JP2023029180A - Measurement device for frozen ground pore pressure change - Google Patents
Measurement device for frozen ground pore pressure change Download PDFInfo
- Publication number
- JP2023029180A JP2023029180A JP2021213555A JP2021213555A JP2023029180A JP 2023029180 A JP2023029180 A JP 2023029180A JP 2021213555 A JP2021213555 A JP 2021213555A JP 2021213555 A JP2021213555 A JP 2021213555A JP 2023029180 A JP2023029180 A JP 2023029180A
- Authority
- JP
- Japan
- Prior art keywords
- medium
- pedestal
- mounting
- groove
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 29
- 239000011148 porous material Substances 0.000 title claims abstract description 20
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims abstract description 69
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 45
- 238000007789 sealing Methods 0.000 claims abstract description 23
- 239000000463 material Substances 0.000 claims abstract description 8
- 239000002689 soil Substances 0.000 claims description 28
- 230000008595 infiltration Effects 0.000 claims description 18
- 238000001764 infiltration Methods 0.000 claims description 18
- 239000000853 adhesive Substances 0.000 claims description 10
- 230000001070 adhesive effect Effects 0.000 claims description 10
- 238000000576 coating method Methods 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 8
- 230000035515 penetration Effects 0.000 claims description 8
- 238000009530 blood pressure measurement Methods 0.000 claims description 6
- 230000004308 accommodation Effects 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 2
- 238000003912 environmental pollution Methods 0.000 abstract description 3
- 238000009510 drug design Methods 0.000 abstract description 2
- 239000000523 sample Substances 0.000 description 24
- 230000003204 osmotic effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- AMTWCFIAVKBGOD-UHFFFAOYSA-N dioxosilane;methoxy-dimethyl-trimethylsilyloxysilane Chemical compound O=[Si]=O.CO[Si](C)(C)O[Si](C)(C)C AMTWCFIAVKBGOD-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229940083037 simethicone Drugs 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L11/00—Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/0007—Fluidic connecting means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/0092—Pressure sensor associated with other sensors, e.g. for measuring acceleration or temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/06—Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
- G01L19/0627—Protection against aggressive medium in general
- G01L19/0654—Protection against aggressive medium in general against moisture or humidity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/58—Construction or demolition [C&D] waste
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Sampling And Sample Adjustment (AREA)
- Image Analysis (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Image Processing (AREA)
Abstract
Description
本発明は、凍土パラメータ測定装置の技術分野に関し、具体的には、凍土間隙水圧変化の
測定装置に関する。
TECHNICAL FIELD The present invention relates to the technical field of frozen soil parameter measurement devices, and more particularly to a device for measuring changes in frozen soil pore water pressure.
高冷地域の工事建設の主な災害である凍結融解は高冷地域の工事建設に大きな問題をもた
らした。研究では、凍結融解が土壌構造及び強度に及ぼす影響は、凍結融解中の間隙水圧
の変化履歴と密接に関連していることがわかった。
Freezing and thawing, which is the main disaster of engineering construction in high cold areas, has brought great problems to engineering construction in high cold areas. Studies have shown that the effects of freeze-thaw on soil structure and strength are closely related to the change history of pore water pressure during freeze-thaw.
したがって、凍結融解中の間隙水圧変化の研究は、凍結融解による影響を研究するための
重要なパラメータになっている。しかし、土壌が凍結している状態で土壌の間隙水圧を測
定することは常に技術的に困難であるため、現在、エタノール、シメチコン、n-デカン
など負の温度で凍結しにくい液体物質を媒体として凍土間隙水圧変化を測定するのが一般
的であるが、これらの物質は土壌を汚染するため、従来技術では、凍結土壌の間隙水圧変
化を測定するための特定の基準や装置はまだなかった。このため、現在のところ、凍結土
壌の間隙水圧変化を測定する装置が求められる。
Therefore, the study of pore water pressure changes during freeze-thaw has become an important parameter for studying freeze-thaw effects. However, it is always technically difficult to measure the pore water pressure of frozen soil. Although it is common to measure frozen soil pore water pressure changes, in the prior art there has not yet been a specific standard or device for measuring frozen soil pore water pressure changes, as these substances contaminate the soil. Therefore, there is currently a need for a device that measures pore water pressure changes in frozen soil.
[発明が解決しようとする課題]
本発明の目的は凍土間隙水圧変化の測定装置を提供することである。
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is an object of the present invention to provide an apparatus for measuring changes in frozen soil pore water pressure.
