JP2023038758A - マルチコアファイバおよびマルチコアファイバの製造方法 - Google Patents

マルチコアファイバおよびマルチコアファイバの製造方法 Download PDF

Info

Publication number
JP2023038758A
JP2023038758A JP2021145639A JP2021145639A JP2023038758A JP 2023038758 A JP2023038758 A JP 2023038758A JP 2021145639 A JP2021145639 A JP 2021145639A JP 2021145639 A JP2021145639 A JP 2021145639A JP 2023038758 A JP2023038758 A JP 2023038758A
Authority
JP
Japan
Prior art keywords
core
less
fiber according
refractive index
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021145639A
Other languages
English (en)
Inventor
和則 武笠
Kazunori Mukasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2021145639A priority Critical patent/JP2023038758A/ja
Publication of JP2023038758A publication Critical patent/JP2023038758A/ja
Pending legal-status Critical Current

Links

Images

Abstract

Figure 2023038758000001
【課題】コア数が多いとともに製造性や接続性が高いマルチコアファイバおよびその製造方法を提供すること。
【解決手段】マルチコアファイバは、40個以上のコア部と、前記コア部の外周を囲み、前記コア部の最大屈折率よりも低い屈折率を有するクラッド部と、を備え、長手方向に直交する断面において、前記コア部が略直線状に並んで成す列に含まれる前記コア部の数が15個以下であり、前記クラッド部の屈折率に対する前記コア部の最大屈折率の比屈折率差Δ1は0.35%以上1%以下であり、前記断面に空孔構造を含まない。
【選択図】図1

