JP2023023114A - 電力管理システム、電力管理サーバ、および、電力管理方法 - Google Patents

電力管理システム、電力管理サーバ、および、電力管理方法 Download PDF

Info

Publication number
JP2023023114A
JP2023023114A JP2021128340A JP2021128340A JP2023023114A JP 2023023114 A JP2023023114 A JP 2023023114A JP 2021128340 A JP2021128340 A JP 2021128340A JP 2021128340 A JP2021128340 A JP 2021128340A JP 2023023114 A JP2023023114 A JP 2023023114A
Authority
JP
Japan
Prior art keywords
amount
solar radiation
power
predicted value
reference point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021128340A
Other languages
English (en)
Inventor
環 小澤
Tamaki Ozawa
達 中村
Toru Nakamura
彰紀 森島
Akinori Morishima
雄介 堀井
Yusuke Horii
亘 松村
Wataru Matsumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2021128340A priority Critical patent/JP2023023114A/ja
Priority to US17/808,013 priority patent/US20230040754A1/en
Priority to EP22180181.4A priority patent/EP4131698A1/en
Priority to CN202210727344.7A priority patent/CN115706412A/zh
Publication of JP2023023114A publication Critical patent/JP2023023114A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Photovoltaic Devices (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

【課題】太陽光発電装置の発電電力の予測精度を向上させる。【解決手段】CEMSサーバは、予測開始条件が成立すると(S100にてYES)、風向き予測結果を取得するステップ(S102)と、風上側地点を特定するステップ(S104)と、風下側地点を特定するステップ(S106)と、風上側地点の日射量の予測値と実測値とを用いて係数Aを算出するステップ(S110)と、予測対象地域の日射量の予測値と実測値とを用いて係数Bを算出するステップ(S114)と、風下側地点の日射量の予測値と実測値を用いて係数Cを算出するステップ(S118)と、補正係数Dを算出するステップ(S120)と、予測対象地域の予測対象時刻における日射量の予測値を補正係数Dを用いて補正するステップ(S124)と、補正後の日射量の予測値を用いて予測対象時刻の発電電力を予測するステップ(S126)とを含む、処理を実行する。【選択図】図3