[課題を解決するための手段]
本発明の技術案は以下のとおりである。装着ベースと、下端が装着ベースに装着され得る
媒体基部と、下端が装着ベースに装着され得るとともに、上端が媒体基部に可動に接続さ
れる浸透基部とを含む凍土間隙水圧変化の測定装置であって、
前記装着ベースは、装着ヘッドが上端に設けられる装着台座と、装着台座の上面の中心に
嵌設される圧力センサとを含み、前記装着ヘッドの内側に第1の装着溝が設けられ、
前記媒体基部は、上端に浸透溝が設けられ、下端に圧力測定溝が設けられる媒体台座と、
媒体台座に設けられ、且つ上部ポートが浸透溝と連通し、下部ポートが圧力測定溝と連通
する媒体槽配管とを含み、
前記浸透基部は、上端に収容溝が設けられ、下端に第2の装着溝が設けられる浸透台座と
、収容溝内に装着される浸透ヘッドとを含み、
前記浸透台座の下端は第2の装着溝、装着ヘッドを介して装着台座に可動装着され、前記
媒体台座の下端は圧力測定溝の側壁、第1の装着溝を介して装着台座に可動装着され、且
つ媒体台座は浸透台座の内部に位置し、媒体台座の上端の外側壁は浸透台座の内側壁に可
動接続され、前記浸透ヘッドの下端は浸透溝に嵌め込まれ、前記圧力センサの上端は圧力
測定溝に嵌め込まれ、
前記媒体台座と装着台座の接続箇所、媒体台座と浸透台座の接続箇所のいずれにもシール
モジュールが設けられ、
前記媒体槽配管の内径が0.05~0.08mmであり、且つ媒体槽配管は親水性材料を
用い、媒体槽配管内に界面水が充填されている。親水性材料の表面が水分子とミクロンレ
ベルの相互作用力で相互作用し、この範囲内の水が一般に界面水と呼ばれ、界面水の物理
的及び機械的特性にはバルク水とは大きな差異が存在し、このため、媒体槽配管の内径を
0.05~0.08mmに設定することによって、媒体槽配管内に充填されている媒体水
が界面水となり、負圧でエアキャビティが形成される下限が低下し、装置の測定範囲が効
果的に拡大され、且つ界面水を力伝達媒体とすると、他の媒体の使用による環境汚染の問
題が効果的に回避される。
[Means to solve the problem]
The technical solution of the present invention is as follows. A device for measuring changes in frozen soil pore water pressure, comprising: a mounting base; a medium base whose lower end can be mounted on the mounting base; and an infiltration base whose lower end can be mounted on the mounting base and whose upper end is movably connected to the medium base. hand,
The mounting base includes a mounting base on which a mounting head is provided, and a pressure sensor fitted in the center of the upper surface of the mounting base, and a first mounting groove is provided inside the mounting head,
The medium base has a medium pedestal having an upper end provided with a permeation groove and a lower end provided with a pressure measuring groove;
media bath piping provided on the media pedestal and having an upper port in communication with the percolation groove and a lower port in communication with the pressure measurement groove;
The infiltration base includes an infiltration pedestal having an upper end provided with a receiving groove and a lower end provided with a second mounting groove, and an infiltration head mounted in the receiving groove,
The lower end of the permeation pedestal is movably mounted on the mounting pedestal via the second mounting groove and the mounting head, and the lower end of the medium pedestal is movably mounted on the mounting base via the side wall of the pressure measuring groove and the first mounting groove. , and the medium pedestal is located inside the osmotic pedestal, the outer wall of the upper end of the medium pedestal is movably connected to the inner wall of the osmotic pedestal, the lower end of the osmotic head is fitted in the osmotic groove, and the upper end of the pressure sensor is pressure Fitted in the measuring groove,
A seal module is provided at both the connection point between the medium pedestal and the mounting pedestal and the connection point between the medium pedestal and the permeation pedestal,
The inner diameter of the medium tank pipe is 0.05 to 0.08 mm, the medium tank pipe uses a hydrophilic material, and the medium tank pipe is filled with interfacial water. The surface of a hydrophilic material interacts with water molecules with a micron-level interaction force, and the water within this range is generally called interfacial water, and the physical and mechanical properties of the interfacial water are significantly different from those of bulk water. Therefore, by setting the inner diameter of the medium tank pipe to 0.05 to 0.08 mm, the medium water filled in the medium tank pipe becomes interfacial water, and an air cavity is formed under negative pressure. The lower limit of the force is lowered, the measurement range of the device is effectively expanded, and the use of interfacial water as the force transmission medium effectively avoids the problem of environmental pollution caused by the use of other media.
本発明の一態様として、前記シールモジュールは、具体的には、シールパッドであり、且
つ前記媒体台座と装着台座の接続箇所、媒体台座と浸透台座の接続箇所のいずれにも、前
記シールモジュールを係止するためのシール係止溝が設けられている。シールパッドが設
けられることにより、装着台座、媒体台座、浸透台座の接続ポートが効果的にシールされ
、このように、実際には凍土間隙水圧を測定するにあたって、装置のシールが不十分であ
ることによって測定が不正確になるという問題を効果的に回避する。
As one aspect of the present invention, the seal module is specifically a seal pad, and the seal module is provided at both the connection point between the medium pedestal and the mounting pedestal and the connection point between the medium pedestal and the permeation pedestal. A seal locking groove is provided for locking. The provision of a seal pad effectively seals the connection ports of the mounting seat, medium seat and infiltration seat, thus, in practice, the sealing of the device is inadequate in measuring the permafrost pore water pressure. To effectively avoid the problem of inaccurate measurement due to
本発明の一態様として、前記媒体台座は、装着台座、浸透台座のそれぞれにネジで接続さ
れ、前記シールモジュールは、具体的には、ネジに塗布された嫌気性接着剤である。嫌気
性接着剤を用いて装着台座、媒体台座、浸透台座の接続接触面をさらに効果的にシールす
ることができる。
In one aspect of the present invention, the media pedestal is connected to each of the mounting pedestal and the permeation pedestal by screws, and the seal module is specifically an anaerobic adhesive applied to the screws. An anaerobic adhesive can be used to more effectively seal the connecting contact surfaces of the mounting pedestal, media pedestal, and infiltration pedestal.