Description

本発明は、マルチコアファイバおよびマルチコアファイバの製造方法に関する。
比較的安価に伝送容量を高める新たな技術として、空間分割多重の技術開発が進められている。空間分割多重の技術の一つとして、マルチコアファイバ(Multi-Core Fiber:MCF)がある(特許文献1~4、非特許文献1)。特許文献2、4、非特許文献1では、100個を超えるようなコア数を有するマルチコアファイバが開示されている。
特許第6722271号公報 特開2021-39340号公報 国際公開第2018/168170号 国際公開第2019/146750号
Ming-Jun Li et al. "High Bandwidth Coupled Multicore Fibre for Data Centre Applications"、 ECOC2019、 W.3.C.6
しかしながら、特許文献2、4、非特許文献1に開示される技術では、光閉じ込めに空孔構造を用いたり、コア部の比屈折率差Δ1を1.2%以上にしたりして、特別な構造を用いている。その結果、製造性の低下に基づく製造コストの増加や、接続性の低下などの問題がある。一方、特許文献1や3に開示されるように特別な構造を用いない場合は、コア数は30個台までのものしか提案されていない。
本発明は、上記に鑑みてなされたものであって、その目的は、コア数が多いとともに製造性や接続性が高いマルチコアファイバおよびその製造方法を提供することにある。
上述した課題を解決し、目的を達成するために、本発明の一態様は、40個以上のコア部と、前記コア部の外周を囲み、前記コア部の最大屈折率よりも低い屈折率を有するクラッド部と、を備え、長手方向に直交する断面において、前記コア部が略直線状に並んで成す列に含まれる前記コア部の数が15個以下であり、前記クラッド部の屈折率に対する前記コア部の最大屈折率の比屈折率差Δ1は0.35%以上1%以下であり、前記断面に空孔構造を含まないマルチコアファイバである。
61個以上の前記コア部を備え、前記クラッド部の外径が270μm以下であるものでもよい。
前記断面における最隣接の前記コア部の中心同士の間隔であるコアピッチが15μm以上であるものでもよい。
前記コア部は、前記断面において六方最密格子状に配置されているものでもよい。
前記Δ1は0.8%以下であるものでもよい。
前記コア部は、単峰型の屈折率プロファイルを有するものでもよい。
前記コア部は、単独で存在する場合に、波長1550nmにおいて、光をシングルモードで伝送し、かつ有効コア断面積が35μm以上110μm以下であるように設計されているものでもよい。
波長1550nmの光が1mだけ伝搬した後において、最隣接する2個の前記コア部のコア間クロストークが-20dB以上であり、波長1550nmの光が1kmだけ伝搬した後において、第2隣接する2個の前記コア部のコア間クロストークが0dB以下であるものでもよい。
前記コア部についての有効コア断面積は、前記コア部が単独で存在する場合の有効コア断面積よりも大きいものでもよい。
前記コア部について、波長1550nmにおける伝送損失が0.25dB/km以下であるものでもよい。
前記断面における最隣接の前記コア部の中心同士の間隔であるコアピッチが25μm以下であるものでもよい。
本発明の一態様は、前記マルチコアファイバの製造方法であって、前記コア部となる部分をそれぞれ含む複数のコア母材をガラス管内にスタックして光ファイバ母材を形成し、前記形成した光ファイバ母材から前記マルチコアファイバを線引きするマルチコアファイバの製造方法である。
前記ガラス管の孔が六角形状であるものでもよい。
前記光ファイバ母材を形成する際に、前記ガラス管内の前記複数のコア母材の間の空隙にガラス棒またはガラス粉末を充填するものでもよい。
本発明によれば、コア数が多いとともに製造性や接続性が高いマルチコアファイバを実現できる。
図1は、実施形態に係るマルチコアファイバの断面を示す模式図である。 図2は、コアピッチとクロストーク(XT)との関係の一例を示す図である。 図3は、Δ1とモードフィールド径(MFD)との関係の一例を示す図である。 図4は、コアピッチとΔ1とパワー変動との関係の一例を示す図である。 図5は、コアピッチとΔ1と平均伝送損失との関係の一例を示す図である。 図6は、Δ1が0.45%のときのコアピッチとパワー変動との関係の一例を示す図である。 図7は、Δ1が0.45%のときのコアピッチと平均伝送損失との関係の一例を示す図である。 図8は、コアピッチが16μmのときのΔ1とパワー変動との関係の一例を示す図である。 図9は、コアピッチが16μmのときのΔ1と平均伝送損失との関係の一例を示す図である。 図10は、コアピッチとファイバ径との関係の一例を示す図である。 図11は、Δ1と有効コア断面積(Aeff)との関係の一例を示す図である。 図12は、実施例のマルチコアファイバの製造方法を説明する図である。
以下、図面を参照して、本発明の実施形態について説明する。なお、この実施形態により本発明が限定されるものではない。また、図面の記載においては、同一または対応する要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、本明細書においては、カットオフ波長とは、実効カットオフ波長であり、ITU-T(国際電気通信連合)G.650.1で定義するケーブルカットオフ波長を意味する。また、その他、本明細書で特に定義しない用語についてはG.650.1およびG.650.2における定義、測定方法に従うものとする。
