JP2023031436A - 電源システム - Google Patents

電源システム Download PDF

Info

Publication number
JP2023031436A
JP2023031436A JP2021136920A JP2021136920A JP2023031436A JP 2023031436 A JP2023031436 A JP 2023031436A JP 2021136920 A JP2021136920 A JP 2021136920A JP 2021136920 A JP2021136920 A JP 2021136920A JP 2023031436 A JP2023031436 A JP 2023031436A
Authority
JP
Japan
Prior art keywords
battery
power
battery string
power supply
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021136920A
Other languages
English (en)
Other versions
JP7480761B2 (ja
Inventor
純太 泉
Junta Izumi
健治 木村
Kenji Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2021136920A priority Critical patent/JP7480761B2/ja
Priority to US17/851,664 priority patent/US11984746B2/en
Priority to CN202210793311.2A priority patent/CN115733200A/zh
Priority to EP22190488.1A priority patent/EP4142102A3/en
Publication of JP2023031436A publication Critical patent/JP2023031436A/ja
Application granted granted Critical
Publication of JP7480761B2 publication Critical patent/JP7480761B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】電池ストリングを用いて、交流電力を出力する電源システムを提供する。【解決手段】電源システム1は、電池ストリングSt1を含む第1直流スウィープユニット10の直流電力を、第1インバータ50で交流電力に変換し出力する第1電源回路2と、Y結線した、U相用電池ストリングSt4、V相用電池ストリングSt6、およびW相用電池ストリングSt8を含む交流スウィープユニット3とを含む。電池ストリングSt1に含まれる電池Bの出力密度は、U相用電池ストリングSt4、V相用電池ストリングSt6、およびW相用電池ストリングSt8に含まれる電池Bの出力密度よりも高い。【選択図】図1

