JP2023020981A - Substrate with electronic component and electronic component protection sheet - Google Patents

Substrate with electronic component and electronic component protection sheet Download PDF

Info

Publication number
JP2023020981A
JP2023020981A JP2022117278A JP2022117278A JP2023020981A JP 2023020981 A JP2023020981 A JP 2023020981A JP 2022117278 A JP2022117278 A JP 2022117278A JP 2022117278 A JP2022117278 A JP 2022117278A JP 2023020981 A JP2023020981 A JP 2023020981A
Authority
JP
Japan
Prior art keywords
electronic component
protective layer
substrate
component protective
electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022117278A
Other languages
Japanese (ja)
Other versions
JP7193031B1 (en
Inventor
玲季 松尾
Tamaki MATSUO
和規 松戸
Kazunori Matsudo
健次 安東
Kenji Ando
大将 岸
Hiromasa Kishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2022194415A priority Critical patent/JP2023027170A/en
Application granted granted Critical
Publication of JP7193031B1 publication Critical patent/JP7193031B1/en
Publication of JP2023020981A publication Critical patent/JP2023020981A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a substrate with electronic components and an electronic component protection sheet with excellent insulation properties, superior cold/heat cycle resistance, and dicing suitability.SOLUTION: In a substrate with electronic components 10, the electronic component 2 is mounted on the substrate 1, which is covered by the electronic component protective layer 3. The surface of the electronic component protective layer 3 has a Flop Index (FI) of 0.3 to 80 calculated by Formula (1). (L*15, L*45, L*110 are the L* of the L*a*b* color system specified in JIS Z8781-4 with offset angles of 15°, 45°, and 110° from the directly reflected light incident at an angle of 45° to the perpendicular direction of the electronic component surface, respectively.)SELECTED DRAWING: Figure 1

Description

本開示は、電子部品搭載基板、及び電子部品保護シートに関する。 The present disclosure relates to an electronic component mounting substrate and an electronic component protection sheet.

基板に搭載されたICチップ等の電子部品を、基板に対する折り曲げや衝撃から保護したり、温度変化による熱衝撃から保護したりするため、電子部品を基板の一部、或いは全面ごと樹脂によって被覆保護することが行われている。近年では、保護される電子部品および基板回路の著しい性能の向上や小型化に伴い、被覆保護する材料に求められる保護機能の要求水準が高まっている。
電子部品を被覆保護する手法としては、従来より行われてきたコンフォーマルコーティングに置き換わる手段として、溶剤を含まないシート状に成形された熱溶融性の電子部品保護シートが提案されている。
例えば、特許文献1には、芳香族ビニル-共役ジエン系ブロック共重合体を主成分とする形成材料からなる防湿層を備えてなることを特徴とする電子機器部品用防湿シートが開示されている。
特許文献2には、オレフィン系単量体、エチレン性不飽和カルボン酸、および芳香族エチレン性不飽和単量体のグラフト共重合体からなる、基板保護用シートが開示されている。
特許文献3および特許文献4にはエポキシ樹脂、無機フィラー、難燃剤からなるシート状樹脂組成物が開示されている。
特許文献5には、第1の熱伝導層と第2の熱伝導層とを備える積層シートで、搭載部品と基板とを覆う搭載構造体の製造方法が開示されており、同文献の図3(b)には搭載部品と搭載部品との間を前記積層シートの硬化物で隙間なく埋め尽くす製造方法が開示されている。
特許文献6には、表面の平均粗さが特定範囲にある電気絶縁層と、導体層を備えるフレキシブルプリント配線板が開示されている。
In order to protect electronic parts such as IC chips mounted on the board from bending and impact on the board, and to protect them from thermal shock due to temperature changes, the electronic parts are covered with resin for part or all of the board. is being done. In recent years, as electronic components and substrate circuits to be protected have been significantly improved in performance and miniaturized, the level of protective function required for protective coating materials has been increasing.
As a method for covering and protecting electronic components, a hot-melt electronic component protection sheet formed into a sheet shape containing no solvent has been proposed as a means to replace the conventional conformal coating.
For example, Patent Document 1 discloses a moisture-proof sheet for electronic device parts, which is characterized by comprising a moisture-proof layer made of a forming material containing an aromatic vinyl-conjugated diene block copolymer as a main component. .
Patent Document 2 discloses a substrate protection sheet comprising a graft copolymer of an olefinic monomer, an ethylenically unsaturated carboxylic acid, and an ethylenically unsaturated aromatic monomer.
Patent Documents 3 and 4 disclose a sheet-like resin composition comprising an epoxy resin, an inorganic filler and a flame retardant.
Patent Document 5 discloses a manufacturing method of a mounting structure that covers a mounting component and a substrate with a laminated sheet including a first heat conductive layer and a second heat conductive layer. (b) discloses a manufacturing method in which the space between mounted components is filled with the cured product of the laminated sheet without gaps.
Patent Literature 6 discloses a flexible printed wiring board provided with an electrical insulating layer having an average surface roughness within a specific range and a conductor layer.

特開2003-145687号公報JP-A-2003-145687 特開2010-06954号公報JP 2010-06954 A 特開2011-246596号公報JP 2011-246596 A 特開2012-054363号公報JP 2012-054363 A 特開2019-021757号公報JP 2019-021757 A 特開2008-160151号公報Japanese Patent Application Laid-Open No. 2008-160151

前述のとおり、これまで種々の方法によって被覆保護された電子部品搭載基板に関する発明が開示されているが、近年では、要求性能のレベルが高く、より品質の優れた電子部品搭載基板が望まれている。 As described above, inventions relating to electronic component mounting substrates coated and protected by various methods have been disclosed so far, but in recent years, the level of required performance is high, and electronic component mounting substrates with higher quality are desired. there is

電子部品搭載基板に積層されている電子部品保護層は、下層の電子部品や基板を絶縁被覆する役割のため、高い絶縁性が求められている。 An electronic component protective layer laminated on an electronic component mounting substrate is required to have high insulation properties because it serves to provide an insulating coating for the underlying electronic components and substrate.

一方、電子部品搭載基板の生産性を高めるため、大型基板に例えばアレイ状に電子部品を搭載し、特定の部品区画ごとに切り離す、ダイシング工程を行うことがある。この場合、電子部品保護層においてダイシング適正が求められる。ダイシング適性のない電子部品保護層は、ダイシングによる応力によって電子部品保護層の切断面がダレを起こしたり、バリを発生させたりする。なお、本明細書でいうバリとは、電子部品保護層の切断面を基点とした電子部品保護層の捲れをいう。 On the other hand, in order to increase the productivity of electronic component mounting substrates, a dicing process may be performed in which electronic components are mounted, for example, in an array on a large substrate and separated into specific component sections. In this case, dicing suitability is required in the electronic component protective layer. If the electronic component protective layer is not suitable for dicing, the cut surface of the electronic component protective layer may be sagging or burred due to the stress caused by dicing. In addition, the burr referred to in this specification refers to curling of the electronic component protective layer starting from the cut surface of the electronic component protective layer.

更に、電子部品搭載基板は電子機器に組み込まれた後、様々な温度環境下で使用されることから、電子部品保護層は急激な温度変化に曝され、電子部品保護層自体が破損することがある。このため、冷熱サイクル耐性に優れる電子部品保護層が切望されている。 Furthermore, since the electronic component mounting substrate is used in various temperature environments after being incorporated into electronic equipment, the electronic component protective layer is exposed to sudden temperature changes, and the electronic component protective layer itself may be damaged. be. For this reason, there is a strong demand for an electronic component protective layer that is excellent in thermal cycle resistance.

本開示は、上記課題に鑑みてなされたものであり、優れた絶縁性を有し、冷熱サイクル耐性に優れ、且つダイシング適正に優れた電子部品搭載基板、及び電子部品保護シートを提供する。 The present disclosure has been made in view of the above problems, and provides an electronic component mounting board and an electronic component protection sheet that have excellent insulation, excellent thermal cycle resistance, and excellent dicing suitability.

本発明者らは、鋭意検討の結果、以下の特徴を有する物品(電子部品搭載基板、及び電子部品保護シート)を用いることにより、前記課題を解決することを見出し、本開示を完成させるに至った。
[1]: 基板上に電子部品が搭載されており、前記電子部品が電子部品保護層によって被覆されている電子部品搭載基板であって、前記電子部品保護層の表面は、数式(1)により算出されたFlop Index(FI)が0.3~80である電子部品搭載基板。

Figure 2023020981000002
(L 15°、L 45°、L 110°は、それぞれ、電子部品表面の垂線方向に対して45°の角度で入射した光の正反射光からのオフセット角15°、45°、110°のJIS Z8781-4で規定されるL表色系のLである。)
[2]: 前記電子部品保護層のISO 5-2で定められる360~760nmの光学濃度(OD値)が1~6であることを特徴とする、[1]記載の電子部品搭載基板。
[3]: 前記電子部品保護層のJIS Z8781-4で定められるL*a*b*表色系における、L*値が1~50、かつa*値が-10~10、かつb*値が-10~10であることを特徴とする、[1]または[2]記載の電子部品搭載基板。
[4]: 前記電子部品保護層の表面抵抗値が1.0×10Ω/□以上であることを特徴とする、[1]~[3]いずれか記載の電子部品搭載基板。
[5]: 前記電子部品保護層が、バインダー樹脂、および粒状改質剤を含有し、
前記粒状改質剤は、JIS K 6217-4で規定されるDBP吸油量が15~400ml/100gであることを特徴とする、[1]~[4]いずれか記載の電子部品搭載基板。
[6]: 前記粒状改質剤が少なくとも1種類のカーボンブラックを含むことを特徴とする、[5]記載の電子部品搭載基板。
[7]: [1]~[6]いずれか記載の電子部品搭載基板が搭載された電子機器。
[8]: 基板上に搭載された電子部品を被覆するための電子部品保護シートであって、
前記電子部品保護シートを180℃、60分加熱させてなる硬化膜の表面は、
数式(1)により算出されたFlop Index(FI)が0.3~80である電子部品保護シート。
Figure 2023020981000003
(L 15°、L 45°、L 110°は、それぞれ、電子部品表面の垂線方向に対して45°の角度で入射した光の正反射光からのオフセット角15°、45°、110°のJIS Z8781-4で規定されるL表色系のLである。) As a result of intensive studies, the present inventors have found that the above problems can be solved by using an article (an electronic component mounting board and an electronic component protective sheet) having the following characteristics, and have completed the present disclosure. rice field.
[1]: An electronic component-mounted board in which an electronic component is mounted on the substrate and the electronic component is covered with an electronic component protective layer, wherein the surface of the electronic component protective layer is An electronic component mounting board having a calculated Flop Index (FI) of 0.3 to 80.
Figure 2023020981000002
(L * 15° , L * 45° , and L * 110° are the offset angles of 15°, 45°, 110° is the L * of the L * a * b * color system specified in JIS Z8781-4.)
[2]: The electronic component mounting board according to [1], wherein the electronic component protective layer has an optical density (OD value) of 1 to 6 at 360 to 760 nm defined by ISO 5-2.
[3]: An L* value of 1 to 50, an a* value of −10 to 10, and a b* value in the L*a*b* color system defined by JIS Z8781-4 of the electronic component protective layer is -10 to 10, the electronic component mounting board according to [1] or [2].
[4]: The electronic component mounting substrate according to any one of [1] to [3], wherein the electronic component protective layer has a surface resistance value of 1.0×10 7 Ω/□ or more.
[5]: The electronic component protective layer contains a binder resin and a granular modifier,
The electronic component mounting board according to any one of [1] to [4], wherein the granular modifier has a DBP oil absorption of 15 to 400 ml/100 g as defined in JIS K 6217-4.
[6]: The electronic component mounting board according to [5], wherein the particulate modifier contains at least one type of carbon black.
[7]: An electronic device mounted with the electronic component mounting board according to any one of [1] to [6].
[8]: An electronic component protection sheet for covering electronic components mounted on a substrate,
The surface of the cured film obtained by heating the electronic component protection sheet at 180° C. for 60 minutes,
An electronic component protection sheet having a Flop Index (FI) of 0.3 to 80 as calculated by the formula (1).
Figure 2023020981000003
(L * 15° , L * 45° , and L * 110° are the offset angles of 15°, 45°, 110° is the L * of the L * a * b * color system specified in JIS Z8781-4.)

本開示によれば、優れた絶縁性を有し、冷熱サイクル耐性に優れ、且つダイシング適正に優れる電子部品保護シートおよびこれを備えた電子部品搭載基板を提供できるという優れた効果を奏する。 Advantageous Effects of Invention According to the present disclosure, it is possible to provide an electronic component protective sheet that has excellent insulating properties, excellent thermal cycle resistance, and excellent dicing suitability, and an electronic component mounting substrate provided with the electronic component protective sheet.

本実施形態に係る電子部品搭載基板の模式的な断面図である。1 is a schematic cross-sectional view of an electronic component mounting board according to this embodiment; FIG. Flop Index(FI)測定系を説明した図である。It is a figure explaining a Flop Index (FI) measurement system. FI測定系を説明した図である。It is a figure explaining FI measurement system. FI測定系を説明した図である。It is a figure explaining FI measurement system. 本実施形態の粒状改質剤のアグリゲートの一例を示す図である。It is a figure which shows an example of the aggregate of the granularity modifier of this embodiment. 本実施形態の電子部品搭載基板の製造工程を示した模式的な図である。It is a typical figure showing the manufacturing process of the electronic component mounting substrate of the present embodiment. 本実施形態の導電層を有する電子部品搭載基板の模式的な断面図である。1 is a schematic cross-sectional view of an electronic component mounting board having a conductive layer according to this embodiment; FIG. 本実施形態に係る試験基板の模式的な断面図である。1 is a schematic cross-sectional view of a test substrate according to this embodiment; FIG.