図1は、実施形態に係るマルチコアファイバの、長手方向に直交する断面を示す模式図である。マルチコアファイバ10は、複数のコア部11と、複数のコア部11の外周を囲み、複数のコア部11の最大屈折率よりも低い屈折率を有するクラッド部12と、を備え、長手方向に延伸している。このマルチコアファイバ10は、クラッド部12の内部に91個のコア部11が、長手方向に直交する断面において六方最密格子状に配置された構造を有する。この91個のコア部11は、40個以上のコア部の一例である。
コア部11は、たとえばゲルマニウムなどの屈折率を高くするドーパントが添加された石英系ガラスによって構成されている。クラッド部12は、たとえば純石英ガラスにより構成されている。ここで、純石英ガラスとは、屈折率を変化させるドーパントを実質的に含まず、波長1550nmにおける屈折率が約1.444である、きわめて高純度の石英ガラスである。ただし、コア部11が純石英ガラスにより構成され、クラッド部12がフッ素などの屈折率を低くするドーパントが添加された石英系ガラスによって構成されていてもよいし、コア部11とクラッド部12との両方に屈折率調整用のドーパントが添加されていてもよい。
マルチコアファイバ10のコア部11は、たとえば単峰型の屈折率プロファイルを有する。クラッド部12に対するコア部11の最大屈折率の比屈折率差はΔ1である。Δ1は、たとえば0.35%以上1%以下である。Δ1は0.8%以下でもよい。
また、列Cは、マルチコアファイバ10の長手方向に直交する断面において、コア部11が略直線状に並んで成す列である。この列Cに含まれるコア部11の数は15個以下であって、具体的には11個である。
また、マルチコアファイバ10において、コアピッチPは、長手方向に直交する断面における最隣接する2個のコア部11の中心同士の間隔である。マルチコアファイバ10において、コアピッチPはたとえば15μm以下である。
ここで、長手方向に直交する断面において或るコア部11から最隣接するコア部11のつぎに近いコア部11を、第2隣接するコア部と定義する。マルチコアファイバ10では、コア部11が六方最密格子状に配置されているので、第2隣接する2個のコア部11の中心同士の間隔はコアピッチPの√3倍である。
また、図1に示すように、マルチコアファイバ10は、光閉じ込めのための空孔構造を断面に含まない。すなわち、マルチコアファイバ10は、中実構造となっている。
以上のように構成されたマルチコアファイバ10は、91個のコア部11を備えながらも、列Cに含まれるコア部11の数は15個以下の11個であり、Δ1が0.35%以上1%以下であり、かつ空孔構造を含まないので、コア数が多いとともに製造性や接続性が高い。
また、マルチコアファイバ10では、コア部11が六方最密格子状に配置されているので、クラッド部12の外径(ファイバ径)の大きさに比してコア数が多い。したがって、ファイバ径をそれほど大きくしなくてもコア数を多くすることができる。さらに、コア部11が六方最密格子状に配置されているので、スタック法などの公知の方法によってマルチコアファイバ10を製造し易い。
以下では、シミュレーション計算結果を用いて、マルチコアファイバ10の構造や特性についてより具体的に説明する。
マルチコアファイバ10においては、コア部11のΔ1を増加させることによりクロストーク(XT)特性を改善することが可能である。たとえば、図2は、コアピッチとクロストーク(XT)との関係の一例を示す図である。図1では、実効カットオフ波長が約1520nmになるようにコア部のコア径(2a)を調整した場合において、波長1550nmの光が1kmだけ伝搬した後において、最隣接する2個のコア部のコア間クロストークをXTとして示している。図1に示すように、同じコアピッチでも、Δ1が大きい方が、XTが小さくなる。
一方、図3は、Δ1とモードフィールド径(MFD)との関係の一例を示す図である。なお、MFDは単体のコア部11についての値であって、波長1550nmにおける値である。図3に示すように、Δ1を大きくするとMFDが小さくなる。MFDの増大は、非線形性の増大や他のマルチコアファイバとの接続損失の増大につながる。また、Δ1が大きくなると、より多くのドーパントをコア部11にドープしないといけなくなるので、レイリー散乱損失も増大する傾向がある。なお、コア部11を純石英ガラスで構成して、クラッド部を屈折率が低い石英系ガラスによって構成してもよいが、この場合はΔ1を1.0%より高くすることは困難である。以上の観点から、Δ1は1%以下が好ましい。また、Δ1は0.8以下でもよい。
また、Δ1を小さくしていった場合、或るコア部11とその周囲に配置されたコア部11との間で光の干渉が強くなるので、マルチコアファイバ10の接続状態や設置状態によって、伝搬された光のパワー変動が大きくなってしまう場合がある。
そこで、本発明者は、実効カットオフ波長が約1520nmになるようにコア部のコア径を調整するとともにΔ1とコアピッチとを変化させた、長さ1kmのマルチコアファイバを作製した。マルチコアファイバは、六方最密格子状に配置された19個のコア部を有する、いわゆる19コア型のマルチコアファイバとした。そして、これらのマルチコアファイバの一端から中心軸付近に位置するコア部に光を入射し、他端から出射される光のパワーを測定し、そのパワー変動を調査した。
