JP2003279415A - Remote examination method for types and distribution of wastes - Google Patents

Remote examination method for types and distribution of wastes

Info

Publication number
JP2003279415A
JP2003279415A JP2002079594A JP2002079594A JP2003279415A JP 2003279415 A JP2003279415 A JP 2003279415A JP 2002079594 A JP2002079594 A JP 2002079594A JP 2002079594 A JP2002079594 A JP 2002079594A JP 2003279415 A JP2003279415 A JP 2003279415A
Authority
JP
Japan
Prior art keywords
distribution
waste
ground surface
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002079594A
Other languages
Japanese (ja)
Inventor
Kenzo Shinano
健三 科野
Tetsuya Takeno
哲也 武野
Tetsuma Toshioka
徹馬 利岡
Yoshihiro Yamashita
善弘 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oyo Corp
Original Assignee
Oyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oyo Corp filed Critical Oyo Corp
Priority to JP2002079594A priority Critical patent/JP2003279415A/en
Publication of JP2003279415A publication Critical patent/JP2003279415A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which can figure out types and distribution of wastes discarded before without local residents asking even if an area to be examined is wide or is off-limits. <P>SOLUTION: Thermal infrared irradiated from the surface of the area to be examined is observed from the sky at morning and afternoon to obtain a relative temperature distribution of the surface at morning and afternoon. In addition, an absolute temperature of the surface is measured to correct the temperatures of the relative temperature distribution. Buried ranges of exothermic wastes and heat retaining wastes are extracted as plane images from the difference of the corrected temperatures measured at morning and afternoon. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、地表面から放射さ
れる熱赤外線を上空から観測することにより、過去に投
棄された廃棄物の種類及びその分布を概略把握できる遠
隔調査方法に関するものである。この技術は、広大な地
域における新規建設事業の計画策定・実施などに際して
の事前調査、あるいは産業廃棄物の不法投棄の監視など
に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a remote survey method for observing thermal infrared rays radiated from the surface of the earth from above to roughly grasp the type and distribution of waste discarded in the past. . This technology is useful for preliminary surveys when planning and implementing new construction projects in vast areas, or for monitoring illegal dumping of industrial waste.

【0002】[0002]

【従来の技術】近年、広大な地域での造成・施設整備な
どの事業を実施しようとする場合、過去に産業廃棄物が
投棄された可能性がある場所に計画予定地が設定される
ケースが多くなってきている。地球環境の保全が叫ばれ
る中、廃棄物の種類やその分布状況などが不明なまま建
設事業、特に掘削作業を伴う建設事業を進めた場合、地
域住民から出される地域環境の破壊の苦情のみならず、
事業主の事業への取り組み姿勢さえ問われ、事業が頓挫
することにもなりかねない。
2. Description of the Related Art In recent years, when a project such as creation and facility development in a vast area is to be implemented, a planned site may be set at a place where industrial waste may have been dumped in the past. It is getting more and more. In the midst of the call for conservation of the global environment, if construction projects, especially construction projects involving excavation work, are carried out without knowing the type of waste and its distribution, if there is only a complaint from the local residents about the destruction of the local environment. No
Even if the business owner's attitude toward the business is questioned, the business may fail.

【0003】そこで事前に、廃棄物埋め立て埋め戻しの
有無、その種類や分布状況などを調査する必要がある。
従来、廃棄物の埋め立て埋め戻しの有無や分布について
は、その地域の古地図と航空写真との対比のみによっ
て、廃棄物の種類については、地域住民への聞き込み調
査のみによって対応することが多かった。
Therefore, it is necessary to investigate in advance whether or not there is waste landfill and backfill, and the type and distribution of waste.
In the past, it was often the case that the presence and distribution of landfill backfilling of waste was only based on comparisons between old maps and aerial photographs of the area, and the type of waste was addressed only by interviews with local residents. .

【0004】[0004]

【発明が解決しようとする課題】しかし、廃棄物上は数
十cm厚の覆土が設けられていることが多く、その場合に
は航空写真からでは廃棄物の内容物を判別することがで
きない。また、地域住民への聞き込み調査は、過去の記
憶に遡らねばならず記憶が曖昧であったり、住民の移動
などによって聞き込み調査が不可能な場合もある。更
に、用地未買収の場合には、計画予定地への立ち入りす
ら不可能な場合もありうるのが実情である。そのため、
どのような種類の廃棄物がどのような分布で投棄されて
いるのか、事前に把握できないこともある。
However, it is often the case that a soil covering a thickness of several tens of centimeters is provided on the waste, in which case the contents of the waste cannot be identified from the aerial photograph. In addition, the interview survey with the local residents may have to be traced back to past memories, and the memory may be ambiguous, or the interview survey may not be possible due to the movement of the residents. Furthermore, in the case where the site has not been acquired, it may be impossible even to enter the planned site. for that reason,
Sometimes it is not possible to know in advance what kind of waste is distributed and what kind of waste is dumped.

