパッタリング装置用のカソードユニット。
  5. 前記磁石ユニットの中央磁石と周辺磁石とを電磁石で構成し、プラズマ中の電子の向きを反転自在としたことを特徴とする請求項1記載のマグネトロンスパッタリング装置用のカソードユニット。
  6. 請求項1~請求項5のいずれか1項に記載のマグネトロンスパッタリング装置用のカソードユニットと、カソードユニットのターゲットがその内部を臨む姿勢で設置されると共にスパッタ面の前方空間に被処理基板が対向配置される真空チャンバと、ターゲットに電力投入するスパッタ電源と、真空雰囲気中の真空チャンバ内へのスパッタガスの導入を可能とするガス導入手段とを備え、ターゲットへの積算電力に応じてプラズマ中の電子の向きを反転させるように構成したことを特徴とするマグネトロンスパッタリング装置。

JP2021166593A 2021-10-11 2021-10-11 マグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置 Pending JP2023057218A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021166593A JP2023057218A (ja) 2021-10-11 2021-10-11 マグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021166593A JP2023057218A (ja) 2021-10-11 2021-10-11 マグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置

Publications (1)

Publication Number Publication Date
JP2023057218A true JP2023057218A (ja) 2023-04-21

Family

ID=86006267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021166593A Pending JP2023057218A (ja) 2021-10-11 2021-10-11 マグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置

Country Status (1)

Country Link
JP (1) JP2023057218A (ja)

Similar Documents

Publication Publication Date Title
US7347919B2 (en) Sputter source, sputtering device, and sputtering method
TWI427170B (zh) Film forming method and thin film forming apparatus
TWI421363B (zh) Magnetron sputtering method
KR20180075570A (ko) 기판 상의 스퍼터 증착을 위해 구성된 장치, 기판 상의 스퍼터 증착을 위해 구성된 시스템, 및 기판 상의 스퍼터 증착을 위한 방법
US5626727A (en) Sputtering apparatus and method
US9761423B2 (en) Sputtering apparatus and magnet unit
JP4551487B2 (ja) 磁石ユニットおよびマグネトロンスパッタリング装置
JP2013241647A (ja) スパッタリング方法
JP5527894B2 (ja) スパッタ装置
JP2970317B2 (ja) スパッタリング装置及びスパッタリング方法
JP2023057218A (ja) マグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置
WO2021230017A1 (ja) マグネトロンスパッタリング装置及びこのマグネトロンスパッタリング装置を用いた成膜方法
JP2021001382A (ja) マグネトロンスパッタリング装置用のカソードユニット
WO2007106195A2 (en) Magnetron source for deposition on large substrates
TWI839638B (zh) 磁控管濺鍍裝置用之陰極單元及磁控管濺鍍裝置
WO2022158034A1 (ja) マグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置
JPS6217175A (ja) スパツタリング装置
JP3316878B2 (ja) スパッタリング電極
WO2013001715A1 (ja) スパッタ装置
JP7066510B2 (ja) 成膜装置、成膜方法、及びスパッタリングターゲット機構
JP2019218604A (ja) 成膜装置及びスパッタリングターゲット機構
JP2019210517A (ja) スパッタリング装置及び成膜方法
WO2023074052A1 (ja) 成膜方法
JP5781408B2 (ja) マグネトロンスパッタカソード
JP2020139213A (ja) マグネトロンスパッタリング装置用のカソードユニットおよび成膜方法