本発明の一態様として、前記装着台座、浸透台座の露出部位全体にシール層が設けられる
。露出部位にシール層が設けられると、装置全体のシール性が効果的に確保され、凍土中
の間隙水が浸透ヘッドを介してしか装置に入ることができず、測定精度がさらに向上する
。
本発明の一態様として、前記媒体槽配管の内壁には超親水性コーティングが設けられ、超
親水性コーティングは、具体的には、ナノTiO2コーティングである。超親水性コーテ
ィングによって、その表面が水分子と相互作用することを効果的に確保し、媒体槽配管中
に界面水が充填されることを確保する。
As one aspect of the present invention, a sealing layer is provided on the entire exposed portions of the mounting base and the permeation base. If the exposed portion is provided with a sealing layer, the sealing performance of the entire device is effectively ensured, and interstitial water in the frozen soil can only enter the device through the permeation head, further improving the measurement accuracy.
As one aspect of the present invention, the inner wall of the medium tank pipe is provided with a super-hydrophilic coating, and the super-hydrophilic coating is specifically a nano-TiO2 coating. The superhydrophilic coating effectively ensures that its surface interacts with water molecules and ensures that the interfacial water is filled in the media bath tubing.
本発明の一態様として、補助手段を含み、
前記補助手段は、装着ベースと、装着ベースに装着されて箱体を構成し得る板材と、装着
ベースに装着されるサンプル収容ユニットとを含み、前記サンプル収容ユニットは、装着
ベースに装着される底部密閉板と、底端が底部密閉板に可動接続されて、測定対象土壌サ
ンプルを収容するための試料収容管と、箱体の頂部に装着されて、試料収容管のトップに
可動接続され、且つ内部に凍結液コイルが巻設された頂部密閉板と、底部密閉板、頂部密
閉板の温度をそれぞれ制御する2組の凍結液サイクル温度制御部材とを含み、
前記試料収容管の側壁に測定孔が開けられている。補助手段によれば、現場以外の測定の
場合のサンプリング測定のシナリオを可能とし、且つ温度パラメータを変えて、温度影響
による研究凍土間隙水圧の変化を研究することを可能とする。
As one aspect of the present invention, including auxiliary means,
The auxiliary means includes a mounting base, a plate that can be mounted on the mounting base to form a box, and a sample containing unit mounted on the mounting base, wherein the sample containing unit is a bottom portion mounted on the mounting base. a sealing plate, a sample containing tube having a bottom end movably connected to the bottom sealing plate and containing a soil sample to be measured, mounted on the top of the box and movably connected to the top of the sample containing tube, and a top sealing plate having a cryogenic fluid coil wound therein;
A measurement hole is formed in the side wall of the sample storage tube. Auxiliary means allow for sampling measurement scenarios for off-site measurements and for varying temperature parameters to study changes in study permafrost pore water pressure due to temperature effects.
本発明の一態様として、前記補助手段は、試料収容管の内部へ水を補給するための水補給
装置をさらに含む。水補給装置によれば、試験において凍結融解中の土壌サンプルへ水分
を補給することができる。
As one aspect of the present invention, the auxiliary means further includes a water supply device for supplying water to the inside of the sample storage tube. The rehydration device allows rehydration of the soil sample during freezing and thawing in the test.
従来技術に比べて、本発明の有益な効果は以下のとおりである。本発明は、全体として構
造の設計が合理的であり、媒体槽配管の特殊な構造及び材質と界面水とを組み合わせるこ
とにより、媒体内に水泡が生じやすく、その結果、測定失敗や測定範囲が小さいという従
来技術の問題を効果的に回避し、また、エタノール、n-デカン、シメチコンなどの物質
の代わりとして界面水を凍土間隙水圧測定用の媒体とすることによって、測定による環境
汚染の問題を効果的に回避し、さらに、装置全体の構造と組み合わせることで良好なシー
ル性を可能とし、実際の適用には測定範囲をより広げる。
The beneficial effects of the present invention compared to the prior art are as follows. The present invention has a rational design of the structure as a whole, and by combining the special structure and material of the medium tank piping with the interfacial water, water bubbles are likely to occur in the medium, resulting in measurement failure and measurement range reduction. By effectively avoiding the prior art problem of small size, and by using interfacial water as a medium for frozen soil pore water pressure measurement instead of substances such as ethanol, n-decane, and simethicone, the problem of environmental pollution due to measurement is eliminated. It is effectively avoided, and combined with the structure of the whole device, it enables good sealing performance, which makes the measurement range wider for practical application.