【0005】例えば廃棄物がコンクリートや砕石などで
あれば比較的容易にリサイクルが可能である。しかし、
廃棄物が生ゴミや木類などの場合は産業廃棄物処理業者
に依頼して適切な処分を行わねばならない。また廃棄物
が焼却灰や焼却物の場合にはダイオキシンなど環境有害
物質の汚染拡大が懸念される。このように、廃棄物の種
類によっては、その処理処分に莫大な費用や時間が必要
となるため、事業計画を大幅に見直さなければならない
ことにもなりかねない。そこで特に問題となるのは、生
ゴミ、焼却灰・焼却物、木類、発泡スチロールなどの発
熱性・保温性の廃棄物である。
For example, if the waste is concrete or crushed stone, it can be recycled relatively easily. But,
If the waste is raw garbage or wood, you must request an industrial waste disposal company to dispose of it properly. In addition, when waste is incinerated ash or incinerated matter, there is concern that pollution of environmentally harmful substances such as dioxins will spread. As described above, depending on the type of waste, the disposal and disposal of the waste requires enormous cost and time, which may lead to a significant review of the business plan. Therefore, particularly problematic are waste materials having heat-generating and heat-retaining properties such as raw garbage, incinerated ash / incinerator, wood, and styrofoam.

【0006】本発明の目的は、調査対象区域が広大であ
っても、立ち入りが禁止されていても、地域住民への聞
き込み調査を行わなくても(不十分であっても)、過去
に投棄された廃棄物の種類及びその分布を概略把握する
ことができるリモートセンシング技術を用いた調査方法
を提供することである。
The object of the present invention is to discard dumps in the past, even if the area to be surveyed is vast, access is prohibited, or even if interview surveys with local residents are not conducted (even if insufficient). It is an object of the present invention to provide a survey method using remote sensing technology, which can roughly grasp the type and distribution of collected waste.

【0007】[0007]

【課題を解決するための手段】本発明は、地表面から放
射される熱赤外線を、調査対象区域のほぼ全体にわたっ
て上空から異なる時間帯に観測することにより異なる時
間帯での地表面の温度分布を求め、それら地表面温度差
の大小の分布から発熱性・保温性廃棄物の埋没範囲を面
的に抽出することを特徴とする廃棄物種別分布の遠隔調
査方法である。
DISCLOSURE OF THE INVENTION According to the present invention, thermal infrared rays radiated from the ground surface are observed from the sky at different time zones over almost the entire area to be surveyed, so that the temperature distribution on the ground surface at different time zones is observed. It is a remote survey method for waste type distribution, which is characterized by extracting the burial range of heat-generating / heat-retaining waste area-wise from the distribution of the difference in ground surface temperature difference.

【0008】また本発明は、地表面から放射される熱赤
外線を、調査対象区域のほぼ全体にわたって上空から午
前と午後に観測し、それによって午前と午後の地表面の
相対温度分布を求めると共に、地表面での絶対温度を簡
易測定して前記相対温度分布の温度補正を行い、補正し
た午前と午後での地表面温度差の大小の分布から発熱性
・保温性廃棄物の埋没範囲を面的に抽出することを特徴
とする廃棄物種別分布の遠隔調査方法である。
The present invention also observes thermal infrared rays radiated from the ground surface in the morning and afternoon from almost above the entire surveyed area, thereby obtaining the relative temperature distribution on the ground surface in the morning and afternoon, and The absolute temperature on the ground surface is simply measured and the relative temperature distribution is corrected for temperature, and the burial range of heat-generating / heat-retaining waste is calculated from the corrected distribution of the difference in ground temperature between morning and afternoon. It is a remote survey method for waste type distribution, which is characterized in that

【0009】本発明において地表面から放射される熱赤
外線の観測は、例えば航空機(特に固定翼形式の観測用
航空機)に搭載したマルチスペクトルスキャナ装置を用
いてリモートセンシングすることにより行うのが好まし
い。ヘリコプタは、高度や航路を一定に維持し難く、後
のデータ補正が困難となるからである。なお、人工衛星
データを解析処理することも考えられるが、現時点では
観測精度が粗く、十分満足できる結果は得られていな
い。
In the present invention, the thermal infrared rays radiated from the ground surface are preferably observed by remote sensing using a multi-spectral scanner device mounted on an aircraft (particularly, a fixed-wing type observation aircraft). This is because it is difficult for the helicopter to maintain a constant altitude and route, and it is difficult to correct the data later. Although it is possible to analyze the satellite data, at present, the observation accuracy is low and satisfactory results have not been obtained.