図4は、作製した19コア型のマルチコアファイバにおけるコアピッチとΔ1とパワー変動との関係の一例を示す図である。なお、パワー変動は測定したパワーの変動幅である。図4に示すように、コアピッチが15μm未満の領域、およびΔ1が0.35%未満の領域では、急激にパワー変動が大きくなることが分かった。以上の観点から、Δ1は0.35%以上が好ましく、コアピッチは15μm以上が好ましい。Δ1が0.35%以上であり、コアピッチが15μm以上であれば、たとえば、波長1550nmの光が1mだけ伝搬した後において、最隣接する2個のコア部11のコア間クロストークが-20dB以上であり、波長1550nmの光が1kmだけ伝搬した後において、第2隣接する2個のコア部11のコア間クロストークが0dB以下であるという状態を実現できる。
また、図5は、作製した19コア型のマルチコアファイバにおけるコアピッチとΔ1と平均伝送損失との関係の一例を示す図である。ここで、平均伝送損失とは、パワー変動に応じて変動する伝送損失の平均値である。図5から分かるように、コアピッチが15μm以上であれば、たとえば、0.25dB/km以下の平均伝送損失を安定的に実現することができる。また、Δ1が0.80%以下であれば、たとえば、0.25dB/km以下の平均伝送損失を好適に実現することができるとともに、伝送損失の安定性と低減とのバランスの観点から好ましい。
なお、図6は、図4においてΔ1が0.45%のときのコアピッチとパワー変動との関係の一例を示す図である。図7は、図5においてΔ1が0.45%のときのコアピッチと平均伝送損失との関係の一例を示す図である。図8は、図4においてコアピッチが16μmのときのΔ1とパワー変動との関係の一例を示す図である。図9は、図5においてコアピッチが16μmのときのΔ1と平均伝送損失との関係の一例を示す図である。図6、7に示すように、コアピッチが15μm未満では、コアピッチが小さくなるにつれてパワー変動や平均伝送損失が急激に増大する。また、図4、5、8、9を総合的に考慮すると、Δ1が0.35%未満ではΔ1が小さくなるにつれてパワー変動や平均伝送損失が急激に増大する。また、Δ1が0.8%よりも大きくなると、レイリー散乱損失自体が大きくなるので、Δ1が大きくなるにつれて平均伝送損失も大きくなる。この点からも、Δ1は0.80%以下が好ましい。
つぎに、コアピッチとファイバ径とに関して説明する。六方最密格子状の配置を仮定した場合、クラッド部12には、コア部11配置されている部分以外に、外側の厚さが必要である。外側の厚さは、たとえば図1に示すクラッド厚Tで定義することができる。クラッド厚Tとは、コア部11の中でクラッド部12の外周に最も近いコア部11の中心からクラッド部12の外周までの距離である。
以下では、ファイバ径が、コア部11が六方最密格子状に配置されている部分の対角長に対して1.2倍になるように、クラッド厚Tを設定して、ファイバ径の最適化を行った。コア部11が六方最密格子状に配置されている部分の対角長は、マルチコアファイバ10ではコアピッチの11倍であるから、ファイバ径はコアピッチの13.2倍である。
クラッド厚Tがあまり薄いと、クラッド部12の外周に近いコア部11のリーケージ損失が大きくなるだけでなく、マルチコアファイバ10の線引き時の構造乱れなどが起きやすくなる。1.2倍という数値は、リーケージ損失の抑制と線引き時の構造乱れの抑制との観点から好ましい値の一例である。
図10は、以上のように最適化した場合における、コアピッチとファイバ径との関係の一例を示す図である。なお、61コア、91コア、127コア、169コアとは、それぞれコア数が61、91、127、169の場合である。図10に示されるように、コアピッチが15μm以上の場合に、ファイバ径を270μm以下とするには、コア数が169個以下、すなわち、六方最密格子状に配置されている場合の長手方向に直交する断面において、コア部11が略直線状に並んで成す列に含まれるコア部11の数が15個以下であることが必要である。
なお、図10には示していないが、コア数はたとえば40~60個でもよい。この場合のコア部の配列は、たとえば、全体が六角形状になるように六方最密格子状に37個のコア部を配置した上で、その六角形状の辺の外側にコア部を六方最密格子状に配置する。
また、ファイバ径を増大させれば、コア数を増大させることは可能だが、ファイバ径が大きくなると、そのマルチコアファイバの信頼性の補償のために、より高いスクリーニング強度が要求され、歩留まりの劣化を招く。この観点からは、ファイバ径は270μm以下が好ましい。
たとえば、マルチコアファイバ10において、61個以上のコア部11を備え、クラッド部12の外径が270μm以下であることは、好適な一例である。なお、61個以上のコア部11を備える場合に、クラッド部12の外径を270μm以下とするためには、コアピッチは25μm以下である必要がある。
また、コア部11は、単独で存在する場合に、波長1550nmにおいて、光をシングルモードで伝送することが好ましい。
また、図11は、マルチコアファイバ10において、ケーブルカットオフ波長λccを1520nmに固定した場合の、Δ1と有効コア断面積(Aeff)との関係の一例を示す図である。この場合、Δ1が0.35%以上1.0%以下とすると、コア部11は、Aeffが35μm以上110μm以下であるように設計されていることが好ましい。なお、図11において、Δ10.35%の場合のAeffの値は102μmである。
