JP2017101436A - Earth water pressure-shear force measurement sensor - Google Patents

Earth water pressure-shear force measurement sensor Download PDF

Info

Publication number
JP2017101436A
JP2017101436A JP2015234503A JP2015234503A JP2017101436A JP 2017101436 A JP2017101436 A JP 2017101436A JP 2015234503 A JP2015234503 A JP 2015234503A JP 2015234503 A JP2015234503 A JP 2015234503A JP 2017101436 A JP2017101436 A JP 2017101436A
Authority
JP
Japan
Prior art keywords
pressure
shear force
earth
case
pressure receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015234503A
Other languages
Japanese (ja)
Other versions
JP6590368B2 (en
Inventor
幸司 粥川
Koji Kayukawa
幸司 粥川
圭祐 新原
Keisuke Niihara
圭祐 新原
浩 名倉
Hiroshi Nagura
浩 名倉
健 越田
Takeshi Koshida
健 越田
藤本 明生
Akio Fujimoto
明生 藤本
興一 矢部
Koichi Yabe
興一 矢部
敏之 小林
Toshiyuki Kobayashi
敏之 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoko Elmes Co Ltd
Hazama Ando Corp
Original Assignee
Toyoko Elmes Co Ltd
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoko Elmes Co Ltd, Hazama Ando Corp filed Critical Toyoko Elmes Co Ltd
Priority to JP2015234503A priority Critical patent/JP6590368B2/en
Publication of JP2017101436A publication Critical patent/JP2017101436A/en
Application granted granted Critical
Publication of JP6590368B2 publication Critical patent/JP6590368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sensor for simultaneously measuring earth water pressure and shear force, by being installed in respective parts for making the earth water pressure and the shear force by a working face or excavation sediment of the natural ground act, in various boring machines.SOLUTION: A sensor M comprises a case 3, a pressure receiving part 4 arranged in a tip opening surface of the case 3 and a sensitivity part 5 installed in the case 3, distortedly deforming the pressure receiving part 4 so that the pressure receiving part 4 can be advanced-retreated in the axial direction of the case by receiving earth water pressure, distortedly deforming the pressure receiving part 4 so that the pressure receiving part 4 can be rocked around the axis of the case by receiving shear force and detecting respective distortion amounts by the earth water pressure and the shear force as a change in electric resistance, and simultaneously measures the earth water pressure and the shear force by one sensor.SELECTED DRAWING: Figure 1

Description

本発明は、各種のシールド工法に使用する各種のシールド掘進機や各種の推進工法に使用する各種の掘進器のカッターヘッドの面盤(チャンバー側の面、地山側の面)、カッタースポーク(チャンバー側の面、地山側の面、側面)、チャンバーのバルクヘッド(隔壁)、バルクヘッドに配設されるスクリューコンベア、カッターヘッドの背面に配設される撹拌翼やバルクヘッドに配設される固定翼などに設置され、カッターヘッドを回転し地山を掘削するときの地山とカッターヘッドとの間の土水圧力、せん断力の測定、地山を掘削する間の掘削土砂や泥土がチャンバーやスクリューコンベアに及ぼす土水圧力、せん断力の測定など、土中の土砂その他の流体から受ける土水圧力及びせん断力の測定に使用する土水圧力・せん断力測定センサに関する。   The present invention relates to various shield machines used for various shield methods and cutter head face plates (chamber-side surfaces, ground-side surfaces), cutter spokes (chambers) of various excavators used for various propulsion methods. Side surface, natural ground side surface, side surface), bulkhead of the chamber (partition wall), screw conveyor disposed in the bulkhead, agitation blade disposed on the back surface of the cutterhead, and fixed disposed on the bulkhead. Measured soil pressure and shear force between the natural ground and the cutter head when excavating the natural ground by rotating the cutter head and digging soil and mud during excavation of natural ground. Soil pressure / shear force sensor used to measure soil pressure and shear force received from soil and other fluids in the soil, such as soil pressure and shear force on the screw conveyor About.

本願発明者らは、先の出願(特許文献1)において、シールド掘進機を使用して掘削する地山の土砂の性質について、砂質土、砂礫は、粘着性がないが、土粒子のかみ合わせ効果やダイレイタンシーがあり、これがカッターの回転、土砂撹拌時の抵抗となり、粘性土は土粒子のかみ合わせ効果は少ないものの、粘着性、つまり土粒子間の吸着、土粒子とカッターや隔壁との吸着があり、これがカッターの回転、土砂撹拌時の抵抗となり、これらの抵抗の大きさは一般に土砂の硬軟によって異なることに着目し、これらの大きさを隔壁やカッタースポーク、又は撹拌翼、固定翼に設置するせん断力計により測定し、その測定値の大小によって土砂の性状を評価する方法を提案した。   In the previous application (Patent Document 1), the inventors of the present application are concerned with the nature of the earth and sand of the natural ground excavated using a shield machine, although sandy soil and gravel are not sticky, but the soil particles are engaged. There is an effect and dilatancy, and this becomes resistance during cutter rotation and sediment mixing. Although viscous soil has little effect on meshing of soil particles, it is sticky, that is, adsorption between soil particles, soil particles and cutters and partition walls. There is adsorption, and this becomes resistance during cutter rotation and soil agitation, and pay attention to the fact that the magnitude of these resistances generally varies depending on the hardness of the earth and sand, and the magnitude of these resistances is determined by partition walls, cutter spokes, agitation blades, fixed blades We proposed a method to evaluate the properties of earth and sand by measuring with a shear force meter installed in the area.

また、本願発明者らは、今般、先の出願(特許文献1)に関連して、土圧式シールド掘進機、泥土圧式シールド掘進機などの土圧系シールド掘進機を使用するシールド工法、土圧式掘進機、泥土圧式掘進機などの土圧系掘進機を使用する推進工法など、各種の掘削工法に用いるチャンバー内の掘削土砂の性状評価判定方法において、掘進路線上で土被り圧や地下水圧が変化したり、地表やトンネル直上に重量物が存在したりして、掘進路線上で地山の土圧や水圧が変化する場合でも、同一路線内でチャンバー内の掘削土砂の性状を相対的に評価判定すること、併せて土圧式シールド掘進機、泥土圧式シールド掘進機などの土圧系シールド掘進機、泥水式シールド掘進機を使用するシールド工法、土圧式掘進機、泥土圧式掘進機などの土圧系掘進機、泥水式掘進機を使用する推進工法など、各種の掘削工法に用いるカッターヘッド前方の切羽の土質評価判定方法において、カッターヘッド前方の地山の土質を相対的に評価判定することを目的として、新たに、各種の掘削工法に用いるチャンバー内の掘削土砂の性状評価判定方法、及びカッターヘッド前方の切羽の土質評価判定方法(特許文献2)を提案した。   In addition, the inventors of the present application, in connection with the previous application (Patent Document 1), have a shield construction method using earth pressure type shield excavator such as earth pressure type shield excavator and mud pressure type shield excavator, earth pressure type. In the methods for evaluating and judging the properties of excavated soil in the chamber used for various excavation methods, such as propulsion methods using earth pressure type excavators such as excavators and mud pressure type excavators, soil cover pressure and groundwater pressure are Even if the earth pressure or water pressure of the natural mountain changes on the excavation route due to changes or heavy objects directly above the ground surface or tunnel, the properties of the excavated sediment in the chamber are relatively Evaluation and judgment, soil pressure type shield excavator such as earth pressure type shield excavator, mud pressure type shield excavator, shield method using mud type shield excavator, earth pressure type excavator, mud pressure type excavator etc. Pressure system For the purpose of relatively evaluating the soil quality of the ground in front of the cutter head in the soil quality evaluation method for the face in front of the cutter head used in various excavation methods, such as the propulsion method using a muddy water type excavator In addition, a method for evaluating and determining the properties of excavated soil in the chamber used for various excavation methods and a method for evaluating and determining the soil quality of the face in front of the cutter head (Patent Document 2) have been proposed.

これらの方法では、カッターヘッドにより地山を掘削するときの地山とカッターヘッドとの間の土水圧力やせん断力を測定したり、カッターヘッドで地山を掘削する間、掘削土砂や泥土がチャンバーやスクリューコンベアに及ぼす土水圧力やせん断力を測定したりするため、多くの土圧計とせん断力計が、地山の掘削に使用する各種のシールド掘進機のカッターヘッドの面盤(チャンバー側の面、地山側の面)、カッタースポーク(チャンバー側の面、地山側の面、側面)、チャンバーのバルクヘッド(隔壁)、バルクヘッドに配設されるスクリューコンベア、カッターヘッドの背面に配設される撹拌翼やバルクヘッドに配設される固定翼などに、個別の配置により又は略同一位置になるように設置されて、これらの土圧計、せん断力計により、カッターヘッドやチャンバー内の各部に作用する土水圧力、せん断力を測定する。
したがって、これらの方法には、多くの土圧計とせん断力計が必要となる。
なお、これらの土圧計、せん断力計は汎用品である。土圧計は、土圧(圧力)を検知する略平板形状の計測機材で、片側一方の面が圧力を受け反応(受圧)する受圧面になっている。せん断力計はせん断力を感知する略平板形状の計測機材で、片側一方の面が圧力を受け反応(感知)する受感面になっている。
In these methods, the soil pressure and shear force between the natural ground and the cutter head when the natural ground is excavated by the cutter head are measured, or the excavated soil and mud are removed while the natural ground is excavated by the cutter head. Many earth pressure gauges and shear force meters are used to measure the earth pressure and shear force on chambers and screw conveyors. Surface, ground-side surface), cutter spoke (chamber-side surface, ground-side surface, side surface), chamber bulkhead (partition wall), screw conveyor disposed on the bulkhead, disposed on the back of the cutterhead Installed on the agitating blades and fixed blades installed on the bulkhead, etc., by individual arrangement or at substantially the same position, using these earth pressure gauges and shear force meters. Soil water pressure acting on each part of the cutter head and the chamber, for measuring the shear force.
Therefore, these methods require many earth pressure gauges and shear force gauges.
These earth pressure gauges and shear force gauges are general-purpose products. The earth pressure gauge is a substantially flat plate-shaped measuring device that detects earth pressure (pressure), and one surface on one side is a pressure receiving surface that receives pressure and reacts (receives pressure). A shear force meter is a measuring device with a substantially flat plate shape that senses shearing force. One surface on one side is a sensitive surface that receives pressure and reacts (senses).

特願2014− 95192Japanese Patent Application No. 2014-95192 特願2015−231640Japanese Patent Application No. 2015-231640

しかしながら、例えば特許文献2の掘削土砂の性状評価判定方法のように、掘削土砂による圧力及びせん断力が作用するチャンバー内の各部に、土圧計及びせん断力計を略同一の位置となるように近接して配置し、各部の土圧計及びせん断力計により得た両者の値を用いて、チャンバー内の掘削土砂の性状を評価する方法では、チャンバー内に相当数の土圧計、せん断力計を配置する必要があり、中小口径のシールド掘進機の場合、チャンバーを構成するバルクヘッドに土圧計及びせん断力計を設置可能な不可動部分が少なく、また、カッターヘッドを構成するカッタースポークの大きさに制限があり、土圧計及びせん断力計の設置個所や設置空間が少なく、また、実際には、土圧計及びせん断力計の両方を略同一の位置に設置できないことが多い、という問題がある。   However, the soil pressure gauge and the shear force meter are close to each part in the chamber where the pressure and shear force of the drilled earth and sand are applied, for example, as in the method for evaluating and determining the property of the drilled earth and sand in Patent Document 2. In the method of evaluating the properties of excavated soil in the chamber using the values obtained by the earth pressure gauge and shear force meter of each part, a considerable number of earth pressure gauges and shear force meters are placed in the chamber. In the case of a shield machine with a small and medium caliber, there are few non-movable parts where earth pressure gauges and shear force meters can be installed in the bulkhead that constitutes the chamber, and the size of the cutter spoke that constitutes the cutterhead There are limitations, there are few installation places and installation space for earth pressure gauge and shear force meter, and in fact, both earth pressure gauge and shear force gauge cannot be installed at almost the same position Often, there is a problem in that.

本発明は、上記従来の問題を解決するものであり、各種のシールド工法に使用する中小口径以上の各種のシールド掘進機や各種の推進工法に使用する各種の掘進器のカッターヘッドの面盤、カッタースポーク、チャンバーのバルクヘッド、バルクヘッドに配設されるスクリューコンベア、カッターヘッドの背面に配設される撹拌翼やバルクヘッドに配設される固定翼など、2種類の測定器(土圧計やせん断力計)では略同一の位置になるように設置することが困難な狭隘な設置個所や空間にも設置可能で、全体として多くの設置個所や空間に設置して、各設置個所において、1台のセンサで土水圧力とせん断力とを同時に測定することのできる土水圧力・せん断力測定センサを提供すること、を目的とする。   The present invention solves the above-mentioned conventional problems, the face plate of the cutter head of various types of shield machines and various types of propulsion devices used in various types of propulsion methods, which are used in various shield construction methods of various small and medium caliber, Cutter spokes, chamber bulkhead, screw conveyor installed in the bulkhead, agitation blades installed on the back of the cutterhead, and fixed blades installed on the bulkhead, such as earth pressure gauges It can be installed in narrow installation places and spaces where it is difficult to install so that it is almost the same position in the shear force meter), and it can be installed in many installation places and spaces as a whole. It is an object of the present invention to provide a soil water pressure / shear force measurement sensor capable of simultaneously measuring soil water pressure and shear force with a stand sensor.

上記目的を達成するために、本発明は、各種の掘進機による地山の掘削に際し、地山の切羽又は掘削土砂による土水圧力及びせん断力が作用する掘進機の各部に設置され、掘進機の各部に作用する土水圧力及びせん断力を測定する土水圧力・せん断力測定センサであって、
先端に開口を有する略筒状のケースと、
前記ケースの開口面内に配置され、前記土水圧力及びせん断力を受ける受圧部と、
前記ケース内に設置されて前記受圧部を支持し、前記受圧部が前記土水圧力を受けて前記受圧部を前記ケースの軸心方向に進退可能に歪み変形し、かつ前記受圧部が前記せん断力を受けて前記受圧部を前記ケースの軸心を中心に揺動可能に歪み変形して、前記土水圧力による歪み量及び前記せん断力による歪み量を電気抵抗の変化として検出する感度部と、
を備え、
地山の切羽又は掘削土砂による土水圧力及びせん断力を同時に測定する、
ことを要旨とする。
また、この土水圧力・せん断力測定センサは、次のように具体化される。
(1)ケースは、先端に受圧部を配置可能な開口を有し、後端に感度部のための取付基部を有する有底円筒状のケース本体と、前記ケース本体の周面の後端又は先端に前記ケース本体の軸方向に対して略直角に外側に向けて張り出され、外周端に取付ねじのための取付穴を有する取付フランジとからなる。
(2)受圧部は、前記ケース内で前記感度部の先端に取り付けられる円形の支持板と、前記支持板に取り付けられ、前記ケースの開口面内に配置される円形の受圧板とからなる。
(3)感度部は、受圧部を先端に支持し、前記受圧部が土水圧力を受けてその土水圧力に応じて歪み変形し、前記受圧部がせん断力を受けてそのせん断力に応じて歪み変形する起歪体と、前記起歪体の歪みの発生位置に貼着され、前記受圧部の受ける土水圧力を測定する土水圧力測定用歪みゲージ及び前記受圧部の受けるせん断力を測定するせん断力測定用歪みゲージとを有する。
In order to achieve the above-mentioned object, the present invention is installed in each part of an excavator where soil water pressure and shearing force are applied to the face of the natural mountain or excavated earth and sand when excavating natural ground with various excavators. A soil water pressure / shear force sensor for measuring soil water pressure and shear force acting on each part of
A substantially cylindrical case having an opening at the tip;
A pressure receiving portion that is disposed within the opening surface of the case and receives the soil water pressure and shear force;
The pressure receiving portion is installed in the case to support the pressure receiving portion, the pressure receiving portion receives the earth water pressure, and the pressure receiving portion is distorted and deformed so as to advance and retreat in the axial direction of the case, and the pressure receiving portion is the shear A sensitivity unit that receives a force and deforms the pressure receiving unit so as to be swingable about the axis of the case, and detects a strain amount due to the soil water pressure and a strain amount due to the shear force as a change in electrical resistance; ,
With
Simultaneously measure soil pressure and shear force due to natural face or excavated soil,
This is the gist.
The soil water pressure / shear force measuring sensor is embodied as follows.
(1) The case has a bottomed cylindrical case main body having an opening in which the pressure receiving portion can be arranged at the front end and a mounting base for the sensitivity portion at the rear end, and the rear end of the peripheral surface of the case main body or The mounting flange includes a mounting flange that protrudes outward at a substantially right angle with respect to the axial direction of the case main body and has a mounting hole for a mounting screw at the outer peripheral end.
(2) The pressure receiving portion includes a circular support plate attached to the tip of the sensitivity portion in the case, and a circular pressure receiving plate attached to the support plate and disposed in the opening surface of the case.
(3) The sensitivity portion supports the pressure receiving portion at the tip, the pressure receiving portion receives earth water pressure and is deformed and deformed according to the earth water pressure, and the pressure receiving portion receives a shear force and responds to the shear force. A strain generating body that is deformed and deformed, a strain gauge that is attached to the strain generating position of the strain generating body and that measures the soil water pressure received by the pressure receiving portion, and a shear force received by the pressure receiving portion. And a strain gauge for measuring shearing force.

本発明の土水圧力・せん断力測定センサによれば、上記の構成により、このセンサ1台で、地山の切羽又は掘削土砂による土水圧力及びせん断力を同時に測定するようにしたので、各種のシールド工法に使用する中小口径以上の各種のシールド掘進機や各種の推進工法に使用する各種の推進器のカッターヘッドの面盤、カッタースポーク、チャンバーのバルクヘッド、バルクヘッドに配設されるスクリューコンベア、カッターヘッドの背面に配設される撹拌翼やバルクヘッドに配設される固定翼など、2種類の測定器(土圧計やせん断力計)では略同一の位置になるように設置することが困難な狭隘な設置個所や空間にも設置可能で、全体として多くの設置個所や空間に設置して、土水圧力とせん断力とを同時に測定することができる、という本発明独自の格別な効果を奏する。
また、本発明の土水圧力・せん断力測定センサを、本願発明者らが今般出願した特許文献2の各種の掘削工法に用いるチャンバー内の掘削土砂の性状評価判定方法、及びカッターヘッド前方の切羽の土質評価判定方法に用いることにより、その効果を確実に実現することができ、その実用性は大きい、という本発明独自の格別な効果を奏する。
According to the soil pressure / shear force measurement sensor of the present invention, with the above-described configuration, the soil pressure and shear force due to the face of the natural ground or excavated sediment are measured simultaneously with this single sensor. Cutter head faceplate, cutter spoke, chamber bulkhead, and screw installed on the bulkhead of various types of shield machines of small and medium diameter or larger used in the shield construction method and various propulsion devices used in various propulsion methods The two types of measuring instruments (earth pressure gauge and shear force gauge) such as a conveyor blade and a stirring blade arranged on the back of the cutter head and a fixed blade arranged on the bulkhead should be installed so as to be in approximately the same position. It can be installed in narrow installation places and spaces where it is difficult to install, and it can be installed in many installation places and spaces as a whole to measure soil water pressure and shear force simultaneously. Achieve the present invention own special effects.
In addition, the soil pressure / shear force measuring sensor of the present invention is used for various excavation methods of Patent Document 2 that have been filed by the present inventors. By using this method, it is possible to surely realize the effect, and to obtain a special effect unique to the present invention that the practicality is great.

本発明の一実施の形態における土水圧力・せん断力測定センサ(A型)の構成を示す図((a)は側面断面図(b)は正面断面図)The figure which shows the structure of the earth-water pressure and shear force measuring sensor (A type) in one embodiment of this invention ((a) is side sectional drawing (b) is front sectional drawing) 本発明の一実施の形態における土水圧力・せん断力測定センサ(B型)の構成を示す図((a)は側面断面図(b)は正面断面図)The figure which shows the structure of the earth-water pressure and shear force measuring sensor (B type) in one embodiment of this invention ((a) is side surface sectional drawing (b) is front sectional drawing) (a)同各センサの特に土水圧力測定用歪みゲージにより構成された土水圧力測定用ブリッジ回路の構成を示す図(b)同各センサの特にせん断力測定用歪みゲージにより構成されたせん断力測定用ブリッジ回路の構成を示す図(A) The figure which shows the structure of the bridge circuit for earth-water pressure measurement comprised by the strain gauge for earth-water pressure measurement of each said sensor especially (b) Shear comprised by the strain gauge for shear-force measurement of the said each sensor especially Diagram showing the configuration of a force measurement bridge circuit 同各センサの掘進機の各部における取付例、及びその作用を示す図The figure which shows the example of attachment in each part of the machine of the same sensor, and its operation 同各センサを用いたチャンバー内の掘削土砂の性状評価判定方法を示す図The figure which shows the property evaluation judgment method of the excavation earth and sand in the chamber using the same each sensor 同各センサを用いた同性状評価判定方法の効果を説明するための図で、縦軸にせん断力S(せん断応力τ)、横軸に直力N(直応力σ)をとったMohrの応力場を表す図(砂質土の場合)It is a figure for demonstrating the effect of the same property evaluation judgment method using each said sensor, The stress of Mohr which took the shear force S (shear stress (tau)) on the vertical axis, and the direct force N (direct stress (sigma)) on the horizontal axis Figure representing the place (in the case of sandy soil) 同各センサを用いた同性状評価判定方法の効果を説明するための図で、縦軸にせん断力S(せん断応力τ)、横軸に直力N(直応力σ)をとったMohrの応力場を表す図(粘性土の場合)It is a figure for demonstrating the effect of the same property evaluation judgment method using each said sensor, The stress of Mohr which took the shear force S (shear stress (tau)) on the vertical axis, and the direct force N (direct stress (sigma)) on the horizontal axis Figure representing the field (in case of cohesive soil) 同各センサを用いたカッターヘッド前方の地山切羽の土質評価判定方法を示す図The figure which shows the soil quality evaluation judgment method of the natural ground face in front of the cutter head using the same sensors

次に、この発明を実施するための形態について図を用いて説明する。
図1、図2に土水圧力・せん断力測定センサを示している。
図1、図2に示すように、この土水圧力・せん断力測定センサM(以下、単にセンサMという。)は、各種の掘進機による地山の掘削に際し、地山の切羽又は掘削土砂による土水圧力及びせん断力が作用する掘進機の各部に設置され、掘進機の各部に作用する土水圧力及びせん断力を測定するもので、先端に開口30を有する略筒状のケース3と、ケース3の開口30面内に配置され、土水圧力及びせん断力を受ける受圧部4と、ケース3内に設置されて受圧部4を支持し、受圧部4が土水圧力を受けて受圧部4をケース3の軸心方向に進退可能に歪み変形し、かつ受圧部4がせん断力を受けて受圧部4をケース3の軸心を中心に揺動可能に歪み変形して、土水圧力による歪み量及びせん断力による歪み量を電気抵抗の変化として検出する感度部5とを備えて構成される。
また、このセンサMは、基本的に、掘進機の各部において埋め込み設置され、また、掘進機の各部によって設置形式が異なり、2種類の設置形式があるため、A型、B型の2種類のセンサM(A)、(B)がある。これらセンサM(A)、(B)はケース3(3A、3B)の形状のみが若干異なる。
Next, embodiments for carrying out the present invention will be described with reference to the drawings.
1 and 2 show a soil pressure / shear force measuring sensor.
As shown in FIG. 1 and FIG. 2, this soil water pressure / shear force measuring sensor M (hereinafter simply referred to as sensor M) is used for the excavation of natural ground by various excavating machines. An approximately cylindrical case 3 which is installed in each part of the excavator where the earth water pressure and shear force act and measures the earth water pressure and shear force acting on each part of the excavator, and has an opening 30 at the tip, A pressure receiving portion 4 that is disposed in the surface of the opening 30 of the case 3 and receives the earth water pressure and shear force, and is installed in the case 3 to support the pressure receiving portion 4, and the pressure receiving portion 4 receives the earth water pressure and receives the soil pressure. 4 is distorted and deformed so as to be movable back and forth in the axial direction of the case 3, and the pressure receiving portion 4 is subjected to a shearing force so that the pressure receiving portion 4 is distorted and deformed so that it can swing around the axial center of the case 3. Sense of detecting the amount of strain due to shear and the amount of strain due to shear force as a change in electrical resistance Constructed and a part 5.
In addition, this sensor M is basically embedded and installed in each part of the excavator, and the installation type differs depending on each part of the excavator, and there are two types of installation types. There are sensors M (A) and (B). These sensors M (A) and (B) are slightly different only in the shape of the case 3 (3A and 3B).

A型のセンサM(A)のケース3Aは、図1に示すように、先端に受圧部4を配置可能な開口30を有し、後端に感度部5のための取付基部33を有する有底円筒状のケース本体31と、ケース本体31の周面の後端にケース本体31の軸方向に対して略直角に外側に向けて円形に張り出され、外周端に取付ねじのための取付穴34aを有する取付フランジ32aとからなる。
このケース3Aの場合、ケース本体31の外周面の先端に浅い溝310aが全周に形成され、この溝310aに断面L字形の円形のリング部材からなる土砂浸入防止リング311aがケース本体31の外周面に一体的に環装されて、この土砂浸入防止リング311aによりケース本体31の先端開口30と受圧部4との間の隙間が覆われ、この隙間から土砂が侵入するのを防止する。ケース本体31の後端は底部として塞がれていて、その内側の面の中央に感度部5のための取付基部33が形成される。取付基部33は感度部5の基端面の大きさより大きい円形の凹状に形成され、その中心から半径方向所定の位置に複数のねじ挿通部331が穿たれる。また、この取付基部33とは反対側の外側の面にはその中央に取付基部33よりも大きい円形の浅い凹部36を形成され、凹部36の中心と外周との間に円形の凸状部37が突設されるとともに、この凸状部37の外側で凹部36の外周近傍の所定の位置に複数のねじ孔38が形成され、さらに、この凸状部37と各ねじ孔38との間に円周方向に幅狭の浅い溝39を形成されて、測定ケーブルチャンバー6のための取付部35が設けられる。なお、この取付フランジ32の取付基部33と取付部35との間には貫通穴(図示省略)が形成され、この貫通穴に感度部5の電気信号を外部に導出するための端子部(図示省略)が併せて設けられる。この取付部35に取り付けられる測定ケーブルチャンバー6は全体が略ハット形に形成され、一端が肉厚で、その中心にケーブル挿通部60を有する円筒部61と、この円筒部61の他端に外周方向に向けて円形に張り出され、その外周近傍の所定の位置に複数のねじ挿通部63を有する取付フランジ62とからなる。この測定ケーブルチャンバー6はケーブル挿通部60に測定ケーブル7をグランドパッキン64を介して挿通され、取付部35の溝39に防水Oリング65が嵌着されて、円筒部61の他端が取付部35の凸状部37の外周面に嵌合されるとともに、取付フランジ62が取付部35の凹部36に嵌め込まれ、取付ねじ66を測定ケーブルチャンバー6の取付フランジ62のねじ挿通部63を通し取付部35のねじ孔38に締結して、チャンバー6内部を水密に密閉して取り付けられる。なお、この測定ケーブルチャンバー6に通された測定ケーブル7は取付基部33と取付部35との間に設けられる端子部に電気的に接続される。また、このケース3Aの取付フランジ32aの各取付穴34aは全体が同径の円筒形で、取付ねじのねじ部のみが挿通可能になっている。なお、この取付穴34aは、取付ねじのねじ部が挿通可能な小径のねじ挿通部と取付ねじの頭部が嵌合可能な大径の頭部嵌合部とからなり、取付ねじを取付フランジ32aの後面と面一に埋め込む形式としてもよい。
B型のセンサM(B)のケース3Bは、図2に示すように、先端に受圧部4を配置可能な開口30を有し、後端に感度部5のための取付基部33を有する有底円筒状のケース本体31と、ケース本体31の周面の先端にケース本体31の軸方向に対して略直角に外側に向けて円形に張り出され、外周端に取付ねじのための取付穴34bを有する取付フランジ32bとからなる。
このケース3Bの場合、ケース本体31先端の開口30縁部全周に浅い溝310bが円周方向に形成され、この溝310bに平坦形の円形のリング部材からなる土砂浸入防止リング311bがケース本体31の開口30縁部に一体的に環装されて、この土砂浸入防止リング311bによりケース本体31の先端開口30と受圧部4との間の隙間が覆われ、この隙間から土砂が侵入するのを防止する。ケース本体31の後端は、A型のケース3Aと同様で、底部として塞がれ、その内側の面に感度部5のための取付基部33が形成され、外側の面に取付部35が設けられ、取付部35に測定ケーブルチャンバー6が取り付けられる(図1参照)。また、このケース3Bの取付フランジ32bの各取付穴34bは、取付ねじのねじ部が挿通可能な小径のねじ挿通部と取付ねじの頭部が嵌合可能な大径の頭部嵌合部とからなり、取付ねじを取付フランジ32bの前面と面一に埋め込む形式になっている。
As shown in FIG. 1, the case 3A of the A-type sensor M (A) has an opening 30 in which the pressure receiving portion 4 can be disposed at the tip, and a mounting base 33 for the sensitivity portion 5 at the rear end. A bottom cylindrical case body 31 and a rear end of the peripheral surface of the case body 31 project in a circular shape outward at a substantially right angle with respect to the axial direction of the case body 31 and are attached to the outer peripheral end for mounting screws. The mounting flange 32a has a hole 34a.
In the case 3A, a shallow groove 310a is formed on the entire outer periphery of the case main body 31, and an earth-and-sand intrusion prevention ring 311a made of a circular ring member having an L-shaped cross section is formed in the groove 310a on the outer periphery of the case main body 31. The earth and sand intrusion prevention ring 311a covers the gap between the tip opening 30 of the case main body 31 and the pressure receiving portion 4 and prevents the earth and sand from entering from the gap. The rear end of the case main body 31 is closed as a bottom, and an attachment base 33 for the sensitive portion 5 is formed at the center of the inner surface. The attachment base portion 33 is formed in a circular concave shape larger than the size of the base end surface of the sensitivity portion 5, and a plurality of screw insertion portions 331 are formed at predetermined positions in the radial direction from the center. A circular shallow concave portion 36 larger than the mounting base portion 33 is formed at the center of the outer surface opposite to the mounting base portion 33, and a circular convex portion 37 is formed between the center and the outer periphery of the concave portion 36. And a plurality of screw holes 38 are formed at predetermined positions near the outer periphery of the concave portion 36 outside the convex portion 37, and between the convex portion 37 and each screw hole 38. A shallow groove 39 narrow in the circumferential direction is formed, and an attachment portion 35 for the measurement cable chamber 6 is provided. A through hole (not shown) is formed between the mounting base portion 33 and the mounting portion 35 of the mounting flange 32, and a terminal portion (not shown) for leading the electrical signal of the sensitivity unit 5 to the outside through the through hole. (Omitted) is also provided. The entire measurement cable chamber 6 attached to the attachment portion 35 is formed in a substantially hat shape, one end is thick, a cylindrical portion 61 having a cable insertion portion 60 at the center thereof, and an outer periphery at the other end of the cylindrical portion 61. The mounting flange 62 has a plurality of screw insertion portions 63 projecting circularly toward the direction and having a plurality of screw insertion portions 63 at predetermined positions near the outer periphery thereof. In the measurement cable chamber 6, the measurement cable 7 is inserted into the cable insertion part 60 via the gland packing 64, a waterproof O-ring 65 is fitted in the groove 39 of the attachment part 35, and the other end of the cylindrical part 61 is attached to the attachment part. 35 is fitted to the outer peripheral surface of the convex portion 37, the mounting flange 62 is fitted into the concave portion 36 of the mounting portion 35, and the mounting screw 66 is mounted through the screw insertion portion 63 of the mounting flange 62 of the measurement cable chamber 6. The inside of the chamber 6 is attached in a watertight manner by being fastened to the screw hole 38 of the portion 35. Note that the measurement cable 7 passed through the measurement cable chamber 6 is electrically connected to a terminal portion provided between the attachment base portion 33 and the attachment portion 35. Also, each mounting hole 34a of the mounting flange 32a of the case 3A has a cylindrical shape with the same diameter, and only the threaded portion of the mounting screw can be inserted. The mounting hole 34a includes a small-diameter screw insertion portion through which the screw portion of the mounting screw can be inserted and a large-diameter head fitting portion into which the head of the mounting screw can be fitted. It is good also as a form embedded in the back surface of 32a.
As shown in FIG. 2, the case 3B of the B-type sensor M (B) has an opening 30 in which the pressure receiving portion 4 can be arranged at the front end, and an attachment base 33 for the sensitivity portion 5 at the rear end. A bottom cylindrical case main body 31 and a circular outer end projecting outward at a substantially right angle to the axial direction of the case main body 31 at the tip of the peripheral surface of the case main body 31, and a mounting hole for a mounting screw at the outer peripheral end And a mounting flange 32b having 34b.
In the case 3B, a shallow groove 310b is formed in the circumferential direction around the entire periphery of the opening 30 at the tip of the case body 31, and an earth-and-sand intrusion prevention ring 311b made of a flat circular ring member is formed in the groove 310b. The gap between the tip opening 30 of the case body 31 and the pressure receiving portion 4 is covered by the earth and sand intrusion prevention ring 311b, and the earth and sand enter from the gap. To prevent. The rear end of the case body 31 is similar to the A-type case 3A, and is closed as a bottom portion. An attachment base portion 33 for the sensitivity portion 5 is formed on the inner surface thereof, and an attachment portion 35 is provided on the outer surface. Then, the measurement cable chamber 6 is attached to the attachment portion 35 (see FIG. 1). Each mounting hole 34b of the mounting flange 32b of the case 3B includes a small-diameter screw insertion portion through which the screw portion of the attachment screw can be inserted, and a large-diameter head fitting portion into which the head of the attachment screw can be fitted. The mounting screw is embedded in the same plane as the front surface of the mounting flange 32b.

受圧部4は、図1、図2に示すように、ケース3内で感度部5の先端に取り付けられる円形の支持板42と、支持板42に取り付けられ、ケース3の開口30面内に配置される円形の受圧板41とからなる。
この受圧部4の場合、支持板42はケース本体31内に嵌合可能にケース本体31の内径と略同じ又は僅かに小さい外径を有する円形の板からなり、その片側一方の面はフラットで、片側他方の面は中央に円形の凹部420を形成されて、その底部の直径上の位置に複数のねじ挿通孔421が片側一方の面に貫通して穿たれ、この凹部420の外側に周方向に等間隔に複数のねじ孔422が形成され、さらに、外周面には軸方向中間部に幅狭の浅い溝423が全周に亘って形成され、この溝423に防水Oリング424が嵌着される。受圧板41は支持板42と同様にケース本体31の先端開口30内に嵌合可能に開口30の内径と略同じ又は僅かに小さい外径を有する円形の板からなり、その片側一方の面の中央には支持板42の凹部420に対して奥側に所定のスペースを残して嵌入可能に円形の凸部411が形成されるとともに、この凸部411の外周に幅狭の浅い溝412が全周に亘って形成され、さらに、外周部には支持板42の各ねじ孔422に連通可能に周方向に等間隔に複数のねじ挿通孔413が形成される。受圧部4はこのような構成からなり、支持板42が片側一方の面を後述する感度部5の先端に向けて感度部5に複数の取付ねじ43を介して取り付けられた後、受圧板41が支持板42の片側他方の面に複数の取付ねじ44を介して取り付けられる。この点は後述する。
As shown in FIGS. 1 and 2, the pressure receiving portion 4 is attached to the tip of the sensitivity portion 5 in the case 3 and a circular support plate 42, and is attached to the support plate 42, and is arranged in the surface of the opening 30 of the case 3. And a circular pressure receiving plate 41.
In the case of the pressure receiving portion 4, the support plate 42 is formed of a circular plate having an outer diameter substantially the same as or slightly smaller than the inner diameter of the case main body 31 so that the support plate 42 can be fitted into the case main body 31. On the other side, a circular recess 420 is formed in the center, and a plurality of screw insertion holes 421 are drilled through one side of the one side at a position on the diameter of the bottom. A plurality of screw holes 422 are formed at equal intervals in the direction, and a shallow shallow groove 423 is formed on the outer peripheral surface in the axial direction intermediate portion over the entire circumference, and a waterproof O-ring 424 is fitted into the groove 423. Worn. The pressure receiving plate 41 is formed of a circular plate having an outer diameter substantially the same as or slightly smaller than the inner diameter of the opening 30 so that the pressure receiving plate 41 can be fitted into the front end opening 30 of the case body 31 like the support plate 42. In the center, a circular convex portion 411 is formed so that it can be fitted into the concave portion 420 of the support plate 42 with a predetermined space on the back side, and a shallow shallow groove 412 is formed on the outer periphery of the convex portion 411. A plurality of screw insertion holes 413 are formed at equal intervals in the circumferential direction so as to be communicated with each screw hole 422 of the support plate 42. The pressure receiving portion 4 has such a configuration, and after the support plate 42 is attached to the sensitivity portion 5 via a plurality of mounting screws 43 with one surface on one side facing the tip of the sensitivity portion 5 described later, the pressure receiving plate 41 Is attached to the other surface on one side of the support plate 42 via a plurality of mounting screws 44. This point will be described later.

感度部5は、図1、図2に示すように、受圧部4を先端に支持し、受圧部4が土水圧力を受けてその土水圧力に応じて歪み変形し、受圧部4がせん断力を受けてそのせん断力に応じて歪み変形する起歪体51と、起歪体51の歪みの発生位置に貼着され、受圧部4の受ける土水圧力を測定する土水圧力測定用歪みゲージ52及び受圧部4の受けるせん断力を測定するせん断力測定用歪みゲージ53とを有する。
この感度部5の場合、平行板ばね型のロードセルが採用され、起歪体51はニッケルクロムモリブデン鋼、ステンレス鋼、アルミニウム合金などからなる弾性体の長方形のブロックで上下に薄肉の歪み部を有し、土水圧力測定用、せん断力測定用の各歪みゲージ52、53は起歪体51の上下の各面において幅方向中央を境に対称的な配置で、土水圧力測定用の歪みゲージ52が起歪体51の上下の歪み部にそれぞれ2箇所ずつ合計4か所に貼着され、せん断力測定用の歪みゲージ53が起歪体51の上下の歪み部にそれぞれ2箇所ずつ合計4か所に貼着される。そして、これら4つの土水圧力測定用歪みゲージ52、せん断力測定用の歪みゲージ53はそれぞれ、図3(a)、(b)にR1,R2,R3,R4で示すように、ブリッジ回路に接続されて、土水圧力測定用ブリッジ回路52C、せん断力測定用ブリッジ回路53Cが構成され、これらのブリッジ回路52C、53Cの入力端及び出力端がそれぞれ、ケース3の取付フランジ32に設けられる端子部に電気的に接続されて、各ブリッジ回路52C、53Cから得られる電気信号が測定ケーブル7により外部に導出される。
また、この感度部5の場合、起歪体51の先端部に受圧部4の支持板42の各ねじ挿通孔421に連通可能に複数のねじ孔511が形成され、起歪体51の基端部にケース3の取付フランジ32の各ねじ挿通部331に連通可能に複数のねじ孔512が形成される。このようにして感度部5は起歪体51の基端部が取付フランジ32の内面の取付基部33に当接して設置された状態で、取付ねじ54を取付フランジ32の外側から各ねじ挿通部331に通し、感度部5(起歪体51)の基端部の各ねじ孔512に締結して固定される。そして、ケース3に固定された感度部5(起歪体51)の先端部に支持板42が取り付けられて、この支持板42に受圧板41が取り付けられる。この場合、支持板42は片側一方の面を感度部5に向けてケース3内に挿入され、支持板42の中央が感度部5の先端に当接されて、この状態で取付ねじ43を支持板42の各ねじ挿通孔421を通し感度部5先端の各ねじ孔511に締結して固定される。そして、受圧板41は片側一方の面の凸部411外周の溝412に防水Oリング414を嵌着され、この凸部411が支持板42の凹部420に嵌合されて、受圧板41の片側一方の面と支持板42の片側他方の面が面接触され、この状態で取付ねじ44を受圧板42の外周部の各ねじ挿通孔413に通し、支持板42の外周部の各ねじ孔422に締結して固定される。なお、これにより、ケース3内部はケース3と支持板42との間の防水Oリング424により、支持板42と受圧板41との間が防水Oリング414により水密に密閉される。
As shown in FIGS. 1 and 2, the sensitivity unit 5 supports the pressure receiving unit 4 at the tip, the pressure receiving unit 4 receives the earth water pressure and is deformed and deformed according to the earth water pressure, and the pressure receiving unit 4 shears. A strain generating body 51 that receives a force and strains and deforms in accordance with the shearing force, and a strain for measuring soil pressure that is attached to the strain generating position of the strain generating body 51 and measures the soil pressure received by the pressure receiving unit 4. A shear force measuring strain gauge 53 for measuring the shear force received by the gauge 52 and the pressure receiving unit 4 is provided.
In the case of the sensitivity portion 5, a parallel leaf spring type load cell is adopted, and the strain generating body 51 is an elastic rectangular block made of nickel chrome molybdenum steel, stainless steel, aluminum alloy or the like, and has thin strain portions at the top and bottom. The strain gauges 52 and 53 for measuring soil water pressure and shearing force are symmetrically arranged on the upper and lower surfaces of the strain generating body 51 with respect to the center in the width direction. 52 are attached to the upper and lower strained portions of the strain generating body 51 at two locations, respectively, for a total of four locations, and the strain gauges 53 for measuring the shearing force are disposed at the upper and lower strained portions of the strain generating body 51, for a total of four locations. It is stuck on the place. These four soil water pressure measuring strain gauges 52 and shearing force measuring strain gauges 53 are connected to the bridge circuit as shown by R1, R2, R3, and R4 in FIGS. 3 (a) and 3 (b), respectively. The bridge circuit 52C for measuring soil water pressure and the bridge circuit 53C for measuring shear force are connected to each other, and input terminals and output terminals of the bridge circuits 52C and 53C are terminals provided on the mounting flange 32 of the case 3, respectively. The electrical signal obtained from each of the bridge circuits 52C and 53C is led out to the outside by the measurement cable 7.
In the case of the sensitivity portion 5, a plurality of screw holes 511 are formed at the distal end portion of the strain generating body 51 so as to communicate with the screw insertion holes 421 of the support plate 42 of the pressure receiving portion 4. A plurality of screw holes 512 are formed in the portion so as to be able to communicate with each screw insertion portion 331 of the mounting flange 32 of the case 3. In this way, in the state where the base end portion of the strain body 51 is installed in contact with the mounting base portion 33 on the inner surface of the mounting flange 32, the sensitivity unit 5 moves the mounting screw 54 from the outside of the mounting flange 32 to each screw insertion portion. Through 331, it is fastened and fixed to each screw hole 512 at the base end of the sensitivity part 5 (strain body 51). Then, a support plate 42 is attached to the tip of the sensitivity part 5 (straining body 51) fixed to the case 3, and a pressure receiving plate 41 is attached to the support plate 42. In this case, the support plate 42 is inserted into the case 3 with one surface on one side facing the sensitivity portion 5, and the center of the support plate 42 is in contact with the tip of the sensitivity portion 5 to support the mounting screw 43 in this state. The plate 42 is fastened and fixed to each screw hole 511 at the tip of the sensitivity portion 5 through each screw insertion hole 421. The pressure receiving plate 41 is fitted with a waterproof O-ring 414 in a groove 412 on the outer periphery of the convex portion 411 on one side of the pressure receiving plate 41, and the convex portion 411 is fitted into the concave portion 420 of the support plate 42. One surface and the other surface of the support plate 42 are in surface contact, and in this state, the mounting screw 44 is passed through the screw insertion holes 413 on the outer periphery of the pressure receiving plate 42, and the screw holes 422 on the outer periphery of the support plate 42. Fastened to and fixed. As a result, the inside of the case 3 is watertightly sealed by the waterproof O-ring 424 between the case 3 and the support plate 42, and the support plate 42 and the pressure receiving plate 41 are sealed by the waterproof O-ring 414.

このようにしてセンサMは、各種の掘進機の各部に、取付フランジ32を取付ねじにより固定することにより設置され、各部においてこのセンサ1台で、地山の切羽又は掘削土砂による土水圧力及びせん断力を同時に測定できるようになっている。
図4に掘進機の各部取付部におけるセンサM(A)、(B)の取付例、及びその作用を例示している。図4に示すように、掘削機の各部には、センサM(A)、(B)を埋め込み設置するため、取付部が形成されるが、各部によって取付部の形態が少し異なり、A型、B型の2種類の取付部が設けられる。A型の取付部P1はセンサM(A)の取付フランジ32aを除くケース本体31のみを嵌挿可能に全体が同径の穴のみからなり、その挿入側の開口周囲に複数のねじ孔が形成される。B型の取付部P2はセンサM(B)のケース本体31を取付フランジ32bとともに嵌挿可能な小径の穴と大径の穴とからなり、大径の穴内で小径の穴の周囲に複数のねじ孔が形成される。例えば、センサMをチャンバー12のバルクヘッド121の内面などに取り付ける場合は、A型のケース3AのセンサM(A)が使用され、バルクヘッド121の内面にA型の取付部P1が形成されて、このセンサM(A)のケース本体31がバルクヘッド121のA型の取付部P1に後方から嵌挿され、取付フランジ32aがバルクヘッド121の外面に当接されて、複数の取付ねじが取付フランジ32aの各取付穴34aに挿通され、バルクヘッド121のねじ孔に締結されて固定される。これにより、センサM(A)はバルクヘッド121の内面に埋め込まれ、先端の受圧部4がバルクヘッド121の内面に沿って表出される。また、センサMをバルクヘッド121に突設される固定翼132の先端などに取り付ける場合は、B型のケース3BのセンサM(B)が使用され、固定翼132の先端にB型の取付部P2が形成されて、このセンサM(B)のケース本体31が取付フランジ32bとともに固定翼132のB型の取付部P2に前方から嵌挿され、取付フランジ32bが取付部P2の小径の穴の周囲に当接されて、複数の取付ねじが取付フランジ32bの各取付穴34bに挿通され、固定翼132のねじ孔に締結されて固定される。これにより、センサM(B)は固定翼132の先端面に埋め込まれ、先端の受圧部4が固定翼132の先端面に沿って表出される。
このようにして掘進機の各部に埋設された各センサMは、受圧部4が土水圧力(受圧部4の受圧面に対して略垂直の圧力)を受けると、(図1、図2参照)受圧部4が感度部5の起歪体51の歪み変形によりケース3の開口30面内の定位置からケース3の基端側に後退し、このときの起歪体51の歪み量が土水圧力測定用の4つの歪みゲージ52の抵抗変化により電気信号として測定される。なお、受圧部4は土水圧力を受けない状態では、起歪体51の弾性復帰により受圧部4がケース3の開口30面内の定位置に戻される。
また、受圧部4がせん断力(受圧部4の受圧面に対して略平行の力)を受けると、(図1、図2参照)受圧部4が感度部5の起歪体51の歪み変形によりケース3の開口30面内で揺動し、このときの起歪体51の歪み量がせん断力測定用の4つの歪みゲージ53の抵抗変化により電気信号として測定される。なお、受圧部4はせん断力を受けない状態では、起歪体51の弾性復帰により受圧部4がケース3の開口30面内の定位置に戻される。そして、これらの電気信号は測定ケーブル7により外部に出力され、測定ケーブル7に接続された図示されない表示器などに表示される。
In this way, the sensor M is installed in each part of the various excavators by fixing the mounting flange 32 with the mounting screw, and in each part, the pressure of earth and water caused by the face of the natural ground or the excavated earth and sand Shear force can be measured simultaneously.
FIG. 4 illustrates an example of the attachment of the sensors M (A) and (B) in each part attachment part of the excavator and the operation thereof. As shown in FIG. 4, in each part of the excavator, a mounting part is formed in order to embed and install the sensors M (A) and (B). However, the form of the mounting part is slightly different depending on each part. Two types of B-type attachments are provided. The A-type mounting portion P1 is entirely composed of a hole having the same diameter so that only the case main body 31 excluding the mounting flange 32a of the sensor M (A) can be inserted, and a plurality of screw holes are formed around the opening on the insertion side. Is done. The B-type mounting portion P2 includes a small-diameter hole and a large-diameter hole in which the case main body 31 of the sensor M (B) can be inserted together with the mounting flange 32b, and a plurality of holes are disposed around the small-diameter hole within the large-diameter hole. A screw hole is formed. For example, when the sensor M is attached to the inner surface of the bulkhead 121 of the chamber 12, the sensor M (A) of the A-type case 3A is used, and the A-type attachment portion P1 is formed on the inner surface of the bulkhead 121. The case body 31 of the sensor M (A) is inserted into the A-type mounting portion P1 of the bulkhead 121 from behind, the mounting flange 32a is brought into contact with the outer surface of the bulkhead 121, and a plurality of mounting screws are mounted. It is inserted into each mounting hole 34a of the flange 32a, and is fastened and fixed to the screw hole of the bulkhead 121. Thereby, the sensor M (A) is embedded in the inner surface of the bulkhead 121, and the pressure receiving portion 4 at the tip is exposed along the inner surface of the bulkhead 121. When the sensor M is attached to the tip of the fixed wing 132 protruding from the bulkhead 121, the sensor M (B) of the B-type case 3B is used, and the B-type attachment portion is attached to the tip of the fixed wing 132. P2 is formed, the case main body 31 of this sensor M (B) is fitted and inserted into the B-type mounting portion P2 of the fixed wing 132 together with the mounting flange 32b from the front, and the mounting flange 32b is formed in the small-diameter hole of the mounting portion P2. A plurality of mounting screws are inserted into the mounting holes 34b of the mounting flange 32b, and are fastened to the screw holes of the fixed blades 132 to be fixed. Thereby, the sensor M (B) is embedded in the tip surface of the fixed wing 132, and the pressure receiving portion 4 at the tip is exposed along the tip surface of the fixed wing 132.
In this way, each sensor M buried in each part of the excavator is subjected to the pressure of the earth pressure (substantially perpendicular to the pressure receiving surface of the pressure receiving part 4) (see FIGS. 1 and 2). ) The pressure receiving portion 4 is retracted from the fixed position in the plane of the opening 30 of the case 3 to the base end side of the case 3 due to the strain deformation of the strain generating body 51 of the sensitivity portion 5. It is measured as an electric signal by the resistance change of the four strain gauges 52 for water pressure measurement. In the state where the pressure receiving portion 4 is not subjected to earth and water pressure, the pressure receiving portion 4 is returned to a fixed position within the surface of the opening 30 of the case 3 by the elastic return of the strain generating body 51.
Further, when the pressure receiving portion 4 receives a shearing force (a force substantially parallel to the pressure receiving surface of the pressure receiving portion 4) (see FIGS. 1 and 2), the pressure receiving portion 4 deforms and deforms the strain generating body 51 of the sensitivity portion 5. Therefore, the amount of strain of the strain generating body 51 at this time is measured as an electrical signal by the resistance change of the four strain gauges 53 for measuring shear force. In the state where the pressure receiving portion 4 is not subjected to the shearing force, the pressure receiving portion 4 is returned to a fixed position in the plane of the opening 30 of the case 3 by the elastic return of the strain generating body 51. These electrical signals are output to the outside through the measurement cable 7 and displayed on a display (not shown) connected to the measurement cable 7.

したがって、このセンサMによれば、このセンサ1台で、地山の切羽又は掘削土砂による土水圧力及びせん断力を同時に測定するようにしたので、各種のシールド工法に使用する中小口径以上の各種のシールド掘進機や各種の推進工法に使用する各種の推進器の各部で、2種類の測定器(土圧計やせん断力計)では略同一の位置になるように設置することが困難な狭隘な設置個所や空間にも設置可能で、全体として多くの設置個所や空間に設置して、土水圧力とせん断力とを同時に測定することができる。   Therefore, according to this sensor M, the soil pressure and shear force due to the face of the natural ground or excavated earth and sand are measured simultaneously with this single sensor, so various types of medium and small diameters used for various shield methods are used. Narrowly difficult to install so that the two types of measuring instruments (earth pressure gauge and shear force meter) are almost in the same position in each part of the various types of propulsion devices used in the shield machine and various propulsion methods It can also be installed in installation locations and spaces, and can be installed in many installation locations and spaces as a whole to measure soil water pressure and shear force simultaneously.

図5にこのセンサMの使用例を示している。これは、本願発明者が先に提案した方法をこのセンサMを用いて実施するものである。
図5に示すように、先端にカッターヘッド11を有し、カッターヘッド11の後部にチャンバー12を備える泥土圧式シールド掘進機1(以下、単に掘進機1という。)を使用して行う泥土圧式シールド工法では、カッターヘッド11前方の地山の掘削面である切羽Gを掘削し、掘削した土砂をチャンバー12に取り込み、加泥材を注入して、カッターヘッド11並びにチャンバー12内に配置される撹拌翼131、固定翼132により撹拌混合することにより、掘削土砂を塑性流動性と不透水性を有する泥土に変換し、この泥土をチャンバー12内とチャンバー12から後方に延びるスクリューコンベア14などからなる排土装置内に充満させ、この状態を維持しながらシールドジャッキ15の推力によりチャンバー12内の泥土に泥土圧を発生させて、この土砂の土圧を切羽に作用させることにより切羽Gの土圧と地下水圧に対抗して、切羽Gを安定化させ、掘進機1をその推進量と排土量のバランスを図りながら地山を掘進することが行われる。
このような泥土圧式シールド工法においては、切羽Gの安定を適切に保つために、チャンバー12内の掘削土砂を良好に塑性流動化する必要があり、このため、チャンバー12内掘削土砂の性状の適切な評価が重要となる。
そして、このチャンバー12内の掘削土砂の性状評価判定方法では、掘削土砂による圧力及びせん断力が作用するチャンバー12内の各部に、複数の土水圧力・せん断力測定センサM(以下、単にセンサMという。)をそれぞれの受圧面を基本的にチャンバー12の内側に向けて取り付け、チャンバー12内の各部に作用する土水圧力及びせん断力をセンサMにより測定し、チャンバー12内の各部におけるせん断力の値を土水圧力の値で除して得た数値によって、チャンバー12内の掘削土砂の性状を評価判定する。
FIG. 5 shows an example of use of the sensor M. In this method, the method previously proposed by the inventor of the present application is carried out using this sensor M.
As shown in FIG. 5, a mud pressure shield shield using a mud pressure shield machine 1 (hereinafter simply referred to as “dig machine 1”) having a cutter head 11 at the tip and a chamber 12 at the rear of the cutter head 11. In the construction method, a face G, which is a ground excavation surface in front of the cutter head 11, is excavated, the excavated earth and sand is taken into the chamber 12, a mud material is injected, and the agitation disposed in the cutter head 11 and the chamber 12 is performed. By stirring and mixing with the blades 131 and the fixed blades 132, the excavated sediment is converted into mud with plastic fluidity and water impermeability, and the mud is discharged from the chamber 12 and the screw conveyor 14 extending backward from the chamber 12, and the like. The soil device is filled and the mud pressure in the mud in the chamber 12 is maintained by the thrust of the shield jack 15 while maintaining this state. The earth pressure of this earth and sand is applied to the face to stabilize the face G against the earth pressure and groundwater pressure of the face G, and the excavator 1 balances the amount of propulsion and the amount of soil removed. The excavation of the natural ground is carried out while planning.
In such a mud pressure type shield construction method, in order to keep the face G properly stable, it is necessary to plastically fluidize the excavated sediment in the chamber 12 appropriately. Evaluation is important.
And in this property evaluation judgment method of the excavated sediment in the chamber 12, a plurality of soil water pressure / shear force measuring sensors M (hereinafter simply referred to as sensors M) are provided in each part of the chamber 12 where the pressure and shear force of the excavated sediment are applied. Is attached with the respective pressure-receiving surfaces facing inwardly of the chamber 12, the soil water pressure and shear force acting on each part in the chamber 12 are measured by the sensor M, and the shear force in each part in the chamber 12 is measured. The property of the excavated soil in the chamber 12 is evaluated and determined by a numerical value obtained by dividing the value of by the value of soil water pressure.

この評価判定方法においては、特にチャンバー12内のセンサMの配置位置として、チャンバー12の内面、撹拌翼131の表面、固定翼132の表面、アジテータの表面(不図示)、カッターヘッド11のチャンバー12に対向する背面にそれぞれ、センサMを設置して、泥土がチャンバー12の内面、撹拌翼131の表面、固定翼132の表面、アジテータの表面、カッターヘッド11の背面に作用する圧力及びせん断力を計測する。
この場合、チャンバー12の内面はチャンバー12の底となるバルクヘッド(隔壁)121、及びチャンバー12の内周面となるシールドスキンプレート10の前端部側内周面であり、このチャンバー12に設置するセンサMは、センサMの受圧面がチャンバー12のバルクヘッド121とシールドスキンプレート10の前端部側内周面に略同一面となるように、チャンバー12のバルクヘッド121とシールドスキンプレート10の前端部側内周面の適宜の計測位置に埋め込み設置する。
撹拌翼131の表面は、カッターヘッド(カッタースポーク)11の背面に突設されてチャンバー12に向けて延び、カッターヘッド11とともに回転される撹拌翼131の周面であり、固定翼132の表面は、チャンバー12のバルクヘッド121に固定されてシールドスキンプレート10の前端部に向けて延びる固定翼132の周面であり、この撹拌翼131、固定翼132に設置するセンサMは、センサMの受圧面をカッターヘッド11の回転方向に対して略直交する方向に向けて、すなわちセンサMの受圧面がチャンバー12内の掘削土砂の流れに略対向するように、又はカッターヘッド11の回転方向と略平行にして、すなわちセンサMの受圧面がチャンバー12内の掘削土砂の流れに略沿うように設置する。
なお、この場合、カッターヘッド11は正転方向又は逆転方向に回転可能になっているので、いずれの方向の回転に対しても撹拌翼131、固定翼132のセンサが掘削土砂に反応できるように、2方向のセンサMを設置してもよい。また、この場合、センサMはその受圧面をシールド掘進機1の軸芯に向けて設置してもよく、シールド掘進機1の周面(シールドスキンプレート10の内周面)に向けて設置してもよく、さらに、2方向のセンサMを設置してもよい。また、センサMはその受圧面をシールド掘進機1の後方、すなわちチャンバー12のバルクヘッド121に向けて設置してもよく、シールド掘進機1の前方、すなわちカッターヘッド11の背面に向けて設置してもよく、さらに、その2方向のセンサMを設置してもよい。また、センサMは上記各種の設置形式を組み合せて設置してもよい。さらに、このセンサMは撹拌翼131、固定翼132の先端に設置されてもよく、この場合、受圧面をカッターヘッド11の回転方向と略平行に向ければよい。
アジテータについては特に図示していないが、アジテータの表面に設置するセンサはその受圧面をアジテータの回転方向に対して略直交する方向に向けて又は略平行に設置する。
なお、この場合、アジテータは正転方向又は逆転方向に回転可能になっているので、いずれの方向の回転に対してもアジテータのセンサが掘削土砂に反応できるように、2方向のセンサMを設置してもよい。
カッターヘッド(カッタースポーク)11の背面に設置するセンサMはその受圧面をカッターヘッド11の回転方向に対して略直交する方向に向けて又は略平行に設置する。
なお、この場合、カッターヘッド11は正転方向又は逆転方向に回転可能になっているので、いずれの方向の回転に対してもカッターヘッド11のセンサが掘削土砂に反応できるように、2方向のセンサMを設置してもよい。
In this evaluation / determination method, in particular, as the arrangement position of the sensor M in the chamber 12, the inner surface of the chamber 12, the surface of the stirring blade 131, the surface of the fixed blade 132, the surface of the agitator (not shown), the chamber 12 of the cutter head 11. Sensor M is installed on each of the back surfaces facing each other, and the pressure and shear force acting on the inner surface of the chamber 12, the surface of the stirring blade 131, the surface of the fixed blade 132, the surface of the agitator, and the back surface of the cutter head 11 are set. measure.
In this case, the inner surface of the chamber 12 is a bulkhead (partition wall) 121 serving as the bottom of the chamber 12 and the inner peripheral surface of the shield skin plate 10 serving as the inner peripheral surface of the chamber 12. The sensor M has a front end of the bulkhead 121 of the chamber 12 and the front end of the shield skin plate 10 such that the pressure receiving surface of the sensor M is substantially flush with the bulkhead 121 of the chamber 12 and the inner peripheral surface of the front end portion of the shield skin plate 10. It is embedded at an appropriate measurement position on the inner peripheral surface of the section.
The surface of the stirring blade 131 is a peripheral surface of the stirring blade 131 that protrudes from the back surface of the cutter head (cutter spoke) 11 and extends toward the chamber 12 and rotates together with the cutter head 11. , A peripheral surface of a fixed blade 132 fixed to the bulkhead 121 of the chamber 12 and extending toward the front end of the shield skin plate 10, and the sensor M installed on the stirring blade 131 and the fixed blade 132 is a pressure receiving pressure of the sensor M The surface is directed in a direction substantially perpendicular to the rotation direction of the cutter head 11, that is, the pressure receiving surface of the sensor M is substantially opposite to the flow of excavated earth and sand in the chamber 12, or substantially the rotation direction of the cutter head 11. It is installed in parallel, that is, so that the pressure receiving surface of the sensor M substantially follows the flow of excavated earth and sand in the chamber 12.
In this case, since the cutter head 11 is rotatable in the forward rotation direction or the reverse rotation direction, the sensors of the stirring blade 131 and the fixed blade 132 can react to the excavated soil with respect to rotation in any direction. You may install the sensor M of 2 directions. Further, in this case, the sensor M may be installed with its pressure-receiving surface facing the axis of the shield machine 1 or facing the peripheral surface of the shield machine 1 (the inner peripheral surface of the shield skin plate 10). In addition, a sensor M in two directions may be installed. In addition, the sensor M may be installed with its pressure-receiving surface behind the shield machine 1, that is, toward the bulkhead 121 of the chamber 12, or with the sensor M installed toward the front of the shield machine 1, that is, toward the back surface of the cutter head 11. Furthermore, the sensor M in the two directions may be installed. Further, the sensor M may be installed in combination with the above-described various installation types. Further, the sensor M may be installed at the tip of the stirring blade 131 and the fixed blade 132. In this case, the pressure receiving surface may be oriented substantially parallel to the rotation direction of the cutter head 11.
The agitator is not particularly shown, but the sensor installed on the surface of the agitator is installed so that its pressure-receiving surface is oriented in a direction substantially perpendicular to the rotation direction of the agitator or substantially parallel.
In this case, since the agitator can be rotated in the forward direction or the reverse direction, a two-way sensor M is installed so that the agitator sensor can react to the excavated sediment with respect to rotation in either direction. May be.
The sensor M installed on the back surface of the cutter head (cutter spoke) 11 is installed with its pressure-receiving surface directed in a direction substantially orthogonal to the rotation direction of the cutter head 11 or substantially parallel thereto.
In this case, since the cutter head 11 is rotatable in the forward rotation direction or the reverse rotation direction, so that the sensor of the cutter head 11 can react to the excavated sediment with respect to the rotation in either direction, A sensor M may be installed.

このようにしてこのチャンバー12内の掘削土砂の性状評価判定方法では、掘進機1のカッターヘッド11で掘削した土砂をカッターヘッド11後部に設けたチャンバー12に取り込み、加泥材を注入して、チャンバー12内の撹拌翼131、固定翼132、アジテータにより撹拌混合する間、この撹拌混合時の土砂の流動により、チャンバー12を構成するバルクヘッド121及びシールドスキンプレート10の内面、撹拌翼131及び固定翼132の表面、アジテータの表面、カッターヘッド11の背面にそれぞれ圧力、せん断力が発生し、その大きさは一般に土砂の硬軟によって異なるので、その大きさを各センサMにより測定し、これにより得たせん断力の値を土水圧力の値で除した数値(「せん断力/土水圧力」で算出される掘削土砂とバルクヘッド121などチャンバー12内の各部との摩擦係数に相当)の大きさ(大小)で、掘削土砂の性状を評価する。このようにせん断力の値を土水圧力の値で除して無次元化することで、土被り圧や地下水圧、さらに重量物などによる土圧の変化に影響されることなしに、チャンバー12内の掘削土砂の性状を相対評価することが可能となる。
図6,図7は縦軸にせん断力S(せん断応力τ)、横軸に直力N(直応力σ)をとったMohrの応力場を表す。せん断力計(センサM)はS1,S2,S3を測定するものであり、土圧計(センサM)は測定される土水圧に当該受圧面積を乗ずることで直力Nを算出するものである。直力Nの大きさは土被り圧や地下水圧、さらに重量物などによって変化する。
図6は砂質土の場合で、状態(1)はある粘着力C(一般にはほとんど0に近い)と内部摩擦角φ1を有する原地盤の状態とする。これに加泥材を添加し撹拌すると、砂粒子のかみ合わせの抵抗が減少し、状態(2)(内部摩擦角φ2)、または状態(3)(内部摩擦角φ3)の性状となる(φ123)。
一方,理論上ある直力場N(直応力場σ)において、状態(1),(2),(3)でそれぞれせん断力S1,S2,S3(またはせん断応力τ1,τ2,τ3)が表される(S1,S2,S3は状態(1),(2),(3)を表す直線と直応力場Nを通り縦軸に並行な直線との交点をも表す)。また、せん断力/土水圧力は,ある直力場N(直応力場σ)において、状態(1),(2),(3)に応じてS1/N,S2/N,S3/Nを表すもので、これは原点OとそれぞれS1,S2,S3を結ぶ直線の勾配を表す(S1/N>S2/N>S3/N)。
すなわち,S1/N,S2/N,S3/Nを算出評価することは状態(1),(2),(3)の内部摩擦角φ1,φ2,φ3を評価することと同値であるので、掘削土砂の性状を相対評価できると言える。
図7は粘性土の場合で、状態(1)はある内部摩擦角φ(一般にはほとんど0に近い)と粘着力C1を有する原地盤の状態とする。これに加泥材を添加し撹拌すると、土粒子間の分子間力が減少し、状態(2)(粘着力C2),または状態(3)(粘着力C3)の性状となる(C1>C2>C3)。
一方,理論上ある直力場N(直応力場σ)において,状態(1),(2),(3)でそれぞれせん断力S1,S2,S3(またはせん断応力τ1,τ2,τ3)が表される(S1,S2,S3は状態(1),(2),(3)を表す直線と直応力場Nを通り縦軸に並行な直線との交点をも表す)。また、せん断力/土水圧力は、ある直力場N(直応力場σ)において、状態(1),(2),(3)に応じてS1/N,S2/N,S3/Nを表すもので、これは原点OとそれぞれS1,S2,S3を結ぶ直線の勾配を表す(S1/N>S2/N>S3/N)。
すなわち,S1/N,S2/N,S3/Nを算出評価することは状態(1),(2),(3)の粘着力C1,C2,C3を評価することと同値であるので,掘削土砂の性状を相対評価できると言える。
In this way, in the property evaluation judgment method of the excavated earth and sand in the chamber 12, the earth and sand excavated by the cutter head 11 of the excavating machine 1 is taken into the chamber 12 provided at the rear part of the cutter head 11, and the mud is injected. During the stirring and mixing by the stirring blade 131, the fixed blade 132, and the agitator in the chamber 12, the inner surface of the bulkhead 121 and the shield skin plate 10 constituting the chamber 12, the stirring blade 131 and the fixed member are caused by the flow of earth and sand during the stirring and mixing. Pressure and shear force are generated on the surface of the wing 132, the surface of the agitator, and the back surface of the cutter head 11, respectively, and their sizes generally differ depending on the hardness of the earth and sand. Value obtained by dividing the shear force value by the soil pressure value (excavation calculated by “shear force / soil pressure”) The size of the corresponding coefficient of friction of the respective parts of the chamber 12, such as sand and bulkhead 121) in (large and small), to evaluate the properties of the drilling soil. By dividing the shear force value by the soil water pressure value and making it dimensionless in this way, the chamber 12 is not affected by changes in soil pressure due to soil covering pressure, groundwater pressure, or heavy objects. It is possible to relatively evaluate the properties of the excavated sediment.
6 and 7 show the Mohr stress field in which the vertical axis represents the shear force S (shear stress τ) and the horizontal axis represents the direct force N (direct stress σ). The shear force meter (sensor M) measures S 1 , S 2 , S 3 , and the earth pressure gauge (sensor M) calculates the direct force N by multiplying the measured soil water pressure by the pressure receiving area. It is. The magnitude of the direct force N varies depending on the earth pressure, the groundwater pressure, and a heavy object.
FIG. 6 shows the case of sandy soil, and the state (1) is a state of the original ground having a certain adhesive force C (generally almost 0) and an internal friction angle φ 1 . When added to this and agitated, stirring resistance of the sand particles decreases, and the state (2) (internal friction angle φ 2 ) or state (3) (internal friction angle φ 3 ) is obtained ( φ 1 > φ 2 > φ 3 ).
On the other hand, in the theoretical direct force field N (direct stress field σ), shear forces S 1 , S 2 , S 3 (or shear stress τ 1 , τ 2 ) in states (1), (2), (3), respectively. , Τ 3 ) (S 1 , S 2 , S 3 are the intersections of the straight line representing the states (1), (2), (3) and the straight line passing through the direct stress field N and parallel to the vertical axis. Also represents). Further, the shear force / earth water pressure is S 1 / N, S 2 / N, S 3 depending on the states (1), (2), (3) in a certain force field N (direct stress field σ). / N, which represents the slope of the straight line connecting the origin O and S 1 , S 2 , S 3 respectively (S 1 / N> S 2 / N> S 3 / N).
That is, calculating and evaluating S 1 / N, S 2 / N, and S 3 / N means evaluating the internal friction angles φ 1 , φ 2 , and φ 3 in states (1), (2), and (3). Therefore, it can be said that the properties of excavated soil can be evaluated relative to each other.
FIG. 7 shows a case of cohesive soil, and state (1) is a state of the original ground having a certain internal friction angle φ (generally close to 0) and adhesive strength C 1 . When a mud is added and stirred, the intermolecular force between the soil particles decreases, and the state (2) (adhesive strength C 2 ) or state (3) (adhesive strength C 3 ) is obtained (C 1> C 2> C 3) .
On the other hand, in the theoretical direct force field N (direct stress field σ), shear forces S 1 , S 2 , S 3 (or shear stress τ 1 , τ 2 ) in states (1), (2), (3), respectively. , Τ 3 ) (S 1 , S 2 , S 3 are the intersections of the straight line representing the states (1), (2), (3) and the straight line passing through the direct stress field N and parallel to the vertical axis. Also represents). Further, the shear force / earth water pressure is S 1 / N, S 2 / N, S 3 depending on the states (1), (2), (3) in a certain force field N (direct stress field σ). / N, which represents the slope of the straight line connecting the origin O and S 1 , S 2 , S 3 respectively (S 1 / N> S 2 / N> S 3 / N).
That is, calculating and evaluating S 1 / N, S 2 / N, and S 3 / N means evaluating adhesive forces C 1 , C 2 , and C 3 in states (1), (2), and (3). Since the values are equivalent, it can be said that the properties of excavated sediment can be evaluated relative to each other.

そして、チャンバー12内の各部において得られた土水圧力、せん断力、せん断力/土水圧力の各値を、カッターヘッド11の回転角度に基づくチャンバー12内のセンサMの位置とともに、一般のPC(パーソナルコンピュータ)で既存のソフトウェアを用いてデータ処理し、その結果をPCのディスプレイ上にコンター図化して表すことにより、チャンバー12内の掘削土の性状を可視化することが可能である。   Then, the values of soil water pressure, shear force, shear force / soil water pressure obtained at each part in the chamber 12 are used together with the position of the sensor M in the chamber 12 based on the rotation angle of the cutter head 11 on a general PC. It is possible to visualize the properties of the excavated soil in the chamber 12 by processing the data using existing software on a (personal computer) and expressing the result as a contour map on the display of the PC.

以上説明したように、このセンサMは、中小口径に限らず大口径の泥土圧式シールド掘進機1のチャンバー12に装備される土圧計及びせん断力計に代えて用いることができ、全体として少ないセンサ数で、チャンバー12内の掘削土砂の性状を評価判定することができる。また、このセンサMは、中小口径に限らず大口径の泥土圧式シールド掘進機1のチャンバー12内に装備される土圧計及びせん断力計に代えて用いることにより、従来と同一のセンサ数でより多くの測定値を得ることができ、チャンバー12内の掘削土砂の性状をより高精度に評価することができる。
そして、このセンサMを用いたチャンバー内の掘削土砂の性状評価判定方法によれば、掘削土砂による圧力及びせん断力が作用するチャンバー12内の各部に、複数のセンサMを設置し、チャンバー12内の各部に作用する圧力及びせん断力をセンサMにより同時に測定し、チャンバー12内の各部におけるせん断力の値を土水圧力の値で除して得た数値(「せん断力/土水圧力」で算出される掘削土砂とバルクヘッド121などチャンバー12内の各部との摩擦係数に相当)の大きさ(大小)によって、チャンバー12内の掘削土砂の性状を評価判定するようにしたので、掘進路線上で土被り圧や地下水圧が変化したり、地表やトンネル直上に重量物が存在したりして、掘進路線上で地山の土圧や水圧が変化する場合でも、同一路線内でチャンバー12内の掘削土砂の性状を相対的に評価判定することができる。
また、この場合、チャンバー12内の各部において得られた土水圧力、せん断力、せん断力/土水圧力の各値を、カッターヘッド11の回転角度に基づくチャンバー12内のセンサMの位置とともに、コンター図にして表すことで、チャンバー12内の掘削土砂の性状を可視化して容易に確認することができる。
As described above, this sensor M can be used in place of the earth pressure gauge and the shear force gauge installed in the chamber 12 of the large-diameter mud pressure shield shield machine 1 as well as the medium and small diameters, and there are few sensors as a whole. The properties of the excavated soil in the chamber 12 can be evaluated and determined by the number. In addition, the sensor M is not limited to the medium and small calibers, but can be used in place of the earth pressure gauge and the shear force meter installed in the chamber 12 of the large-diameter mud pressure shield machine 1 so that the number of sensors can be increased. Many measurement values can be obtained, and the properties of the excavated sediment in the chamber 12 can be evaluated with higher accuracy.
And according to the property evaluation judgment method of the excavated sediment in the chamber using this sensor M, a plurality of sensors M are installed in each part in the chamber 12 where the pressure and shear force by the excavated sediment are applied. The pressure and shear force acting on each part of the chamber 12 are simultaneously measured by the sensor M, and the value obtained by dividing the value of the shear force in each part in the chamber 12 by the value of the earth water pressure (“shear force / earth water pressure”) The properties of the excavated sediment in the chamber 12 are evaluated and determined according to the size (corresponding to the coefficient of friction between the calculated excavated sediment and the bulkhead 121 and other parts in the chamber 12). Even if the earth pressure or water pressure of the ground mountain changes on the excavation route due to changes in soil cover pressure or groundwater pressure, or heavy objects directly above the ground surface or tunnel, Properties of Drilling sediment members 12 can be relatively evaluated determination.
Moreover, in this case, each value of earth water pressure, shear force, shear force / earth water pressure obtained in each part in the chamber 12 is combined with the position of the sensor M in the chamber 12 based on the rotation angle of the cutter head 11. By representing the contour diagram, the properties of the excavated sediment in the chamber 12 can be visualized and easily confirmed.

なお、この実施の形態では、泥土圧式シールド掘進機を使用する泥土圧式シールド工法に用いるチャンバー内の掘削土砂の性状評価判定方法について例示したが、土圧式シールド掘進機を使用する土圧式シールド工法に用いるチャンバー内の掘削土砂の性状評価判定方法にも同様に適用することができ、この場合でも、上記実施の形態と同様の作用効果を奏することができる。   In this embodiment, the method for evaluating the property of the excavated soil in the chamber used for the mud pressure shield method using the mud pressure shield machine is illustrated, but the earth pressure type shield method using the earth pressure type shield machine is used. The present invention can be similarly applied to the property evaluation and determination method for excavated earth and sand in the chamber to be used, and even in this case, the same effects as those of the above-described embodiment can be achieved.

さらに、この実施の形態で例示した泥土圧式シールド工法に用いるチャンバー内の掘削土砂の性状評価判定方法は、土圧式シールド掘進機を使用する土圧式シールド工法、泥土圧式シールド掘進機を使用する泥土圧式シールド工法、泥水式シールド掘進機を使用する泥水式シールド工法において、カッターヘッド前方の地山切羽の土質評価判定方法にも利用することができる。   Furthermore, the property evaluation judgment method of excavated earth and sand in the chamber used in the mud pressure shield method exemplified in this embodiment is the earth pressure type shield method using the earth pressure type shield machine, the mud pressure type using the mud pressure type shield machine. In the shield method and the muddy water shield method using a muddy water shield machine, it can also be used for the soil quality evaluation and judgment method in front of the cutter head.

次に、これらの工法のうち、泥水式シールド掘進機を使用する泥水式シールド工法に用いるカッターヘッド前方の地山切羽の土質評価判定方法について、図8を用いて説明する。   Next, among these methods, a soil quality evaluation and determination method for the ground face in front of the cutter head used in the muddy water shield method using a muddy water shield machine will be described with reference to FIG.

図8に示すように、先端にカッターヘッド21を有し、カッターヘッド21の後部にチャンバー22を備える泥水式シールド掘進機2(以下、単に掘進機2という。)を使用して行う泥水式シールド工法に用いるカッターヘッド前方の地山切羽の土質評価判定方法では、カッターヘッド21でカッターヘッド21前方の地山の掘削面である切羽Gを掘削するとともに、チャンバー22に泥水を供給して切羽Gに泥水を送り加圧することにより切羽Gを安定化させ、地山を掘進することが行われる。
そして、このカッターヘッド21の地山切羽の土質評価判定方法では、地山の切羽Gによる圧力及びせん断力が作用するカッターヘッド21の各部に、複数のセンサMをそれぞれの受圧面を基本的に地山の切羽に向けて取り付け、カッターヘッド21の各部に作用する圧力及びせん断力をセンサにより測定し、カッターヘッド21の各部におけるせん断力の値を土水圧力の値で除して得た数値によって、カッターヘッド21前方の切羽Gの土質を評価判定する。
As shown in FIG. 8, a muddy water type shield machine having a cutter head 21 at the tip and a muddy water type shield machine 2 (hereinafter simply referred to as “dig machine 2”) having a chamber 22 at the rear of the cutter head 21. In the soil evaluation and determination method for the ground face in front of the cutter head used in the construction method, the cutter head 21 excavates the face G, which is the excavation surface of the ground in front of the cutter head 21, and supplies muddy water to the chamber 22 to supply the face G. The face G is stabilized by sending muddy water and pressurizing, and excavating the natural ground.
In this soil head evaluation method of the natural ground face of the cutter head 21, a plurality of sensors M are basically provided on each pressure receiving surface on each part of the cutter head 21 where the pressure and shear force of the natural ground face G act. A numerical value obtained by attaching pressure to the face of a natural ground, measuring the pressure and shear force acting on each part of the cutter head 21 with a sensor, and dividing the value of the shear force in each part of the cutter head 21 by the value of soil water pressure. Thus, the soil quality of the face G in front of the cutter head 21 is evaluated and determined.

この評価判定方法においては、特にカッターヘッド21におけるセンサMの配置位置として、カッターヘッド21の面盤211の最外周部、コピーカッター212の先端などから適宜選定する。   In this evaluation determination method, the arrangement position of the sensor M in the cutter head 21 is appropriately selected from the outermost peripheral portion of the face plate 211 of the cutter head 21, the tip of the copy cutter 212, and the like.

このようにしてこのカッターヘッド21前方の地山切羽の土質評価判定方法では、掘進機2の掘進停止中に、カッターヘッド21を1回転以上回転させ、同時に、センサMで土水圧力及びせん断力を測定し、これにより得たせん断力の値を土水圧力の値で除した数値(「せん断力/土水圧力」で算出される切羽G外周とカッターヘッド21の面盤211の最外周部、コピーカッター212の先端との摩擦係数に相当)の大きさ(大小)で、地山切羽Gの土質を評価判定する。このようにせん断力の値を土水圧力の値で除して無次元化することで、土被り圧や地下水圧、さらに重量物などによる土圧の変化に影響されることなしに、カッターヘッド21前方の地山切羽Gの土質を相対評価することが可能となる。
そして、カッターヘッド21の各部において得られた土水圧力、せん断力、せん断力/土水圧力の各値を、カッターヘッド21の回転角度に基づくカッターヘッド21各部のセンサMの位置とともに、一般のPC(パーソナルコンピュータ)で既存のソフトウェアを用いてデータ処理し、その結果をPCのディスプレイ上にコンター図化して表すことにより、カッターヘッド21前方の地山切羽Gの土質を可視化することが可能である。
In this way, in the soil quality evaluation and determination method of the ground face in front of the cutter head 21, the cutter head 21 is rotated one or more times while the excavator 2 is stopped, and at the same time, the soil pressure and shear force are measured by the sensor M. Is a numerical value obtained by dividing the shear force value obtained by this by the earth water pressure value (the outer periphery of the face G calculated by “shear force / earth water pressure” and the outermost peripheral portion of the face plate 211 of the cutter head 21. The soil quality of the natural ground face G is evaluated and determined based on the size (corresponding to the coefficient of friction with the tip of the copy cutter 212). By dividing the shear force value by the soil water pressure and making it dimensionless in this way, the cutter head is not affected by changes in earth pressure due to soil covering pressure, groundwater pressure, and heavy objects. It becomes possible to make a relative evaluation of the soil quality of the natural ground face G 21 ahead.
And each value of earth water pressure, shear force, shear force / earth water pressure obtained in each part of the cutter head 21 together with the position of the sensor M of each part of the cutter head 21 based on the rotation angle of the cutter head 21 Data can be processed using existing software on a PC (Personal Computer), and the results can be visualized on a PC display to visualize the soil texture of the ground face G in front of the cutter head 21. is there.

以上説明したように、このセンサMは、泥水式シールド掘進機2において、カッターヘッド21の各部、例えば側面などの狭隘な場所にでも設置することができ、カッターヘッド21回転時の地山の抵抗を測定することができる。
そして、このセンサMを用いたカッターヘッド21前方の地山切羽の土質評価判定方法によれば、地山の切羽Gによる圧力及びせん断力が作用するカッターヘッド21の各部に、複数のセンサMを設置し、掘進停止中にカッターヘッド21を1回転以上回転して、カッターヘッド21の各部に作用する圧力及びせん断力をセンサMにより測定し、カッターヘッド21の各部におけるせん断力の値を土水圧力の値で除して得た数値(「せん断力/土水圧力」で算出される切羽Gとカッターヘッド21の各部との摩擦係数に相当)の大きさ(大小)によって、カッターヘッド21前方の切羽Gの土質を評価判定するようにしたので、カッターヘッド21前方の地山Gの土質を相対的に評価判定することができる。
また、この場合、カッターヘッド21の各部において得られた土水圧力、せん断力、せん断力/土水圧力の各値を、カッターヘッド21の回転角度に基づくカッターヘッド21の各部のセンサMの位置とともに、コンター図にして表すことで、地山の切羽Gの土質を可視化して容易に確認することができる。
As described above, the sensor M can be installed in each part of the cutter head 21, for example, in a narrow place such as a side surface in the muddy water shield machine 2, and the resistance of the natural ground when the cutter head 21 rotates. Can be measured.
Then, according to the soil evaluation and determination method of the natural ground face in front of the cutter head 21 using the sensor M, a plurality of sensors M are provided on each part of the cutter head 21 to which the pressure and shear force by the natural face G are applied. Install and rotate the cutter head 21 one or more times while stopping excavation, measure the pressure and shear force acting on each part of the cutter head 21 with the sensor M, and determine the value of the shear force in each part of the cutter head 21 in soil Depending on the magnitude (large or small) of the numerical value obtained by dividing by the pressure value (corresponding to the coefficient of friction between the face G and each part of the cutter head 21 calculated by “shear force / earth water pressure”) Therefore, the soil quality of the natural ground G in front of the cutter head 21 can be relatively evaluated.
Further, in this case, the values of the soil water pressure, the shearing force, and the shearing force / soil pressure obtained at each part of the cutter head 21 are the positions of the sensors M of each part of the cutter head 21 based on the rotation angle of the cutter head 21. At the same time, it is possible to easily confirm the soil texture of the natural face G by visualizing it as a contour diagram.

なお、この実施の形態では、泥水式シールド掘進機を使用する泥水式シールド工法に用いるカッターヘッド前方の地山切羽の土質評価判定方法について例示したが、土圧式シールド掘進機を使用する土圧式シールド工法や泥土圧式シールド掘進機を使用する泥土圧式シールド工法に用いるカッターヘッド前方の地山切羽の土質評価判定方法にも同様に適用することができ、この場合でも、上記実施の形態と同様の作用効果を奏することができる。   In addition, in this embodiment, although the soil quality evaluation judgment method of the ground cutting face in front of the cutter head used in the muddy water shield method using the muddy water type shield machine is illustrated, the earth pressure type shield using the earth pressure type shield machine This method can also be applied to the soil quality evaluation method of the ground cutting face in front of the cutter head used in the mud pressure shield method using the mud pressure shield machine, and even in this case, the same action as in the above embodiment There is an effect.

1 泥土圧式シールド掘進機
10 シールドスキンプレート
11 カッターヘッド
110 カッターモーター
12 チャンバー
121 バルクヘッド(隔壁)
131 撹拌翼
132 固定翼
14 スクリューコンベア(排土装置)
15 シールドジャッキ
G 切羽(地山)
T 土槽
S 地盤
2 泥水式シールド掘進機
21 カッターヘッド
211 面盤
212 コピーカッター
22 チャンバー
26 土圧計
27 せん断力計
G 切羽(地山)
M(A)、(B) 土水圧力・せん断力測定センサ
3(3A、3B) ケース
30 開口
31 ケース本体
310a、310b 溝
311a、311b 土砂浸入防止リング
32a、32b 取付フランジ
33 取付基部
331 ねじ挿通部
34a、34b 取付穴
35 取付部
36 凹部
37 凸状部
38 ねじ孔
39 溝
4 受圧部
41 受圧板
411 凸部
412 溝
413 ねじ挿通孔
414 防水Oリング
42 支持板
420 凹部
421 ねじ挿通孔
422 ねじ孔
423 溝
424 防水Oリング
43 取付ねじ
44 取付ねじ
5 感度部
51 起歪体
511 ねじ孔
512 ねじ孔
52 土水圧力測定用歪みゲージ
52C 土水圧力測定用ブリッジ回路
53 せん断力測定用歪みゲージ
53C せん断力測定用ブリッジ回路
54 取付ねじ
6 測定ケーブルチャンバー
60 ケーブル挿通部
61 円筒部
62 取付フランジ
63 ねじ挿通部
64 グランドパッキン
65 防水Oリング
66 取付ねじ
7 測定ケーブル
P1 A型の取付部
P2 B型の取付部
1 Mud pressure shield machine 10 Shield skin plate 11 Cutter head 110 Cutter motor 12 Chamber 121 Bulkhead (bulk)
131 Stirring blades 132 Fixed blades 14 Screw conveyor (soil removal equipment)
15 Shield Jack G Face (Michiyama)
T soil tank S ground 2 muddy water type shield machine 21 cutter head 211 face plate 212 copy cutter 22 chamber 26 earth pressure gauge 27 shear force meter G face
M (A), (B) Earth water pressure / shear force measurement sensor 3 (3A, 3B) Case 30 Opening 31 Case body 310a, 310b Groove 311a, 311b Earth and sand intrusion prevention ring 32a, 32b Mounting flange 33 Mounting base 331 Screw insertion Portion 34a, 34b Mounting hole 35 Mounting portion 36 Concave portion 37 Convex portion 38 Screw hole 39 Groove 4 Pressure receiving portion 41 Pressure receiving plate 411 Convex portion 412 Groove 413 Screw insertion hole 414 Waterproof O-ring 42 Support plate 420 Concave portion 421 Screw insertion hole 422 Screw Hole 423 Groove 424 Waterproof O-ring 43 Mounting screw 44 Mounting screw 5 Sensitivity part 51 Strain body 511 Screw hole 512 Screw hole 52 Strain gauge for measuring soil water pressure 52C Bridge circuit for measuring soil water pressure 53 Strain gauge for measuring shear force 53C Bridge circuit for measuring shear force 54 Mounting screw 6 Measuring cable Le chamber 60 cable insertion portion 61 cylindrical portion 62 mounting flange 63 screw insertion portions 64 Gland packing 65 waterproof O-ring 66 mounting screws 7 measuring cable P1 A type of attachment portion P2 B type mounting portion

Claims (4)

各種の掘進機による地山の掘削に際し、地山の切羽又は掘削土砂による土水圧力及びせん断力が作用する掘進機の各部に設置され、掘進機の各部に作用する土水圧力及びせん断力を測定する土水圧力・せん断力測定センサであって、
先端に開口を有する略筒状のケースと、
前記ケースの開口面内に配置され、前記土水圧力及びせん断力を受ける受圧部と、
前記ケース内に設置されて前記受圧部を支持し、前記受圧部が前記土水圧力を受けて前記受圧部を前記ケースの軸心方向に進退可能に歪み変形し、かつ前記受圧部が前記せん断力を受けて前記受圧部を前記ケースの軸心を中心に揺動可能に歪み変形して、前記土水圧力による歪み量及び前記せん断力による歪み量を電気抵抗の変化として検出する感度部と、
を備え、
地山の切羽又は掘削土砂による土水圧力及びせん断力を同時に測定する、
ことを特徴とする土水圧力・せん断力測定センサ。
When excavating natural ground with various excavators, it is installed in each part of the excavator where soil pressure and shear force from the face of the natural ground or excavated earth and sand acts, and the earth pressure and shear force acting on each part of the excavator are reduced. A soil pressure / shear force measurement sensor for measuring,
A substantially cylindrical case having an opening at the tip;
A pressure receiving portion that is disposed within the opening surface of the case and receives the soil water pressure and shear force;
The pressure receiving portion is installed in the case to support the pressure receiving portion, the pressure receiving portion receives the earth water pressure, and the pressure receiving portion is distorted and deformed so as to advance and retreat in the axial direction of the case, and the pressure receiving portion is the shear A sensitivity unit that receives a force and deforms the pressure receiving unit so as to be swingable about the axis of the case, and detects a strain amount due to the soil water pressure and a strain amount due to the shear force as a change in electrical resistance; ,
With
Simultaneously measure soil pressure and shear force due to natural face or excavated soil,
Soil water pressure / shear force measurement sensor.
ケースは、先端に受圧部を配置可能な開口を有し、後端に感度部のための取付基部を有する有底円筒状のケース本体と、前記ケース本体の周面の後端又は先端に前記ケース本体の軸方向に対して略直角に外側に向けて張り出され、外周端に取付ねじのための取付穴を有する取付フランジとからなる請求項1に記載の土水圧力・せん断力測定センサ。   The case has an opening in which a pressure receiving portion can be arranged at the tip, a bottomed cylindrical case body having a mounting base for a sensitivity portion at the rear end, and the rear end or tip of the peripheral surface of the case body. The earth and water pressure / shear force measuring sensor according to claim 1, further comprising a mounting flange projecting outward at a substantially right angle to the axial direction of the case body and having a mounting hole for a mounting screw at an outer peripheral end. . 受圧部は、前記ケース内で前記感度部の先端に取り付けられる円形の支持板と、前記支持板に取り付けられ、前記ケースの開口面内に配置される円形の受圧板とからなる請求項1又は2に記載の土水圧力・せん断力測定センサ。   The pressure receiving portion includes a circular support plate attached to a tip of the sensitivity portion in the case, and a circular pressure receiving plate attached to the support plate and disposed in an opening surface of the case. The soil water pressure / shear force measuring sensor according to 2. 感度部は、受圧部を先端に支持し、前記受圧部が土水圧力を受けてその土水圧力に応じて歪み変形し、前記受圧部がせん断力を受けてそのせん断力に応じて歪み変形する起歪体と、前記起歪体の歪みの発生位置に貼着され、前記受圧部の受ける土水圧力を測定する土水圧力用歪みゲージ及び前記受圧部の受けるせん断力を測定するせん断力用歪みゲージとを有する請求項1乃至3のいずれかに記載の土水圧力・せん断力測定センサ。   The sensitivity part supports the pressure receiving part at the tip, the pressure receiving part receives earth water pressure and is deformed and deformed according to the earth water pressure, and the pressure receiving part receives a shear force and is deformed and deformed according to the shear force. A strain generating body, a strain gauge for earth water pressure that is attached to a strain generating position of the strain generating body and that measures the soil water pressure received by the pressure receiving portion, and a shear force that measures the shear force received by the pressure receiving portion. The earth-water pressure / shear force measuring sensor according to claim 1, further comprising a strain gauge for use.
JP2015234503A 2015-12-01 2015-12-01 Soil pressure and shear force measurement sensor Active JP6590368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015234503A JP6590368B2 (en) 2015-12-01 2015-12-01 Soil pressure and shear force measurement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015234503A JP6590368B2 (en) 2015-12-01 2015-12-01 Soil pressure and shear force measurement sensor

Publications (2)

Publication Number Publication Date
JP2017101436A true JP2017101436A (en) 2017-06-08
JP6590368B2 JP6590368B2 (en) 2019-10-16

Family

ID=59015238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015234503A Active JP6590368B2 (en) 2015-12-01 2015-12-01 Soil pressure and shear force measurement sensor

Country Status (1)

Country Link
JP (1) JP6590368B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027080A (en) * 2017-07-27 2019-02-21 株式会社安藤・間 Method and system for detecting subsoil unexcavated by caisson blade
CN110017933A (en) * 2019-05-20 2019-07-16 厦门厦工中铁重型机械有限公司 A kind of soil pressure case more changing device
JP2020169481A (en) * 2019-04-03 2020-10-15 Jimテクノロジー株式会社 Tunnel excavator
JP7037024B1 (en) 2021-08-18 2022-03-16 中国科学院西北生態環境資源研究院 Frozen soil pore water pressure change measuring device
JP7381359B2 (en) 2020-02-12 2023-11-15 株式会社安藤・間 shear force meter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190828A (en) * 1984-03-12 1985-09-28 Fujita Corp Detector for measuring two-component earth pressure and pore water pressure
JPS62140334U (en) * 1986-02-25 1987-09-04
JPH055397A (en) * 1991-06-26 1993-01-14 Mitsubishi Heavy Ind Ltd External force measuring device of shield excavator
JP2007108073A (en) * 2005-10-14 2007-04-26 Railway Technical Res Inst Ground stress measuring device and ground stress measuring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190828A (en) * 1984-03-12 1985-09-28 Fujita Corp Detector for measuring two-component earth pressure and pore water pressure
JPS62140334U (en) * 1986-02-25 1987-09-04
JPH055397A (en) * 1991-06-26 1993-01-14 Mitsubishi Heavy Ind Ltd External force measuring device of shield excavator
JP2007108073A (en) * 2005-10-14 2007-04-26 Railway Technical Res Inst Ground stress measuring device and ground stress measuring method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027080A (en) * 2017-07-27 2019-02-21 株式会社安藤・間 Method and system for detecting subsoil unexcavated by caisson blade
JP2020169481A (en) * 2019-04-03 2020-10-15 Jimテクノロジー株式会社 Tunnel excavator
JP7174379B2 (en) 2019-04-03 2022-11-17 Jimテクノロジー株式会社 tunnel excavator
CN110017933A (en) * 2019-05-20 2019-07-16 厦门厦工中铁重型机械有限公司 A kind of soil pressure case more changing device
CN110017933B (en) * 2019-05-20 2024-02-06 厦门厦工中铁重型机械有限公司 Soil pressure sensor changing device
JP7381359B2 (en) 2020-02-12 2023-11-15 株式会社安藤・間 shear force meter
JP7037024B1 (en) 2021-08-18 2022-03-16 中国科学院西北生態環境資源研究院 Frozen soil pore water pressure change measuring device
JP2023029180A (en) * 2021-08-18 2023-03-03 中国科学院西北生態環境資源研究院 Measurement device for frozen ground pore pressure change

Also Published As

Publication number Publication date
JP6590368B2 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP6590368B2 (en) Soil pressure and shear force measurement sensor
JP6522954B2 (en) Shear force meter, method of measuring and evaluating the properties of excavated soil in a chamber used for earth pressure shield method using the same, shield machine, and plastic flowability test apparatus for soil
JP6678438B2 (en) Method for evaluating the properties of excavated earth and sand in a chamber used for various excavation methods, and method for evaluating the soil quality of a face in front of a cutter head
JP4854538B2 (en) Shielding machine and chamber blockage management method
CN104389325B (en) The full-automatic inclination measurement system of foundation pit enclosure wall and tilt measurement
JP6416496B2 (en) Method for measuring and evaluating the properties of excavated soil in the chamber used for earth pressure shield method, shield excavator and earth and sand plastic fluidity test equipment
US4927503A (en) Method for assessment of corrosion activity in reinforced concrete
JP2003149066A (en) Intrusion sensor for intrusion test
KR20100083770A (en) A method and system for optimizing dredging
JP2007192626A (en) Penetration type pipe strain meter
Mooney et al. Real-time tunnel boring machine monitoring: A state of the art review
BRPI1104583B1 (en) ANNUAL SPACE FLOWMETER OF THE LAMA CONDUCT RISER AND LAMA CONDUCT RISER
JP4523453B2 (en) Excavator
Diao et al. Identifying the cause of abnormal building damage in mining subsidence areas using InSAR technology
JP3100289B2 (en) Measuring device for cutter load of tunnel excavator
JP7381359B2 (en) shear force meter
JP6865130B2 (en) Caisson blade edge ground unearthed detection method and system
Guyonic et al. Full-scale mine burial experiments in wave and current environments and comparison with models
JP2011247678A (en) Groundwater level observation system and groundwater level observation method
JP6638894B2 (en) Evaluation method of plastic fluidity of excavated soil in chamber in earth pressure shield method and earth pressure shield excavator
JP3531537B2 (en) Prediction method of slack in front of tunnel face
JPH055397A (en) External force measuring device of shield excavator
JP2012162945A (en) Flowability measuring apparatus in shield machine, and shield machine equipped with the measuring apparatus
JP2576053B2 (en) Disc cutter wear detection method, rotation detection device, and wear detection device
JP7280122B2 (en) Plastic fluidity evaluation device and shield machine equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190911

R150 Certificate of patent or registration of utility model

Ref document number: 6590368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250