《電子部品搭載基板》
本開示の電子部品搭載基板10は、図1に示すように、基板1と、基板上に搭載された1つ以上の電子部品2と、前記電子部品2の一部分、あるいは全部と基板1を被覆保護する電子部品保護層3、を含む。電子部品保護層3は、基板1と、電子部品2上面から基板1に亘って被覆されており、電子部品2の上面の他、電子部品2の搭載によって形成された段差部の側面および基板の少なくとも一部を被覆する。なお、電子部品保護層3は、電子部品2の形状に追随するように被覆する構成に限定されず、電子部品2上に電子部品2と基板1を被覆するように形成されている態様も包含する。
《Electronic component board》
As shown in FIG. 1, the electronic component mounting substrate 10 of the present disclosure includes a substrate 1, one or more electronic components 2 mounted on the substrate, a part or all of the electronic components 2, and the substrate 1. and a protective electronic component protection layer 3 . The electronic component protective layer 3 covers the substrate 1 and the upper surface of the electronic component 2 to the substrate 1. In addition to the upper surface of the electronic component 2, the side surface of the stepped portion formed by mounting the electronic component 2 and the substrate Cover at least a portion. In addition, the electronic component protective layer 3 is not limited to a configuration in which the electronic component protective layer 3 is coated so as to follow the shape of the electronic component 2, and includes an aspect in which the electronic component 2 and the substrate 1 are formed so as to cover the electronic component 2. do.

電子部品2は半田バンプ4を介して基板と電気的に接続されていてもよく、電子部品から延長される接続端子と基板が直接接続されていてもよい。電子部品2が半田バンプ4を介して基板と接続される場合、図1に示すように電子部品2と基板1の間には中空部分5が生じる。電子部品保護層3は前記中空部分5を維持するようにして電子部品2と基板1を被覆保護してもよく、中空部分5を埋めるように被覆保護してもよい。電子部品保護層は例えば後述する方法によって製造することができる。 The electronic component 2 may be electrically connected to the substrate via the solder bumps 4, or the connection terminals extending from the electronic component may be directly connected to the substrate. When the electronic component 2 is connected to the substrate via the solder bumps 4, a hollow portion 5 is created between the electronic component 2 and the substrate 1 as shown in FIG. The electronic component protective layer 3 may cover and protect the electronic component 2 and the substrate 1 so as to maintain the hollow portion 5 , or may cover and protect the hollow portion 5 so as to fill the hollow portion 5 . The electronic component protective layer can be produced, for example, by the method described later.

《電子部品保護層》
次いで、本開示の電子部品保護層について説明する。電子部品保護層は、上述の通り基板上に搭載された電子部品を被覆保護するためのものである。
《Electronic component protective layer》
Next, the electronic component protective layer of the present disclosure will be described. The electronic component protective layer is for covering and protecting the electronic component mounted on the substrate as described above.

《二乗平均平方根高さSq》
二乗平均平方根高さSq(以下、Sqともいう)はISO 25178-2:2012において、下記数式(2)で規定される表面性状パラメータである。Aは定義表面の面積を表す。

Figure 2023020981000004
二乗平均平方根高さSqは、光学顕微鏡、レーザー顕微鏡、および電子顕微鏡いずれかで得られる表面形状の座標データを、解析ソフトによって処理することにより、算出することができる。二乗平均平方根高さSqは、定義表面における凹凸高さの二乗平均平方根を表したものであり、表面粗さの標準偏差を表す。 <<root mean square height Sq>>
The root-mean-square height Sq (hereinafter also referred to as Sq) is a surface texture parameter defined by the following formula (2) in ISO 25178-2:2012. A represents the area of the defining surface.
Figure 2023020981000004
The root-mean-square height Sq can be calculated by processing the coordinate data of the surface shape obtained with either an optical microscope, a laser microscope, or an electron microscope, using analysis software. The root-mean-square height Sq represents the root-mean-square height of irregularities on the defined surface, and represents the standard deviation of surface roughness.

本開示における電子部品保護層の表面は、ISO 25178-2:2012に準拠して求めた二乗平均平方根高さSqが0.15~1.0μmであることが好ましい。電子部品保護層の表面が前述の範囲内であることで、電子部品保護層表面に帯電物が接触した際、界面に適度な空隙を維持することができるため絶縁性を良化することができ、絶縁破壊電圧が向上可能となる。また、電子部品保護層の表面が前述の範囲内であることで、ダイシング工程においてカッターと切断点に適度な応力集中を起こすことができ、バリの発生をより効果的に抑制することができる。 The surface of the electronic component protective layer in the present disclosure preferably has a root-mean-square height Sq of 0.15 to 1.0 μm, determined according to ISO 25178-2:2012. When the surface of the electronic component protective layer is within the above-mentioned range, when a charged object contacts the surface of the electronic component protective layer, an appropriate gap can be maintained at the interface, so that the insulation can be improved. , the breakdown voltage can be improved. In addition, since the surface of the electronic component protective layer is within the above-mentioned range, it is possible to cause moderate stress concentration on the cutter and the cutting point in the dicing process, and it is possible to more effectively suppress the occurrence of burrs.

《二乗平均平方根傾斜Sdq》
二乗平均平方根傾斜Sdq(以下、Sdqともいう)はISO 25178-2:2012において、下記数式(3)で規定される表面性状パラメータである。Aは定義表面の面積、∂xはx軸方向、∂yはy軸方向、∂z(x,y)はz軸方向の微小変位を表す。

Figure 2023020981000005
二乗平均平方根傾斜Sdqは、光学顕微鏡、レーザー顕微鏡、および電子顕微鏡いずれかで得られる表面形状の座標データを、解析ソフトによって処理することにより、算出することができる。二乗平均平方根傾斜Sdqは、定義表面の全点における傾斜の二乗平均平方根を表しており、定義表面における凹凸の険しさを表現するパラメータである。 <<root mean square slope Sdq>>
The root-mean-square slope Sdq (hereinafter also referred to as Sdq) is a surface texture parameter defined by the following formula (3) in ISO 25178-2:2012. A is the area of the defined surface, ∂x is the x-axis direction, ∂y is the y-axis direction, and ∂z(x, y) is the z-axis direction.
Figure 2023020981000005
The root-mean-square slope Sdq can be calculated by processing the coordinate data of the surface profile obtained with either an optical microscope, a laser microscope, or an electron microscope, using analysis software. The root-mean-square slope Sdq represents the root-mean-square slope of all points on the defined surface, and is a parameter that expresses the steepness of the unevenness on the defined surface.

本開示における電子部品保護層の表面は、ISO 25178-2:2012に準拠して求めた二乗平均平方根傾斜Sdqが0.0001~5であることが好ましい。電子部品保護層の表面が前述の範囲内であることで、電子部品保護層の防汚性を向上することができる。二乗平均平方根傾斜Sdqを0.0001以上とすることで、電子部品保護層に適度な凹凸傾斜を付与することができ、塵や埃の付着を抑制することができる。一方、二乗平均平方根傾斜Sdqを5以下とすることで、微細な塵や埃が電子部品保護層の凹凸壁面に付着するのを抑制することができる。電子部品保護層の二乗平均平方根傾斜Sdqは、0.0005~4.5であることがより好ましく、0.001~4であることがさらに好ましく、0.005~3.5であることが特に好ましい。 The surface of the electronic component protective layer in the present disclosure preferably has a root-mean-square slope Sdq of 0.0001 to 5, determined according to ISO 25178-2:2012. When the surface of the electronic component protective layer is within the range described above, the antifouling property of the electronic component protective layer can be improved. By setting the root-mean-square slope Sdq to 0.0001 or more, the electronic component protective layer can be provided with an appropriate unevenness slope, and adhesion of dust can be suppressed. On the other hand, by setting the root-mean-square slope Sdq to 5 or less, it is possible to suppress fine dust and dirt from adhering to the uneven wall surface of the electronic component protective layer. The root-mean-square slope Sdq of the electronic component protective layer is more preferably 0.0005 to 4.5, even more preferably 0.001 to 4, and particularly 0.005 to 3.5. preferable.

《Flop Index(FI)》
Flop Index(FI)(以下、FIともいう)は数式(1)によって算出されるパラメータである。

Figure 2023020981000006
FI測定系を図2Aに示す。FIは、測定対象表面13の垂線方向に対して45°の入射角で光(入射光12)を照射し、一定の角度で反射された光(正反射光)を検出器によって検出し、数値化した明度Lを用いて算出される。LはJIS Z8781-4で規定されるL表色系における明度Lであり、L 15°、L 45°、L 110°は、それぞれ、測定対象表面の垂線方向に対して45°の角度で入射した光の正反射光からのオフセット角15°、45°、110°で観測されるLである。
FIは測定対象表面の凹凸険しさと表面凹凸の秩序性を評価する指標となる。図2Bに示すように、測定対象表面の凹凸が激しく、無秩序な場合は、入射光12はあらゆる角度で反射(散乱)されるため、検知される光量の角度依存性は小さくなる。その結果、数式(1)によって算出されるFIの値は小さな値となる。一方、図2Cに示すように、測定対象表面の凹凸がなだらかであり、秩序性が高い場合は、入射光12は一定の角度で強く反射されるため、検知される光量の角度依存性は大きくなる。特に、前述のオフセット角15°、45°、110°で観測される光のうち、15°の光量が大きくなるため、FIは大きな値となる。 《Flop Index (FI)》
Flop Index (FI) (hereinafter also referred to as FI) is a parameter calculated by Equation (1).
Figure 2023020981000006
The FI measurement system is shown in FIG. 2A. FI irradiates light (incident light 12) at an incident angle of 45° with respect to the direction perpendicular to the measurement target surface 13, detects light reflected at a certain angle (specularly reflected light) by a detector, and obtains a numerical value calculated using the converted lightness L * . L * is the lightness L * in the L * a * b * color system defined in JIS Z8781-4, and L * 15° , L * 45° , and L * 110° are perpendicular to the surface of the object to be measured. L * observed at offset angles of 15°, 45°, and 110° from specularly reflected light for light incident at an angle of 45° to the direction.
The FI is an index for evaluating the roughness of the surface to be measured and the orderliness of the surface irregularities. As shown in FIG. 2B, when the surface of the object to be measured is highly uneven and chaotic, the incident light 12 is reflected (scattered) at all angles, so the angle dependence of the amount of light detected is small. As a result, the value of FI calculated by Equation (1) becomes a small value. On the other hand, as shown in FIG. 2C, when the unevenness of the surface of the object to be measured is smooth and highly ordered, the incident light 12 is strongly reflected at a constant angle. Become. In particular, among the light observed at the offset angles of 15°, 45°, and 110°, the amount of light at 15° increases, so FI takes a large value.

(FIの効果)
本開示における電子部品保護層表面のFIは、0.3~80である。FIは前述の範囲内であることで、電子部品保護層のダイシング適性と電圧耐性(絶縁破壊電圧)を良好なものとすることができる。FIが0.3以上であることで、電子部品保護層表面の凹凸形状に一定の秩序性を付与することが可能となる。電子部品保護層に電圧が印加された際に表面凹凸形状に一定の秩序性をもたせることにより、絶縁破壊の起点が発生することを抑制することが可能となるため、電圧耐性(絶縁破壊電圧)が向上する。一方、電子部品保護層表面のFIが80以下であることで、表面凹凸形状に一定の無秩序性を付与することが可能となる。凹凸形状が高い秩序性を有する表面では、切断などで加わる外部応力が特定箇所に集中しやすくなるが、凹凸が一定の無秩序性を有する場合は、当該外部応力を適切に分散させることができ、ダイシング適性が向上する。また、冷熱サイクル耐性を向上させることができる。電子部品保護層表面のFIは1~75であることがより好ましく、3~50であることがさらに好ましく、5~26であることが特に好ましい。
(Effect of FI)
The FI of the surface of the electronic component protective layer in the present disclosure is 0.3-80. When FI is within the above range, the dicing aptitude and voltage resistance (dielectric breakdown voltage) of the electronic component protective layer can be improved. When the FI is 0.3 or more, it is possible to impart a certain degree of orderliness to the uneven shape of the surface of the electronic component protective layer. When a voltage is applied to the protective layer for electronic components, it is possible to suppress the occurrence of starting points for dielectric breakdown by giving a certain degree of order to the uneven surface shape, so voltage resistance (dielectric breakdown voltage) improves. On the other hand, when the FI of the surface of the electronic component protective layer is 80 or less, it is possible to impart a certain degree of disorder to the uneven shape of the surface. On a surface with a highly ordered uneven shape, external stress applied by cutting or the like tends to concentrate at a specific location. Dicing aptitude is improved. Moreover, thermal cycle resistance can be improved. The FI of the surface of the electronic component protective layer is more preferably 1-75, still more preferably 3-50, and particularly preferably 5-26.

更に本発明者は鋭意検討の結果、電子部品保護層表面のFIを5~26とすることで、冷熱サイクル耐性がより向上することを見出した。電子部品搭載基板は電子機器へ組み込まれた後、様々な温度環境下で使用されることから、電子部品保護層は急激な温度変化に曝されることがある。電子部品保護層表面のFIが特定の範囲内であり、表面凹凸が一定程度の無秩序性を有する場合、急激な温度変化に対する電子部品保護層の膨張・収縮に起因する応力を適度に分散することが可能となるため、温度変化時に電子部品保護層が破損するのを防ぐことができる。 Furthermore, as a result of intensive studies, the inventors of the present invention have found that the thermal cycle resistance is further improved by setting the FI of the electronic component protective layer surface to 5 to 26. Since electronic component-mounted substrates are used in various temperature environments after they are incorporated into electronic equipment, the electronic component protective layer may be exposed to rapid temperature changes. When the FI of the surface of the electronic component protective layer is within a specific range and the surface unevenness has a certain degree of disorder, the stress caused by the expansion and contraction of the electronic component protective layer due to a sudden temperature change is appropriately dispersed. Therefore, it is possible to prevent the electronic component protective layer from being damaged when the temperature changes.

[Sq、Sdq、FIの制御方法]
電子部品保護層表面の二乗平均平方根高さSq、二乗平均平方根傾斜Sdq、Flop Index(FI)を制御する方法は、物体の表面形状を調整する方法として従来公知の方法を適用することができ、それぞれ異なった方法を適用することもでき、あるいは共通した方法を適用することもできる。具体的には、研磨布紙を用いて表面を研磨する方法、圧縮空気によって研磨材を電子部品保護層表面に吹き付けるショットブラスト法、所定の二乗平均平方根高さSq、二乗平均平方根傾斜Sdq、あるいはFIを有するキャリア材の上に電子部品保護層の前駆体となる電子部品保護シート6(図4参照)を形成し、キャリア材表面の凹凸を転写する方法、所定の二乗平均平方根高さSq、二乗平均平方根傾斜Sdq、あるいはFIを有するフィルムと電子部品保護シート6を圧着し、フィルム表面の凹凸を転写する方法、電子部品保護層に粒子状物質を含有させて表面凹凸を制御する、といった方法が挙げられる。電子部品保護層表面のSq、Sdq、FIを制御する方法としては、例示した方法に限定されるものではないが、電子部品保護層に粒子状物質を含有させて表面凹凸を制御する方法であれば、特に前/後処理も行う必要がなくなるため、生産性の観点から好ましい。
[Sq, Sdq, FI control method]
The method of controlling the root-mean-square height Sq, the root-mean-square slope Sdq, and Flop Index (FI) of the surface of the electronic component protective layer can be a conventionally known method for adjusting the surface shape of an object, Different methods can be applied, or a common method can be applied. Specifically, a method of polishing the surface using abrasive cloth and paper, a shot blasting method of spraying an abrasive material on the surface of the electronic component protective layer with compressed air, a predetermined root mean square height Sq, a root mean square inclination Sdq, or A method of forming an electronic component protection sheet 6 (see FIG. 4), which is a precursor of an electronic component protection layer, on a carrier material having FI, and transferring irregularities on the surface of the carrier material, a predetermined root mean square height Sq, A method of pressing a film having a root-mean-square slope Sdq or FI and an electronic component protective sheet 6 to transfer unevenness on the film surface, a method of controlling surface unevenness by incorporating particulate matter into the electronic component protective layer. is mentioned. The method for controlling Sq, Sdq, and FI on the surface of the electronic component protective layer is not limited to the exemplified methods, but any method of controlling the surface unevenness by incorporating particulate matter into the electronic component protective layer This is preferable from the viewpoint of productivity because it eliminates the need for pre- and post-treatments.

《光学濃度(OD値)》
光学濃度(以下、OD値と省略もする)は対象物を透過する入射光線の減衰率であり数式(4)によって算出されるパラメータである。PIは特定波長における入射光量、PTは特定波長の透過光量を表す。

Figure 2023020981000007
光学濃度(OD値)が大きくなるほど入射光の減衰率は大きくなることから、対象物の光線遮蔽性は良好であるといえる。図1に示すように、電子部品2上に電子部品保護層3が積層された構造においては、電子部品保護層3の光学濃度(OD値)が高いほど、光線遮蔽性が高く、下層の電子部品2に光が照射、反射されることがなくなり、電子部品の色味は観察者から観測されにくくなる。よって、電子部品と電子部品保護層の色味が同一でない場合には、電子部品上に電子部品保護層が積層されている部分と積層されていない部分を外観から判断することができる。前述の観点から、電子部品保護層のISO 5-2で定められる360~760nm(可視光領域)の光学濃度(OD値)は0.5~6の範囲内であることが好ましく、1~6であることがより好ましく、2~6の範囲内であることが更に好ましい。 <<Optical density (OD value)>>
Optical density (hereinafter also abbreviated as OD value) is the attenuation rate of incident light that passes through an object, and is a parameter calculated by Equation (4). PI represents the amount of incident light at a specific wavelength, and PT represents the amount of transmitted light at the specific wavelength.
Figure 2023020981000007
Since the attenuation rate of incident light increases as the optical density (OD value) increases, it can be said that the light shielding property of the object is good. As shown in FIG. 1, in the structure in which the electronic component protective layer 3 is laminated on the electronic component 2, the higher the optical density (OD value) of the electronic component protective layer 3, the higher the light shielding property. Light is no longer irradiated or reflected on the component 2, and the color of the electronic component is less likely to be observed by an observer. Therefore, when the color of the electronic component and the electronic component protective layer are not the same, it is possible to determine from the appearance whether the electronic component protective layer is laminated on the electronic component or not. From the above point of view, the optical density (OD value) at 360 to 760 nm (visible light region) defined by ISO 5-2 of the electronic component protective layer is preferably in the range of 0.5 to 6. and more preferably in the range of 2 to 6.

電子部品保護層において、電子部品のエッジ部等のヒビ割れ、電子部品保護層の端部が流動しすぎ(染み出し)ていないか等の品質チェック精度を高める技術が求められている。電子部品保護層を黒に着色する方法があるが、単純に黒く着色するのみでは、例えば電子部品に黒色の封止樹脂で封止されたチップ上では識別しにくく、検査精度を高める技術が求められている。本開示の電子部品保護層によれば、OD値を上記範囲とすることにより、電子部品保護層自体を適度に着色させ、視認性を高め、検査精度を効果的に高めることができる。 In the electronic component protective layer, there is a demand for a technique for improving the accuracy of quality checks such as cracks at the edge of the electronic component and whether the edge of the electronic component protective layer is excessively flowing (bleeding out). There is a method of coloring the electronic component protective layer black, but simply coloring it black makes it difficult to distinguish, for example, on a chip sealed with black sealing resin on the electronic component. It is According to the electronic component protective layer of the present disclosure, by setting the OD value within the above range, the electronic component protective layer itself can be appropriately colored, the visibility can be improved, and the inspection accuracy can be effectively improved.

電子部品保護層のOD値を高める方法として、高い吸光特性を示すバインダー樹脂を用いる方法、入射光を散乱させるフィラーを含有させる方法が例示できる。後述する粒状改質剤についても前述する入射光の散乱効果を得ることができ、粒状改質剤の種類および/又は量を制御することで、電子部品保護層のOD値を所望の範囲とすることが可能となる。 Examples of methods for increasing the OD value of the electronic component protective layer include a method of using a binder resin exhibiting high light absorption characteristics and a method of incorporating a filler that scatters incident light. The above-mentioned scattering effect of incident light can also be obtained with the granular modifier described later, and by controlling the type and / or amount of the granular modifier, the OD value of the electronic component protective layer is set to the desired range. becomes possible.

《L値》
本開示の電子部品保護層はJIS Z8781-4で定められるL表色系における、L値が1~50、かつa値が-10~10、かつb値が-10~10であることが好ましい。L値を前記範囲とすることで、基板との色味の違いが明確となり、識別性が向上する。なお、L値は色空間を表す座標軸である。Lは、明度を意味する次元、aおよびbは、補色次元を意味する。L値が低く、a値が0に近しい程、対象面の漆黒性は高くなり、通常着色されている基板との色味の違いは明確となる。ここでLはFI測定におけるL 45である。L値は1~40であることがより好ましく、1~30であることが更に好ましい。また、a値、およびb値は-5~5であることがより好ましく、-3~3であることが更に好ましい。
<<L * a * b * value>>
The electronic component protective layer of the present disclosure has an L * value of 1 to 50, an a * value of −10 to 10, and a b * value of − in the L*a * b * color system defined by JIS Z8781-4. It is preferably 10-10. By setting the L * a * b * values within the above range, the difference in color from the substrate becomes clear, and the distinguishability is improved. Note that the L * a * b * values are coordinate axes representing the color space. L * is the dimension denoting lightness, a * and b * denoting complementary color dimensions. The lower the L * value and the closer the a * b * value is to 0, the higher the jet-blackness of the target surface, and the clearer the difference in color tone from the normally colored substrate. where L * is L * 45 in FI measurements. The L * value is more preferably 1-40, even more preferably 1-30. Further, the a * value and b * value are more preferably -5 to 5, and even more preferably -3 to 3.

本開示の電子部品保護層は、Sdq、OD値、およびL値を最適化することでいかなる色の電子部品及び基板上に電子部品保護層を形成しても電子部品保護層を視認できるようになり、検査精度を顕著に向上させることができる。 By optimizing the Sdq, OD value, and L * a * b * value, the electronic component protective layer of the present disclosure is an electronic component protective layer that can be formed on electronic components and substrates of any color. can be visually recognized, and the inspection accuracy can be significantly improved.

《電子部品保護層の絶縁性》
電子部品搭載基板に搭載された電子部品や電気回路などの通電材料を被覆保護する必要性から、電子部品保護層は優れた絶縁性を有することが好ましい。具体的には、電子部品保護層の表面抵抗値は1.0×10Ω/□以上であることが好ましく、1.0×10Ω/□以上であることがより好ましく、1.0×10Ω/□以上であることがさらに好ましい。
《Insulating property of electronic component protective layer》
It is preferable that the electronic component protective layer has excellent insulating properties because it is necessary to cover and protect conductive materials such as electronic components and electric circuits mounted on the electronic component mounting board. Specifically, the surface resistance value of the electronic component protective layer is preferably 1.0×10 7 Ω/□ or more, more preferably 1.0×10 8 Ω/□ or more, and 1.0 More preferably, it is x10 9 Ω/□ or more.

《バインダー樹脂》
電子部品保護層は、バインダー樹脂を含む。バインダー樹脂は電子部品保護層の基体となる。後述する粒状改質剤やその他の任意成分を含む。バインダー樹脂は、熱可塑性樹脂、もしくは熱硬化性樹脂および硬化剤、のいずれか若しくは組み合わせて用いることができる。
《Binder Resin》
The electronic component protective layer contains a binder resin. The binder resin becomes the base of the electronic component protective layer. It contains a granularity modifier and other optional ingredients, which will be described later. The binder resin can be a thermoplastic resin or a thermosetting resin and a curing agent, or can be used in combination.

[熱可塑性樹脂]
熱可塑性樹脂としては、ポリオレフィン系樹脂、ビニル系樹脂、スチレン・アクリル系樹脂、ジエン系樹脂、テルペン樹脂、石油樹脂、セルロース系樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリイミド樹脂、液晶ポリマー、フッ素樹脂等が挙げられる。特に限定するものではないが、耐熱性の観点から、ポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリイミド樹脂、液晶ポリマー、フッ素樹脂がより好ましい。熱可塑性樹脂は、単独または2種類以上併用できる。
[Thermoplastic resin]
Thermoplastic resins include polyolefin resins, vinyl resins, styrene/acrylic resins, diene resins, terpene resins, petroleum resins, cellulose resins, polyamide resins, polyurethane resins, polyester resins, polycarbonate resins, polyimide resins, and liquid crystals. Examples include polymers and fluororesins. Polyamide resins, polyurethane resins, polyester resins, polycarbonate resins, polyimide resins, liquid crystal polymers, and fluorine resins are more preferable from the viewpoint of heat resistance, although they are not particularly limited. The thermoplastic resin can be used alone or in combination of two or more.

[熱硬化性樹脂]
熱硬化性樹脂は、硬化剤と反応可能な官能基を複数有する樹脂である。官能基は、例えば、水酸基、フェノール性水酸基、酸無水物基、メトキシメチル基、カルボキシル基、アミノ基、エポキシ基、オキセタニル基、オキサゾリン基、オキサジン基、アジリジン基、チオール基、イソシアネート基、ブロック化イソシアネート基、ブロック化カルボキシル基、シラノール基等が挙げられる。熱硬化性樹脂は、例えば、アクリル樹脂、マレイン酸樹脂、ポリブタジエン系樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、エポキシ樹脂、オキセタン樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、フェノール系樹脂、アルキド樹脂、アミノ樹脂、ポリ乳酸樹脂、オキサゾリン樹脂、ベンゾオキサジン樹脂、シリコーン樹脂、フッ素樹脂等の公知の樹脂が挙げられる。熱硬化性樹脂は、単独または2種類以上併用できる。
[Thermosetting resin]
A thermosetting resin is a resin having multiple functional groups capable of reacting with a curing agent. Functional groups include, for example, hydroxyl group, phenolic hydroxyl group, acid anhydride group, methoxymethyl group, carboxyl group, amino group, epoxy group, oxetanyl group, oxazoline group, oxazine group, aziridine group, thiol group, isocyanate group, blocked Isocyanate groups, blocked carboxyl groups, silanol groups and the like can be mentioned. Thermosetting resins include, for example, acrylic resins, maleic acid resins, polybutadiene resins, polyester resins, polyurethane resins, polyurethane urea resins, epoxy resins, oxetane resins, phenoxy resins, polyimide resins, polyamide resins, polyamideimide resins, and phenolic resins. Known resins such as resins, alkyd resins, amino resins, polylactic acid resins, oxazoline resins, benzoxazine resins, silicone resins and fluorine resins can be used. Thermosetting resins can be used alone or in combination of two or more.

これらの中でも耐熱性の点から、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリエステル樹脂、エポキシ樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂が好ましい。 Among these resins, polyurethane resins, polyurethane urea resins, polyester resins, epoxy resins, phenoxy resins, polyimide resins, polyamide resins, and polyamideimide resins are preferred from the viewpoint of heat resistance.

[硬化剤]
硬化剤は、熱硬化性樹脂の官能基と反応可能な官能基を複数有している。硬化剤は、例えばエポキシ化合物、酸無水物基含有化合物、イソシアネート化合物、アジリジン化合物、アミン化合物、フェノール化合物、有機金属化合物等の公知の化合物が挙げられる。硬化剤は、単独または2種類以上併用できる。
[Curing agent]
The curing agent has multiple functional groups capable of reacting with the functional groups of the thermosetting resin. Examples of curing agents include known compounds such as epoxy compounds, acid anhydride group-containing compounds, isocyanate compounds, aziridine compounds, amine compounds, phenol compounds, and organometallic compounds. Curing agents can be used alone or in combination of two or more.

硬化剤は、熱硬化性樹脂100質量部に対して各種1~50質量部含むことが好ましい。硬化剤量が1質量部以上であることで、電子部品保護層に強固な架橋構造が形成されるようになり、電圧耐性(絶縁破壊電圧)が向上する。一方、硬化剤量が50質量部以下であることで、電子部品保護層の過剰な硬化を抑制し、後述する電子部品搭載基板の製造工程において、加熱加圧時に電子部品保護シート6(図4参照)が電子部品の形状に追随して変形し、欠陥のない電子部品保護層を形成することができる。硬化剤は、熱硬化性樹脂100質量部に対して各種3~45質量部含むことがより好ましく、5~40質量部含むことがさらに好ましい。 The curing agent is preferably contained in an amount of 1 to 50 parts by mass per 100 parts by mass of the thermosetting resin. When the amount of the curing agent is 1 part by mass or more, a strong crosslinked structure is formed in the electronic component protective layer, and voltage resistance (dielectric breakdown voltage) is improved. On the other hand, since the amount of the curing agent is 50 parts by mass or less, excessive curing of the electronic component protective layer is suppressed, and in the manufacturing process of the electronic component mounting board described later, the electronic component protective sheet 6 (Fig. 4 ) can be deformed following the shape of the electronic component to form a defect-free electronic component protective layer. The curing agent is more preferably contained in 3 to 45 parts by mass, more preferably 5 to 40 parts by mass, per 100 parts by mass of the thermosetting resin.

《粒状改質剤》
電子部品保護層は、粒状改質剤を含むことが好ましい。粒状改質剤は電子部品保護層の、二乗平均平方根高さSq、二乗平均平方根傾斜Sdq、Flop Index(FI)を所望の範囲とすることを主目的として用いられる。また、粒状改質剤の種類、添加量を適宜変更することにより電子部品保護層の弾性率、ヤング率、押し込み固さといった機械的性質を良好な範囲とすることができる。
《Particulate Modifier》
The electronic component protective layer preferably contains a granular modifier. The granular modifier is used mainly for the purpose of setting the root-mean-square height Sq, root-mean-square tilt Sdq, and Flop Index (FI) of the electronic component protective layer within desired ranges. In addition, the mechanical properties such as the elastic modulus, Young's modulus, and indentation hardness of the electronic component protective layer can be controlled within favorable ranges by appropriately changing the type and amount of the particulate modifier.

粒状改質剤は、JIS K 6217-4で規定されるDBP吸油量が15~400ml/100gであることが好ましい。粒状改質剤のDBP吸油量が15~400ml/100gであることで、ダイシング適性を向上させることができる。ダイシング適性の向上は、後述する推定作用により生ずると推定されるが、本開示における効果の作用機構については、当該推定作用に限定を受けるものではない。 The granular modifier preferably has a DBP oil absorption of 15 to 400 ml/100 g as defined in JIS K 6217-4. Dicing aptitude can be improved when the DBP oil absorption of the granular modifier is 15 to 400 ml/100 g. The improvement in dicing aptitude is presumed to be caused by the presumed action described later, but the action mechanism of the effect in the present disclosure is not limited to the presumed action.

DBP吸油量は、対象となる物質がDBP(ジブチルフタレート)を吸収できる量を指し、後述する粒状改質剤のアグリゲートの発達度合いを把握するための指標とすることができる。 The DBP oil absorption indicates the amount of DBP (dibutyl phthalate) that can be absorbed by a target substance, and can be used as an index for grasping the degree of aggregate development of the granular modifier, which will be described later.

本開示の粒状改質剤は、基となる微小粒子(以下、一次粒子21)が凝集、結着、または融着することで二次粒子様結着体(以下、アグリゲート22)を形成する。図3に粒状改質剤のアグリゲートの模式図を示す。 The particulate modifier of the present disclosure forms secondary particle-like aggregates (hereinafter, aggregates 22) by aggregating, binding, or fusing base microparticles (hereinafter, primary particles 21). . FIG. 3 shows a schematic diagram of aggregates of granular modifiers.

(推定作用)
以下に、粒状改質剤が電子部品保護層のダイシング適性向上に寄与する作用の推定について示す。粒状改質剤の一次粒子21は、静電相互作用等、複数の粒子間相互作用によって、互いに寄せ集まる性質を有し、複数の一次粒子21が凝集、結着、または融着することでアグリゲート22を形成する。一次粒子が凝集する際には、必ずしも一次粒子21が最密充填されることはなく、アグリゲート22には空間23が生じる。
粒状改質剤が油や高分子溶液といった液体に浸漬されると、液体中の低分子、あるいは高分子がアグリゲート中の空間23に入り込む。当該空間23に入り込むのが高分子であれば、当該高分子は分子鎖全てが当該空間23に入り込むのではなく、分子鎖の一部分が空間23内に入り込む。上述の現象が、高分子中の複数末端で生じた際には、複数の粒状改質剤が高分子鎖によって繋がれた状態が形成される。前述する現象が、電子部品保護層で多数形成されることで、疑似架橋構造が形成され、電子部品保護層の強度が向上しダイシング時のダレやバリの発生を抑制する。
(Estimated action)
The estimation of the effect of the particulate modifier on improving the dicing aptitude of the protective layer for electronic parts will be described below. The primary particles 21 of the granular modifier have the property of gathering together due to a plurality of inter-particle interactions such as electrostatic interactions, and aggregation, binding, or fusion of the plurality of primary particles 21 causes agglomeration. A gate 22 is formed. When the primary particles agglomerate, the primary particles 21 are not always packed closely, and spaces 23 are generated in the aggregates 22 .
When the granular modifier is immersed in a liquid such as oil or polymer solution, low-molecular weight or high-molecular weight molecules in the liquid enter the space 23 in the aggregate. If it is a macromolecule that enters the space 23 , a part of the molecular chain of the macromolecule enters the space 23 rather than all of the molecular chain enters the space 23 . When the above-mentioned phenomenon occurs at multiple terminals in a polymer, a state is formed in which multiple granular modifiers are linked by polymer chains. A large number of the above-described phenomena are formed in the electronic component protective layer to form a pseudo-crosslinked structure, which improves the strength of the electronic component protective layer and suppresses the occurrence of sagging and burrs during dicing.

当該推定作用は、アグリゲート中の空間の大きさに影響を受ける。即ち、アグリゲートの発達がより進み、大きくなるほど、一次粒子は最密充填で凝集することが困難となり、より広い空間が形成されたり、より多数の空間が形成される。それにより、粒状改質剤はより高密度な疑似架橋構造を形成し、電子部品保護層はより高い強度を得る。 The estimated behavior is affected by the amount of space in the aggregate. That is, the more the aggregates develop and become larger, the more difficult it becomes for the primary particles to agglomerate in a close-packed manner, and a wider space or a greater number of spaces are formed. As a result, the particulate modifier forms a higher-density pseudo-crosslinked structure, and the electronic component protective layer obtains higher strength.

当該空間の大きさを測る指標として、DBP吸油量が用いられる。DBP吸油量は、対象となる物質がDBP(ジブチルフタレート)を吸収できる量、即ちアグリゲート中の空間の総体積と正の相関関係にある。DBP吸油量が高いほど、アグリゲート中の空間は広く、多くなり、電子部品保護層には高密度な疑似架橋構造が形成される。
以上が粒状改質剤による電子部品保護層の強度向上における推定作用である。但し、本開示における効果の作用機構については、当該推定作用に限定を受けるものではない。
DBP oil absorption is used as an index for measuring the size of the space. The DBP oil absorption has a positive correlation with the amount of DBP (dibutyl phthalate) that can be absorbed by the target substance, that is, with the total volume of space in the aggregate. The higher the DBP oil absorption, the wider and more the space in the aggregate, and the higher the density of the pseudo-crosslinked structure formed in the electronic component protective layer.
The above is the presumed function of improving the strength of the electronic component protective layer by the particulate modifier. However, the action mechanism of the effect in the present disclosure is not limited to the presumed action.

本開示で用いられる粒状改質剤は、JIS K 6217-4で規定されるDBP吸油量が15~400ml/100gである。粒状改質剤のDBP吸油量が15ml/100g以上であることで、アグリゲートの発達度合いを充分なものとでき、充分な疑似架橋効果が生じる。その結果、電子部品保護層を積層した電子部品搭載基板をダイシング加工した際に、電子部品保護層のダレを抑制することができる。また、粒状改質剤のDBP吸油量が400ml/100g以下であることで、多量の高分子が粒状改質剤に取り込まれるのを防ぎ、高分子が不足した領域の発生を抑え、電子部品保護層を積層した電子部品搭載基板をダイシング加工した際に、当該欠陥を起点とした電子部品保護層の割れなどの外観不良発生を抑制することができる。粒状改質剤のDBP吸油量は30~350ml/100gがより好ましく、50~250ml/100gが更に好ましい。 The granular modifier used in the present disclosure has a DBP oil absorption of 15 to 400 ml/100 g as defined in JIS K 6217-4. When the DBP oil absorption of the granular modifier is 15 ml/100 g or more, the degree of aggregate development can be made sufficient, and a sufficient pseudo-crosslinking effect can be produced. As a result, when the electronic component mounting board on which the electronic component protective layer is laminated is diced, the electronic component protective layer can be prevented from sagging. In addition, since the DBP oil absorption of the granular modifier is 400 ml/100 g or less, it prevents a large amount of polymer from being taken into the granular modifier, suppresses the occurrence of areas where the polymer is insufficient, and protects electronic parts. When an electronic component mounting substrate having laminated layers is diced, it is possible to suppress appearance defects such as cracking of the electronic component protective layer originating from the defects. The DBP oil absorption of the granular modifier is more preferably 30 to 350 ml/100 g, more preferably 50 to 250 ml/100 g.

電子部品保護層100質量%中の粒状改質剤含有率は、1~30質量%であることが好ましい。粒状改質剤含有率が1質量%以上であると、電子部品保護層に十分な疑似架橋効果を生じさせることができ、ダイシング適性がより向上する。粒状改質剤含有率が30質量%以下であると、多量の高分子が粒状改質剤に取り込まれるのを防ぎ、電子部品保護層中に高分子が不足した領域の発生を抑え、ダイシング適性がより向上する。電子部品保護層中の粒状改質剤含有率は5~20質量%であることが更に好ましい。 The content of the particulate modifier in 100% by mass of the electronic component protective layer is preferably 1 to 30% by mass. When the content of the granular modifier is 1% by mass or more, a sufficient pseudo-crosslinking effect can be produced in the electronic component protective layer, and the suitability for dicing is further improved. When the content of the granular modifier is 30% by mass or less, it prevents a large amount of polymer from being incorporated into the granular modifier, suppresses the occurrence of regions lacking polymers in the electronic component protective layer, and is suitable for dicing. is better. More preferably, the particulate modifier content in the electronic component protective layer is 5 to 20% by mass.

粒状改質剤の例としては、電子部品保護層のダイシング適性を向上させる作用を有するものであれば、制限されないが、カーボンブラック、カーボンナノチューブ、グラファイト、カーボンファイバー、カーボンナノプレートなどの炭素系粒子、または特開2018/185938号公報に記載のリン酸三リチウム(LiPO)や、国際公開2016/021467号公報に記載のシリカなどの無機粒子等が挙げられる。アグリゲーションを有し、DBP吸油量が測定可能なものであれば、公知のものを使用することができる。なかでも、カーボンブラックを用いることが好ましい。カーボンブラックは、ケッチェンブラックやアセチレンブラックといった特定の分類がなされるものから、前述のような特定分類がなされないものも含み得る。これらの粒状改質剤は繊維状のカーボンナノチューブのような絡み合った過剰な自己凝集を起こすことなく高分子との強固な相互作用を生じるため、電子部品保護層中に均一分散することができ、ダイシング時の割れを抑制することができるために好ましい。 Examples of particulate modifiers include, but are not limited to, carbon-based particles such as carbon black, carbon nanotubes, graphite, carbon fibers, and carbon nanoplates, as long as they have the effect of improving the dicing aptitude of the electronic component protective layer. , or inorganic particles such as trilithium phosphate (Li 3 PO 4 ) described in JP-A-2018/185938 and silica described in WO 2016/021467. A known one can be used as long as it has aggregation and the DBP oil absorption can be measured. Among them, it is preferable to use carbon black. Carbon black can include those classified as ketjen black and acetylene black as well as those not classified as described above. Since these granular modifiers do not cause excessive entangled self-aggregation like fibrous carbon nanotubes, they generate a strong interaction with the polymer, so they can be uniformly dispersed in the electronic component protective layer. It is preferable because cracking during dicing can be suppressed.

粒状改質剤は電子部品保護層に絶縁性を付与する観点から、体積抵抗率1.0×10-3Ω・cm以上であることが好ましい。粒状改質剤の体積抵抗率は、1.0×107Ω・cm以上であることがより好ましく、1.0×1013Ω・cm以上であることが更に好ましい。粒状改質剤に含まれる物質の体積抵抗率はJIS C2141に準拠して測定できる。体積抵抗率の上限は限定されないが、通常1.0×1017Ω・cm以下である。 The granular modifier preferably has a volume resistivity of 1.0×10 −3 Ω·cm or more from the viewpoint of imparting insulation to the electronic component protective layer. The volume resistivity of the granular modifier is more preferably 1.0×10 7 Ω·cm or more, and even more preferably 1.0×10 13 Ω·cm or more. The volume resistivity of the substance contained in the granular modifier can be measured according to JIS C2141. Although the upper limit of the volume resistivity is not limited, it is usually 1.0×10 17 Ω·cm or less.

粒状改質剤は1種類を単独で使用してもよく、2種類以上を併用してもよい。粒状改質剤を2種類以上併用することにより、それぞれの特性を補完することができる。例えば、第一の粒状改質剤としてカーボンブラック(DBP吸油量:100ml/100g、体積抵抗率:1.6×10-5Ω・cm)を用い、第二の粒状改質剤としてシリカ(DBP吸油量:220ml/100g、体積抵抗率:1.6×1016Ω・cm)を用いた場合、カーボンブラックによってダイシング耐性と識別性を向上させ、シリカによってダイシング耐性と絶縁破壊電圧を向上させる、といったことが可能となる。 One type of granular modifier may be used alone, or two or more types may be used in combination. By using two or more types of granular modifiers in combination, each characteristic can be complemented. For example, carbon black (DBP oil absorption: 100 ml/100 g, volume resistivity: 1.6×10 −5 Ω·cm) is used as the first granular modifier, and silica (DBP Oil absorption: 220 ml/100 g, volume resistivity: 1.6 × 10 16 Ω cm), carbon black improves dicing resistance and distinguishability, and silica improves dicing resistance and dielectric breakdown voltage. Such a thing becomes possible.

《電子部品保護層の厚み》
電子部品保護層の厚みは10~1000μmであることが、絶縁破壊電圧向上と薄膜化を両立する観点から好ましい。電子部品保護層の厚みは、15~500μmであることがより好ましく、20~250μmであることが更に好ましい。
<<Thickness of protective layer for electronic components>>
The thickness of the electronic component protective layer is preferably 10 to 1000 μm from the viewpoint of achieving both improvement in dielectric breakdown voltage and reduction in thickness. The thickness of the electronic component protective layer is more preferably 15 to 500 μm, still more preferably 20 to 250 μm.

《電子部品保護シート》
電子部品保護シート6は電子部品保護層の前駆体物品であって、絶縁性の樹脂シートである。電子部品保護シートが熱硬化性樹脂を含む場合、電子部品保護シートを所定以上の時間、温度で加熱し、硬化反応を起こすことによって電子部品保護層となる。電子部品保護シートは表面保護のために、片面あるいは両面に剥離性シートを具備していてもよい。また、後述する電子部品保護シートによる被覆保護工程において用いられるクッション材があらかじめ積層されていてもよい。
《Electronic component protection sheet》
The electronic component protective sheet 6 is a precursor product of the electronic component protective layer, and is an insulating resin sheet. When the electronic component protective sheet contains a thermosetting resin, the electronic component protective sheet is heated at a temperature for a predetermined time or longer to cause a curing reaction, thereby forming the electronic component protective layer. The electronic component protective sheet may have a peelable sheet on one side or both sides for surface protection. Also, a cushioning material used in the step of covering and protecting with an electronic component protection sheet, which will be described later, may be laminated in advance.

《電子部品保護シートの製造方法》
電子部品保護シートの製造方法は、特に限定されないが、例えば、電子部品保護層を形成する上記バインダー樹脂等の材料を溶媒等に溶解させた組成物を、剥離シートに塗布する方法が挙げられる。塗布方法として、例えば、グラビアコート方式、キスコート方式、ダイコート方式、リップコート方式、コンマコート方式、ブレード方式、ロールコート方式、ナイフコート方式、スプレーコート方式、バーコート方式、スピンコート方式、ディップコート方式、又は、各種印刷方式が挙げられる。
<<Manufacturing method of electronic component protection sheet>>
The method for producing the electronic component protective sheet is not particularly limited, but for example, a method of applying a composition obtained by dissolving a material such as the binder resin that forms the electronic component protective layer in a solvent or the like to a release sheet. Examples of coating methods include gravure coating, kiss coating, die coating, lip coating, comma coating, blade coating, roll coating, knife coating, spray coating, bar coating, spin coating, and dip coating. , or various printing methods.

本開示の電子部品保護シートは、所望の厚みを実現するために2枚以上の電子部品保護シートを積層してもよい。前述のように積層された構成物については、電子部品保護シートのみから構成されていてもよく、中間層として特定の機能を有する層を含んでいてもよい。 The electronic component protective sheet of the present disclosure may be laminated with two or more electronic component protective sheets to achieve a desired thickness. The structure laminated as described above may be composed only of the electronic component protective sheet, or may include a layer having a specific function as an intermediate layer.

《電子部品保護シートの用途》
本開示の電子部品保護シートは、基板が、金属、樹脂、繊維、セラミック、ガラス、および導電性シリコンのいずれである場合にも、実用上十分な密着力を示す。金属としては、アルミニウム、銅、真鍮、ステンレス、鉄、クロムなどに使用できる。樹脂としてはエポキシ樹脂、ポリエチレンテレフタラート、ポリイミド、ポリアミド、ポリエチレン、ポリプロピレン、ポリオレフィン系グラフトポリマー、ポリスチレン、ポリ塩化ビニルなどに使用できる。それゆえに本電子部品保護シートは極性の異なる異種材料間の密着にも好適に用いることができる。
本開示の電子部品保護シートは、各種基板、すなわち、リジッド基板、FPC基板など各種基板の保護に好適に用いることができる。
《Uses of electronic component protective sheets》
The electronic component protective sheet of the present disclosure exhibits practically sufficient adhesion to any substrate made of metal, resin, fiber, ceramic, glass, or conductive silicon. Metals that can be used include aluminum, copper, brass, stainless steel, iron, and chromium. As the resin, epoxy resin, polyethylene terephthalate, polyimide, polyamide, polyethylene, polypropylene, polyolefin graft polymer, polystyrene, polyvinyl chloride and the like can be used. Therefore, the present electronic component protection sheet can be suitably used for adhesion between different materials having different polarities.
The electronic component protection sheet of the present disclosure can be suitably used to protect various substrates, ie, rigid substrates, FPC substrates, and the like.

本開示の電子部品保護用シートを使用した電子部品搭載基板は、液晶ディスプレイ、タッチパネル等のほか、ノートPC、携帯電話、スマートフォン、タブレット端末等の電子機器に備えることが好ましい。 Electronic component mounting substrates using the electronic component protection sheet of the present disclosure are preferably provided in electronic devices such as liquid crystal displays, touch panels, notebook PCs, mobile phones, smartphones, and tablet terminals.

《電子部品搭載基板の製造方法》
本開示の電子部品保護シートを用いる電子部品搭載基板の製造方法(以下、被覆保護方法、被覆方法、保護方法と略すことがある)について説明する。
本開示の電子部品搭載基板の製造方法は、1つ以上の電子部品を基板上に搭載する工程(工程i)、電子部品保護シートを用意する工程(工程ii)、前記電子部品のうち、最も高さの高い電子部品と、電子部品保護シートが接するように電子部品保護シートを載置する工程(工程iii、仮貼り工程ともいう)、加熱加圧により前記電子部品保護シートを個々の電子部品の形状に沿うように変形させ、前記電子部品および基板の少なくとも一部を被覆する工程(工程iv)、変形した電子部品保護シートを変形した状態で硬化させ電子部品保護層を形成する工程(工程v)を経て製造できる。これらの工程を経て、本開示の電子部品保護シートから形成される電子部品保護層により被覆保護した電子部品搭載基板が得られる。工程ivと工程vとは一連の工程とすることもできる。
<<Manufacturing method of electronic component mounting board>>
A method for manufacturing an electronic component-mounted substrate using the electronic component protection sheet of the present disclosure (hereinafter sometimes abbreviated as a coating protection method, a coating method, or a protection method) will be described.
The method for manufacturing an electronic component mounting substrate of the present disclosure includes a step of mounting one or more electronic components on the substrate (step i), a step of preparing an electronic component protection sheet (step ii), and A step of placing an electronic component protective sheet so that the electronic component protective sheet is in contact with a tall electronic component (step iii, also referred to as a temporary attachment step), and the electronic component protective sheet is separated from the individual electronic components by heating and pressurizing. and covering at least a portion of the electronic component and the substrate (step iv), and curing the deformed electronic component protective sheet in a deformed state to form an electronic component protective layer (step v). Through these steps, an electronic component-mounted substrate coated and protected by an electronic component protective layer formed from the electronic component protective sheet of the present disclosure is obtained. Step iv and step v can also be a series of steps.

以下、工程iii~工程vについて図4を用いて、電子部品保護シートを用いた加熱加圧による電子部品搭載基板の被覆保護方法の一例を説明する。 An example of a method for covering and protecting an electronic component mounting substrate by heating and pressing using an electronic component protective sheet will be described below with reference to FIG. 4 for steps iii to v. FIG.

(工程iii:電子部品保護シート載置工程)
基板1に電子部品2a及び電子部品2bが半田バンプ4によって搭載された電子部品搭載基板(以下、搭載基板ともいう)100を用意する。電子部品2は半導体チップ、コンデンサ、トランジスタ、インダクタ、サーミスタ等であり、基板1に半田バンプ4を介して実装されている。半田バンプ4により、電子部品2a、2bと基板1に間隙が存在する。電子部品2aは、電子部品2bよりも高く設計されている。
次いで、電子部品2a、2bの実装面上に、所定のサイズにカットした電子部品保護シート6を載置する。電子部品2bよりも電子部品2aの高さが大きいので、電子部品保護シート6は電子部品2aと接触し、仮貼りされる。なお、電子部品保護シート6がしなり、電子部品2bと接触することもある(図4では図示せず)。
(Step iii: electronic component protection sheet placement step)
An electronic component mounting substrate (hereinafter also referred to as a mounting substrate) 100 having electronic components 2a and electronic components 2b mounted on a substrate 1 by means of solder bumps 4 is prepared. The electronic components 2 are semiconductor chips, capacitors, transistors, inductors, thermistors, etc., and are mounted on the substrate 1 via solder bumps 4 . A gap exists between the electronic components 2 a and 2 b and the substrate 1 due to the solder bumps 4 . The electronic component 2a is designed higher than the electronic component 2b.
Next, an electronic component protection sheet 6 cut into a predetermined size is placed on the mounting surfaces of the electronic components 2a and 2b. Since the electronic component 2a is taller than the electronic component 2b, the electronic component protection sheet 6 contacts the electronic component 2a and is temporarily attached. Note that the electronic component protection sheet 6 may bend and come into contact with the electronic component 2b (not shown in FIG. 4).

なお、電子部品保護シート6にはクッション材7を積層してもよい。図4はクッション材を使用した例を示している。クッション材7は電子部品保護シート6を載置した後に積層してもよく、あらかじめ電子部品保護シート6とクッション材7とを重ねた積層体を載置してもよい。上記クッション材7とは加熱加圧時に軟化もしくは溶融する材料であり、電子部品保護シート6の電子部品2a、2bへの、そして電子部品同士の隙間への追随性を促す機能を有する。
クッション材7は、例えば熱可塑性を有する素材であれば特に限定されないが、加圧時の温度よりも低い溶融温度及びガラス転移点(Tg)であることが好ましい。好適な例として、ポリオレフィン系フィルム、塩化ビニルフィルム、PVAフィルムが例示できる。電子部品2aと電子部品2bの間に形成される溝の深さによるが、クッション材の厚みは、通常、100μm~1mm程度である。クッション材7を複数積層する場合には、合計の厚みがこの範囲にあることが好ましい。
A cushion material 7 may be laminated on the electronic component protection sheet 6 . FIG. 4 shows an example using a cushioning material. The cushion material 7 may be laminated after the electronic component protection sheet 6 is placed, or a laminate obtained by stacking the electronic component protection sheet 6 and the cushion material 7 in advance may be placed. The cushion material 7 is a material that softens or melts when heated and pressurized, and has a function of promoting conformability of the electronic component protection sheet 6 to the electronic components 2a and 2b and to gaps between the electronic components.
The cushioning material 7 is not particularly limited as long as it is a thermoplastic material, but preferably has a melting temperature and a glass transition point (Tg) lower than the temperature at the time of pressurization. Suitable examples include polyolefin films, vinyl chloride films, and PVA films. Depending on the depth of the groove formed between the electronic component 2a and the electronic component 2b, the thickness of the cushioning material is usually about 100 μm to 1 mm. When a plurality of cushion materials 7 are laminated, the total thickness is preferably within this range.

なお、本実施形態に示した電子部品搭載基板は一例であって、電子部品と基板の構造は特に限定されるものではなく、電子部品2a、2bと基板1との間には隙間があってもなくともよい。搭載する電子部品の配置位置は限定されない。 Note that the electronic component mounting board shown in the present embodiment is an example, and the structure of the electronic component and the board is not particularly limited. Doesn't matter. The arrangement position of the electronic component to be mounted is not limited.

次いで、加熱加圧機20により加熱加圧を行うことで、前記電子部品保護シート6が変形し、個々の電子部品の形状に沿うように、即ち電子部品2a、2bの上面と側面に沿うように変形させ、電子部品および基板1の少なくとも一部に追従させる。クッション材7は熱によって軟化もしくは溶融し電子部品保護シート6の搭載基板100の電子部品間の凹凸への追随を促す。
加熱加圧時において加熱加圧機20とクッション材7との間に、剥離性シートを介する方法も好ましい。剥離性シートは、紙やプラスチック等の基材に公知の剥離処理を行ったシートである。また、テフロン(登録商標)等の極性が低いプラスチックシートを用いることもできる。
Next, by performing heating and pressurization with a heating and pressurizing machine 20, the electronic component protection sheet 6 is deformed and conforms to the shape of each electronic component, that is, along the upper surface and side surface of the electronic components 2a and 2b. It is deformed to follow the electronic component and at least part of the substrate 1 . The cushioning material 7 is softened or melted by heat, and promotes conformity of the electronic component protective sheet 6 to the irregularities between the electronic components on the mounting board 100 .
A method of interposing a release sheet between the heating and pressurizing machine 20 and the cushioning material 7 during heating and pressurization is also preferable. The release sheet is a sheet obtained by subjecting a base material such as paper or plastic to a known release treatment. A plastic sheet with low polarity such as Teflon (registered trademark) can also be used.

加熱温度は、電子部品保護シート6が適度に軟化し、個々の電子部品の形状に沿い、変形し、個々の電子部品同士の間隙に入り込める温度であればよく、100~260℃であることが好ましく、120~240℃であることがより好ましい。温度が低すぎると搭載された個々の電子部品同士の間隙への電子部品保護シート6の入り込み性が低下する。一方で、温度が高すぎると、電子部品保護シート6の熱硬化性樹脂の熱硬化反応が急速に進み、搭載された電子部品間への電子部品保護シートの入り込み性が低下する。
加熱加圧する場合の圧力は、0.01~10MPaが好ましく、0.1~6.0MPaがより好ましい。上記の圧力で加熱加圧することで、電子部品を破損することなく、埋め込み性がより向上する。
加熱時間は、通常0.5~30分であり、1~20分の範囲が好ましい。加熱時間が短すぎると搭載された電子部品間への電子部品保護シートの入り込み性が低下する。一方で時間が長すぎると、熱硬化性樹脂の熱分解や酸化が起こりやすくなり、反応生成物などによる接着部位の信頼性低下の可能性が増す。上記加熱加圧工程は真空状態で行うことが好ましい。
加熱加圧の方法として、加熱加圧機を用いる他に、所定の圧力になるよう適度な重量の金属板を積層し、この積層物をオーブンに投入する方法も好ましい。
一方、加熱加圧機以外の加熱加圧方法としては、真空成形法または真空圧空成形も好ましい。
The heating temperature may be a temperature at which the electronic component protection sheet 6 is moderately softened, deformed along the shape of the individual electronic components, and can enter the gaps between the individual electronic components, and is preferably 100 to 260 ° C. It is preferably 120 to 240°C, and more preferably 120 to 240°C. If the temperature is too low, the ability of the electronic component protection sheet 6 to enter the gaps between the individual electronic components mounted thereon is reduced. On the other hand, if the temperature is too high, the thermosetting reaction of the thermosetting resin of the electronic component protection sheet 6 proceeds rapidly, and the electronic component protection sheet is less likely to penetrate between mounted electronic components.
The pressure when heating and pressurizing is preferably 0.01 to 10 MPa, more preferably 0.1 to 6.0 MPa. By heating and pressurizing at the above pressure, the embedding property is further improved without damaging the electronic component.
The heating time is usually 0.5 to 30 minutes, preferably 1 to 20 minutes. If the heating time is too short, the ability of the electronic component protection sheet to enter between the mounted electronic components is reduced. On the other hand, if the time is too long, thermal decomposition and oxidation of the thermosetting resin tend to occur, increasing the possibility of lowering the reliability of the bonding site due to reaction products and the like. The heating and pressurizing step is preferably performed in a vacuum state.
As a method of heating and pressurizing, besides using a heating and pressurizing machine, a method of laminating metal plates having appropriate weights so as to obtain a predetermined pressure and putting the laminate into an oven is also preferable.
On the other hand, as the heating and pressurizing method other than the heating and pressurizing machine, a vacuum forming method or a vacuum pressure forming method is also preferable.

(工程v:変形した電子部品保護シートの硬化工程)
加熱加圧後、電子部品保護シート6を変形した状態で、さらに150℃~230℃の温度で10分から60分加熱することにより、電子部品保護シート6中の熱硬化性樹脂を熱硬化し、硬化膜である電子部品保護層を形成する。電子部品保護層は電子部品および基板と強固に接着し、外部の衝撃や擦傷から電子部品の破損を防止、保護するための保護層として機能する。なお、(工程iv)の段階で加熱加圧の温度を150℃以上、時間を30分以上とすることで、熱硬化を完了させ被覆保護層を形成することもできる。被覆保護層は電子部品間のショートを防ぐため絶縁体であることが必須であり、表面抵抗値は1×10Ω/□以上が求められる。なお、熱硬化性樹脂を用いずに、熱可塑性樹脂を用いる場合には工程vを省略することができる。
(Step v: Curing step of deformed electronic component protection sheet)
After heating and pressurizing, the electronic component protection sheet 6 is deformed and further heated at a temperature of 150° C. to 230° C. for 10 to 60 minutes to thermoset the thermosetting resin in the electronic component protection sheet 6. An electronic component protective layer, which is a cured film, is formed. The electronic component protective layer firmly adheres to the electronic component and the substrate, and functions as a protective layer for preventing and protecting the electronic component from damage from external impacts and abrasions. In the step (iv), the heating and pressurizing temperature is set to 150° C. or higher for 30 minutes or longer to complete the heat curing and form the protective coating layer. The covering protective layer must be an insulator in order to prevent short circuits between electronic parts, and a surface resistance value of 1×10 7 Ω/□ or more is required. In addition, the process v can be abbreviate|omitted when using a thermoplastic resin instead of a thermosetting resin.

本開示の電子部品搭載基板は、電子部品保護層が最外層であってもよく、更に他の機能層を積層してもよい。他の機能層とは、例えば、導電層、ハードコート性、水蒸気バリア性、酸素バリア性、熱伝導性、低誘電率、高誘電率性または耐熱性の機能を有する層である。なかでも、導電層は被覆保護する電子部品を電磁波ノイズから保護する目的で用いられることがある。 In the electronic component mounting board of the present disclosure, the electronic component protection layer may be the outermost layer, and other functional layers may be laminated. The other functional layer is, for example, a layer having a function of conductive layer, hard coat property, water vapor barrier property, oxygen barrier property, thermal conductivity, low dielectric constant, high dielectric constant or heat resistance. Among others, the conductive layer is sometimes used for the purpose of protecting the electronic parts to be covered and protected from electromagnetic wave noise.

図5に導電層を有する電子部品搭載基板11の構成例を示す。導電層8は電子部品保護層3の上層に形成され、グランド9に接続される。グランド9との接続点は基板1の表面上に存在していてもよく、基板1の側面に存在していてもよい。導電層は、電子部品保護層表面上にスパッタやメッキにより金属層を形成する、あるいは導電性粒子を含有する導電シートを電子部品保護層上に積層させて形成する、といった方法によって形成することができる。 FIG. 5 shows a configuration example of an electronic component mounting board 11 having a conductive layer. The conductive layer 8 is formed on the electronic component protective layer 3 and connected to the ground 9 . A connection point with the ground 9 may exist on the surface of the substrate 1 or may exist on the side surface of the substrate 1 . The conductive layer can be formed by forming a metal layer on the surface of the electronic component protective layer by sputtering or plating, or by laminating a conductive sheet containing conductive particles on the electronic component protective layer. can.

《電子機器》
本開示の電子部品搭載基板は、液晶ディスプレイ、タッチパネル等のほか、ノートPC、携帯電話、スマートフォン、タブレット端末等の電子機器に備えることが好ましい。
"Electronics"
The electronic component mounting board of the present disclosure is preferably provided in electronic devices such as liquid crystal displays, touch panels, notebook PCs, mobile phones, smart phones, and tablet terminals.

以下、実施例、比較例を挙げて本開示を詳細に説明するが、本開示は以下の実施例のみに限定されるものではない。なお、以下の「部」及び「%」は、それぞれ「質量部」及び「質量%」に基づく値である。 EXAMPLES Hereinafter, the present disclosure will be described in detail with reference to examples and comparative examples, but the present disclosure is not limited only to the following examples. "Parts" and "%" below are values based on "parts by mass" and "% by mass", respectively.

《原料》
実施例で使用した原料を以下に示す。
<熱硬化性樹脂>
[熱硬化性樹脂1の合成]
攪拌機、温度計、還流冷却器、窒素導入管、減圧設備を備えたガラス製フラスコにテレフタル酸166部、アジピン酸146部、3-メチル-1,5-ペンタンジオール212部およびエチレングリコール25部を仕込み、窒素ガスを通じながら攪拌し、常圧下徐々に昇温し、200~230℃にて約8時間反応させ酸価43の液状物を得た。次いでテトラ-n-ブトキシチタン0.01部を仕込み、窒素置換後密閉下180℃にて30分間攪拌した。次いで230℃、5mmHgにて2時間反応させ、酸価1.1、水酸基価114.2、分子量982、色相10(APHA法、以下同様)のポリエステルジオールを得た。
次いで、攪拌機、温度計、還流冷却器、滴下装置、窒素導入管を備えた反応容器に、前記ポリエステルジオールを734部、ジメチロールプロピオン酸23.9部、トルエンジイソシアネート219部、及びトルエン242部を仕込み、窒素雰囲気下50℃で8時間反応させた。これに、トルエン1200部を加えて、末端にイソシアネート基を有するウレタンプレポリマーの溶液を得た。
次に得られたプレポリマーの溶液を70℃に加温しその温度を保ちながら、1,3-ジアミノプロパン20.0部、ベンジルアミン3.1部、2-プロノール600部、及びトルエン961部を混合した溶液を1時間で滴下した。滴下終了後70℃にて更に6時間反応させることで、分子量(Mw)が130000、酸価は10mgKOH/g、Tgは20℃、固形分が25%であるポリウレタン系樹脂を得た。
"material"
Raw materials used in the examples are shown below.
<Thermosetting resin>
[Synthesis of thermosetting resin 1]
166 parts of terephthalic acid, 146 parts of adipic acid, 212 parts of 3-methyl-1,5-pentanediol, and 25 parts of ethylene glycol were placed in a glass flask equipped with a stirrer, thermometer, reflux condenser, nitrogen inlet tube, and decompression equipment. After the mixture was charged, the mixture was stirred while nitrogen gas was passed through it, the temperature was gradually raised under normal pressure, and the mixture was reacted at 200 to 230° C. for about 8 hours to obtain a liquid product with an acid value of 43. Next, 0.01 part of tetra-n-butoxytitanium was charged, and after purging with nitrogen, the mixture was stirred at 180° C. for 30 minutes under a closed condition. Then, the mixture was reacted at 230° C. and 5 mmHg for 2 hours to obtain a polyester diol having an acid value of 1.1, a hydroxyl value of 114.2, a molecular weight of 982 and a hue of 10 (by APHA method, hereinafter the same).
Then, 734 parts of the polyester diol, 23.9 parts of dimethylolpropionic acid, 219 parts of toluene diisocyanate, and 242 parts of toluene were added to a reaction vessel equipped with a stirrer, thermometer, reflux condenser, dropping device, and nitrogen inlet tube. It was prepared and reacted at 50° C. for 8 hours under a nitrogen atmosphere. To this, 1200 parts of toluene was added to obtain a solution of a urethane prepolymer having terminal isocyanate groups.
Next, the obtained prepolymer solution was heated to 70° C., and while maintaining that temperature, 20.0 parts of 1,3-diaminopropane, 3.1 parts of benzylamine, 600 parts of 2-pronol, and 961 parts of toluene were added. was added dropwise in 1 hour. After completion of the dropwise addition, the mixture was reacted at 70° C. for 6 hours to obtain a polyurethane resin having a molecular weight (Mw) of 130,000, an acid value of 10 mgKOH/g, a Tg of 20° C., and a solid content of 25%.