【0010】[0010]

【発明の背景】地中での発熱の地表面への伝導を捉える
技術として、航空機搭載マルチスペクトルスキャナ(以
下、「MSS」と略記する)装置による調査方法があ
る。MSS装置は、地表や海表面からの可視光線や赤外
線を航空機の上で捉えて、その強度を記録する装置であ
る。可視光線や比較的波長が短い赤外線である近赤外線
・短波長赤外線は、太陽光が地表面などで反射する光を
捉えるので、調査は原則として昼間・快晴の条件で行わ
れる。このような波長帯域の光(赤外線)を用いた調査
は、土地利用調査、海洋調査、環境調査などに利用され
ている。短波長赤外線よりも波長が長い赤外線の中に
は、地表面等が持つ温度により、それ自身が放射してい
る赤外線がある。常温の物質では、波長が8〜12μm
程度の範囲の赤外線の放射が最大で且つ温度との線形対
応がよい。このような範囲の赤外線(特に熱赤外線と呼
ばれている)を用いる調査は、地温・地熱、火山、都市
熱調査、海面温度分布調査などに利用されている。
BACKGROUND ART As a technique for capturing the conduction of heat generation in the ground to the ground surface, there is a survey method using an airborne multi-spectral scanner (hereinafter abbreviated as "MSS") device. The MSS device is a device that captures visible light and infrared rays from the surface of the earth and the surface of the sea on an aircraft and records the intensity thereof. Visible light and near-infrared / short-wave infrared rays, which are infrared rays with a relatively short wavelength, capture the light reflected by the sun's surface such as the ground surface, so in principle the survey will be conducted during daytime and fine conditions. Surveys using light in this wavelength band (infrared rays) are used for land use surveys, ocean surveys, environmental surveys, and the like. Among infrared rays having a wavelength longer than that of short wavelength infrared rays, there are infrared rays that are emitted by themselves due to the temperature of the ground surface and the like. For normal temperature substances, the wavelength is 8-12 μm
Infrared radiation is maximal in range and has a good linear correspondence with temperature. Surveys using infrared rays in such a range (in particular, called thermal infrared rays) are used for geothermal / geothermal, volcanic, urban thermal surveys, sea surface temperature distribution surveys, and the like.

【0011】ところで、地中に投棄され覆土された廃棄
物のうち、生ゴミや木類などの腐敗性・発酵性の物質
は、土中にあっても腐敗・発酵が進み、発熱するものと
考えられる。つまり、発熱性・保温性の廃棄物と非発熱
性の廃棄物とでは、地中から放射される熱に違いが生じ
ることが予想される。そこで、廃棄物が投棄されている
区域を航空機搭載MSS装置を用いて調査する方法が考
えられる。しかし、単に地表面から放射される熱赤外線
を測定しただけでは、地表面の温度分布は得られても廃
棄物に関する的確な情報は得られない。
By the way, among the wastes dumped underground and covered with soil, perishable and fermentable substances such as raw garbage and trees are said to generate heat as spoilage and fermentation progress even in the soil. Conceivable. That is, it is expected that the heat radiated from the ground will be different between the heat-generating / heat-retaining waste and the non-heat-generating waste. Therefore, a method of investigating an area where waste is dumped by using an MSS device mounted on an aircraft can be considered. However, simply measuring the thermal infrared radiation radiated from the ground surface does not provide accurate information on waste, even if the temperature distribution on the ground surface is obtained.

【0012】以上のような技術的背景をふまえて、廃棄
物が投棄されている区域を午前と午後の2回にわたっ
て、航空機搭載MSS装置によって地表面からの熱赤外
線を測定し、両者の地表相対温度差を数mメッシュで求
めて地表面温度差の分布図を作成した。その結果、地表
面温度差の大小が廃棄物の種別と相関があり、地表面温
度差の大小の分布から発熱性・保温性廃棄物の埋没範囲
を面的に抽出できることが見出された。また発熱性・保
温性の廃棄物と非発熱性の廃棄物の埋没範囲における地
表温度差は、絶対温度差で±3℃程度もしくはそれ以上
であることも判明した。本発明は、このような事実の知
得に基づき完成されたものである。
Based on the above technical background, thermal infrared rays from the ground surface are measured twice a day in the morning and in the afternoon in the area where the waste is dumped, and the thermal infrared rays from the ground surface are measured. The temperature difference was calculated with a mesh of several meters and a distribution map of the surface temperature difference was created. As a result, it was found that the difference in ground surface temperature difference correlates with the type of waste, and the burial range of heat-generating / heat-retaining waste can be extracted area-wise from the distribution of ground surface temperature difference. It was also found that the difference in surface temperature between the burial range of heat-generating / heat-retaining waste and non-heat-generating waste is ± 3 ° C or more in absolute temperature difference. The present invention has been completed based on the knowledge of such facts.

【0013】地表面からの熱赤外線は、太陽光の地表面
での反射熱と地面自体から放射している放射熱がある。
午前と午後では、地表面での反射熱はほぼ同等なため、
午前データから午後データを差し引くことで、反射熱の
成分は相殺され、放射熱の成分のみが残る。そのため、
上記のように発熱性・保温性の廃棄物の分布を、より正
確に把握できるのである。因みに、午前データと午後デ
ータの比を求めることも考えられるが、実際にデータを
出力させてみると、精度が低く、好ましくないことが判
明している。
Thermal infrared rays from the ground surface include reflected heat of sunlight on the ground surface and radiant heat radiated from the ground itself.
In the morning and the afternoon, since the reflected heat on the ground surface is almost the same,
By subtracting the afternoon data from the morning data, the reflected heat component is canceled out, leaving only the radiant heat component. for that reason,
As described above, the distribution of heat-generating / heat-retaining waste can be grasped more accurately. Incidentally, it is conceivable to obtain the ratio between the morning data and the afternoon data, but when the data is actually output, the accuracy is low and it has been found to be undesirable.