Description

本開示は、太陽光発電装置を用いた発電電力の管理に関する。
マイクログリッド等の電力網の電力調整リソースとして、たとえば、発電機、自然変動電源、電力貯蔵システム、充電設備、あるいは、電源を搭載した車両等が列挙される。そのうち自然変動電源としては、ソーラパネルなどの太陽光発電装置が列挙される。マイクログリッドの対象となる地域内に太陽光発電装置が設置される場合において、電力調整を精度高く行なうためには、その太陽光発電装置を用いた発電電力を精度高く予測することが求められる。
たとえば、特開2011-124287号公報(特許文献1)には、日射量を予測して、予測された日射量の情報から太陽光発電装置の発電電力を計算する技術が開示される。
特開2011-124287号公報
上述した日射量の予測情報としては、気象庁などの様々な機関から地域単位で提供されているが、予測の対象となる時刻(以下、予測対象時刻と記載する)における予測の対象となる地域(以下、予測対象地域と記載する)内の雲の量や風向き等により日射量が予測値よりも変動する場合がある。そのため、日射量が予測値から大きく変動すると、太陽光発電装置を用いた発電電力の予測精度も低下し、電力調整リソースが利用しにくくなる場合がある。
本開示は、上述した課題を解決するためになされたものであって、その目的は、太陽光発電装置の発電電力の予測精度を向上させる電力管理システム、電力管理サーバ、および、電力管理方法を提供することである。
本開示のある局面に係る電力管理システムは、予め定められた地域に設置される電力網の電力を管理する電力管理システムである。この電力管理システムは、予め定められた地域に設置され、電力網に接続される太陽光発電装置と、予め定められた地域内の太陽光発電装置が設置された基準地点における風向きを取得する取得装置と、予測対象時刻での基準地点における日射量の予測値を算出し、予測値を用いて太陽光発電装置の発電電力を算出する演算装置とを備える。演算装置は、現在時刻以前の基準地点の風上側の地点における日射量についての第1情報に対して、現在時刻以前の基準地点以外の他の地点における日射量についての第2情報よりも大きい重み付けで予測対象時刻での基準地点における日射量の予測値を補正する。
このようにすると、雲などの影響により日射量が当初の予測値よりも変動する場合、風上の地点における日射量についての第1情報を他の地点における日射量についての第2情報よりも大きい重み付けにすることにより、予測対象時刻での太陽光発電装置における日射量の予測値を精度高く補正することができる。そのため、太陽光発電装置の発電電力の予測精度を向上させることができる。
ある実施の形態においては、演算装置は、風上側の地点における日射量の実測値と予測値とを用いて第1補正量を算出する。演算装置は、他の地点における日射量の実測値と予測値とを用いて第2補正量を算出する。演算装置は、第1補正量を第2補正量よりも大きい重み係数を設定して予測対象時刻での基準地点における日射量の予測値を補正するための補正量を算出する。
このようにすると、予測対象時刻での基準地点における日射量の予測値を精度高く補正することができるため、太陽光発電装置の発電電力の予測精度を向上させることができる。
さらにある実施の形態においては、日射量の実測値は、日射計、カメラ、雨滴センサおよび温度センサのうちの少なくともいずれかを用いて取得される。
このようにすると、実測値を精度高く取得することができるとともに、取得した実測値を用いて予測対象時刻での太陽光発電装置における日射量の予測値を精度高く算出することができる。
さらにある実施の形態においては、日射量の予測値は、実測値の履歴を用いて算出される。
このようにすると、予測対象時刻での太陽光発電装置における日射量の予測値を精度高く算出することができる。
さらにある実施の形態においては、演算装置は、電力管理システムの外部のサーバから実測値および予測値のうちの少なくともいずれかを取得する。
このようにすると、外部のサーバから取得した実測値と予測値とを用いて予測対象時刻での太陽光発電装置における日射量の予測値を精度高く算出することができる。
本開示の他の局面に係る電力管理サーバは、予め定められた地域に設置される電力網の電力を管理する電力管理サーバである。予め定められた地域には、電力網に接続される太陽光発電装置が設置される。電力管理サーバは、予め定められた地域内の太陽光発電装置が設置された基準地点における風向きを取得し、予測対象時刻での基準地点における日射量の予測値を算出し、予測値を用いて太陽光発電装置の発電電力を算出する。電力管理サーバは、現在時刻以前の基準地点の風上側の地点における日射量についての第1情報に対して、現在時刻以前の基準地点以外の他の地点における日射量についての第2情報よりも大きい重み付けで予測対象時刻での前記基準地点における日射量の予測値を補正する。
本開示のさらに他の局面に係る電力管理方法は、予め定められた地域に設置される電力網の電力を管理する電力管理方法である。予め定められた地域には、電力網に接続される太陽光発電装置が設置される。この電力管理方法は、予め定められた地域内の太陽光発電装置が設置された基準地点における風向きを取得するステップと、予測対象時刻での基準地点における日射量の予測値を算出し、予測値を用いて太陽光発電装置の発電電力を算出するステップと、現在時刻以前の基準地点の風上側の地点における日射量についての第1情報に対して、現在時刻以前の基準地点以外の他の地点における日射量についての第2情報よりも大きい重み付けで予測対象時刻での基準地点における日射量の予測値を補正するステップとを含む。
本開示によると、太陽光発電装置の発電電力の予測精度を向上させる電力管理システム、電力管理サーバ、および、電力管理方法を提供することができる。
本実施の形態に係る電力管理システムの概略的な構成を示す図である。 予測対象地域での日射量を予測する構成の一例について説明するための図である。 CEMSサーバで実行される処理の一例を示すフローチャートである。 基準地点を中心とした複数の方角に設定される複数の地点の一例を示す。 基準地点および複数の地点の各々における同時刻の日射量の実測値と予測値と方角とを表形式で示した図である。 現在時刻の風上側地点と予測対象地域の基準地点と風下側地点との各々における予測値と実測値と係数との関係の一例を示す。 予測対象時刻の予測対象地域の基準地点における予測値と補正後の予測値との関係の一例を示す。
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
図1は、本実施の形態に係る電力管理システムの概略的な構成を示す図である。電力管理システム100は、たとえば、CEMS1と、CEMSサーバ2と、受変電設備3と、電力系統4と、送配電事業者サーバ5とを備える。CEMSとは、コミュニティエネルギー管理システム(Community Energy Management System)または街エネルギー管理システム(City Energy Management System)を意味する。