Description

本開示は、電源システムに関し、特に、複数の電池ストリングを用いた電源システムに関する。
特開2018-074709号公報(特許文献1)には、電池ストリングを制御する制御回路が開示されている。電池ストリングは、互いに接続された複数の電池モジュール回路電池回路モジュールを含む。電池ストリングに含まれる各電池回路モジュールは、電池と、電池に並列に接続された第1スイッチと、電池に直列に接続された第2スイッチと、第1スイッチがOFF状態かつ第2スイッチがON状態であるときに電池の電圧が印加される第1出力端子および第2出力端子とを備える。制御回路は、電池ストリングに含まれる各電池回路モジュールの第1スイッチおよび第2スイッチを制御することで、電池ストリングの出力電圧を所望の大きさに調整することができる。
特開2018-074709号公報
特許文献1は、上記のような電池ストリングを用いて直流電力を出力する電源システムを開示している。しかしながら、特許文献1では、電池ストリングを用いて交流電力を出力する電源システムについては何ら検討されていない。電池ストリングを用いて交流電力を出力する電源システムを実現することができれば、電池ストリングの用途の幅が広がり、電池ストリングの低コスト化が期待できる。
本開示の目的は、電池ストリングを用いて、交流電力を出力する電源システムを提供することである。
本開示の電源システムは、Y結線された、U相用電池ストリング、V相用電池ストリング、およびW相用電池ストリングから交流電力を出力する交流スウィープユニットと、第1電池ストリングを含む直流スウィープユニットの出力をインバータを用いて交流電力に変換し、交流電力を出力する第1電源回路と、を備える。前記U相用電池ストリング、前記V相用電池ストリング、前記W相用電池ストリング、および前記第1電池ストリングの各々は、直列接続された複数の電池回路モジュールを含む。前記複数の電池回路モジュールの各々は、電池と、前記電池の電圧を出力する出力端子と、前記出力端子に接続されるとともに前記電池に並列に接続された第1スイッチと、前記電池に直列に接続された第2スイッチと、を含み、前記第1スイッチがOFF状態かつ前記第2スイッチがON状態であるときに前記出力端子に前記電池の電圧が印加されるように構成されている。前記第1電池ストリングに含まれる前記電池の出力密度は、前記U相用電池ストリング、前記V相用電池ストリング、および前記W相用電池ストリングに含まれる前記電池の出力密度よりも高い。
この構成によれば、電池回路モジュールの第1スイッチと第2スイッチを状態を制御することにより、電池ストリングの出力電圧を制御できる。交流スウィープユニットのU相用電池ストリング、V相用電池ストリング、およびW相用電池ストリングは、Y結線されているので、各電池ストリングの出力電圧を制御することにより、交流電力(たとえば三相交流電力)を出力することができる。第1電池ストリングから出力される直流電力をインバータを用いて交流電力に変換することにより、第1電源回路から交流電力を出力することができる。
交流スウィープユニットは、電池回路モジュールの第1スイッチおよび第2スイッチの制御により交流電力を出力しているので、比較的効率が悪く、最大出力(最大電力)を抑えることが望ましい。第1電源回路では、インバータを用いて交流電力を出力するので、交流スウィープユニットより効率が高い。第1電池ストリングに含まれる電池は、U相用電池ストリング、V相用電池ストリング、およびW相用電池ストリングに含まれる電池より、出力密度が高いので、高出力が要求されるとき、第1電源回路から、好適に交流電力を出力することが可能になる。
U相用電池ストリング、V相用電池ストリング、およびW相用電池ストリングに含まれる電池のエネルギー密度は、第1電池ストリングに含まれる電池のエネルギー密度よりも高い。
この構成によれば、要求される出力が比較的低く長時間の出力が要求されるとき、交流スウィープユニットから、好適に交流電力を出力することができる。これにより、電源システムの出力特性(特に、出力電力および出力持続時間)を幅広く変更することが可能になる。また、出力密度の高いパワー型電池とエネルギー密度の高いエネルギー型電池とを組み合わせることで、各電池に得意な出力(高出力/長期出力)を行わせることが可能になる。これにより、エネルギー型電池単独あるいはパワー型電池単独の電源システムよりも、安価に高出力かつ高容量の電源システムを提供することができる。
第1電池ストリングに含まれる電池は、ニッケル水素電池であり、U相用電池ストリング、V相用電池ストリング、およびW相用電池ストリングに含まれる前記電池は、リチウムイオン電池である。
現在普及している電動車両では、走行用電力を蓄える電池として、ニッケル水素電池およびリチウムイオン電池のいずれかが使用されることが多い。また、電池特性として、一般的に、ニッケル水素電池は高出力・低容量型であり、リチウムイオン電池は低出力・高容量型である。このため、電動車両で使用されたニッケル水素電池およびリチウムイオン電池を再利用して、本開示の電源システムを構成することが可能になる。
交流スウィープユニット、第1電源回路を制御する制御装置を備え、制御装置は、要求される電力が所定値より大きい場合、第1電源回路から交流電力を出力するよう構成してもよい。
この構成によれば、高出力が要求されるとき、出力密度が高い電池を含む第1電源回路から、好適に交流電力を出力することができる。
交流スウィープユニットおよび第1電源回路は、外部電源と電気的に接続可能に構成され、制御装置は、交流スウィープユニットおよび第1電源回路の入出力電力によって外部電源の電力調整を行うように交流スウィープユニットおよび第1電源回路を制御し、電力調整において求められる、応動時間および調整時間に応じて、外部電源と交流スウィープユニットの接続/遮断、および、外部電源と第1電源回路の接続/遮断を制御するよう構成されてもよい。
この構成によれば、本開示の電源システムを用いて、外部電源の電力調整を行うことができる。電力調整において求められる、応動時間および調整時間に応じて、外部電源と交流スウィープユニットの接続/遮断、および、外部電源と第1電源回路の接続/遮断を制御するので、電源システムに要求される出力電力および出力持続時間に幅広く対応することが可能になる。
本開示によれば、電池ストリングを用いて、交流電力を出力する電源システムを提供することができる。
本実施の形態に係る電源システム1の構成を示す図である。 スウィープユニットSUの構成を示す図である。 ゲート信号によって制御される電池回路モジュールMの動作の一例を示すタイムチャートである。 稼働状態の電池回路モジュールMを示す図である。 遅延期間における電池回路モジュールMの状態を示す図である。 停止期間における電池回路モジュールMの状態を示す図である。 第1インバータ50の構成を示す図である。 交流スウィープユニット3の構成を示す図である。 サーバ200から電力の出力を要求されたとき、GCU100が実行する処理の一例を示すフローチャートである。 サーバ200から電力の調整要求がなされた際、GCU100が実行する処理の一例を示すフローチャートである。
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
図1は、本実施の形態に係る電源システムの構成を示す図である。電源システム1は、第1電源回路2と、交流スウィープユニット3と、GCU(Group Control Unit)100とを備える。
第1電源回路2は、第1直流スウィープユニット10と、第2直流スウィープユニット20と、第3直流スウィープユニット30と、第1インバータ50と、第2インバータ60と、第3インバータ70を備える。本実施の形態において、第1直流スウィープユニット10、第2直流スウィープユニット20、第3直流スウィープユニット30および交流スウィープユニット3の間で、SCU(String Control Unit)D1~D3、A1~A6および電池ストリングSt1~St9の構成は、実質的に同一であるので、これらの構成について図2を用いて説明する。以下において、電池ストリングSt1~St9を区別しない場合、電池ストリングSt1~St9を「電池ストリングSt」と称し、SCUD1~D3、A1~A9を区別しない場合、SCUD1~D3、A1~A9を単に「SCU」と称する。また、SCUと電池ストリングStとを含む構成を「スウィープユニットSU」と称する。