【0014】[0014]

【実施例】本発明に係る調査方法の一例を図1に示す。
航空機にMSS装置を搭載し、調査対象区域の上空を午
前と午後の2回飛行して地表面からの熱赤外線の測定を
実施した。季節にもよるが、例えば午前は10時頃に、
午後は6時頃に観測するのがよい。検出した熱赤外線
は、地表面からの放射熱と日射光の地表面での反射熱で
ある。
EXAMPLE An example of the investigation method according to the present invention is shown in FIG.
The MSS device was mounted on the aircraft, and the infrared rays from the ground surface were measured by flying over the surveyed area twice in the morning and afternoon. Depending on the season, for example, around 10 am in the morning,
It is good to observe it in the afternoon around 6 o'clock. The detected thermal infrared rays are the radiant heat from the ground surface and the reflected heat of the sunlight on the ground surface.

【0015】ここで使用した航空機搭載MSS装置は、
地温・地熱、火山、海洋調査などに使用されている既存
のシステムであり、大きく分けてスキャナ部、姿勢制御
部、データ制御部、データ記録部、及び電源部から構成
されている。このMSS装置は、航空機の飛行方向に対
して垂直に、ある角度の観測幅で地上の調査対象区域を
連続して走査する。走査はスキャナ部の回転ミラーによ
り行われ、1回の走査で1ライン分の情報が得られる。
回転ミラーを経て入力した電磁波は、スキャナー部内の
光学ユニットで分光される。航空機は、調査対象区域を
一定速度、一定高度で飛行していき、回転ミラーが一定
速度で走査するごとに順次線データが積み重ねられ、こ
れが面的なデータとなる。このような観測方法の点か
ら、ヘリコプターではなく、速度や高度を一定に維持し
やすい固定翼形式の調査用航空機が好ましい。
The airborne MSS device used here is
It is an existing system used for geothermal / geothermal, volcano, ocean research, etc., and is roughly divided into a scanner unit, attitude control unit, data control unit, data recording unit, and power supply unit. This MSS device continuously scans a surveyed area on the ground perpendicular to the flight direction of the aircraft with an observation width of an angle. Scanning is performed by the rotating mirror of the scanner unit, and information for one line is obtained by one scanning.
The electromagnetic wave input through the rotating mirror is dispersed by the optical unit in the scanner unit. The aircraft flies over the area to be surveyed at a constant speed and at a constant altitude, and line data is sequentially accumulated each time the rotating mirror scans at a constant speed, which becomes planar data. From the point of view of such an observation method, a fixed-wing type research aircraft, which is easy to maintain constant speed and altitude, is preferable to a helicopter.

【0016】スキャナー部は、航空機の揺動によるデー
タの歪を抑えるため、姿勢制御部の上に載置されてお
り、航空機に対する3軸の揺動のうち、ピッチングとヨ
ーイングに対して、リアルタイムで補正が行えるように
なっている。光学ユニットで各波長に分光された電磁波
は、波長帯毎に異なるセンサにより電気的な信号に変換
され、データ制御部に導かれる。ここでは熱赤外線を熱
赤外線センサで電気的信号に変換する。そしてデータ制
御部では、その電気的信号をデジタル信号に変換する。
これと同時に、姿勢制御部のローリングジャイロの信号
を元にローリング方向に生じる歪を補正し(ローリング
補正)、MSSデジタルデータはデータ記録部で磁気テ
ープなどの記録媒体上に記録される。低空計測に対応し
ているMSS装置では、高度800m、空間分解能1.
25mrad で、地上分解能1m、温度計測精度0.2℃
の高分解能計測が可能である。
The scanner unit is mounted on the attitude control unit in order to suppress the distortion of the data due to the rocking of the aircraft, and in real time with respect to the pitching and the yawing among the three axes of rocking with respect to the aircraft. It can be corrected. The electromagnetic wave separated into each wavelength by the optical unit is converted into an electrical signal by a sensor which is different for each wavelength band, and is guided to the data control unit. Here, thermal infrared rays are converted into electrical signals by a thermal infrared sensor. Then, the data control unit converts the electric signal into a digital signal.
At the same time, distortion generated in the rolling direction is corrected based on the signal of the rolling gyro of the attitude control unit (rolling correction), and the MSS digital data is recorded on the recording medium such as a magnetic tape by the data recording unit. An MSS device that supports low altitude measurement has an altitude of 800 m and a spatial resolution of 1.
25mrad, ground resolution 1m, temperature measurement accuracy 0.2 ℃
High-resolution measurement is possible.

【0017】また同時に、調査対象区域内の複数箇所
で、地中温度測定を実施した。地中温度は、地表面から
10cm程度の深度を対象とし、移植ごてにより地表面を
ほぐした後、デジタル温度計プローブを差し込むことに
より測定した。この測定値はMSSデータの温度補正に
利用する。
At the same time, the underground temperature was measured at a plurality of locations in the surveyed area. The underground temperature was measured at a depth of about 10 cm from the ground surface, and after unraveling the ground surface with a transplanting iron, inserting a digital thermometer probe. This measured value is used for temperature correction of MSS data.