CEMS1は、工場エネルギー管理システム(FEMS:Factory Energy Management System)11と、ビルエネルギー管理システム(BEMS:Building Energy Management System)12と、ホームエネルギー管理システム(HEMS:Home Energy Management System)13と、発電機14と、自然変動電源15と、電力貯蔵システム(ESS:Energy Storage System)16と、充電設備(EVSE:Electric Vehicle Supply Equipment)17と、車両18とを含む。CEMS1では、これらの構成要素によってマイクログリッドMGが構築されている。なお、マイクログリッドMGは、本開示に係る「電力網」の一例に相当する。
FEMS11は、工場で使用される電力の需給を管理するシステムである。FEMS11は、マイクログリッドMGから供給される電力によって動作する工場建屋(照明器具、空調設備等を含む)、産業設備(生産ライン等)などを含む。図示しないが、FEMS11は、工場に設置された発電設備(発電機等)を含み得る。これらの発電設備により発電された電力がマイクログリッドMGに供給される場合もある。FEMS11は、CEMSサーバ2と双方向通信が可能なFEMSサーバ110をさらに含む。
BEMS12は、オフィスまたは商業施設等のビルで使用される電力の需給を管理するシステムである。BEMS12は、ビルに設置された照明器具および空調設備を含む。BEMS12は、発電設備を含んでもよいし、冷熱源システム(廃熱回収システム、蓄熱システム等)を含んでもよい。BEMS12は、CEMSサーバ2と双方向通信が可能なBEMSサーバ120をさらに含む。
HEMS13は、家庭で使用される電力の需給を管理するシステムである。HEMS13は、マイクログリッドMGから供給される電力によって動作する家庭用機器(照明機器、空調装置、他の電気製品等)を含む。また、HEMS13は、家庭用ヒートポンプシステム、家庭用コージェネレーションシステム、家庭用蓄電池などを含んでもよい。HEMS11は、CEMSサーバ2と双方向通信が可能なHEMSサーバ130をさらに含む。
発電機14は、気象条件に依存しない発電設備であり、発電された電力をマイクログリッドMGに出力する。発電機14は、蒸気タービン発電機、ガスタービン発電機、ディーゼルエンジン発電機、ガスエンジン発電機、バイオマス発電機、定置式の燃料電池などを含み得る。発電機14は、発電時に発生する熱を活用するコージェネレーションシステムを含んでもよい。
自然変動電源15は、気象条件によって発電出力が変動する発電設備であり、発電された電力をマイクログリッドMGに出力する。図1にはソーラパネルなどの太陽光発電装置15A(図2)が例示されているが、自然変動電源15は、太陽光発電装置15Aに加えて、風力発電装置を含んでもよい。
電力貯蔵システム16は、自然変動電源15などにより発電された電力を蓄える定置式電源である。電力貯蔵システム16は、二次電池であり、たとえば車両で使用されたバッテリ(リサイクル品)のリチウムイオン電池またはニッケル水素電池である。ただし、電力貯蔵システム16は、二次電池に限られず、余剰電力を用いて気体燃料(水素、メタン等)を製造するパワー・ツー・ガス(Power to Gas)機器であってもよい。
充電設備17は、マイクログリッドMGに電気的に接続され、マイクログリッドMGとの間で充電および放電(給電)が可能に構成されている。
車両18は、具体的には、プラグインハイブリッド車(PHV:Plug-in Hybrid Vehicle)、電気自動車(EV:Electric Vehicle)等である。車両18は、外部充電および外部給電のうちの一方または両方が可能に構成されている。すなわち、車両18は、充電ケーブルが車両18のインレット(図示せず)に接続された場合に、マイクログリッドMGから車両18へと電力を供給することが可能に構成されている(外部充電)。また、車両18は、充電ケーブルが車両18のアウトレット(図示せず)に接続された場合に、車両18からマイクログリッドMGへと電力を供給することが可能に構成されていてもよい(外部給電)。
なお、図1に示す例では、CEMS1に含まれるFEMS11、BEMS12、HEMS13、発電機14、自然変動電源15、電力貯蔵システム16の数が1個ずつであるが、これらのシステムまたは設備の含有数は任意である。CEMS1は、これらのシステムまたは設備を複数含んでもよい、また、CEMS1に含まれないシステムまたは設備があってもよい。CEMS1に含まれるFEMS11(工場建屋、産業設備等)、BEMS12(照明器具、空調設備等)、HEM13(家庭用機器等)、発電機14、自然変動電源15、電力貯蔵システム16、充電設備17、車両18の各々は、本開示に係る「電力調整リソース」に相当するため、これらのシステムまたは設備を特に区別しない場合には以下、「電力調整リソース」とも記載する。
CEMSサーバ2は、CEMS1内の電力調整リソースを管理するコンピュータである。CEMSサーバ2は、制御装置21と、記憶装置22と、通信装置23とを含む。制御装置21は、プロセッサを含み、所定の演算処理を実行するように構成されている。記憶装置22は、制御装置21により実行されるプログラムを記憶するメモリを含み、そのプログラムで使用される各種情報(マップ、関係式、パラメータ等)を記憶している。通信装置23は、通信インターフェースを含み、外部(他のサーバ等)と通信するように構成されている。
CEMSサーバ2は、アグリゲータサーバであってもよい。アグリゲータとは、複数の電力調整リソースを束ねてエネルギーマネジメントサービスを提供する電気事業者である。CEMSサーバ2は、本開示に係る「電力管理サーバ」に相当する。
受変電設備3は、マイクログリッドMGの連系点(受電点)に設けられ、マイクログリッドMGと電力系統4との並列(接続)/解列(切り離し)を切り替え可能に構成されている。受変電設備3は、いずれも図示しないが、高圧側(一次側)の開閉装置、変圧器、保護リレー、計測機器および制御装置を含む。マイクログリッドMGが電力系統4と連系しているときに、受変電設備3は、電力系統4から、たとえば特別高圧(7000Vを超える電圧)の交流電力を受電し、受電した電力を降圧してマイクログリッドMGに供給する。
電力系統4は、発電所および送配電設備によって構築された電力網である。この実施の形態では、電力会社が発電事業者と送配電事業者とを兼ねる。電力会社は、一般送配電事業者に相当するとともに、電力系統4の管理者に相当し、電力系統4を保守および管理する。
送配電事業者サーバ5は、電力会社に帰属し、電力系統4の電力需給を管理するコンピュータである。送配電事業者サーバ5もCEMSサーバ2と双方向通信が可能に構成されている。