[符号の説明]
1-装着ベース、101-装着ヘッド、102-第1の装着溝、11-装着台座、12-
圧力センサ、2-媒体基部、201-浸透溝、202-圧力測定溝、21-媒体台座、2
2-媒体槽配管、3-浸透基部、301-収容溝、302-第2の装着溝、31-浸透台
座、32-浸透ヘッド、4-シールモジュール、5-補助手段、51-装着ベース、52
-箱体、520-板材、53-底部密閉板、54-試料収容管、540-測定孔、55-
頂部密閉板。
[Description of symbols]
1-mounting base, 101-mounting head, 102-first mounting groove, 11-mounting base, 12-
pressure sensor, 2 - medium base, 201 - penetration groove, 202 - pressure measurement groove, 21 - medium base, 2
2 - medium tank pipe, 3 - infiltration base, 301 - accommodation groove, 302 - second mounting groove, 31 - infiltration base, 32 - infiltration head, 4 - seal module, 5 - auxiliary means, 51 - mounting base, 52
- box body, 520 - plate material, 53 - bottom sealing plate, 54 - sample storage tube, 540 - measurement hole, 55 -
Top sealing plate.
実施例1
図1、図2に示す凍土間隙水圧変化の測定装置は、装着ベース1と、下端が装着ベース1
に装着され得る媒体基部2と、下端が装着ベース1に装着され得るとともに、上端が媒体
基部2に可動に接続される浸透基部3とを含み、
装着ベース1は、装着ヘッド101が上端に設けられる装着台座11と、装着台座11の
上面の中心に嵌設される圧力センサ12とを含み、装着ヘッド101の内側に第1の装着
溝102が設けられ、
媒体基部2は、上端に浸透溝201が設けられ、下端に圧力測定溝202が設けられる媒
体台座21と、媒体台座21に設けられ、且つ上部ポートが浸透溝201と連通し、下部
ポートが圧力測定溝202と連通する媒体槽配管22とを含み、
浸透基部3は、上端に収容溝301が設けられ、下端に第2の装着溝302が設けられる
浸透台座31と、収容溝301内に装着される浸透ヘッド32とを含み、
浸透台座31の下端は、第2の装着溝302、装着ヘッド101を介して装着台座11に
可動装着され、媒体台座21の下端は圧力測定溝202の側壁、第1の装着溝102を介
して装着台座11に可動装着され、且つ媒体台座21は浸透台座31の内部に位置し、媒
体台座21の上端の外側壁は浸透台座31の内側壁に可動接続され、浸透ヘッド32の下
端は浸透溝201に嵌め込まれ、圧力センサ12の上端は圧力測定溝202に嵌め込まれ
、
媒体台座21と装着台座11の接続箇所、媒体台座21と浸透台座31の接続箇所のいず
れにもシールモジュール4が設けられ、媒体台座21は装着台座11、浸透台座31のそ
れぞれにネジで接続され、シールモジュール4は、具体的には、ネジに塗布されている嫌
気性接着剤であり、ここで、嫌気性接着剤は、具体的には、型号番号XK569の管路用
嫌気性接着剤であり、
媒体槽配管22の内径が0.05mmであり、且つ媒体槽配管22は親水性材料、具体的
にはクロム金属を用い、媒体槽配管22内に界面水が充填されている。
Example 1
The apparatus for measuring pore water pressure in frozen soil shown in FIGS.
and an
The
The
The
The lower end of the
A
The inner diameter of the
実施例2
実施例1と比較して、媒体槽配管22の内径が0.05mmであり、
図3、図4に示すように、シールモジュール4は、具体的には、シールパッドであり、且
つ媒体台座21と装着台座11の接続箇所、媒体台座21と浸透台座31の接続箇所のい
ずれにも、シールモジュール4を係止するためのシール係止溝が設けられている点で相違
している。
Example 2
Compared with Example 1, the inner diameter of the
As shown in FIGS. 3 and 4, the
実施例3
実施例1と比較して、媒体槽配管22の内径が0.06mmであり、装着台座11、浸透
台座31の露出部位全体にシール層が設けられる点で相違している。
Example 3
Compared with Example 1, the inner diameter of the
実施例4
実施例1と比較して、媒体槽配管22の内径が0.08mmであり、媒体台座21は装着
台座11、浸透台座31のそれぞれにネジで接続され、シールモジュール4は、具体的に
は、ネジに塗布されてている嫌気性接着剤であり、ここで、嫌気性接着剤は、具体的には
、型番XK569の管路用嫌気性接着剤であり、媒体台座21と装着台座11の接続箇所
、媒体台座21と浸透台座31の接続箇所のいずれにも、シールモジュール4が設けられ
、シールモジュール4は、具体的には、シールパッドであり、且つ媒体台座21と装着台
座11の接続箇所、媒体台座21と浸透台座31の接続箇所のいずれにも、シールモジュ
ール4を係止するためのシール係止溝が設けられ、装着台座11、浸透台座31の露出部
位全体にシール層が設けられ、シール層は、具体的にはMatriXbond3533P
UR電子構造用接着剤を用いる点で相違している。
Example 4
Compared with Example 1, the inner diameter of the
The difference is that UR electronic structural adhesive is used.
実施例5
実施例1と比較して、媒体槽配管22の内径が0.08mmであり、媒体槽配管22の内
壁に超親水性コーティングが設けられ、超親水性コーティングは、具体的にはナノTiO
2コーティングである点で相違している。
Example 5
Compared with Example 1, the inner diameter of the
The difference is that there are two coatings.