【0018】熱赤外線のMSS観測データは、高速デー
タ処理装置で所定のフォーマットに変換した後、データ
ベースに蓄積する。また地中温度等の地上測定データ及
び当該調査対象区域の地形図デジタルデータもデータベ
ースに蓄積する。そして、画像解析装置で画像解析処理
を行う。
The thermal infrared MSS observation data is stored in a database after being converted into a predetermined format by a high-speed data processing device. In addition, ground measurement data such as underground temperature and digital data of topographic maps of the survey area will be stored in the database. Then, the image analysis device performs image analysis processing.

【0019】測定対象区域内での大気の状態を一定と仮
定し、見込み角の違いにより観測幅方向に対して生じる
影響を、大気の影響のプロファイル(家屋やビル、林、
更地などによる影響のプロファイル)を作成し、これを
均一にするように、真上から見た状態に近いものにする
ような補正(これを大気補正と呼ぶ)を施す。大気のプ
ロファイルは、比較的均一であると考えられる地上の物
体や状況のデータを測定対象区域で均等になるようにサ
ンプルし、その取得データの位置とデータレベルの関数
を最小自乗法により決定し作成した。
Assuming that the atmospheric condition in the measurement target area is constant, the influence caused by the difference in the viewing angle in the observation width direction is determined by the atmospheric influence profile (houses, buildings, forests,
A profile of the effect of vacant lots, etc.) is created, and correction is performed so as to make it close to the state seen from directly above (this is called atmospheric correction). The atmospheric profile is obtained by sampling data of objects and conditions on the ground, which are considered to be relatively uniform, to be even in the measurement area, and determining the position of the acquired data and the function of the data level by the method of least squares. Created.

【0020】次に大気補正した観測データを、既存地形
図に合うように幾何補正を行った。デジタル化した地形
図データを基準地形図とし、大気補正済み観測画像に対
応する点を目視で選点して地上基準点とし、この地上基
準点の残差が最も小さくなるような最適な変換式を求め
アフィン変換により観測画像を基準地形図上に投影す
る。その際、1つのエリアを1つの変換式で補正するこ
とが困難であったため、観測MSSデータを進行方向に
対し分割し、それぞれのエリア毎に地上基準点を取得
し、それに基づく最適な変換式を算出し補正を行った。
このようになる要因は、航空機は測定対象区域を必ずし
も直線で飛行できず、予定測線から左右に蛇行しながら
観測を行うのに対し、未補正の観測画像は熱赤外線セン
サ直下を画像中心線とする矩形に作成されるため、不連
続な航空機の蛇行を1つの関数で補正しきれないためで
ある。
Next, the atmospherically corrected observation data was geometrically corrected so as to match the existing topographic map. The digitized topographic map data is used as the reference topographic map, and the points corresponding to the atmosphere-corrected observation image are visually selected as the ground control points. The optimum conversion formula that minimizes the residual of these ground control points. Then, the observed image is projected onto the reference topographic map by affine transformation. At that time, since it was difficult to correct one area with one conversion formula, the observed MSS data was divided in the traveling direction, and the ground reference point was acquired for each area, and the optimum conversion formula based on that was acquired. Was calculated and corrected.
The reason for this is that the aircraft cannot always fly in a straight line in the measurement area, and the observation is performed while meandering left and right from the planned survey line, whereas the uncorrected observation image is the image center line just below the thermal infrared sensor. This is because it is formed in a rectangular shape that has a rectangular shape, and the distorted meandering of the aircraft cannot be corrected by one function.

【0021】このような補正を行った午前と午後のMS
Sデータから、それぞれの熱赤外線画像が得られる。次
に、観測時間帯に比較的近い時間に測定した調査対象区
域の地上温度データから、調査時における地上温度を推
定し、これに基づき温度補正を行う。上方が遮蔽されて
おらず周囲と均一な場所など信頼性の高い複数地点での
地表実測温度値とMSSデータレベルとの相関式を作成
し、MSSデータを温度に換算する。そして、この温度
補正されたデータから、午前と午後の温度差を示す熱赤
外線差画像プロット図を作成し変化分を抽出した。実際
には、調査対象区域を、温度差を−5℃以下から+5℃
以上に至るまで0.5℃毎に温度差が+側は暖色系(黄
緑色〜赤色)、−側は寒色系(緑色〜青色)に色分けし
て表示した。図2に実測した熱赤外線差画像プロット図
の一例を示す。ここでは白黒画像とする制限のため、−
5℃〜−3℃(黒)、−3℃〜+3℃(灰色)、+3℃
〜+5℃(白色)の3区分に簡略化して表示している。
なお、ここで観測した波長は約11.8μmである。
[0021] The morning and afternoon MS with such correction
Each thermal infrared image is obtained from the S data. Next, the ground temperature at the time of the survey is estimated from the ground temperature data of the surveyed area measured at a time relatively close to the observation time zone, and temperature correction is performed based on this. Correlation formulas between MSS data levels and actually measured surface temperature values at highly reliable points such as a place that is not shielded above and is uniform with the surroundings are created, and MSS data is converted to temperatures. Then, from this temperature-corrected data, a thermal infrared difference image plot diagram showing the temperature difference between morning and afternoon was created and the change was extracted. Actually, the temperature difference in the survey area is from -5 ° C or less to + 5 ° C.
Up to the above, the temperature difference is displayed in 0.5 ° C. increments by a warm color system (yellow green to red) on the + side and a cold color system (green to blue) on the − side. FIG. 2 shows an example of a measured thermal infrared difference image plot diagram. Here, because of the limitation of black and white images, −
5 ° C to -3 ° C (black), -3 ° C to + 3 ° C (gray), + 3 ° C
It is simplified and displayed in three categories of up to + 5 ° C (white).
The wavelength observed here is about 11.8 μm.