硬化剤1:ビスフェノールA型エポキシ化合物「jER828」(エポキシ当量=189g/eq)三菱ケミカル社製 Curing agent 1: bisphenol A type epoxy compound "jER828" (epoxy equivalent = 189 g / eq) manufactured by Mitsubishi Chemical Corporation

<粒状改質剤>
・粒状改質剤1:カーボンブラック「MA100」(平均一次粒子径:24nm、DBP吸油量:100ml/100g、体積抵抗率:1.6×10-5Ω・cm)三菱ケミカル社製
・粒状改質剤2:シリカ「ウルトラシルU360」(DBP吸油量:220ml/100g、体積抵抗率:1.6×1016Ω・cm)NANOCYL社製
<Particulate modifier>
・ Granular modifier 1: Carbon black “MA100” (average primary particle diameter: 24 nm, DBP oil absorption: 100 ml / 100 g, volume resistivity: 1.6 × 10 -5 Ω cm) Mitsubishi Chemical Co., Ltd. Granular modifier Material 2: Silica "Ultrasil U360" (DBP oil absorption: 220 ml/100 g, volume resistivity: 1.6 × 10 16 Ω cm) manufactured by NANOCYL

<粒状改質剤の平均一次粒子径>
粒状改質剤の平均一次粒子径は透過型電子顕微鏡(TEM)により5万倍~100万倍程度に拡大した画像から観察できる20個の一次粒子の平均値から求めた。なお、粒状改質剤の粒子形状が、1.5以上の平均アスペクト比(長軸長さ/短軸長さ)を有する場合、平均一次粒子径は、長軸長さを平均して求めた。
<Average primary particle size of granular modifier>
The average primary particle size of the granular modifier was determined from the average value of 20 primary particles observed from an image magnified about 50,000 to 1,000,000 times with a transmission electron microscope (TEM). When the particle shape of the granular modifier has an average aspect ratio (major axis length/minor axis length) of 1.5 or more, the average primary particle size is obtained by averaging the major axis lengths. .

<粒状改質剤のDBP吸油量>
粒状改質剤のDBP吸油量は、JIS K 6217-4に準拠して行った。測定には吸収量測定器(吸収量測定器 S‐500、あさひ総研社製)を使用した。
<DBP oil absorption of granular modifier>
The DBP oil absorption of the granular modifier was determined according to JIS K 6217-4. For the measurement, an absorption measuring device (Absorption measuring device S-500, manufactured by Asahi Soken Co., Ltd.) was used.

《電子部品保護シートの作成》
[電子部品保護シート1の作成]
熱硬化性樹脂1(固形分)100部と、硬化剤1を15部と、粒状改質剤1を2部と、粒状改質剤2を4部と、を容器に仕込み、不揮発分濃度が45質量%になるようトルエン:イソプロピルアルコール(質量比2:1)の混合溶剤を加えディスパーで10分攪拌することで組成物を得た。この組成物を乾燥厚みが40μmになるようにドクターブレードを使用してクッション材に塗工した。そして、100℃で2分間乾燥することでクッション材と電子部品保護シート1とが積層された実施例1の積層シートを得た。
《Creating an electronic component protection sheet》
[Preparation of electronic component protection sheet 1]
100 parts of thermosetting resin 1 (solid content), 15 parts of curing agent 1, 2 parts of granular modifier 1, and 4 parts of granular modifier 2 are charged in a container, and the nonvolatile concentration is A mixed solvent of toluene and isopropyl alcohol (mass ratio of 2:1) was added so as to be 45% by mass, and the mixture was stirred with a disper for 10 minutes to obtain a composition. This composition was applied to a cushion material using a doctor blade so as to give a dry thickness of 40 μm. Then, by drying at 100° C. for 2 minutes, a laminated sheet of Example 1 in which the cushioning material and the electronic component protection sheet 1 were laminated was obtained.

表1の配合量を変更した以外は電子部品保護シート1と同様の所作によって、実施例2~8、および比較例1~2の積層シートをそれぞれ得た。 Laminated sheets of Examples 2 to 8 and Comparative Examples 1 and 2 were obtained in the same manner as in electronic component protective sheet 1, except that the blending amounts in Table 1 were changed.

[電子部品搭載基板1の作成]
(搭載基板の作製)
ガラスエポキシからなる基板上に、モールド封止された電子部品(1000μm×1000μm)を5×5個アレイ状に搭載した基板を用意した。基板の厚みは0.3mmであり、モールド封止厚、即ち基板上面からモールド封止材の頂面までの高さ(部品高さ)Hは0.7mmである。その後、部品同士の間隙である溝に添ってハーフダイシングを行い、搭載基板を得た(図6参照)。ハーフカット溝深さは0.8mm(基板のカット溝深さは0.1mm)、ハーフカット溝幅は200μmとした。
[Preparation of Electronic Component Mounting Board 1]
(Fabrication of mounting substrate)
A substrate was prepared by mounting 5×5 electronic components (1000 μm×1000 μm) in an array on a substrate made of glass epoxy. The thickness of the substrate is 0.3 mm, and the mold sealing thickness, ie, the height (component height) H from the top surface of the substrate to the top surface of the mold sealing material, is 0.7 mm. After that, half dicing was performed along the grooves between the components to obtain a mounting substrate (see FIG. 6). The half-cut groove depth was 0.8 mm (the substrate cut groove depth was 0.1 mm), and the half-cut groove width was 200 μm.

上記搭載基板(5×5個アレイ状に電子部品が搭載された基板)に、各実施例および比較例の積層シートを8MPa、170℃の条件で5分間熱圧着し、クッション材を手で剥離した。その後、180℃2時間キュアを行い、表1に基づき、表面のバフ研磨等の処理が必要なものについては、Sq、Sdq、FIが所定の値となるよう処理を行い、各実施例および比較例の電子部品搭載基板を得た。
<二乗平均平方根高さSq、二乗平均平方根傾斜Sdqの測定>
電子部品保護層の二乗平均平方根高さSq、ならびに二乗平均平方根傾斜Sdqは、以下の方法により測定した。まず、電子部品搭載基板における電子部品保護層表面をレーザーマイクロスコープ(キーエンス社製、VK-X100)を使用し、測定データ取得を行った。続いて、取得した測定データを解析ソフトウェア(ISO 25178表面性状計測モジュール「VK-H1XR」を備えた、解析アプリケーション「VK-H1XA」、ともにキーエンス社製)に取り込み、ISO25178表面性状計測を実行し、Sq、Sdqを算出した。(条件は、S‐フィルター:1μm、L‐フィルター:0.2mm)。
<Flop Index(FI)の測定>
まず、電子部品搭載基板における電子部品保護層表面を多角度測色計(BYK社製、BYK‐mac i23mm測定口径)を用いてL 15°、L 45°、L 110°を測定した後、数式(1)に基づいてFIを算出した。光源はD50、視野は2°視野の条件にて測定を行った。
<光学濃度(OD値)の測定>
電子部品搭載基板における電子部品保護層表面のOD値をエックスライト社製「361T 卓上式透過濃度計」を用いて測定した。
<aの測定>
電子部品搭載基板における電子部品保護層表面のa値をKONICA MINOLTA社製「色彩色差計CR-400」を用いて測定した。
<表面抵抗値の測定>
電子部品搭載基板における電子部品保護層の表面抵抗値を日東精工アナリティック社製「ハイレスタ-UX MCP-HT800 高抵抗 抵抗率計」を用いて測定した。
The laminated sheet of each example and comparative example was thermocompression bonded to the mounting substrate (substrate on which electronic components are mounted in an array of 5×5) at 8 MPa and 170° C. for 5 minutes, and the cushioning material was peeled off by hand. bottom. After that, curing is performed at 180 ° C. for 2 hours, and based on Table 1, for those that require surface buffing or other processing, processing is performed so that Sq, Sdq, and FI become predetermined values. An electronic component mounting substrate of Example was obtained.
<Measurement of root-mean-square height Sq and root-mean-square slope Sdq>
The root-mean-square height Sq and the root-mean-square slope Sdq of the electronic component protective layer were measured by the following methods. First, using a laser microscope (manufactured by Keyence Corporation, VK-X100), measurement data was obtained for the electronic component protective layer surface of the electronic component mounting board. Subsequently, the acquired measurement data is imported into analysis software (analysis application "VK-H1XA" equipped with ISO 25178 surface texture measurement module "VK-H1XR", both manufactured by Keyence Corporation), ISO 25178 surface texture measurement is performed, Sq and Sdq were calculated. (Conditions are S-filter: 1 μm, L-filter: 0.2 mm).
<Measurement of Flop Index (FI)>
First, L * 15° , L * 45° , and L * 110° were measured on the surface of the electronic component protective layer on the electronic component mounting board using a multi-angle colorimeter (manufactured by BYK, BYK-mac i 23 mm measurement aperture). After that, FI was calculated based on the formula (1). Measurement was performed under the conditions of a light source of D50 and a field of view of 2°.
<Measurement of optical density (OD value)>
The OD value of the surface of the electronic component protective layer on the electronic component mounting board was measured using a "361T desktop transmission densitometer" manufactured by X-Rite.
<Measurement of a*b*>
The a * b * value of the surface of the electronic component protective layer on the electronic component mounting substrate was measured using a "color difference meter CR-400" manufactured by KONICA MINOLTA.
<Measurement of surface resistance>
The surface resistance value of the electronic component protective layer on the electronic component mounting board was measured using a Nitto Seiko Analytic Co., Ltd. "Hiresta-UX MCP-HT800 high resistance resistivity meter".

《評価》
[絶縁破壊電圧]
クッション材と電子部品保護シートとが積層された積層シートのクッション材を剥離性シートに変えて、剥離性シートつき電子部品保護シートを作製した。
剥離性シートつき電子部品保護シートから一方の剥離性シートを剥離し、アルミウム板と重ね合わせ、180℃で2MPaの条件で10分熱プレスを行った後、180℃で2時間キュアすることで試験片を作成した。その後、25℃、50%RHで一晩放置した。その後、同環境下でTM650耐電圧試験器(鶴賀電気株式会社製)を用いて、耐電圧(絶縁破壊電圧)を測定した。
+++:絶縁破壊電圧が2.0kV以上。
++:絶縁破壊電圧が1.5kV以上、2.0kV未満。
+:絶縁破壊電圧が1.0kV以上、1.5kV未満。(実用レベル)
NG:絶縁破壊電圧が1.0kV未満。
"evaluation"
[Insulation breakdown voltage]
An electronic component protection sheet with a release sheet was produced by replacing the cushioning material of the laminated sheet in which the cushioning material and the electronic component protection sheet are laminated with a release sheet.
Peel off one of the releasable sheets from the electronic component protective sheet with a releasable sheet, overlap with an aluminum plate, heat press for 10 minutes at 180 ° C. and 2 MPa, then cure at 180 ° C. for 2 hours to test. made a piece. After that, it was left overnight at 25° C. and 50% RH. After that, under the same environment, the withstand voltage (dielectric breakdown voltage) was measured using a TM650 withstand voltage tester (manufactured by Tsuruga Electric Co., Ltd.).
+++: Dielectric breakdown voltage is 2.0 kV or more.
++: The dielectric breakdown voltage is 1.5 kV or more and less than 2.0 kV.
+: The dielectric breakdown voltage is 1.0 kV or more and less than 1.5 kV. (Practical level)
NG: Dielectric breakdown voltage is less than 1.0 kV.

[ダイシング適性]
各実施例および比較例の電子部品搭載基板に対し、個片化工程(フルダイシング)を行ったときのバリの発生状況を、レーザー顕微鏡を用いて以下の基準で評価した。
+++:ダレおよびバリが確認されない。
++:ダレおよび/又はバリの発生が個片化した電子部品搭載基板25個中2個未満。
+:ダレおよび/又はバリの発生が個片化した電子部品搭載基板25個中2個以上、5個未満。(実用レベル)
NG:ダレおよび/又はバリの発生が個片化した電子部品搭載基板25個中5個以上。
[Dicing suitability]
The occurrence of burrs when the electronic component mounting board of each example and comparative example was subjected to a singulation process (full dicing) was evaluated using a laser microscope according to the following criteria.
+++: Sagging and burrs are not observed.
++: Less than 2 out of 25 individualized electronic component-mounted substrates had sagging and/or burrs.
+: 2 or more and less than 5 out of 25 individualized electronic component-mounted substrates with sagging and/or burrs. (Practical level)
NG: 5 or more out of 25 electronic component-mounted substrates with sagging and/or burrs.

[識別性]
(試験個片の作製)
ガラスエポキシからなる基板上に、モールド封止された電子部品(1000μm×1000μm)を5×5個アレイ状に搭載した基板を用意した。基板の厚みは0.3mmであり、モールド封止厚、即ち基板上面からモールド封止材の頂面までの高さ(部品高さ)Hは0.7mmである。その後、部品同士の間隙である溝に添ってハーフダイシングを行い、試験基板を得た(図6参照)。ハーフカット溝深さは0.8mm(基板20のカット溝深さは0.1mm)、ハーフカット溝幅は200μmとした。前記試験基板に、各実施例および比較例の電子部品保護シートを8MPa、170℃の条件で5分間熱圧着し、クッション材を手で剥離した。その後、180℃2時間キュアを行い、表1に基づき、表面のバフ研磨等の処理が必要なものについては、Sq、Sdq、FIが所定の値となるよう処理を行い、各実施例および比較例の電子部品搭載基板を得た。その後、得られた電子部品搭載基板をハーフカット溝に沿ってフルダイシングを行うことにより、各実施例および比較例につき25個の試験個片を得た。更に同様の操作を、電子部品保護シートを積層せずに実施し、電子部品保護層のない試験個片を得た。
(識別性評価)
電子部品保護層つき試験個片、および電子部品保護なし試験個片について、それぞれ1個を組み合わせて一組とし、これを10組用意した。そして、電子部品保護層が積層されている試験個片と、電子部品保護層が積層されていない試験個片とを識別できた組数を数えた。観察は目視にて、以下の基準により評価した。
+++:10組全て識別できた。
++:識別できた組数が8組以上、9組以下。
+:識別できた組数が6組以上、8組未満。(実用レベル)
NG:識別できた組数が6組未満。
[Identification]
(Preparation of test pieces)
A substrate was prepared by mounting 5×5 electronic components (1000 μm×1000 μm) in an array on a substrate made of glass epoxy. The thickness of the substrate is 0.3 mm, and the mold sealing thickness, ie, the height (component height) H from the top surface of the substrate to the top surface of the mold sealing material, is 0.7 mm. After that, half dicing was performed along the gap between the parts to obtain a test substrate (see FIG. 6). The half-cut groove depth was 0.8 mm (the cut groove depth of the substrate 20 was 0.1 mm), and the half-cut groove width was 200 μm. The electronic component protective sheets of each example and comparative example were thermocompression bonded to the test substrate under conditions of 8 MPa and 170° C. for 5 minutes, and the cushion material was peeled off by hand. After that, curing is performed at 180 ° C. for 2 hours, and based on Table 1, for those that require surface buffing or other processing, processing is performed so that Sq, Sdq, and FI become predetermined values. An electronic component mounting substrate of Example was obtained. After that, the resulting electronic component-mounted substrate was fully diced along the half-cut grooves to obtain 25 test pieces for each example and comparative example. Furthermore, the same operation was performed without laminating the electronic component protective sheet to obtain a test piece without the electronic component protective layer.
(Distinguishability evaluation)
One test piece with an electronic component protection layer and one test piece without electronic component protection were combined to form a set, and 10 sets of this were prepared. Then, the number of test pieces in which the electronic component protective layer was laminated and the test piece in which the electronic component protective layer was not laminated was counted. Observation was visually performed and evaluated according to the following criteria.
+++: All 10 pairs could be identified.
++: The number of identifiable pairs is 8 or more and 9 or less.
+: The number of identifiable pairs is 6 or more and less than 8. (Practical level)
NG: The number of identifiable pairs is less than 6 pairs.

[冷熱サイクル耐性]
前述の[識別性]評価と同様の方法により試験固片を作製し、冷熱サイクル耐性評価を行った。
電子部品保護層つき試験個片を冷熱衝撃装置(「TSE‐11‐A」、エスペック社製)に投入し、高温さらし:125℃、15分、低温さらし:-50℃、15分の曝露条件にて交互曝露を1000回実施した。その後、試験個片を取出し、電子部品保護層の外観を観察し、破損した試験個片数を数え、以下の基準によって評価した。試験個数は各例についてそれぞれ10個とした。
+++:破損した試験個片数が0個であった。
++:破損した試験個片数が1個以上、2個以下。
+:破損した試験個片数が3個以上、5個以下。(実用レベル)
NG:破損した試験個片数が6個以上。
[Heat cycle resistance]
A test piece was prepared by the same method as the above-mentioned [Distinguishability] evaluation, and the thermal cycle resistance evaluation was performed.
A test piece with an electronic component protective layer is put into a thermal shock device ("TSE-11-A", manufactured by Espec Co., Ltd.), high temperature exposure: 125 ° C., 15 minutes, low temperature exposure: -50 ° C., 15 minutes Exposure conditions 1000 alternating exposures were performed at . After that, the test piece was taken out, the appearance of the electronic component protective layer was observed, the number of damaged test pieces was counted, and evaluation was made according to the following criteria. The number of test pieces was 10 for each example.
+++: The number of damaged test pieces was 0.
++: The number of damaged test pieces is 1 or more and 2 or less.
+: The number of damaged test pieces is 3 or more and 5 or less. (Practical level)
NG: The number of damaged test pieces is 6 or more.

Figure 2023020981000008
Figure 2023020981000008

1:基板
2:電子部品
3:電子部品保護層
4:半田バンプ
5:中空部分
6:電子部品保護シート
7:クッション材
8:導電層
9:グランド
10:電子部品搭載基板
11:導電層を有する電子部品搭載基板
12:入射光
13:測定対象表面
20:加熱加圧機
21:一次粒子
22:アグリゲート
23:空間
100:搭載基板
1: Substrate 2: Electronic component 3: Electronic component protective layer 4: Solder bump 5: Hollow portion 6: Electronic component protective sheet 7: Cushion material 8: Conductive layer 9: Ground 10: Electronic component mounting board 11: Has conductive layer Electronic component mounting substrate 12: Incident light 13: Measurement target surface 20: Heating pressurizer 21: Primary particles 22: Aggregate 23: Space 100: Mounting substrate

Claims (8)

基板上に電子部品が搭載されており、前記電子部品が電子部品保護層によって被覆されている電子部品搭載基板であって、前記電子部品保護層の表面は、数式(1)により算出されたFlop Index(FI)が0.3~80である電子部品搭載基板。
Figure 2023020981000009
(L 15°、L 45°、L 110°は、それぞれ、電子部品表面の垂線方向に対して45°の角度で入射した光の正反射光からのオフセット角15°、45°、110°のJIS Z8781-4で規定されるL表色系のLである。)
An electronic component-mounted substrate, wherein an electronic component is mounted on the substrate and the electronic component is covered with an electronic component protective layer, wherein the surface of the electronic component protective layer is a flop calculated by the formula (1) An electronic component mounting substrate having an index (FI) of 0.3 to 80.
Figure 2023020981000009
(L * 15° , L * 45° , and L * 110° are the offset angles of 15°, 45°, 110° is the L * of the L * a * b * color system specified in JIS Z8781-4.)
前記電子部品保護層のISO 5-2で定められる360~760nmの光学濃度(OD値)が1~6であることを特徴とする、請求項1記載の電子部品搭載基板。 2. The electronic component mounting board according to claim 1, wherein the electronic component protective layer has an optical density (OD value) of 1 to 6 at 360 to 760 nm defined by ISO 5-2. 前記電子部品保護層のJIS Z8781-4で定められるL*a*b*表色系における、L*値が1~50、かつa*値が-10~10、かつb*値が-10~10であることを特徴とする、請求項1記載の電子部品搭載基板。 In the L*a*b* color system defined by JIS Z8781-4 of the electronic component protective layer, the L* value is 1 to 50, the a* value is −10 to 10, and the b* value is −10 to 10. The electronic component mounting board according to claim 1, wherein the electronic component mounting board is . 前記電子部品保護層の表面抵抗値が1.0×10Ω/□以上であることを特徴とする、請求項1記載の電子部品搭載基板。 2. The electronic component mounting board according to claim 1, wherein the electronic component protective layer has a surface resistance value of 1.0*10 <7 > [Omega]/[square] or more. 前記電子部品保護層が、バインダー樹脂、および粒状改質剤を含有し、
前記粒状改質剤は、JIS K 6217-4で規定されるDBP吸油量が15~400ml/100gであることを特徴とする、請求項1記載の電子部品搭載基板。
The electronic component protective layer contains a binder resin and a granular modifier,
2. The electronic component mounting board according to claim 1, wherein the granular modifier has a DBP oil absorption of 15 to 400 ml/100 g as defined in JIS K 6217-4.
前記粒状改質剤が少なくとも1種類のカーボンブラックを含むことを特徴とする、請求項5記載の電子部品搭載基板。 6. The electronic component mounting board according to claim 5, wherein said particulate modifier contains at least one kind of carbon black. 請求項1~6いずれか記載の電子部品搭載基板が搭載された電子機器。 An electronic device on which the electronic component mounting board according to any one of claims 1 to 6 is mounted. 基板上に搭載された電子部品を被覆するための電子部品保護シートであって、
前記電子部品保護シートを180℃、60分加熱させてなる硬化膜の表面は、
数式(1)により算出されたFlop Index(FI)が0.3~80である電子部品保護シート。
Figure 2023020981000010
(L 15°、L 45°、L 110°は、それぞれ、電子部品表面の垂線方向に対して45°の角度で入射した光の正反射光からのオフセット角15°、45°、110°のJIS Z8781-4で規定されるL表色系のLである。)
An electronic component protection sheet for covering electronic components mounted on a substrate,
The surface of the cured film obtained by heating the electronic component protection sheet at 180° C. for 60 minutes,
An electronic component protection sheet having a Flop Index (FI) of 0.3 to 80 as calculated by the formula (1).
Figure 2023020981000010
(L * 15° , L * 45° , and L * 110° are the offset angles of 15°, 45°, 110° is the L * of the L * a * b * color system specified in JIS Z8781-4.)
JP2022117278A 2021-07-29 2022-07-22 Electronic component mounting board and electronic component protection sheet Active JP7193031B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022194415A JP2023027170A (en) 2021-07-29 2022-12-05 Electronic component mounting board and electronic component protective sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021124666 2021-07-29
JP2021124666 2021-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022194415A Division JP2023027170A (en) 2021-07-29 2022-12-05 Electronic component mounting board and electronic component protective sheet

Publications (2)

Publication Number Publication Date
JP7193031B1 JP7193031B1 (en) 2022-12-20
JP2023020981A true JP2023020981A (en) 2023-02-09

Family

ID=84534595

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022117278A Active JP7193031B1 (en) 2021-07-29 2022-07-22 Electronic component mounting board and electronic component protection sheet
JP2022194415A Pending JP2023027170A (en) 2021-07-29 2022-12-05 Electronic component mounting board and electronic component protective sheet

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022194415A Pending JP2023027170A (en) 2021-07-29 2022-12-05 Electronic component mounting board and electronic component protective sheet

Country Status (1)

Country Link
JP (2) JP7193031B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160151A (en) * 2008-02-18 2008-07-10 Arisawa Mfg Co Ltd Flexible printed wiring board and multilayer flexible printed wiring board, and mobile telephone terminal using multilayer flexible printed wiring board
WO2011158412A1 (en) * 2010-06-15 2011-12-22 パナソニック株式会社 Package structure, method for manufacturing same, and method for repairing package structure
JP2021027102A (en) * 2019-08-01 2021-02-22 東洋インキScホールディングス株式会社 Electromagnetic wave shielding sheet and electromagnetic wave shielding wiring circuit board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160151A (en) * 2008-02-18 2008-07-10 Arisawa Mfg Co Ltd Flexible printed wiring board and multilayer flexible printed wiring board, and mobile telephone terminal using multilayer flexible printed wiring board
WO2011158412A1 (en) * 2010-06-15 2011-12-22 パナソニック株式会社 Package structure, method for manufacturing same, and method for repairing package structure
JP2021027102A (en) * 2019-08-01 2021-02-22 東洋インキScホールディングス株式会社 Electromagnetic wave shielding sheet and electromagnetic wave shielding wiring circuit board

Also Published As

Publication number Publication date
JP2023027170A (en) 2023-03-01
JP7193031B1 (en) 2022-12-20

Similar Documents

Publication Publication Date Title
JP6504307B1 (en) Anisotropic conductive film
KR100995563B1 (en) Electrical conductive adhesive film for emi shielding
JP6935702B2 (en) Anisotropic conductive film
TW201918536A (en) Filmy adhesive, and method for producing semiconductor package using filmy adhesive
WO2020129985A1 (en) Electronic component mounting substrate and electronic apparatus
US20130154095A1 (en) Semiconductor devices connected by anisotropic conductive film comprising conductive microspheres
JP2017147276A (en) Electromagnetic wave shield sheet, electromagnetic wave shield wiring circuit board and electronic apparatus
JP6624331B1 (en) Electromagnetic wave shielding sheet and electromagnetic wave shielding wiring circuit board
KR20170135963A (en) Anisotropic conductive film and connection structure
JP2020115582A (en) Electronic component mounting substrate and electronic apparatus
JP7193031B1 (en) Electronic component mounting board and electronic component protection sheet
WO2023008327A1 (en) Electronic component mounted substrate, electronic component protecting sheet, and electronic apparatus
JP2021193725A (en) Electronic part protection sheet
JP2023020982A (en) Substrate with electronic component, electronic component protection sheet and electronic equipment
TWI838799B (en) Electronic component mounting board, and electronic component protection sheet, and electronic device
JP2023019723A (en) Substrate with electronic component and electronic component protection sheet
WO2022196402A1 (en) Electromagnetic wave shield sheet, manufacturing method for same, shielding wiring board, and electronic device
JP2020098897A (en) Electronic component mounting substrate and electronic apparatus
JP6645610B1 (en) Electromagnetic wave shielding sheet and electromagnetic wave shielding wiring circuit board
JP7232995B2 (en) Electromagnetic wave shielding sheet, manufacturing method thereof, shielding wiring board, and electronic device
JP7460013B1 (en) Electronic component mounting boards and electronic devices
WO2022158450A1 (en) Electroconductive member, method for manufacturing electronic device, connection structure, and electronic device
KR20130073191A (en) Anisotropic conductive film
JP2024063368A (en) Connection material, connection structure, and method for producing the connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220815

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221121

R151 Written notification of patent or utility model registration

Ref document number: 7193031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151