実施例6
実施例1と比較して、図5に示すように、補助手段5をさらに備え、補助手段5は、装着
ベース51と、装着ベース51に装着されて箱体52を構成し得る板材520と、装着ベ
ース1に装着されるサンプル収容ユニットとを含み、サンプル収容ユニットは、装着ベー
ス51に装着される底部密閉板53と、底端が底部密閉板53に可動接続されて、測定対
象土壌サンプルを収容する試料収容管54と、箱体52の頂部に装着されて、試料収容管
54のトップに可動接続され、且つ内部に凍結液コイルが巻設された頂部密閉板55と、
底部密閉板53、頂部密閉板55の温度をそれぞれ制御する2組の凍結液サイクル温度制
御部材と、試料収容管54の内部へ水を補給するための水補給装置とを含み、試料収容管
54の側壁に測定孔540が開けられ、ここで、板材520は具体的にはポリメチルメタ
クリレートを用い、試料収容管54は具体的にはポリメチルメタクリレートタンクである
点で相違している。
なお、測定孔540は、土壌サンプルの異なる部位の温度及び圧力を測定することに用い
られ、具体的な数については実際の測定に応じて開けられてもよく、特に限定するもので
はなく、本実施例では、土壌サンプルの異なる部位の温度を測定する6個の測定孔540
及び土壌サンプルの異なる部位の圧力を測定する3つの測定孔540が開けられる。
Example 6
Compared with the first embodiment, as shown in FIG. 5, the auxiliary means 5 is further provided with a mounting
Two sets of freezing liquid cycle temperature control members for controlling the temperatures of the
The measurement holes 540 are used to measure the temperature and pressure of different parts of the soil sample, and the specific number may be opened according to the actual measurement, and is not particularly limited. In an embodiment six
And three
実験例
1)青海チベット高原の北麓河区域のある青海-チベット鉄道の沿線で実地テストを行い
、具体的には、本実施例1~5の装置及びある凍土間隙水圧測定デバイスを用いて、同一
検出点(このテスト点のプローブの埋め位置はシルト質粘土、埋め深さは20cm、温度
は-1.0℃、含水量は98%)を複数回検出し、10バッチのデータをランダムに記録
し、この地点でサンプリングした後、本実施例6の装置を用いて複数回測定し、10組の
データをランダムに記録し、具体的な測定結果を表1に示す。
表1:本実施例1~6の装置及び対照群で測定した凍土間隙水圧の値
Experimental example 1) A field test was conducted along the Qinghai-Tibet railway in the Beilu River area of the Qinghai-Tibet Plateau. Detect the same detection point (the buried position of the probe at this test point is silty clay, the buried depth is 20 cm, the temperature is -1.0 ° C, and the water content is 98%) multiple times, and 10 batches of data are randomly collected. After recording and sampling at this point, the device of Example 6 was used to measure multiple times, 10 sets of data were randomly recorded, and the specific measurement results are shown in Table 1.
Table 1: Values of frozen soil pore water pressure measured with the devices of Examples 1 to 6 and the control group
結論:表1のデータから分かるように、従来技術に比べて、本発明の実施例1~6の装置
は、凍土間隙水圧をテストするときに安定性に優れている。
2)青海チベット高原の北麓河区域のある青海-チベット鉄道の沿線の土壌サンプルにつ
いて室内テストを行い、具体的には、本発明の実施例1~5の装置及びある凍土間隙水圧
測定デバイスを用いて、土壌サンプルパラメータを変えて、バッチごとに測定を行い(土
壌サンプル温度(>-10℃)、飽和度(100%~5%)、負荷(<3MPa)である
変数パラメータを変える)、表2に示すような測定範囲の表を得る。
表2:本発明の実施例1~5の装置及び土壌サンプルパラメータを変えた後の対照群の測
定範囲の値
Conclusion: As can be seen from the data in Table 1, compared to the prior art, the devices of Examples 1-6 of the present invention have superior stability when testing frozen soil pore water pressure.
2) Laboratory tests were carried out on soil samples along the Qinghai-Tibet Railway in the Beilu River area of the Qinghai-Tibet Plateau, specifically using the devices of Examples 1 to 5 of the present invention and a certain frozen soil pore water pressure measurement device. making batch-by-batch measurements with varying soil sample parameters (variable parameters being soil sample temperature (>−10° C.), saturation (100%-5%), load (<3 MPa)), A table of measurement ranges as shown in Table 2 is obtained.
Table 2: Measurement range values for the control group after varying the device and soil sample parameters of Examples 1-5 of the present invention
結論:表2のデータから分かるように、従来技術に比べて、本発明の実施例1~5の装置
は、測定量程が大きい。
Conclusion: As can be seen from the data in Table 2, compared to the prior art, the devices of Examples 1-5 of the present invention have a larger measurable volume.