【0022】また、熱赤外線差画像プロット図をもと
に、調査対象区域内の廃棄物埋め戻し箇所(分散した十
数箇所)を任意に選択して実際にパワーシャベルで開削
し、開削面の写真撮影を行い、埋め戻し内容物を確認し
た。その結果、次のような事実が判明した。生ゴミ、焼
却灰・焼却物、石灰、発泡スチロール、木類などを主な
廃棄物として分布する範囲は白色の部分(温度差が+3
℃以上)に属する傾向が強い。これらは腐敗・発酵する
ことにより発熱し、あるいは保温する性質があるものと
考えられる発熱性・保温性物質である。コンクリート、
汚泥、砕石、タイル・瓦・煉瓦などを主な廃棄物として
分布する範囲は黒色の部分(温度差が−3℃以下)に属
する傾向が強い。これらは非発熱性物質(腐敗・発酵な
どが生じない物質)である。発熱性・保温性物質と非発
熱性物質が混在している場合には、灰色の部分となって
現れる。なお、金属類は酸化・腐食によって発熱するこ
とが多いので多量になると白色の部分に属する傾向があ
る。
Further, based on the thermal infrared difference image plot diagram, waste backfilling locations (dispersed dozens of locations) in the surveyed area are arbitrarily selected, and actually excavated by a power shovel. Photographs were taken and the backfilled contents were confirmed. As a result, the following facts were revealed. Food waste, incinerated ash / incinerator, lime, Styrofoam, wood, etc. are mainly distributed in the white area (temperature difference +3).
The temperature tends to belong to more than ℃). These are heat-generating and heat-retaining substances which are considered to have the property of generating heat or retaining heat by decaying and fermenting. concrete,
The distribution range of sludge, crushed stone, tiles, roof tiles, bricks, etc. as main waste tends to belong to the black part (temperature difference is -3 ° C or less). These are non-pyrogenic substances (substances that do not decompose or ferment). When a heat-generating / heat-retaining substance and a non-heat-generating substance are mixed, it appears as a gray portion. In addition, since metals often generate heat due to oxidation and corrosion, when they are in large amounts, they tend to belong to the white portion.

【0023】なお、種々の波長の光(可視光から熱赤外
線まで)を用いて観測を行った結果によれば、特に熱赤
外線を用いて午前と午後の地表面の温度差分布を求めた
ときに、産業廃棄物埋没範囲の境界線が明瞭に判定でき
た。その理由は、地表面からの熱赤外線には放射熱と反
射熱とが含まれ、午前と午後の観測では、反射熱はほぼ
一定であるため温度差をとると反射熱の分は打ち消さ
れ、地中からの放射熱の分のみが顕著となるためと考え
られる。因みに、午前と午後の地表面の温度の比の分布
図を作成したが、産業廃棄物埋没範囲は明瞭に現れなか
った。
According to the results of observation using light of various wavelengths (from visible light to thermal infrared rays), especially when the temperature difference distribution on the ground surface between morning and afternoon was obtained using thermal infrared rays. Moreover, the boundary line of the buried area of industrial waste could be clearly determined. The reason is that thermal infrared rays from the ground surface include radiant heat and reflected heat, and in the morning and afternoon observations, the reflected heat is almost constant, so if the temperature difference is taken, the reflected heat will be canceled out, It is considered that only the amount of radiant heat from the ground becomes significant. By the way, a distribution map of the temperature ratio of the ground surface in the morning and afternoon was created, but the burial range of industrial waste did not appear clearly.

【0024】以上の結果から、熱赤外線差画像プロット
図のみでは、廃棄物の埋没範囲と元々の更地や山林、農
地、あるいは民家やビルなどは温度差上区別ができない
ことも多い。しかし、空中写真判読や古地図収集整理と
を組み合わせると、廃棄物の埋没範囲はある程度特定で
きるため、その特定した範囲について熱赤外線差画像プ
ロット図を対比すると、発熱性・保温性廃棄物の埋没範
囲を概略把握することができる。
From the above results, it is often impossible to distinguish the buried area of the waste from the original vacant lot, forest, farmland, private house, building, etc. due to the temperature difference only with the thermal infrared difference image plot. However, by combining aerial photography interpretation and collection of old maps, the burial range of waste can be specified to some extent.Comparing the thermal infrared difference image plot diagram for the specified range, burial of heat-generating / heat-retaining waste is compared. The range can be roughly understood.