また、λccは、たとえばC-Band(たとえば1530nmから1565nm)での伝送を想定すると、1520nm以下であることが望ましいが、伝送に使用する波長帯に応じて、より短波長に設定してもよい。たとえば、O-Band(たとえば1260nmから1360nm)を伝送に使用する場合は、λccを1260nm以下に設定してもよい。
なお、上記の設計は、各コア部11の固有の特性である。実施形態に係るマルチコアファイバ10は、各コア部11が隣接するコア部11との結合が強く、マルチコアファイバ10としてのフィールド特性(例えばAeff特性)は、各コア部11の本来の特性(隣接するコア部11との干渉がなかった場合の特性)とは異なる。たとえば、コア部11についてのAeffは、コア部11が単独で存在する場合のAeffよりも大きい。しかし、各コア部11の特性を上述の範囲に設定しておくことで、安定性に優れた低損失なマルチコアファイバ10が実現可能である。たとえば、各コア部11を伝送に使用する波長帯においてマルチモードになるように設計をした場合には、高次モードのコア間干渉も起こり、パワー安定性が顕著に劣化することが確認された。また、実施形態のマルチコアファイバ10の構造では、或るコア部11は、最隣接するコア部11とは短い距離で強く光学結合してしまうが、その状態はある程度安定であり、かつ第2隣接のコア部11とのXTは抑制されているので、安定した特性かつ伝送損失という点からも優れた構造になっている。
マルチコアファイバ10の製造方法の一例を説明する。まず、VAD法やCVD法を用いて、コア部の外周を囲むようにクラッド部が形成されたコア母材を準備し、線引き機を用いて適切な外径に延伸し、91本の延伸したコア母材とする。また、孔が六角形状となっている石英ガラス管を製管法にて準備する。
つづいて、図12に示すように、91本の、コア部111とクラッド部112とを備えるコア母材110を石英ガラス管120にスタックし、光ファイバ母材100とする。コア部111は、マルチコアファイバ10のコア部11となる部分であり、クラッド部112と石英ガラス管120とは、マルチコアファイバのクラッド部12となる部分である。なお、光ファイバ母材100を形成する際に、石英ガラス管120内の、複数のコア母材110の間の空隙に、ガラス棒またはガラス粉末を充填するのが好ましい。ガラス棒はケーン(Cane)とも呼ばれる。
つづいて、光ファイバ母材100を適切な条件で線引きし、マルチコアファイバ10を製造する。
(実施例)
本発明の実施例として、実施形態に係るマルチコアファイバ10と同様の構造を有するマルチコアファイバを、上記製造方法にて作製した。
この様な多数コアのマルチコアファイバの場合は、ファイバ径が太くなる傾向にあるが、信頼性補償を考えると、ファイバ径は270μm以下である事が望ましい。一方で、余りピッチが小さくなってしまうと、伝送損失特性やその安定性の劣化が顕著になる可能性がある。そこで、図10を用いて説明した結果をもとに、コアピッチを19μmに設定し、ファイバ径を約250μmに設定した。ジャケット管(石英ガラス管)のサイズは、図10の検討で仮定しているように、ファイバ径が、コア部が六方最密格子状に配置されている部分の対角長に対して1.2倍になるように設定した。なお、コアピッチが19μmの場合、第2隣接の2個のコア部の間の距離は、その√3倍の約33μmになる。また、実施例のマルチコアファイバには、被覆を、プライマリ被覆を厚さ320±20μm、セカンダリ被覆を厚さ370±20μmとして、クラッド部の外周に形成した。
実施例として、サンプルNo.1~6のマルチコアファイバ(MCF)の設計パラメータ(Δ1およびコア径(2a))と光学特性とを表1に示す。なお、λccとMFDとAeffとは1コアの場合の特性、すなわち他のコア部との間で干渉がない場合の特性である。
表1に示すように、いずれのサンプルも1コアの場合の特性としては1530nm以上の波長範囲でのシングルモード伝送が実現されるλccの値である。また、Aeffも35~110μmの良好な特性が得られている。
Figure 2023038758000002
なお、光が数m伝送した後には隣接コア同士は完全に結合してコア部単体よりも広いフィールドを伝搬する形になるが、第2隣接のコア部との干渉は1km伝送後でも-10dB以下と十分低い値に抑制されており、その効果もあって、出射パワーのばらつきは1km伝送後も1dB以下の小さい値に抑制されていた。また伝送損失は各コア部の測定値の平均値を示しているが、マルチコアファイバの構造が最適化されているので、ある程度安定して測定する事ができている。伝送損失の値自体も、従来のマルチコアファイバと遜色ない、低い値が実現されている。
なお、上記実施形態では、マルチコアファイバ10のコア部11が六方最密格子状に配置されているが、たとえば正方格子状や円環状など、他の形状に配置されていてもよい。
また、上記実施形態では、コア部11の屈折率プロファイルが、製造がより容易である単峰型であるが、W型やトレンチ型などの他の屈折率プロファイルでもよい。
また、上記実施形態により本発明が限定されるものではない。たとえば、上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施形態に限定されるものではなく、様々な変更が可能である。
10 :マルチコアファイバ
11、111 :コア部
12、112 :クラッド部
100 :光ファイバ母材
110 :コア母材
120 :石英ガラス管
C :列
P :コアピッチ
T :クラッド厚

Claims (14)

  1. 40個以上のコア部と、
    前記コア部の外周を囲み、前記コア部の最大屈折率よりも低い屈折率を有するクラッド部と、
    を備え、
    長手方向に直交する断面において、前記コア部が略直線状に並んで成す列に含まれる前記コア部の数が15個以下であり、
    前記クラッド部の屈折率に対する前記コア部の最大屈折率の比屈折率差Δ1は0.35%以上1%以下であり、
    前記断面に空孔構造を含まない
    マルチコアファイバ。
  2. 61個以上の前記コア部を備え、
    前記クラッド部の外径が270μm以下である
    請求項1に記載のマルチコアファイバ。
  3. 前記断面における最隣接の前記コア部の中心同士の間隔であるコアピッチが15μm以上である
    請求項1または2に記載のマルチコアファイバ。
  4. 前記コア部は、前記断面において六方最密格子状に配置されている
    請求項1~3のいずれか一つに記載のマルチコアファイバ。
  5. 前記Δ1は0.8%以下である
    請求項1~4のいずれか一つに記載のマルチコアファイバ。
  6. 前記コア部は、単峰型の屈折率プロファイルを有する
    請求項1~5のいずれか一つに記載のマルチコアファイバ。
  7. 前記コア部は、単独で存在する場合に、波長1550nmにおいて、光をシングルモードで伝送し、かつ有効コア断面積が35μm以上110μm以下であるように設計されている
    請求項1~6のいずれか一つに記載のマルチコアファイバ。
  8. 波長1550nmの光が1mだけ伝搬した後において、最隣接する2個の前記コア部のコア間クロストークが-20dB以上であり、波長1550nmの光が1kmだけ伝搬した後において、第2隣接する2個の前記コア部のコア間クロストークが0dB以下である
    請求項1~7のいずれか一つに記載のマルチコアファイバ。
  9. 前記コア部についての有効コア断面積は、前記コア部が単独で存在する場合の有効コア断面積よりも大きい
    請求項1~8のいずれか一つに記載のマルチコアファイバ。
  10. 前記コア部について、波長1550nmにおける伝送損失が0.25dB/km以下である
    請求項1~9のいずれか一つに記載のマルチコアファイバ。
  11. 前記断面における最隣接の前記コア部の中心同士の間隔であるコアピッチが25μm以下である
    請求項1~10のいずれか一つに記載のマルチコアファイバ。
  12. 請求項1~11のいずれか一つに記載のマルチコアファイバの製造方法であって、
    前記コア部となる部分をそれぞれ含む複数のコア母材をガラス管内にスタックして光ファイバ母材を形成し、
    前記形成した光ファイバ母材から前記マルチコアファイバを線引きする
    マルチコアファイバの製造方法。
  13. 前記ガラス管の孔が六角形状である
    請求項12に記載のマルチコアファイバの製造方法。
  14. 前記光ファイバ母材を形成する際に、前記ガラス管内の前記複数のコア母材の間の空隙にガラス棒またはガラス粉末を充填する
    請求項12または13に記載のマルチコアファイバの製造方法。
JP2021145639A 2021-09-07 2021-09-07 マルチコアファイバおよびマルチコアファイバの製造方法 Pending JP2023038758A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021145639A JP2023038758A (ja) 2021-09-07 2021-09-07 マルチコアファイバおよびマルチコアファイバの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021145639A JP2023038758A (ja) 2021-09-07 2021-09-07 マルチコアファイバおよびマルチコアファイバの製造方法

Publications (1)

Publication Number Publication Date
JP2023038758A true JP2023038758A (ja) 2023-03-17

Family

ID=85514663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021145639A Pending JP2023038758A (ja) 2021-09-07 2021-09-07 マルチコアファイバおよびマルチコアファイバの製造方法

Country Status (1)

Country Link
JP (1) JP2023038758A (ja)

Similar Documents

Publication Publication Date Title
US8737793B2 (en) Multi-core optical fiber and method of manufacturing the same
JP5916525B2 (ja) マルチコアファイバ
US9588284B2 (en) Multi-core fiber
JP6722271B2 (ja) マルチコアファイバ
JP6057340B2 (ja) マルチコア光ファイバ
WO2011114795A1 (ja) マルチコア光ファイバおよびその製造方法
JP5245019B2 (ja) マルチコアファイバ
WO2010119930A1 (ja) マルチコア光ファイバ
JP5855351B2 (ja) マルチコアファイバ
US8315494B2 (en) Optical fiber
JP5468711B2 (ja) マルチコアファイバ
JP5660627B2 (ja) 多芯単一モード光ファイバおよび光ケーブル
CN111474626A (zh) 一种多芯光纤
US9541704B2 (en) Multi-core optical fiber and multi-core optical fiber cable
CN113325510B (zh) 一种多芯光纤及其易分支光缆
JP2023038758A (ja) マルチコアファイバおよびマルチコアファイバの製造方法
JP6096268B2 (ja) マルチコアファイバ
JP2021039340A (ja) マルチコアファイバおよびその製造方法
JP5356466B2 (ja) ホーリーファイバ
CN112099130A (zh) 一种低芯间串扰的斜坡型折射率分布多芯光纤
JP4219830B2 (ja) 光ファイバ
WO2023008341A1 (ja) マルチコアファイバ、ピッチ変換器、光ファイバ接続体および光ファイバ接続体の製造方法
JP2015045703A (ja) 光ファイバ
JP2012255935A (ja) 光ファイバ及びこれを用いた光ファイバケーブル