図2は、スウィープユニットSUの構成を示す図である。スウィープユニットSUは、SCUと、駆動回路SUAと、電池ストリングStとを備える。電池ストリングStは、複数の電池回路モジュールMを備える。本実施の形態において、電池ストリングStに含まれる電池回路モジュールMの数は22個であるが、その数は任意であり、5~50個であってもよいし、100個以上であってもよい。本実施の形態では、各電池ストリングStが同じ数の電池回路モジュールMを含むが、電池ストリングStごとに電池回路モジュールMの数が異なっていてもよい。
電池回路モジュールMの各々は、電力回路SUBと、カートリッジCgとを含む。カートリッジCgは、電池Bと、監視ユニットBSとを含む。電力回路SUBと電池Bと接続されることによって、電池Bを含む電池回路モジュールMが形成されている。駆動回路SUAは、電池回路モジュールMに含まれるスイッチ(より特定的には、後述するSW11およびSW12)を駆動するように構成される。電池Bは、ニッケル水素二次電池、あるいは、リチウムイオン二次電池であってよく、電動車両で使用された二次電池を直列に接続することにより、電池Bを製造してよい。
図2に示すように、電池回路モジュールMは、電力回路SUBと、カートリッジCgと、遮断器RB1およびRB2(以下、区別しない場合は「遮断器RB」と称する)とを含む。電力回路SUBとカートリッジCgとは、遮断器RB1およびRB2を介して、互いに接続されている。SCUは、GCU500からの制御指令に従って各遮断器RBをON/OFF制御することによって、電力回路SUBとカートリッジCgとの接続状態(導通/遮断)を切り替えるように構成される。遮断器RBは、電磁式のメカニカルリレーであってもよい。遮断器RBは、ユーザが手動でON/OFFできるように構成されてもよい。
本実施の形態では、カートリッジCgは、電力回路SUBに対して着脱可能に構成される。たとえば遮断器RB1およびRB2の各々がOFF状態(遮断状態)であるときに、ユーザはカートリッジCgを電力回路SUBから取り外してもよい。電池ストリングStは空きカートリッジがあっても動作可能であるため、ユーザは、電池ストリングStに含まれるカートリッジCgの数を増減しやすい。こうした電池ストリングStは、電池の再利用に適している。
カートリッジCgにおいて、監視ユニットBSは、電池Bの状態(たとえば、電圧、電流、および温度)を検出して、検出結果をSCUへ出力するように構成される。監視ユニットBSは、電池Bの電圧を検出する電圧センサと、電池Bの電流を検出する電流センサと、電池Bの温度を検出する温度センサとを含む。また、監視ユニットBSは、上記センサ機能に加えて、SOC(State Of Charge)推定機能、SOH(State of Health)推定機能、電池電圧の均等化機能、診断機能、および通信機能をさらに有するBMS(Battery Management System)であってもよい。SCUは、各監視ユニットBSの出力に基づいて、各電池Bの状態(たとえば、温度、電流、電圧、SOC、および内部抵抗)を取得し、得られた各電池Bの状態をGCU100へ出力する。
電池ストリングStに含まれる電池回路モジュールMは共通の電線PLによって接続されている。電線PLは、各電池回路モジュールMの出力端子OT1およびOT2を含む。電池回路の出力端子OT2が、当該電池回路モジュールMに隣接する電池回路の出力端子OT1と接続されることによって、電池ストリングStに含まれる電池回路モジュールM同士が接続されている。
電力回路SUBは、第1スイッチング素子11(以下、「SW11」と称する)と、第2スイッチング素子12(以下、「SW12」と称する)と、第1ダイオード13と、第2ダイオード14と、チョークコイル15と、コンデンサ16と、出力端子OT1およびOT2とを備える。SW11およびSW12の各々は、駆動回路SUAによって駆動される。この実施の形態に係るSW11、SW12は、それぞれ本開示に係る「第1スイッチ」、「第2スイッチ」の一例に相当する。
電力回路SUBの出力端子OT1およびOT2間には、SW11と、コンデンサ16と、電池Bとが並列に接続されている。SW11は、電線PL上に位置し、出力端子OT1と出力端子OT2との接続状態(導通/遮断)を切り替えるように構成される。出力端子OT1は電線BL1を介して電池Bの正極に接続されており、出力端子OT2は電線BL2を介して電池Bの負極に接続されている。遮断器RB1、RB2は、それぞれ電線BL1、BL2に設けられている。電線BL1には、SW12およびチョークコイル15がさらに設けられている。電池回路BCにおいては、電池Bと直列に接続されたSW12がON状態(接続状態)であり、かつ、電池Bと並列に接続されたSW11がOFF状態(遮断状態)であるときに、出力端子OT1およびOT2間に電池Bの電圧が印加される。
出力端子OT1,OT2と電池Bとの間には、電線BL1および電線BL2の各々に接続されたコンデンサ16が設けられている。コンデンサ16の一端は、SW12とチョークコイル15との間で電線BL1に接続されている。コンデンサ16は、電池Bの電圧を平滑化して出力端子OT1およびOT2間に出力する。
SW11およびSW12の各々は、たとえばFET(電界効果トランジスタ)である。第1ダイオード13、第2ダイオード14は、それぞれSW11、SW12に対して並列に接続されている。SW12は、出力端子OT1とチョークコイル15との間に位置する。チョークコイル15は、SW12と電池Bの正極との間に位置する。電池B、チョークコイル15、およびコンデンサ16によってRCLフィルタが形成される。このRCLフィルタによって電流の平準化が図られる。なお、SW11およびSW12の各々は、FETに限られず、FET以外のスイッチであってもよい。
SCUは、GCU100からの制御指令に従ってゲート信号を生成する。駆動回路SUAは、電池回路モジュールMごとに設けられており、ゲート信号に従ってSW11およびSW12を駆動するGD(ゲートドライバ)81と、ゲート信号を遅延させる遅延回路82とを含む。電池回路モジュールMに含まれるSW11およびSW12の各々は、ゲート信号に従ってON/OFF制御される。
図3は、ゲート信号によって制御される電池回路モジュールMの動作の一例を示すタイムチャートである。この実施の形態では、SW11およびSW12を駆動するためのゲート信号として、矩形波信号を採用する。図3中に示されるゲート信号の「Low」、「High」は、それぞれゲート信号(矩形波信号)のLレベル、Hレベルを意味する。また、「出力電圧」は、出力端子OT1およびOT2間に出力される電圧を意味する。
電池回路モジュールMの初期状態では、駆動回路SUAにゲート信号が入力されず(ゲート信号=Lレベル)、SW11、SW12がそれぞれON状態、OFF状態になっている。
駆動回路SUAにゲート信号が入力されると、GD31が、入力されたゲート信号に従ってSW11およびSW12を駆動する。図3に示す例では、タイミングt1で、ゲート信号がLレベルからHレベルに立ち上がり、ゲート信号の立ち上がりと同時にSW11がON状態からOFF状態に切り替わる。そして、ゲート信号の立ち上がりから所定の時間(以下、「dt1」と表記する)だけ遅れたタイミングt2で、SW12がOFF状態からON状態に切り替わる。これにより、電池回路モジュールMが駆動状態になる。以下、ゲート信号の立ち上がりからdt1が経過するまでの期間を、「第1遅延期間」とも称する。
図4は、駆動状態の電池回路モジュールMを示す図である。駆動状態の電池回路BCでは、SW11がOFF状態かつSW12がON状態になることで、出力端子OT1およびOT2間に電池Bの電圧が印加される。電池Bの電圧がコンデンサ16を介して出力端子OT1およびOT2間に印加されることで、電圧Vmが出力端子OT1およびOT2間に出力される。