Claims (7)
着ベース(1)に装着されるとともに、上端が媒体基部(2)に可動に接続される浸透基
部(3)とを含む凍土間隙水圧変化の測定装置であって、
前記装着ベース(1)は、装着ヘッド(101)が上端に設けられる装着台座(11)と
、装着台座(11)の上面の中心に嵌設される圧力センサ(12)とを含み、前記装着ヘ
ッド(101)の内側に第1の装着溝(102)が設けられ、
前記媒体基部(2)は、上端に浸透溝(201)が設けられ、下端に圧力測定溝(202
)が設けられる媒体台座(21)と、媒体台座(21)に設けられ、且つ上部ポートが浸
透溝(201)と連通し、下部ポートが圧力測定溝(202)と連通する媒体槽配管(2
2)とを含み、
前記浸透基部(3)は、上端に収容溝(301)が設けられ、下端に第2の装着溝(30
2)が設けられる浸透台座(31)と、収容溝(301)内に装着される浸透ヘッド(3
2)とを含み、
前記浸透台座(31)の下端は第2の装着溝(302)、装着ヘッド(101)を介して
装着台座(11)に可動装着され、前記媒体台座(21)の下端は圧力測定溝(202)
の側壁、第1の装着溝(102)を介して装着台座(11)に可動装着され、且つ媒体台
座(21)は浸透台座(31)の内部に位置し、媒体台座(21)の上端の外側壁は浸透
台座(31)の内側壁に可動接続され、前記浸透ヘッド(32)の下端は浸透溝(201
)に嵌め込まれ、前記圧力センサ(12)の上端は圧力測定溝(202)に嵌め込まれ、
前記媒体台座(21)と装着台座(11)の接続箇所と、媒体台座(21)と浸透台座(
31)の接続箇所とのいずれにもシールモジュール(4)が設けられ、
前記媒体槽配管(22)の内径が0.05~0.08mmであり、且つ媒体槽配管(22
)は親水性材料を用い、媒体槽配管(22)内に界面水が充填されている、
ことを特徴とする凍土間隙水圧変化の測定装置。 a mounting base (1), a medium base (2) whose lower end is mounted on the mounting base (1), and whose lower end is mounted on the mounting base (1) and whose upper end is movably connected to the medium base (2). A device for measuring changes in permafrost pore water pressure, comprising:
The mounting base (1) includes a mounting base (11) on which a mounting head (101) is provided, and a pressure sensor (12) fitted in the center of the upper surface of the mounting base (11). A first mounting groove (102) is provided inside the head (101),
The medium base (2) is provided with a penetration groove (201) at its upper end and a pressure measurement groove (202) at its lower end.
) provided with a medium pedestal (21), and a medium pedestal (21) provided with a medium tank pipe (2
2) and
The penetration base (3) is provided with a receiving groove (301) at its upper end and a second mounting groove (30) at its lower end.
2) is provided with an infiltration base (31), and an infiltration head (3) mounted in the accommodation groove (301)
2) and
The lower end of the penetration pedestal (31) is movably mounted on the mounting pedestal (11) through the second mounting groove (302) and the mounting head (101), and the lower end of the medium pedestal (21) is the pressure measuring groove (202). )
is movably mounted on the mounting pedestal (11) through the first mounting groove (102), and the medium pedestal (21) is located inside the permeation pedestal (31), and the upper end of the medium pedestal (21) The outer wall is movably connected to the inner wall of the infiltration seat (31), and the lower end of said infiltration head (32) is the infiltration groove (201).
), the upper end of the pressure sensor (12) is fitted into the pressure measuring groove (202),
A connection portion between the medium pedestal (21) and the mounting pedestal (11), a medium pedestal (21) and the permeation pedestal (
31) is provided with a seal module (4) at any of the connection points,
The medium tank pipe (22) has an inner diameter of 0.05 to 0.08 mm, and the medium tank pipe (22
) uses a hydrophilic material, and interfacial water is filled in the medium tank pipe (22),
An apparatus for measuring changes in frozen soil pore water pressure, characterized by:
台座(11)の接続箇所と、媒体台座(21)と浸透台座(31)の接続箇所とのいずれ
にも、前記シールモジュール(4)を係止するためのシール係止溝が設けられている、
ことを特徴とする請求項1に記載の装置。 The seal module (4) is a seal pad, and is attached to both the connection point between the medium seat (21) and the mounting seat (11) and the connection point between the medium seat (21) and the permeation seat (31). , a seal locking groove is provided for locking the seal module (4);
2. A device according to claim 1, characterized in that:
接続され、前記シールモジュール(4)は、ネジに塗布された嫌気性接着剤である、
ことを特徴とする請求項1に記載の装置。 The media pedestal (21) is connected to the mounting pedestal (11) and the permeation pedestal (31) respectively by screws, and the sealing module (4) is an anaerobic adhesive applied to the screws.
2. A device according to claim 1, characterized in that:
ことを特徴とする請求項1に記載の装置。 A seal layer is provided on the entire exposed portion of the mounting base (11) and the permeation base (31),
2. A device according to claim 1, characterized in that:
ングは、ナノTiO2コーティングである、
ことを特徴とする請求項1に記載の装置。 The inner wall of the medium tank pipe (22) is provided with a super-hydrophilic coating, and the super-hydrophilic coating is a nano-TiO2 coating.