【0025】[0025]

【発明の効果】本発明は上記のように、地表面から放射
される熱赤外線を、調査対象区域全体にわたって上空か
ら異なる時間帯に観測し、異なる時間帯における地表面
の温度分布を求める方法なので、調査対象区域が広大で
あっても、立ち入りが禁止されていても、地域住民への
聞き込み調査を行わなくても(不十分であっても)、過
去に投棄された廃棄物の種類及びその分布を概略把握す
ることができる。そのため本発明方法は、広大な地域で
の造成・施設整備などの新規事業が抱える問題の解決
(費用や時間などのリスク回避)に有効である。
As described above, the present invention is a method of observing the thermal infrared rays radiated from the ground surface in different time zones from the sky over the entire surveyed area and obtaining the temperature distribution on the ground surface in different time zones. , The type of waste dumped in the past and its type, even if the area to be surveyed is vast, access is prohibited, or even if interview surveys with local residents are not conducted (even if insufficient) The distribution can be roughly understood. Therefore, the method of the present invention is effective in solving the problems (avoiding risks such as costs and time) of new businesses such as creation and facility maintenance in vast areas.

【0026】また、本発明方法は航空機による調査であ
るので、広大な地域での産業廃棄物の不法投棄の監視手
法の1つとしても利用でき、社会への貢献度は大きい。
Further, since the method of the present invention is a survey by aircraft, it can be used as one of the monitoring methods for illegal dumping of industrial waste in a vast area, and its contribution to society is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る遠隔調査方法の解析手順の一実施
例を示すフロー図。
FIG. 1 is a flowchart showing an example of an analysis procedure of a remote investigation method according to the present invention.

【図2】実測結果の一例を示す熱赤外線差画像プロット
図。
FIG. 2 is a thermal infrared difference image plot diagram showing an example of actual measurement results.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 利岡 徹馬 東京都千代田区九段北4丁目2番6号 応 用地質株式会社内 (72)発明者 山下 善弘 東京都千代田区九段北4丁目2番6号 応 用地質株式会社内 Fターム(参考) 2G065 AA11 AB02 BA40 BC11 BC14 CA11 CA21 DA07 DA18 DA20 2G066 AA04 AC20 BA60 BB05 BC11 BC21 CA01 CA08 CA20    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tetsuma Toshioka             4-2-6, 9th dan north, Chiyoda-ku, Tokyo             Geological Co., Ltd. (72) Inventor Yoshihiro Yamashita             4-2-6, 9th dan north, Chiyoda-ku, Tokyo             Geological Co., Ltd. F term (reference) 2G065 AA11 AB02 BA40 BC11 BC14                       CA11 CA21 DA07 DA18 DA20                 2G066 AA04 AC20 BA60 BB05 BC11                       BC21 CA01 CA08 CA20

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 地表面から放射される熱赤外線を、調査
対象区域のほぼ全体にわたって上空から異なる時間帯に
観測して異なる時間帯での地表面の温度分布を求め、そ
れら地表面温度差の大小の分布から発熱性・保温性廃棄
物の埋没範囲を面的に抽出することを特徴とする廃棄物
種別分布の遠隔調査方法。
1. Thermal infrared rays radiated from the ground surface are observed over the entire surveyed area from above in different time zones to obtain temperature distributions of the ground surface at different time zones, and the temperature difference A remote survey method for the distribution of waste types, which is characterized by extracting the burial range of heat-generating / heat-retaining waste areawise from large and small distributions.
【請求項2】 地表面から放射される熱赤外線を、調査
対象地域のほぼ全体にわたって上空から午前と午後に観
測し、それによって午前と午後の地表面の相対温度分布
を求めると共に、地表面での絶対温度を簡易測定して前
記相対温度分布の温度補正を行い、補正した午前と午後
での地表面温度差の大小の分布から発熱性・保温性廃棄
物の埋没範囲を面的に抽出することを特徴とする廃棄物
種別分布の遠隔調査方法。
2. Thermal infrared rays radiated from the ground surface are observed from above in the morning and afternoon over almost the entire surveyed area, and the relative temperature distribution of the ground surface in the morning and afternoon is obtained, and The temperature of the relative temperature distribution is corrected by simply measuring the absolute temperature of, and the burial range of heat-generating / heat-retaining waste is extracted area-wise from the corrected distribution of the difference in ground surface temperature between morning and afternoon. A remote survey method for the distribution of waste types.
【請求項3】 地表面から放射される熱赤外線の観測
を、航空機に搭載したマルチスペクトルスキャナ装置を
用いてリモートセンシングにより行う請求項1又は2記
載の廃棄物種別分布の遠隔調査方法。
3. The remote survey method for waste type distribution according to claim 1 or 2, wherein thermal infrared rays radiated from the ground surface are observed by remote sensing using a multi-spectral scanner device mounted on an aircraft.
JP2002079594A 2002-03-20 2002-03-20 Remote examination method for types and distribution of wastes Pending JP2003279415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002079594A JP2003279415A (en) 2002-03-20 2002-03-20 Remote examination method for types and distribution of wastes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002079594A JP2003279415A (en) 2002-03-20 2002-03-20 Remote examination method for types and distribution of wastes

Publications (1)

Publication Number Publication Date
JP2003279415A true JP2003279415A (en) 2003-10-02

Family

ID=29229006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002079594A Pending JP2003279415A (en) 2002-03-20 2002-03-20 Remote examination method for types and distribution of wastes

Country Status (1)

Country Link
JP (1) JP2003279415A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310052A (en) * 2004-04-26 2005-11-04 Ntt Data Corp Device, method and program for detecting illegal dumping site
JP2008089360A (en) * 2006-09-29 2008-04-17 National Maritime Research Institute Device for remote-sensing oil spilled at sea
JP2011064538A (en) * 2009-09-16 2011-03-31 Japan Environmental Sanitation Center Method for calculating presence ratio of solid waste at each kind
CN107576417A (en) * 2017-09-04 2018-01-12 电子科技大学 A kind of round-the-clock surface temperature generation method
JP2020197507A (en) * 2019-06-05 2020-12-10 野崎 眞次 Precision agriculture support system and precision agriculture support method
JP7075557B1 (en) 2021-08-18 2022-05-26 中国科学院西北生態環境資源研究院 Rural non-regular waste classification and risk identification methods based on multi-source data

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310052A (en) * 2004-04-26 2005-11-04 Ntt Data Corp Device, method and program for detecting illegal dumping site
JP4512778B2 (en) * 2004-04-26 2010-07-28 株式会社エヌ・ティ・ティ・データ Illegal dumping point detection device, method, and program
JP2008089360A (en) * 2006-09-29 2008-04-17 National Maritime Research Institute Device for remote-sensing oil spilled at sea
JP2011064538A (en) * 2009-09-16 2011-03-31 Japan Environmental Sanitation Center Method for calculating presence ratio of solid waste at each kind
CN107576417A (en) * 2017-09-04 2018-01-12 电子科技大学 A kind of round-the-clock surface temperature generation method
CN107576417B (en) * 2017-09-04 2019-05-10 电子科技大学 A kind of round-the-clock surface temperature generation method
JP2020197507A (en) * 2019-06-05 2020-12-10 野崎 眞次 Precision agriculture support system and precision agriculture support method
US11519892B2 (en) 2019-06-05 2022-12-06 Shinji Nozaki Precision agriculture support system and precision agriculture support method
JP7075557B1 (en) 2021-08-18 2022-05-26 中国科学院西北生態環境資源研究院 Rural non-regular waste classification and risk identification methods based on multi-source data
JP2023029184A (en) * 2021-08-18 2023-03-03 中国科学院西北生態環境資源研究院 Rural non-regular garbage separation and risk identification method based on multi-source data

Similar Documents

Publication Publication Date Title
Tatem et al. Fifty years of earth observation satellites: Views from above have lead to countless advances on the ground in both scientific knowledge and daily life
Devereux et al. The potential of airborne lidar for detection of archaeological features under woodland canopies
US8288726B2 (en) Remote sensing of subsurface artifacts by use of visual and thermal imagery
Gasperini et al. Potential and limitation of UAV for monitoring subsidence in municipal landfills
Lewis et al. Detection of gas leakage from landfills using infrared thermography-applicability and limitations
Levy et al. Accelerated thermokarst formation in the McMurdo Dry Valleys, Antarctica
Saepuloh et al. Interpretation of ground surface changes prior to the 2010 large eruption of Merapi volcano using ALOS/PALSAR, ASTER TIR and gas emission data
Tan et al. Estimation of soil surface water contents for intertidal mudflats using a near-infrared long-range terrestrial laser scanner
Powlesland et al. Beneath the sand—remote sensing, archaeology, aggregates and sustainability: a case study from Heslerton, the Vale of Pickering, North Yorkshire, UK
Guerin et al. Remote thermal detection of exfoliation sheet deformation
Pegau et al. Detection of oil in and under ice
JP2003279415A (en) Remote examination method for types and distribution of wastes
Jensen et al. Satellite remote sensing of urban heat islands: current practice and prospects
Kyriou et al. Synergistic use of UAV and TLS data for precise rockfall monitoring over a hanging monastery
Florinsky et al. Influence of topography on landscape radiation temperature distribution
Osinski et al. Lidar and the mobile Scene Modeler (mSM) as scientific tools for planetary exploration
Tao et al. Assessment of airborne lidar and imaging technology for pipeline mapping and safety applications
Ben-Dor et al. Detection of buried ancient walls using airborne thermal video radiometry
Gonçalves et al. Nondestructive techniques for the assessment and preservation of historic structures
Faisal Environmental monitoring of landfill sites using multi-temporal remote sensing images
Stockton et al. Advances in applications for aerial infrared thermography
Tamrat Mekonnen Application of remote sensing in mining
Clausen et al. Spatial and temporal variance of soil and meteorological properties affecting sensor performance—Phase 2
Capodici et al. THERMOGRAPHIC CHARACTERIZATION OF A LANDFILL TROUGH AN UNMANNED AERIAL VEHICLE
Warwick et al. Application of the thermal infra-red linescanning technique to engineering geological mapping in South Africa

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070227