図3を参照して、タイミングt3で、ゲート信号がHレベルからLレベルに立ち下がると、ゲート信号の立ち下がりと同時にSW12がON状態からOFF状態に切り替わる。これにより、電池回路モジュールMが停止状態になる。停止状態の電池回路モジュールMでは、SW12がOFF状態になることで、出力端子OT1およびOT2間に電池Bの電圧が印加されなくなる。その後、ゲート信号の立ち下がりから所定の時間(以下、「dt2」と表記する)だけ遅れたタイミングt4で、SW11がOFF状態からON状態に切り替わる。dt1とdt2とは互いに同じであっても異なってもよい。この実施の形態では、dt1およびdt2の各々を100n秒とする。ただし、dt1およびdt2の各々は任意に設定できる。
以下、ゲート信号の立ち下がりからdt2が経過するまでの期間を、「第2遅延期間」とも称する。また、第2遅延期間終了から電池回路モジュールMが稼働状態になるまでの期間を、「停止期間」とも称する。
図5は、遅延期間における電池回路モジュールMの状態を示す図である。図5に示すように、第1遅延期間および第2遅延期間の各々では、SW11およびSW12の両方がOFF状態になる。
図6は、停止期間における電池回路モジュールMの状態を示す図である。図6に示すように、停止期間では、初期状態と同様、SW11がON状態かつSW12がOFF状態になる。
上記遅延期間および停止期間のいずれの期間においても、電池回路モジュールMは停止状態になっている。停止状態の電池回路モジュールMでは、出力端子OT1およびOT2間に電圧が印加されない。第1遅延期間および第2遅延期間が設けられていることで、SW11およびSW12が同時にON状態になること(すなわち、電池回路モジュールMが短絡状態になること)が抑制される。
電池ストリングStに含まれる電池回路モジュールMを、上述のように制御することにより、駆動状態の電池回路モジュールMの数を調整することができ、電池ストリングStの出力電圧を制御することができる。これにより、スウィープユニットSUは、0Vから、電池ストリングStに含まれる各電池Bの電圧の総和までの電圧を出力可能に構成される。
図1を参照して、第1直流スウィープユニット10は、上述のように構成されたスウィープユニットSUであり、電池ストリングSt1とSUDD1とを含む。電池ストリングSt1に含まれる電池回路モジュールMの電池Bは、ニッケル水素二次電池である。第1直流スウィープユニット10から出力された直流電力は、第1インバータ50に入力される。図7は、第1インバータ50の構成を示す図である。第1インバータ50は、三相インバータであり、U相アームに互いに直列に接続されたスイッチング素子q1、q2と、V相アームに互いに直列に接続されたスイッチング素子q3、q4と、W相アームに互いに直列に接続されたスイッチング素子q5、q6とを備える。スイッチング素子q1~q6のコレクタ-エミッタ間には、ダイオードd1~d6が逆並列にそれぞれ接続されている。
第1インバータ50の各相アームの中間点は、絶縁フィルタT1に接続されており、さらに、リレーR1および分電盤C1を介して、電力系統PGに接続される(図1参照)。第1インバータ50の各スイッチング素子q1~q6は、GCU100からの制御指令によって、たとえば、PWM(Pulse Width Modulation)制御によりON/OFFされる。第1インバータ50は、第1直流スウィープユニット10から出力される直流電力を交流電力(三相交流電力)に変換して電力系統PGへ供給する。また、第1インバータ50は、電力系統PGから供給される交流電力(三相交流電力)を、直流電力に変換して第1直流スウィープユニット10に供給し、電池ストリングSt1の電池Bを充電する。本実施の形態において、第1インバータ50は、電動車両の三相同期電動機を駆動するために使用された三相インバータを再利用している。
図1において、電池ストリングSt2とSCUD2とを含む第2直流スウィープユニット20、および、電池ストリングSt3とSCUD3とを含む第3直流スウィープユニット30は、第1直流スウィープユニット10と同じ構成である。第2直流スウィープユニット20に接続される第2インバータ60、および、第3直流スウィープユニット30に接続される第3インバータ70は、第1インバータ50と同じ構成である。第1インバータ50、第2インバータ60、および第3インバータ70の各相アームの中間点は、電力線で接続されており、第1直流スウィープユニット10、第2直流スウィープユニット20、および第3直流スウィープユニット30は、絶縁フィルタT1と(電気的に)並列に接続されている。これにより、第1電源回路2は、並列に接続された、第1直流スウィープユニット10、第2直流スウィープユニット20、および第3直流スウィープユニット30から、(第1~第3インバータ50~70を用いて)交流電力(三相交流電力)を出力する。
図8は、交流スウィープユニット3の構成を示す図である。第1のU相用電池ストリングSt4とSCUA1は、図2で説明したスウィープユニットSUと実質的に同一の構成である。「第2のU相用電池ストリングSt5とSCUA2」、「第1のV相用電池ストリングSt6とSCUA3」、「第2のV相用電池ストリングSt7とSCUA4」、「第1のW相用電池ストリングSt8とSCUA5」、および「第2のW相用電池ストリングSt9とSCUA6」も、同様である。
本実施の形態において、第1のU相用電池ストリングSt4、第1のV相用電池ストリングSt6、および第1のW相用電池ストリングSt8に含まれる電池回路モジュールMの電池Bは、三元系(NMC)のリチウムイオン二次電池である。また、第2のU相用電池ストリングSt5、第2のV相用電池ストリングSt7、および第2のW相用電池ストリングSt9に含まれる電池回路モジュールMの電池Bは、リン酸鉄系(LFP)のリチウムイオン二次電池である。
図8において、第1のU相用電池ストリングSt4の正極端子と第2のU相用電池ストリングSt5の正極端子とは、電力線PLuに接続されている。第1のV相用電池ストリングSt6の正極端子と第2のV相用電池ストリングSt7の正極端子とは、電力線PLvに接続されている。第1のW相用電池ストリングSt8の正極端子と第2のW相用電池ストリングSt9の正極端子とは、電力線PLwに接続されている。また、各電池ストリングSt4~St9の負極端子は、中性点N1に接続されている。これにより、交流スウィープユニット3は、「並列に接続された第1のU相用電池ストリングSt4および第2のU相用電池ストリングSt5」と、「並列に接続された第1のV相用電池ストリングSt6および第2のV相用電池ストリングSt7」と、「並列に接続された第1のW相用電池ストリングSt8および第2のW相用電池ストリングSt9」とがY結線された構成を備える。
SCUA1~A6は、GCU100からの制御指令により、各電池ストリングSt4~St9のストリング電圧(出力電圧)を、図8の下方に示した電圧波形になるように制御する。図8において、線L11は、第1のU相用電池ストリングSt4および第2のU相用電池ストリングSt5のストリング電圧でありる。線L12は、第1のV相用電池ストリングSt6および第2のV相用電池ストリングSt7のストリング圧である。線L13は、第1のW相用電池ストリングSt8および第2のW相用電池ストリングSt9のストリング電圧である。線L11、線L12、および線L13は、位相が120°ずれた正弦波であり、その周波数は60Hzである。
このように、各電池ストリングSt4~St9のストリング電圧が制御されることにより、電力線PLu、PLv、およびPLwの線間電圧は、図8の上方に示した電圧波形になる。図8において、線L21は電力線PLuと電力線PLvの線間電圧「Vuv」を示し、線L22は電力線PLwと電力線PLuの線間電圧「Vwu」を示し、線L23は電力線PLvと電力線Plwの線間電圧「Vvw」を示している。各線間電圧は、周期的に極性(正/負)が変わる正弦波交流波形になる。これにより、交流スウィープユニット3から、交流電力(三相交流電力)が出力される。
図1を参照して、第1電源回路2から出力された交流電力は、絶縁フィルタT1、リレーR1、および分電盤C1を介して、電力系統PGに供給される。交流スウィープユニット3から出力された交流電力は、絶縁フィルタT2、リレーR2、および分電盤C1を介して、電力系統PGに供給される。
絶縁フィルタT1および絶縁フィルタT2は、たとえば、LCLフィルタと三相トランスとを含む。絶縁フィルタT1および絶縁フィルタT2は、LCLフィルタによって三相交流成分のノイズ成分を低減し、三相トランスによって三相交流電力を所定の電圧(たとえば、200V)に変換するとともに入力側と出力側との絶縁を行う。
リレーR1およびリレーR2は、電磁式のメカニカルリレーであってよく、GCU100によってリレーR1のON/OFFを制御することにより、第1電源回路2と電力系統PGとの接続(並列)/遮断(解列)を行う。また、GCU100によってリレーR2のON/OFFを制御することにより、交流スウィープユニット3と電力系統PGとの接続/遮断を行う。
分電盤C1は、漏電遮断器および/またはブレーカを備え、第1電源回路2と交流スウィープユニット3とに含まれる電池ストリングStの電池Bを充電する際に、電力系統PGの電力を第1電源回路2と交流スウィープユニット3とに分配する。また、分電盤C1は、第1電源回路2と交流スウィープユニット3とから出力された電力を、電力系統PGへ供給する。
なお、第1電源回路2に含まれる電池ストリングStの電池Bを充電する際には、電力系統PGから供給される交流電力を第1~第3インバータ50~70が直流電力に変換することで電池Bを充電する。交流スウィープユニット3に含まれる電池ストリングStの電池Bを充電する際には、電力系統PGから供給される交流電圧に対して電池ストリングStの電圧が少し低くなるようにSCUA1~A6がSW11およびSW12を制御することで電池Bを充電する。
電力系統PGに供給された第1電源回路2の交流電力と交流スウィープユニット3の交流電力とは、電力系統PGの交流電力とともに、分電盤C2を介して構内または宅内の配線に供給される。
サーバ200は、電力会社(発電事業者および送配電事業者)によって提供される電力系統PG(電力網)の需給を管理する。サーバ200は、GCU100と通信可能に構成され、必要に応じて、GCU100に電力系統PGの電力調整を要求する。GCU100は、サーバ200からの要求を受け、スウィープユニットSUのSUCと、第1~第3インバータ50~70と、リレーR1、R2とを制御し、第1電源回路2および交流スウィープユニット3の入出力電力を調整する。
図9は、サーバ200から電力の出力を要求されたとき、GCU100が実行する処理の一例を示すフローチャートである。このフローチャートは、GCU100がサーバ200から出力要求を受信すると実行される。サーバ200から出力要求を受信すると、ステップ(以下、ステップを「S」と略す)10において、要求電力がα以下か否かを判定する。αは、電源システム1が有する電池ストリングStの数等の仕様によって、予め設定されている値であり、たとえば、10kWであってよい。要求出力がα以下の場合は、S10で肯定判定されS11へ進む。
S11では、GCU100は、交流スウィープユニット3から交流電力を出力し、電力系統PGへ供給する。また、GCU100は、リレーR2をONとして、交流スウィープユニット3と電力系統PGを接続(並列)するとともに、SCUA1~A6によって電池ストリングSt4~St9のSW11およびSW12を制御し、交流スウィープユニット3から交流電力(三相交流電力)を出力する。
要求電力がαより大きい場合、S10で否定判定されS12へ進む。S12では、GCU100は、要求電力がβ以下か否かを判定する。βは、電源システム1が有する電池ストリングStの数等の仕様によって、予め設定されている値であり、たとえば、25kWであってよい。要求電力がβ以下の場合は、S12で肯定判定されS13へ進む。
S13では、GCU100は、第1電源回路2から交流電力を出力し、電力系統PGへ供給する。GCU100は、リレーR1をONとして、第1電源回路2と電力系統PGを接続(並列)する。GCU100は、SCUD1~D3によって電池ストリングSt1~St3のSW11およびSW12を制御することにより、第1直流スウィープユニット10、第2直流スウィープユニット20および第3直流スウィープユニット30から直流電力を出力させる。GCU100は、その直流電力を第1~第3インバータ50~70を用いて交流電力に変換させ、その交流電力(三相交流電力)を電力系統PGに供給する。これにより、要求電力がαより大きくβ以下のときには、第1電源回路2から電力系統PGに交流電力が供給される。
要求電力がβより大きい場合、S12で否定判定されS14へ進む。S14では、GCU100は、第1電源回路2と交流スウィープユニット3とから交流電力を出力させて電力系統PGへ供給する。
第1電源回路2に含まれる、第1直流スウィープユニット10、第2直流スウィープユニット20および第3直流スウィープユニット30の電池ストリングStの電池Bは、ニッケル水素二次電池である。交流スウィープユニット3の電池ストリングStの電池Bは、リチウムイオン二次電池である。電池の特性上、ニッケル水素二次電池の出力密度(W/kg)は、リチウムイオン二次電池の出力密度より大きい。また、リチウムイオン二次電池のエネルギー密度(Wh/kg)は、ニッケル水素二次電池のエネルギー密度より大きい。このため、ニッケル水素二次電池は、ラゴンプロットにおいて、左上の領域に位置し、パワー型(出力型)電池であるといえる。また、リチウムイオン二次電池は、ラゴンプロットにおいて、右下の領域に位置し、エネルギー型(容量型)電池であるといえる。
交流スウィープユニット3では、電池ストリングStのSW11およびSW12を数十kHzで制御し、交流電力を出力しているので、効率が悪く(効率が低く)、最大出力(最大電力)を抑えることが望ましい。このため、交流スウィープユニット3の出力(パワー(W))を大きくするには、電池ストリングStの並列数を多くする必要があり、コストの増大を招く。このため、交流スウィープユニット3の電池ストリングStの電池Bは、低レートで充放電するよう使用することが好ましい。したがって、交流スウィープユニット3の電池ストリングStの電池Bは、エネルギー密度が大きい、エネルギー型電池が望ましく、本実施の形態では、リチウムイオン二次電池を用いている。
これに対して、第1電源回路2では、インバータを用いて交流電力を出力しているので、比較的効率が高く、最大出力を大きくすることが可能である。したがって、第1電源回路2の電池ストリングStの電池B(第1直流スウィープユニット10、第2直流スウィープユニット20および第3直流スウィープユニット30の電池ストリングStの電池B)として、出力密度が大きいパワー型電池を用いることにより、第1電源回路2から大きな出力(パワー(W))を出力することができるので、本実施の形態では、ニッケル水素二次電池を用いている。
図9の例によれば、要求電力がαより大きく、電源システム1から出力する電力が大きい場合には、第1電源回路2から交流電力を出力することができる(S13)。また、要求電力がα以下の場合、交流スウィープユニット3から交流電力が出力される(S11)。この場合、交流スウィープユニット3のエネルギー密度(交流スウィープユニット3の電池ストリングStの電池Bのエネルギー密度)が大きく、容量が大きいので、長時間に亘って交流電力を出力することができる。なお、要求電力がβより大きい場合、第1電源回路2と交流スウィープユニット3の両方から交流電力を出力することにより(S14)、要求電力を満足する交流電力を出力することが可能になる。
図10は、サーバ200から電力の調整要求がなされた際、GCU100が実行する処理の一例を示すフローチャートである。このフローチャートは、GCU100がサーバ200から調整要求を受信すると実行される。サーバ200から要求される調整力は、周波数変動および需給インバランスを抑制するための発電機出力等の出力調整が可能な電力量であり、周波数調整力と需給調整力に大別される。周波数調整力は、秒から分単位までの周波数変動に応じて出力調整されるガバナフリーや負荷周波数制御:LFC(Load Frequency Control)であり、需給調整力は、分単位以上の長周期の電力需給インバランスを解消する経済負荷配分制御:EDC(Economic Load Dispatching Control)である。周波数調整力は、指令値までの出力変化(応動時間)が速く、出力継続時間は比較的短い。需給調整力は、応動時間が遅く、出力継続時間が比較的長い。
図10を参照して、S20では、GCU100は、調整要求が周波数調整力か否かを判定する。調整要求が周波数調整力であり、肯定判定されると、S21へ進む。周波数調整力が要求されていない場合、否定判定され、S22へ進む。
S21では、GCU100は、第1電源回路2を稼働する。すなわち、GCU100は、リレーR1をONとして、第1電源回路2と電力系統PGとを(並列)接続する。調整要求が下げDR(デマンドレスポンス)の場合、GCU100は、SCUD1~D3によって電池ストリングSt1~St3のSW11およびSW12を制御することにより、第1直流スウィープユニット10、第2直流スウィープユニット20および第3直流スウィープユニット30から直流電力を出力させる。GCU100は、その直流電力を第1~第3インバータ50~70を用いて交流電力に変換し、その交流電力(三相交流電力)を電力系統PGに供給する。調整要求が上げDRの場合、GCU100は、第1~第3インバータ50~70を用いて電力系統PGの交流電力を直流電力に変換する。GCU100は、SCUD1~D3によって電池ストリングSt1~St3のSW11およびSW12を制御することにより、第1直流スウィープユニット10、第2直流スウィープユニット20および第3直流スウィープユニット30に含まれる電池Bを適宜充電する。S21の次はS22へ進む。
S22では、GCU100は、調整要求が需給調整力か否かを判定する。調整要求が需給調整力であり、肯定判定されると、S23へ進む。周波数調整力が要求されていない場合、否定判定され、今回のルーチンを終了する。
S23では、GCU100は、交流スウィープユニット3を稼働する。すなわち、GCU100は、リレーR2をONとして、交流スウィープユニット3と電力系統PGとを(並列)接続する。調整要求が下げDR(デマンドレスポンス)の場合、GCU100は、SCUA1~A6によって電池ストリングSt4~St9のSW11およびSW12を制御することにより、交流スウィープユニット3から交流電力(三相交流電力)を出力させる。調整要求が上げDRの場合、GCU100は、電力系統PGから供給される交流電圧に対して電池ストリングStの電圧が少し低くなるようにSCUA1~A6によりSW11およびSW12を制御し、交流スウィープユニット3に含まれる電池ストリングStの電池Bを適宜充電する。
なお、需給調整市場で扱う調整力は、指令値までの出力変化(応動時間)が速く、出力継続時間が短い順に一次調整力、二次調整力(1)、二次調整力(2)、三次調整力(1)および三次調整力(2)に分けられる。一次調整力に相当するガバナフリーでは、系統周波数の変化に対応して出力を増減させ、二次調整力(1)に相当するLFCでは、負荷変動に起因する周波数変動を調整する。二次調整力(2)および三次調整力(1)に相当するEDCでは、最経済となるよう発電機へ出力を配分する。なお、三次調整力(2)は、低速枠の調整力と位置付けられている。このため、要求調整力が一次調整力、二次調整力(1)のときには、調整要求が周波数調整力であると扱い、それ以外の調整力の場合に、調整要求が需給調整力であると扱ってよい。
図10の例によれば、応動時間が速く、高い応答性が求められる周波数調整力には、第1電源回路2を稼働することにより、調整要求に応える。第1電源回路2の電池ストリングSt(第1~第3直流スウィープユニット10~30の電池ストリングSt)の電池Bは、出力密度の高い(パワー型の)ニッケル水素二次電池であるので、周波数変動を好適に抑制することができる。需給調整力は調製時間が長く、比較的容量が大きな電源システムが求められる。調整時間が長く、容量が求められる需要調整力には、交流スウィープユニット3を稼働することにより、調整要求に応える。交流スウィープユニット3の電池ストリングStの電池Bは、エネルギー密度の高い(容量型の)リチウムイオン二次電池であるので、需要調整に好適に応えることが可能になる。このように、図10の例によれば、電力調整において求められる、応動時間および調整時間に応じて、電力系統PGと交流スウィープユニット3の接続/遮断、および、電力系統PGと第1電源回路2の接続/遮断が制御される。
本実施の形態によれば、第1~第3直流スウィープユニット10~30の出力を第1~第3インバータ50~70を用いて交流電力に変換し、交流電力を出力する第1電源回路2の電池ストリングStの電池として、出力密度の高いニッケル水素二次電池を使用している。また、Y結線された、第1、第2U相用電池ストリングSt4、St5、第1、第2V相用電池ストリングSt6、St7、および第1、第2W相用電池ストリングSt8、St9から、交流電力を出力する交流スウィープユニット3の電池Bとして、エネルギー密度の高いリチウムイオン二次電池を使用している。したがって、本実施の形態の電源システム1では、パワー型電池(ニッケル水素二次電池)とエネルギー型電池(リチウムイオン二次電池)とを組み合わせることで、各電池に得意な出力(高出力/長期出力)を行わせることが可能になる。これにより、エネルギー型電池単独あるいはパワー型電池単独の電源システムよりも、安価に高出力かつ高容量の電源システム1を提供することができる。
本実施の形態では、交流スウィープユニット3は、電池ストリングStをY結線することで、交流(三相交流)を出力している。インバータを用いていないので、コストを削減することができる。
本実施の形態では、第1電源回路2では、第1直流スウィープユニット10、第2直流スウィープユニット20、および第3直流スウィープユニット30が並列に接続されている。第1~第3直流スウィープユニット10~30は、本開示の「直流スウィープユニット」に相当し、電池ストリングSt1~St3は、本開示の「第1電池ストリング」に相当する。本実施の形態では、直流スウィープユニットを3個並列に接続していたが、直流スウィープユニットの数は、1個であってもよく、4個以上であってもよい。
本実施の形態では、交流スウィープユニット3において、U相用電池ストリングとして、第1および第2のU相用電池ストリングSt4、St5を使用し、V相用電池ストリングとして、第1および第2のV相用電池ストリングSt6、St7を使用し、W相用電池ストリングとして、第1および第2のW相用電池ストリングSt8、St59を使用している。U相用電池ストリング、V相用電池ストリング、およびW相用電池ストリングの数は、1個であってもよく、3個以上であってもよい。
本実施の形態では、第1のU相用電池ストリングSt4、第1のV相用電池ストリングSt6、および第1のW相用電池ストリングSt8の電池Bに、三元系(NMC)のリチウムイオン二次電池を使用し、第2のU相用電池ストリングSt5、第2のV相用電池ストリングSt7、および第2のW相用電池ストリングSt9の電池Bに、リン酸鉄系(LFP)のリチウムイオン二次電池を使用していたが、各電池ストリングStのリチウムイオン二次電池の種類は任意であってよく、各タイプのリチウムイオン二次電池が混在していてもよい。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 電源システム、2 第1電源回路、3 交流スウィープユニット、10 第1直流スウィープユニット、11 第1スイッチング素子、12 第2スイッチング素子、13 第1ダイオード、14 第2ダイオード、15 チョークコイル、16 コンデンサ、20 第2直流スウィープユニット、30 第3直流スウィープユニット、50、60、70 インバータ、81 ゲートドライバ、82 遅延回路、100 GCU、200 サーバ、A1~A6 SCU、B 電池、BC 電池回路、BS 監視ユニット、Cg カートリッジ、C1、C2 分電盤、D1~D3 SCU、M 電池回路モジュール、OT1、OT2 出力端子、PG 電力系統、R1、R2 リレー、RB1、RB2 遮断器、SUA 駆動回路、SUB 電力回路、SWL1,St 電池ストリング、SU スウィープユニット、 T1、T2 絶縁フィルタ。

Claims (5)

  1. Y結線された、U相用電池ストリング、V相用電池ストリング、およびW相用電池ストリングから交流電力を出力する交流スウィープユニットと、
    第1電池ストリングを含む直流スウィープユニットの出力をインバータを用いて交流電力に変換し、交流電力を出力する第1電源回路と、を備え、
    前記U相用電池ストリング、前記V相用電池ストリング、前記W相用電池ストリング、および前記第1電池ストリングの各々は、直列接続された複数の電池回路モジュールを含み、
    前記複数の電池回路モジュールの各々は、
    電池と、
    前記電池の電圧を出力する出力端子と、
    前記出力端子に接続されるとともに前記電池に並列に接続された第1スイッチと、
    前記電池に直列に接続された第2スイッチと、を含み、
    前記第1スイッチがOFF状態かつ前記第2スイッチがON状態であるときに前記出力端子に前記電池の電圧が印加されるように構成され、
    前記第1電池ストリングに含まれる前記電池の出力密度は、前記U相用電池ストリング、前記V相用電池ストリング、および前記W相用電池ストリングに含まれる前記電池の出力密度よりも高い、電源システム。
  2. 前記U相用電池ストリング、前記V相用電池ストリング、および前記W相用電池ストリングに含まれる前記電池のエネルギー密度は、前記第1電池ストリングに含まれる前記電池のエネルギー密度よりも高い、請求項1に記載の電源システム。
  3. 前記第1電池ストリングに含まれる前記電池は、ニッケル水素電池であり、
    前記U相用電池ストリング、前記V相用電池ストリング、および前記W相用電池ストリングに含まれる前記電池は、リチウムイオン電池である、請求項1または請求項2に記載の電源システム。
  4. 前記交流スウィープユニットおよび前記第1電源回路を制御する制御装置をさらに備え、
    前記制御装置は、要求される電力が所定値より大きい場合、前記第1電源回路から交流電力を出力するよう構成されている、請求項1から請求項3のいずれか1項に記載の電源システム。
  5. 前記交流スウィープユニットおよび前記第1電源回路は、外部電源と電気的に接続可能に構成され、
    前記制御装置は、
    前記交流スウィープユニットおよび前記第1電源回路の入出力電力によって前記外部電源の電力調整を行うように前記交流スウィープユニットおよび前記第1電源回路を制御し、
    前記電力調整において求められる、応動時間および調整時間に応じて、前記外部電源と前記交流スウィープユニットの接続/遮断、および、前記外部電源と前記第1電源回路の接続/遮断を制御するよう構成されている、請求項4に記載の電源システム。
JP2021136920A 2021-08-25 2021-08-25 電源システム Active JP7480761B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021136920A JP7480761B2 (ja) 2021-08-25 2021-08-25 電源システム
US17/851,664 US11984746B2 (en) 2021-08-25 2022-06-28 Power supply system
CN202210793311.2A CN115733200A (zh) 2021-08-25 2022-07-07 电源系统
EP22190488.1A EP4142102A3 (en) 2021-08-25 2022-08-16 Power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021136920A JP7480761B2 (ja) 2021-08-25 2021-08-25 電源システム

Publications (2)

Publication Number Publication Date
JP2023031436A true JP2023031436A (ja) 2023-03-09
JP7480761B2 JP7480761B2 (ja) 2024-05-10

Family

ID=82939779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021136920A Active JP7480761B2 (ja) 2021-08-25 2021-08-25 電源システム

Country Status (3)

Country Link
EP (1) EP4142102A3 (ja)
JP (1) JP7480761B2 (ja)
CN (1) CN115733200A (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5769386B2 (ja) 2010-06-17 2015-08-26 株式会社デンソー 電気推進装置およびこれを備えた電動車両
GB2541352B (en) * 2015-04-30 2022-02-16 Porsche Ag Apparatus and method for an electric power supply
JP6254139B2 (ja) 2015-11-28 2017-12-27 本田技研工業株式会社 電力供給システム及び輸送機器、並びに、電力伝送方法
US11152796B2 (en) * 2016-06-24 2021-10-19 National Science Foundation Method and apparatus for uniform battery system state of charge management
JP6531745B2 (ja) 2016-10-27 2019-06-19 株式会社豊田中央研究所 電源装置及び電源装置の制御方法
JP7022346B2 (ja) 2018-11-28 2022-02-18 トヨタ自動車株式会社 電源システム
TWI721621B (zh) 2019-10-29 2021-03-11 財團法人工業技術研究院 基於電池重組之可展延式三相交流系統及其控制方法

Also Published As

Publication number Publication date
EP4142102A3 (en) 2023-03-08
EP4142102A2 (en) 2023-03-01
JP7480761B2 (ja) 2024-05-10
CN115733200A (zh) 2023-03-03
US20230063475A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
CN103429454B (zh) 电动车辆的电池充电器
JP5470963B2 (ja) 給電装置
KR20210137526A (ko) 적응형 충전 프로토콜을 갖는 ev 충전기
EP4142100A1 (en) Power supply system
EP4138249B1 (en) Electric power supply system
US11967840B2 (en) Power supply system
JP7480761B2 (ja) 電源システム
US11984746B2 (en) Power supply system
CN113013919B (zh) 一种对称式双模光伏逆变器装置
JP7464020B2 (ja) 電源システム
CN107769212B (zh) 一种储能调频方法
JP7464019B2 (ja) 電源システム
JP7480760B2 (ja) 電源システム、及びエネルギーマネジメント方法
CN115719952A (zh) 双极直流配电网中单极源荷的极性切换稳定控制方法
JP2024037547A (ja) 電源システム
KR20150018297A (ko) 전력 변환 장치, 그를 포함하는 에너지 저장 시스템 및 그의 구동 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240408