2. A device according to claim 1, characterized in that:
前記補助手段(5)は、装着ベース(51)と、装着ベース(51)に装着されて箱体(
52)を構成する板材(520)と、装着ベース(1)に装着されるサンプル収容ユニッ
トとを含み、前記サンプル収容ユニットは、装着ベース(51)に装着される底部密閉板
(53)と、底端が底部密閉板(53)に可動接続され、測定対象土壌サンプルを収容す
るための試料収容管(54)と、箱体(52)の頂部に装着され、試料収容管(54)の
頂部に可動接続され、且つ内部に凍結液コイルが巻設された頂部密閉板(55)と、底部
密閉板(53)と頂部密閉板(55)の温度をそれぞれ制御する2組の凍結液サイクル温
度制御部材とを含み、
前記試料収容管(54)の側壁に測定孔(540)が開けられている、
ことを特徴とする請求項1に記載の装置。 including auxiliary means (5),
The auxiliary means (5) includes a mounting base (51) and a box body (
52), and a sample-receiving unit mounted on the mounting base (1), said sample-receiving unit comprising a bottom sealing plate (53) mounted on the mounting base (51), A sample-receiving tube (54) for containing the soil sample to be measured, the bottom end of which is movably connected to the bottom sealing plate (53); a top sealing plate (55) movably connected to and having a cryofluid coil wound therein; a control member;
A measurement hole (540) is opened in the side wall of the sample storage tube (54),
2. A device according to claim 1, characterized in that:
らに含む、
ことを特徴とする請求項6に記載の装置。 The auxiliary means (5) further includes a water supply device for supplying water to the inside of the sample storage tube (54),
7. Apparatus according to claim 6, characterized in that:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110948400.5 | 2021-08-18 | ||
CN202110948400.5A CN113739984B (en) | 2021-08-18 | 2021-08-18 | Device for measuring pore water pressure change of frozen soil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7037024B1 JP7037024B1 (en) | 2022-03-16 |
JP2023029180A true JP2023029180A (en) | 2023-03-03 |
Family
ID=78731723
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021213555A Active JP7037024B1 (en) | 2021-08-18 | 2021-12-27 | Frozen soil pore water pressure change measuring device |
JP2021215476A Pending JP2023029183A (en) | 2021-08-18 | 2021-12-30 | Mesh division method for entire monitoring of national park |
JP2022001036A Active JP7075557B1 (en) | 2021-08-18 | 2022-01-06 | Rural non-regular waste classification and risk identification methods based on multi-source data |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021215476A Pending JP2023029183A (en) | 2021-08-18 | 2021-12-30 | Mesh division method for entire monitoring of national park |
JP2022001036A Active JP7075557B1 (en) | 2021-08-18 | 2022-01-06 | Rural non-regular waste classification and risk identification methods based on multi-source data |
Country Status (2)
Country | Link |
---|---|
JP (3) | JP7037024B1 (en) |
CN (1) | CN113739984B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114544363A (en) * | 2022-01-26 | 2022-05-27 | 东北林业大学 | Pore water pressure measuring device suitable for frozen soil |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011231568A (en) * | 2010-04-30 | 2011-11-17 | Maruyama Kogyo Co Ltd | Pore water pressure measuring device, soft ground improvement method using the same, method for determining dynamic state of ground for underground installation, and method for determining dynamic state of ground for banking structure installation |
CN202599591U (en) * | 2012-04-18 | 2012-12-12 | 苏州筑邦测控科技有限公司 | Pore water pressure measuring device |
CN102879148A (en) * | 2012-10-10 | 2013-01-16 | 基康仪器(北京)有限公司 | Device and method for measuring frozen soil pore water pressure |
JP2017101436A (en) * | 2015-12-01 | 2017-06-08 | 株式会社安藤・間 | Earth water pressure-shear force measurement sensor |
CN110118628A (en) * | 2019-05-28 | 2019-08-13 | 中国科学院寒区旱区环境与工程研究所 | Frozen soil pore water pressure measurement device |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4453401A (en) * | 1982-03-12 | 1984-06-12 | The United States Of America As Represented By The Secretary Of The Air Force | Pressure sensor and soil stress isolation filter arrangement in a pore pressure probe |
JP3500945B2 (en) * | 1998-01-19 | 2004-02-23 | 株式会社日立製作所 | Multispectral satellite image processing method and processing system, and hydrosphere evaluation method |
JP2003279415A (en) | 2002-03-20 | 2003-10-02 | Oyo Corp | Remote examination method for types and distribution of wastes |
JP4452793B2 (en) | 2004-04-26 | 2010-04-21 | 株式会社エヌ・ティ・ティ・データ | Illegal dumping point detection device, method, and program |
JP5304465B2 (en) * | 2009-06-16 | 2013-10-02 | 朝日航洋株式会社 | Mosaic image generation method, apparatus and program |
JP5458380B2 (en) * | 2009-11-09 | 2014-04-02 | 国立大学法人岩手大学 | Image processing apparatus and method |
CN103512699A (en) * | 2012-06-21 | 2014-01-15 | 中国科学院寒区旱区环境与工程研究所 | Device for measuring pore water pressure in frozen soil |
JP6208076B2 (en) * | 2014-05-12 | 2017-10-04 | 株式会社日立製作所 | Image processing apparatus, image processing method, and recording medium recording program |
CN106841000B (en) * | 2017-01-12 | 2019-12-27 | 四川大学 | Sample assembly for radial permeability test of ultra-low permeability rock and test method thereof |
CN107169653A (en) | 2017-05-12 | 2017-09-15 | 江苏警官学院 | The method that land used for urban and rural construction projects extending space detail characteristic is analyzed based on GWR |
CN107421679A (en) * | 2017-08-15 | 2017-12-01 | 中国科学院寒区旱区环境与工程研究所 | A kind of test probe for being used to monitor frozen soil Pore Pressure |