以上のような構成を有する電力管理システム100において、上述したとおり、マイクログリッドMGの電力調整リソースとして用いられる自然変動電源15としては、ソーラパネルなどの太陽光発電装置15Aが列挙される。マイクログリッドMGの対象となる予め定められた地域内に太陽光発電装置15Aが設置される場合において、電力調整を精度高く行なうためには、その太陽光発電装置15Aを用いた発電電力を精度高く予測することが求められる。そのため、たとえば、日射量を予測して、予測された日射量の情報から太陽光発電装置15Aの発電量を算出することが考えられる。
図2は、予測対象地域102での日射量を予測する構成の一例について説明するための図である。予測対象地域102は、自然変動電源15に含まれる太陽光発電装置15Aが設置される地点を含む地域であって、たとえば、市町村単位であってもよいし、基準地点を中心とした円形あるいは矩形の地域であってもよい。図2においては、予測対象地域102は、たとえば、基準地点を中心とした矩形の地域である場合を一例として説明する。基準地点は、太陽光発電装置15Aが設置される位置である。なお、基準地点と太陽光発電装置15Aの設置地点とは、同一の地点であることに限定されるものではなく、少なくとも日射量の予測値の差がしきい値以下となる範囲で異なる地点であってもよい。
図2に示すように、CEMSサーバ2は、たとえば、予測対象地域102内に設定される基準地点における日射量の実測値を示す情報と、現在時刻よりも後の時点における日射量の予測値を示す情報と、基準地点における現在時刻よりも後の時点に予測される風向を示す情報とを外部サーバ200から取得する。外部サーバ200は、たとえば、気象庁のサーバや、日射量に関する情報を外部に提供する機関のサーバなどを含む。
予測対象地域102の基準地点には、風向計116と日射計118とが設置される。風向計116は、風向きを検出し、検出結果を示す情報を外部サーバ200に送信する。日射計118は、日射量を検出し、検出結果を示す情報を外部サーバ200に送信する。さらに予測対象地域102の周辺に設定される複数の地点には、日射計119.1~119.nが設置される。日射計119.1~119.nの各々は、日射量を検出し、検出結果を示す情報を外部サーバ200に送信する。
外部サーバ200は、たとえば、基準地点における現在時刻よりも後の時点の風向きを基準地点に設けられる風向計116の実測値、気圧配置や気圧配置の変化予測等に基づいて予測する。外部サーバ200は、日射計118,119.1~119.nから取得される日射量の実測値の履歴を用いて現在時刻よりも後の時点の日射量の予測値を算出する。予測方法としては公知の技術を用いればよくその詳細な説明は行なわない。外部サーバ200は、各地点の同時刻の日射量の実測値と予測値とを対応づけて記憶装置(図示せず)に記憶させる。外部サーバ200は、CEMSサーバ2からの予測対象地域102における日射量に関する情報についての要求に応じて日射量の実測値と予測値とに関する情報をCEMSサーバ2に送信する。
CEMSサーバ2は、予測対象時刻での予測対象地域102における太陽光発電装置15Aの発電電力を日射量の予測値を用いて算出することができる。予測対象時刻は、たとえば、現在時刻から予め定められた時間(たとえば、30分や1時間)が経過した後の時刻であってもよいし、電力調整が実施される時刻であってもよい。
上述した日射量の予測情報としては、外部サーバ200から地域単位で提供されているが、予測対象時刻における予測対象地域102内の雲の量や風向き等により日射量が予測値よりも変動する場合がある。そのため、日射量が予測値から大きく変動すると、太陽光発電装置15Aを用いた発電電力の予測精度も低下し、電力調整リソースが利用しにくくなる場合がある。
そこで、本実施の形態においては、電力管理システム100における「演算装置」に相当するCEMSサーバ2が、現在時刻以前の基準地点の風上側の地点における日射量についての第1情報に対して、現在時刻以前の他の地点における日射量についての第2情報よりも大きい重み付けで予測対象時刻での基準地点における日射量の予測値を補正するものとする。
このようにすると、雲などの影響により日射量が当初の予測値よりも変動する場合、風上側の地点における日射量についての第1情報を他の地点における日射量についての第2情報よりも大きい重み付けにすることにより、予測対象時刻での太陽光発電装置15Aにおける日射量の予測値を精度高く補正することができる。そのため、太陽光発電装置15Aの発電電力の予測精度を向上させることができる。
以下、図3を参照して、CEMSサーバ2で実行される処理の一例について説明する。図3は、CEMSサーバ2で実行される処理の一例を示すフローチャートである。このフローチャートに示される一連の処理は、所定の周期毎に繰り返し実行される。
ステップ(以下、ステップをSと記載する)100にて、CEMSサーバ2は、予測開始条件が成立するか否かを判定する。予測開始条件は、たとえば、太陽光発電装置15Aに対して予測対象時刻における発電電力の予測が要求されるという条件を含む。CEMSサーバ2は、たとえば、送配電事業者サーバ5からの予測対象時刻に発電電力を用いた電力調整(たとえば、電力系統4に対する電力の供給)が要求される場合に予測対象時刻における発電電力の予測が要求されるという条件が成立したと判定する。予測開始条件が成立すると判定される場合(S100にてYES)、処理はS102に移される。
S102にて、CEMSサーバ2は、風向き予測結果を取得する。CEMSサーバ2は、たとえば、外部サーバ200から予測対象時刻において予測される基準地点における風向きについての情報を風向き予測結果として取得する。
S104にて、CEMSサーバ2は、風上側地点を特定する。基準地点の風上方向にある地点を風上側地点として特定する。
CEMSサーバ2は、たとえば、基準地点を中心とした複数の方角の各々に1以上の地点を予め設定しておき、風向き予測結果から得られる風向きに対して風上側に対応する方角の地点を風上側地点として特定する。本実施の形態においては、たとえば、8方向に分かれて設定される方角の各々に計8カ所の地点A1~A8が設定されるものとする。
図4は、基準地点を中心とした複数の方角に設定される複数の地点A1~A8の一例を示す。複数の地点A1~A8は、予測対象地域102内に設定される基準地点を中心として、北、北西、西、南西、南、南東、東、北東の各方角に予め設定される地点である。各方角に設定される地点は、各方角として設定される範囲内であればよく、特に図4に示す複数の地点A1~A8の位置に限定されるものではない。
複数の地点A1~A8には、日射計が設置されている。上述の日射計119.1~119.nは、複数の地点A1~A8に設置される日射計を含む。すなわち、基準地点を含む各地点おける日射量の実測値と予測値とは外部サーバ200から取得可能となる。CEMSサーバ2には、各地点と同時刻の日射量の実測値と予測値とが対応づけて記憶されるとともに、各地点と現在時刻よりも後の予測対象時刻における日射量の予測値とが対応付けて記憶される。その後に時刻が予測対象時刻に到達すると日射量の検出結果を示す値が実測値として外部サーバ200から取得され、CEMSサーバ2に記憶される同時刻の予測値に対応づけて記憶される。これらの情報は、CEMSサーバ2において表形式(後述)で記憶され、CEMSサーバ2は、これらの情報から各地点に対応する日射量の実測値および予測値を取得する。
CEMSサーバ2は、たとえば、予測対象時刻での基準地点における風向きが南向きである場合には、基準地点よりも北側の地点A1を風上側地点として特定する。
S106にて、CEMSサーバ2は、風下側地点を特定する。CEMSサーバ2は、たとえば、予測対象時刻における風向きが南向きである場合には、基準地点よりも南側の地点A5を風下側地点として特定する。
S108にて、CEMSサーバ2は、風上側地点の現在時刻における日射量の予測値と実測値とを取得する。
S110にて、CEMSサーバ2は、係数Aを算出する。CEMSサーバ2は、風上側地点の現在時刻における日射量の予測値に対する実測値の比(=実測値/予測値)を係数Aとして算出する。
S112にて、CEMSサーバ2は、予測対象地域102(基準地点)の現在時刻における日射量の予測値と実測値とを取得する。
S114にて、CEMSサーバ2は、係数Bを算出する。CEMSサーバ2は、予測対象地域102の現在時刻における日射量の予測値に対する実測値の比を係数Bとして算出する。
S116にて、CEMSサーバ2は、風下側地点の現在時刻における日射量の予測値と実測値とを取得する。
S118にて、CEMSサーバ2は、係数Cを算出する。CEMSサーバ2は、風下側地点の現在時刻における日射量の予測値に対する実測値の比を係数Cとして算出する。
S120にて、CEMSサーバ2は、補正係数Dを算出する。補正係数Dは、予測対象時刻での予測対象地域102(基準地点)における予測値を補正するための係数である。CEMSサーバ2は、係数Aと、係数Bと、係数Cとを用いて補正係数Dを算出する。CEMSサーバ2は、たとえば、係数Aと、係数Bと係数Cとの加重平均により補正係数Dを算出する。すなわち、CEMSサーバ2は、たとえば、D=(w1×A+w2×B+w3×C)/(w1+w2+w3)の式を用いて補正係数Dを算出する。w1,w2,w3は、係数A,B,Cにそれぞれ設定される重み係数を示す。このとき、重み係数w1は、他の地点の重み係数w2,w3の各々よりも大きい値が設定される。なお、重み係数w1,w2,w3としては、予め定められた値であってもよいし、あるいは、季節等を示す月日や風速などによって設定してもよい。たとえば、風速が大きい場合や、風が強い季節を示す月日である場合には、重み係数w1を風速が小さい場合よりも大きくしてもよい。
S122にて、CEMSサーバ2は、予測対象地域102の予測対象時刻における日射量の予測値を取得する。CEMSサーバ2は、たとえば、外部サーバ200から予測対象地域102の予測対象時刻における日射量の予測値を取得する。
S124にて、CEMSサーバ2は、予測対象地域102の予測対象時刻における日射量の予測値を補正する。具体的には、CEMSサーバ2は、外部サーバ200から取得した予測対象地域102の予測対象時刻における日射量の予測値に補正係数Dを乗算して算出された値を補正後の予測値とする。
S126にて、CEMSサーバ2は、予測対象地域102の予測対象時刻における発電電力を予測する。具体的には、CEMSサーバ2は、補正後の日射量の予測値と、所定の日射量当たりの太陽光発電装置15Aにおける発電電力とを用いて予測対象地域102の予測対象時刻における発電電力を算出する。
以上のような構造およびフローチャートに基づく本実施の形態におけるCEMSサーバ2の動作の一例について図5~図7を参照しつつ説明する。
図5は、基準地点および複数の地点A1~A8の各々における同時刻の日射量の実測値と予測値と方角とを表形式で示した図である。CEMSサーバ2は、たとえば、外部サーバ200からの情報を用いて、図5に示すように、基準地点および複数の地点A1~A8の各々における同時刻の日射量の実測値と予測値とを対応づけて記憶している。CEMSサーバ2は、たとえば、現在時刻における各地点の日射量の実測値を外部サーバ200から取得すると、事前に取得していた現在時刻における各地点における日射量の予測値と対応づけて記憶している。図5には、たとえば、現在時刻において、基準地点における日射量の実測値がIa(0)であって、日射量の予測値がIb(0)であり、複数の地点A1~A8における日射量に実測値がそれぞれIa(1)~Ia(8)であって、日射量の予測値がそれぞれIb(1)~Ib(8)であることが示されている。図6は、現在時刻の風上側地点(A1)と予測対象地域102の基準地点と風下側地点(A5)との各々における予測値と実測値と係数との関係の一例を示す。図7は、予測対象時刻の予測対象地域102の基準地点における予測値と補正後の予測値との関係の一例を示す。
たとえば、現在時刻から予め定められた時間経過した後の予測対象時刻において、太陽光発電装置15Aの発電電力の予測が要求されることによって予測開始条件が成立すると(S100にてYES)、外部サーバ200から予測対象時刻における基準地点での風向きの予測結果が取得される(S102)。そして、風向きの予測結果を用いて風上側地点が特定される(S104)。たとえば、風向きの予測結果が南向きである場合には、北の方角の地点A1が風上側地点として特定される。さらに、風向きの予測結果を用いて風下側地点が特定される(S106)。たとえば、風向きの予測結果が南向きである場合には、南の方角の地点A5が風下側地点として特定される。
特定された風上側地点の現在時刻における日射量の実測値Ia(1)と予測値Ib(1)とが取得される(S108)。取得された地点A1における予測値に対する実測値の比Ca(1)(=Ia(1)/Ib(1))が係数A(図6参照)として算出される(S110)。
次に予測対象地域102の基準地点での現在時刻における日射量の実測値Ia(0)と予測値Ib(0)とが取得される(S112)。そして、予測対象地域102の現在時刻における日射量の予測値Ib(0)に対する実測値Ia(0)の比Ca(0)(=Ia(0)/Ib(0))が係数B(図6参照)として算出される(S114)。
さらに特定された風下側地点の現在時刻における日射量の実測値Ia(5)と予測値Ib(5)とが取得される(S116)。取得された地点A5における予測値に対する実測値の比Ca(5)(=Ia(5)/Ib(5))が係数C(図6参照)として算出される(S118)。
算出された係数A,BおよびCを用いて補正係数Dが算出される(S120)。具体的には、上述したとおり、D=(w1×A+w2×B+w3×C)/(w1+w2+w3)の式により、補正係数Dが算出される。このとき、重み係数w1は、w2,w3のいずれよりも大きい値であるため、補正係数Dの算出において、係数Aの方が係数B,Cよりも重み付けが大きく設定されていることになる。
そして、予測対象地域102の予測対象時刻における日射量の予測値Ibが取得され(S122)、取得された予測値Ibに算出された補正係数D(図7参照)が乗算されて補正後の予測値Ib’(=Ib×D)が算出される(S124)。算出された補正後の予測値Ib’を用いて予測対象地域102の予測対象時刻における発電電力が予測される(S126)。
以上のようにして、本実施の形態に係る電力管理システム100によると、雲などの影響により日射量が当初の予測値よりも変動する場合、風上側地点における係数Aの重み係数W1を他の地点における係数B,Cの重み係数w2,w3よりも大きい値に設定することにより、予測対象時刻での太陽光発電装置15Aにおける日射量の予測値を精度高く補正することができる。そのため、太陽光発電装置15Aの発電電力の予測精度を向上させることができる。したがって、太陽光発電装置の発電電力の予測精度を向上させる電力管理システム、電力管理サーバ、および、電力管理方法を提供することができる。
さらに日射量の実測値は、各地点に設置される日射計を用いて取得されるので、日射量の実測値を精度高く取得することができる。そのため、外部サーバ200から取得した実測値や実測値の履歴を用いて予測対象時刻での太陽光発電装置15Aにおける日射量の予測値を精度高く算出することができる。
以下、変形例について記載する。
上述の実施の形態では、日射計を用いて日射量の実測値が検出されるものとして説明したが、日射計に代えてまたは加えてカメラ、雨滴センサおよび温度センサのうちの少なくともいずれかを用いて日射量の実測値が検出されてもよい。たとえば、カメラを用いて取得される光量により日射量の実測値を検出してもよいし、雨滴センサによる降雨の有無や温度センサによって雲の量を予測し、予測結果に基づいて雲の量が多い場合などにおいては日射量の実測値の急変を抑制するなどの徐変処理を行なうようにしてもよい。
さらに上述の実施の形態では、方角として8方向に分割し、各方角に日射量の実測値と予測値とを取得可能な地点を設定する場合を一例として説明したが、方角として4方向(東、西、南、北)に分割し、各方角に日射量の実測値と予測値とを取得可能な地点を設定してもよいし、あるいは、方角として16方向以上に細分化して分割し、各方角に日射量の実測値と予測値とを取得可能な地点を設定してもよい。
さらに上述の実施の形態では、風上側地点および風下側地点は、予測対象地域102外の地点である場合を一例として説明したが、たとえば、風上側地点および風下側地点は、それぞれ予測対象地域102の基準地点に対して風上側および風下側の地点であればよく、予測対象地域102内の地点であってもよい。
さらに上述の実施の形態では、CEMSサーバ2は、基準地点および予測対象地域102外の複数の地点の各々における日射量に関する情報を外部サーバ200から取得するものとして説明したが、CEMSサーバ2は、各地点に設置された日射計等を用いて日射量に関する情報を直接的に取得するようにしてもよい。
さらに上述の実施の形態では、係数A,BおよびCを用いて補正係数Dを算出し、予測対象時刻での予測対象地域102における日射量の予測値に算出した補正係数Dを乗算することによって、補正後の予測値を算出するものとして説明したが、たとえば、各地点の実測値と予測値との差分を算出し、算出された各地点の差分の加重平均を補正量として算出し、予測対象時刻での予測対象地域102における日射量の予測値に、算出された補正量を加算することによって、補正後の予測値を算出してもよい。この場合、風上側地点の差分の重み係数を他の地点の差分の重み係数よりも大きい値が設定される。
さらに上述の実施の形態では、予測対象地域102の周囲の各方角に対して1地点が設定されるものとして説明したが、各方角に対して複数の地点が設定されてもよい。この場合、CEMSサーバ2は、風上側あるいは風下側として特定された方角の複数の地点における日射量の実測値の平均値と、予測値の平均値を用いて補正係数Dを算出してもよいし、同一方角の複数の地点のうち、より風上側あるいは風下側に近い一方の地点の実測値と予測値とを用いて補正係数Dを算出してもよい。
さらに上述の実施の形態では、風上側地点における係数Aに対して、基準地点と風下側地点とを含む他の地点における係数B,Cよりも重み係数を大きく設定するものとして説明したが、他の地点としては、基準地点と風下側地点とに限定されるものではなく、たとえば、基準地点のみであってもよいし、あるいは、風下側地点のみであってもよい。
さらに上述の実施の形態では、CEMSサーバ2において予測対象時刻における発電電力が予測されるものとして説明したが、CEMSサーバ2とは別のサーバにより予測対象時刻における発電電力が予測され、予測結果がCEMSサーバ2に送信されるようにしてもよい。
さらに上述の実施の形態において、CEMSサーバ2において予測対象時刻における発電電力が予測されるものとして説明したが、たとえば、電力調整予定期間中の発電電力量が予測されるようにしてもよい。CEMSサーバ2は、たとえば、予測される発電電力に制御周期を乗算し、電力調整予定期間分(あるいは、予め定められた期間)を積算して電力調整予定期間中の発電電力量を予測してもよい。
さらに上述の実施の形態において、CEMSサーバ2は、外部サーバ200から各地点の日射量の予測値を取得するものとして説明したが、CEMSサーバ2において各地点の日射量の実測値の履歴を用いて各地点の日射量の予測値を算出してもよい。たとえば、CEMSサーバ2は、各地点(基準地点および地点A1~A8の各々)の日射計から日射量の実測値を取得し、取得した日射量の実測値の履歴を用いて各地点の日射量の予測値を算出してもよい。
さらに上述の実施の形態において、CEMSサーバ2は、基準地点の風上側の地点における日射量の実測値と予測値とを用いて算出される係数Aの重み係数w1が、他の地点における人社量の実測値と予測値とを用いて算出される係数B,Cの重み係数w2,w3よりも大きい値に設定して、予測対象時刻での基準地点における日射量の予測値を補正するものとして説明したが、重み係数w1,w2,w3のうちの少なくともいずれかは、予め定められた値であってもよいし、あるいは、基準地点における風速を用いて設定されてもよい。あるいは、重み係数w1は、風上側の地点における風速を用いて設定され、重み係数w2は、基準地点における風速を用いて設定され、重み係数w3は、風下側の地点における風速を用いて設定されてもよい。あるいは、基準地点における風速を用いて係数A,BおよびCが補正されてもよいし、風上側の地点における風速を用いて係数Aが補正され、基準地点における風速を用いて係数Bが補正され、風下側の地点における風速を用いて係数Cが補正されてもよい。
なお、上記した変形例は、その全部または一部を適宜組み合わせて実施してもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 CEMS、2 CEMSサーバ、3 受変電設備、4 電力系統、5 送配電事業者サーバ、11 FEMS、12 BEMS、13 HEMS、14 発電機、15 自然変動電源、15A 太陽光発電装置、16 電力貯蔵システム、17 充電設備、18 車両、21 制御装置、22 記憶装置、23 通信装置。100 電力管理システム、102 予測対象地域、110 FEMS サーバ、120 BEMSサーバ、130 HEMSサーバ、116 風向計、118 日射計、200 外部サーバ。

Claims (7)

  1. 予め定められた地域に設置される電力網の電力を管理する電力管理システムであって、
    前記予め定められた地域に設置され、前記電力網に接続される太陽光発電装置と、
    前記予め定められた地域内の前記太陽光発電装置が設置された基準地点における風向きを取得する取得装置と、
    予測対象時刻での前記基準地点における日射量の予測値を算出し、前記予測値を用いて前記太陽光発電装置の発電電力を算出する演算装置とを備え、
    前記演算装置は、現在時刻以前の前記基準地点の風上側の地点における日射量についての第1情報に対して、前記現在時刻以前の前記基準地点以外の他の地点における日射量についての第2情報よりも大きい重み付けで前記予測対象時刻での前記基準地点における日射量の予測値を補正する、電力管理システム。
  2. 前記演算装置は、
    前記風上側の地点における日射量の実測値と予測値とを用いて第1補正量を算出し、
    前記他の地点における日射量の実測値と予測値とを用いて第2補正量を算出し、
    前記第1補正量を前記第2補正量よりも大きい重み係数を設定して前記予測対象時刻での前記基準地点における日射量の予測値を補正するための補正量を算出する、請求項1に記載の電力管理システム。
  3. 前記日射量の実測値は、日射計、カメラ、雨滴センサおよび温度センサのうちの少なくともいずれかを用いて取得される、請求項2に記載の電力管理システム。
  4. 前記日射量の予測値は、前記実測値の履歴を用いて算出される、請求項2または3に記載の電力管理システム。
  5. 前記演算装置は、前記電力管理システムの外部のサーバから前記実測値および前記予測値のうちの少なくともいずれかを取得する、請求項2~4のいずれかに記載の電力管理システム。
  6. 予め定められた地域に設置される電力網の電力を管理する電力管理サーバであって、前記予め定められた地域には、前記電力網に接続される太陽光発電装置が設置され、
    前記電力管理サーバは、
    前記予め定められた地域内の前記太陽光発電装置が設置された基準地点における風向きを取得し、
    予測対象時刻での前記基準地点における日射量の予測値を算出し、前記予測値を用いて前記太陽光発電装置の発電電力を算出し、
    現在時刻以前の前記基準地点の風上側の地点における日射量についての第1情報に対して、前記現在時刻以前の前記基準地点以外の他の地点における日射量についての第2情報よりも大きい重み付けで前記予測対象時刻での前記基準地点における日射量の予測値を補正する、電力管理サーバ。
  7. 予め定められた地域に設置される電力網の電力を管理する電力管理方法であって、前記予め定められた地域には、前記電力網に接続される太陽光発電装置が設置され、
    前記予め定められた地域内の前記太陽光発電装置が設置された基準地点における風向きを取得するステップと、
    予測対象時刻での前記基準地点における日射量の予測値を算出し、前記予測値を用いて前記太陽光発電装置の発電電力を算出するステップと、
    現在時刻以前の前記基準地点の風上側の地点における日射量についての第1情報に対して、前記現在時刻以前の前記基準地点以外の他の地点における日射量についての第2情報よりも大きい重み付けで前記予測対象時刻での前記基準地点における日射量の予測値を補正するステップとを含む、電力管理方法。
JP2021128340A 2021-08-04 2021-08-04 電力管理システム、電力管理サーバ、および、電力管理方法 Pending JP2023023114A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021128340A JP2023023114A (ja) 2021-08-04 2021-08-04 電力管理システム、電力管理サーバ、および、電力管理方法
US17/808,013 US20230040754A1 (en) 2021-08-04 2022-06-21 Power management system, power management server, and power management method
EP22180181.4A EP4131698A1 (en) 2021-08-04 2022-06-21 Power management system, power management server, and power management method
CN202210727344.7A CN115706412A (zh) 2021-08-04 2022-06-24 电力管理系统、电力管理服务器以及电力管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021128340A JP2023023114A (ja) 2021-08-04 2021-08-04 電力管理システム、電力管理サーバ、および、電力管理方法

Publications (1)

Publication Number Publication Date
JP2023023114A true JP2023023114A (ja) 2023-02-16

Family

ID=82163359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021128340A Pending JP2023023114A (ja) 2021-08-04 2021-08-04 電力管理システム、電力管理サーバ、および、電力管理方法

Country Status (4)

Country Link
US (1) US20230040754A1 (ja)
EP (1) EP4131698A1 (ja)
JP (1) JP2023023114A (ja)
CN (1) CN115706412A (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124287A (ja) 2009-12-08 2011-06-23 Sony Corp 発電量予測装置、発電量予測システム、発電量予測方法及びコンピュータプログラム
JP5606114B2 (ja) * 2010-03-19 2014-10-15 株式会社東芝 発電量予測装置、予測方法及び予測プログラム
JP2012175825A (ja) * 2011-02-22 2012-09-10 Mitsubishi Electric Corp 電力管理システム
JP6077012B2 (ja) * 2013-01-09 2017-02-08 株式会社日立製作所 気象予測方法及び装置、並びに電力系統制御方法及び装置
JP6427090B2 (ja) * 2015-12-07 2018-11-21 株式会社日立製作所 発電量予測装置、発電量予測方法、系統安定化装置、並びに系統安定化方法
CN111242359B (zh) * 2020-01-06 2020-09-29 南京林业大学 一种基于数据漂移的太阳辐射在线动态预测方法

Also Published As

Publication number Publication date
CN115706412A (zh) 2023-02-17
EP4131698A1 (en) 2023-02-08
US20230040754A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
Sundaram et al. Performance evaluation and validation of 5 MWp grid connected solar photovoltaic plant in South India
Kudo et al. Forecasting electric power generation in a photovoltaic power system for an energy network
JP5806132B2 (ja) 発電量予測装置、発電量予測補正方法、および自然エネルギー発電システム
Makdisie et al. An optimal photovoltaic conversion system for future smart grids
JP5957372B2 (ja) 日射量計算方法及び供給電力決定方法
US20110137591A1 (en) Electric power generation amount estimation device, electric power generation amount estimation system, electric power generation amount estimation method and computer program
WO2019053941A1 (ja) 分散電源システム
WO2014003037A1 (ja) 制御装置、燃料電池ユニット及び制御方法
JP5988758B2 (ja) 電力管理システム、電力管理方法、電力制御装置及び燃料電池装置
Jaber et al. Optimal design of PV system in passive residential building in Mediterranean climate
Dalmau et al. Decentralized voltage control coordination of on-load tap changer transformers, distributed generation units and flexible loads
JP2023023114A (ja) 電力管理システム、電力管理サーバ、および、電力管理方法
Zheng et al. A techno-economic sizing method for PV/battery/grid hybrid solar systems for residential buildings
JP5912070B2 (ja) 制御装置、燃料電池システム及び制御方法
JP6121605B2 (ja) 電力管理システム、電力管理方法、電力制御装置及び燃料電池装置
JP2023030792A (ja) 電力管理システム、電力管理サーバ、および、電力管理方法
JP5872353B2 (ja) エネルギー管理システム及びエネルギー管理方法
Ueda et al. Advanced analysis of grid‐connected PV system's performance and effect of batteries
JP6152498B2 (ja) 電力管理システム、電力管理方法、電力管理装置及び燃料電池装置
JP6088699B2 (ja) 電力管理システム、電力管理方法、電力制御装置及び燃料電池装置
JP6400143B2 (ja) 電力管理システム、電力管理方法、燃料電池装置及び電力制御装置
JP5922524B2 (ja) 制御装置、燃料電池ユニット及び制御方法
JP5902062B2 (ja) 制御装置、燃料電池システム及び制御方法
Hossain et al. Feasibility study and design of a grid-tied low-cost solar system to replace IPS for a residential building
Rubi et al. INCREASING THE VISIBILITY OF LOW VOLTAGE NETWORKS THROUGH DATA ANALYTICS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231026