CN110068415B (en) * | 2018-07-11 | 2024-04-02 | 内蒙古大学 | Device and method for measuring pore water pressure and ice pressure in normal frozen soil |
CN110672497A (en) * | 2019-11-08 | 2020-01-10 | 宁夏大学 | Multifunctional infiltration piping tester |
CN111062351B (en) * | 2019-12-24 | 2023-12-22 | 中国矿业大学 | Method for identifying site features of coal mining area by means of satellite/airborne image data fusion |
CN112115198B (en) | 2020-09-14 | 2024-03-15 | 宁波市测绘和遥感技术研究院 | Urban remote sensing intelligent service platform |
AU2020104274A4 (en) * | 2020-12-23 | 2021-03-11 | Hebei University Of Engineering | An instrument for measuring soil permeability coefficient under the action of freeze-thaw cycle |
CN112966925B (en) | 2021-03-02 | 2021-11-19 | 哈尔滨工业大学 | Village and town rubbish increment risk analysis system based on remote sensing time sequence change analysis |
CN113392788B (en) | 2021-06-23 | 2022-11-01 | 中国科学院空天信息创新研究院 | Construction waste identification method and device |
-
2021
- 2021-08-18 CN CN202110948400.5A patent/CN113739984B/en active Active
- 2021-12-27 JP JP2021213555A patent/JP7037024B1/en active Active
- 2021-12-30 JP JP2021215476A patent/JP2023029183A/en active Pending
-
2022
- 2022-01-06 JP JP2022001036A patent/JP7075557B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011231568A (en) * | 2010-04-30 | 2011-11-17 | Maruyama Kogyo Co Ltd | Pore water pressure measuring device, soft ground improvement method using the same, method for determining dynamic state of ground for underground installation, and method for determining dynamic state of ground for banking structure installation |
CN202599591U (en) * | 2012-04-18 | 2012-12-12 | 苏州筑邦测控科技有限公司 | Pore water pressure measuring device |
CN102879148A (en) * | 2012-10-10 | 2013-01-16 | 基康仪器(北京)有限公司 | Device and method for measuring frozen soil pore water pressure |
JP2017101436A (en) * | 2015-12-01 | 2017-06-08 | 株式会社安藤・間 | Earth water pressure-shear force measurement sensor |
CN110118628A (en) * | 2019-05-28 | 2019-08-13 | 中国科学院寒区旱区环境与工程研究所 | Frozen soil pore water pressure measurement device |
Also Published As
Publication number | Publication date |
---|---|
JP2023029183A (en) | 2023-03-03 |
JP7037024B1 (en) | 2022-03-16 |
JP2023029184A (en) | 2023-03-03 |
CN113739984A (en) | 2021-12-03 |
CN113739984B (en) | 2023-06-02 |
JP7075557B1 (en) | 2022-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104237099B (en) | Measure the device and method of compact rock core radial penetration rate | |
CN111272576A (en) | Novel true triaxial fracturing seepage test device and method | |
CN103674799B (en) | The device and method of a kind of mensurated gas composition axial diffusion coefficient in porous medium | |
CN208171813U (en) | A kind of multi-functional permeability test device | |
WO2015096672A1 (en) | Detection device | |
CN106370580B (en) | Quick penetration test device suitable for low-permeability medium | |
CN111650082B (en) | Unsaturated soil water characteristic curve measuring device | |
CN109187615A (en) | Rock nano aperture apparatus for measuring distribution and method under a kind of condition of formation pressure | |
CN111238565B (en) | Test method for testing unsaturated geotechnical characteristic relation | |
CN107063968B (en) | Concrete gas permeability testing device and method | |
JP2023029180A (en) | Measurement device for frozen ground pore pressure change | |
BR102012018100A2 (en) | method for determining the wetting capacity of porous materials | |
Alowaisy et al. | Continuous pressurization method for a rapid determination of the soil water characteristics curve for remolded and undisturbed cohesionless soils | |
CN204649237U (en) | Swelled ground infiltration, expansion, loading, consolidation testing device | |
CN209821099U (en) | Multifunctional compact gas reservoir dynamic parameter joint measurement device based on nuclear magnetic resonance | |
CN111521543A (en) | Compact reservoir core static pressurization visual imbibition experimental method | |
CN110082388B (en) | Triaxial test device and method capable of measuring heat conductivity coefficient and permeability coefficient | |
CN101539566A (en) | Method for testing early capillary negative pressure of concrete | |
CN216411012U (en) | Simple and convenient porous material permeability testing arrangement | |
CN108956409A (en) | A kind of minute-pressure permeameter and test method | |
CN111638158A (en) | Compact sandstone gas-water phase permeability testing device and method based on capacitance method | |
CN105466834B (en) | The measurement apparatus and method of compression ratio adjustable type porous media plane permeability | |
CN112444477B (en) | Device for indoor permeability test and operation method thereof | |
CN213456588U (en) | Measuring device for permeability of thin-layer porous fiber material | |
CN209727710U (en) | Device for accurately measuring concrete permeability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211228 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20211228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220126 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220128 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7037024 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |