JP2022506532A - 二方向作動を用いる接合型波長可変vcsel - Google Patents

二方向作動を用いる接合型波長可変vcsel Download PDF

Info

Publication number
JP2022506532A
JP2022506532A JP2021523936A JP2021523936A JP2022506532A JP 2022506532 A JP2022506532 A JP 2022506532A JP 2021523936 A JP2021523936 A JP 2021523936A JP 2021523936 A JP2021523936 A JP 2021523936A JP 2022506532 A JP2022506532 A JP 2022506532A
Authority
JP
Japan
Prior art keywords
vcsel
thin film
resonator
mirror
side electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021523936A
Other languages
English (en)
Inventor
ゲッツ・ジェイムズ・ダブリュ
ホイットニー・ピーター・エス
Original Assignee
エクセリタス テクノロジーズ コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エクセリタス テクノロジーズ コーポレイション filed Critical エクセリタス テクノロジーズ コーポレイション
Publication of JP2022506532A publication Critical patent/JP2022506532A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18363Structure of the reflectors, e.g. hybrid mirrors comprising air layers
    • H01S5/18366Membrane DBR, i.e. a movable DBR on top of the VCSEL
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0215Bonding to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18355Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a defined polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials

Abstract

【解決手段】MEMS波長可変VCSELは、ミラーと、光共振器を大きくするためにミラーを移動させる先端側静電共振器とを有する薄膜装置を備える。VCSEL装置は、光を増幅する活性領域を有する。また、VCSEL装置と薄膜装置との間に、光共振器を小さくするためにミラーを移動させる基端側静電共振器が形成されている。【選択図】図5

Description

関連出願
本出願は、米国特許法第119条(e)に基づき、2018年11月5日出願の米国仮出願第62/755,796号の優先権を主張するものであり、その全体を参照により本願の一部を成すものとして引用する。
光コヒーレンス解析は、参照波と試験波との間または試験波のうちの2つの部分の間の干渉現象を用いて、距離および厚さの測定、ならびに試料の屈折率の算出を行うことに基づいている。光コヒーレンストモグラフィー(OCT)は、高分解能断面撮像を行うために用いられる技術の一例である。この技術は、例えば、リアルタイムで微視的に生体組織構造を撮像する際に適用されることが多い。物体または試料から光波が反射され、コンピューターが、反射によりその光波がどのように変化するかについての情報を用いて、その試料の断面の画像または三次元ボリュームレンダリングを生成する。
多種多様なクラスのOCTが存在するが、現在のところ、多くの用途において、フーリエドメインOCTが最良の性能を提供する。また、フーリエドメインアプローチのうち、掃引光源OCTは、バランス型偏光ダイバーシティ検出に対応可能であるので、スペクトル・エンコーディングOCTなどの手法に対して明確な利点がある。また、スペクトル・エンコーディングOCTに通常求められる安価で高速の検出器アレイが利用できない波長領域での撮像において、利点を有する。
掃引光源OCTにおいて、スペクトル成分は、空間分離によりエンコードされるのではなく、時間でエンコードされる。スペクトルは、逐次的な光周波数サンプリング間隔でフィルタリングまたは生成され、フーリエ変換の前に再構築される。周波数走査型掃引光源を用いることで、光学構成は比較的複雑でなくなるが、この場合、該光源(特に、その周波数掃引速度および同調精度)により重要な性能特性が決まることになる。
OCT掃引光源の高速周波数同調(または高掃引速度)は、特に、高速撮像により運動誘発アーチファクトが軽減され、患者に対する施術の長さが短縮される生体内撮像に関連している。また、解像度を向上するために用いることもできる。
歴史的にみると、微小電気機械システム(MEMS)-波長可変垂直共振器面発光レーザー(VCSEL)は、電気通信用途に用いられてきた。その波長可変性により、単一のレーザーで、ITU波長分割多重グリッドの複数のチャネルに対応することが可能となった。
より最近では、これらのMEMS波長可変VCSELは、掃引光源OCTシステムにおける掃引光源として提案されている。ここで、これらのVCSELにはいくつかの利点がある。これらのVCSELは、光共振器の長さが短くかつ偏向可能なMEMS薄膜ミラーが低質量であることにより、高い掃引速度を可能としている。また、これらのVCSELは、単一縦モード動作が可能であり、必ずしもモードホッピング雑音の影響を受けない。これらの特性は、深撮像(deep imaging)のための長いコヒーレンス長にも寄与する。
一例では、MEMS波長可変VCSELは、燐化インジウム(InP)ベースの量子井戸活性領域と、ガリウム砒素(GaAs)ベースの酸化ミラーとを用いたVCSELチップまたは装置を使用する。静電駆動型の誘電体ミラーは、活性領域の上に垂下されており、誘電体ミラーの静電共振器の一部を形成するエアギャップにより分離されている。この静電駆動型ミラーは、VCSEL装置の上部にモノリシックに形成されている。そして、MEMS VCSELは、例えば、980nmレーザーにより光学的にポンピングされる。
しかしながら、MEMS誘電体ミラーをVCSEL上にモノリシックに形成することにより、いくつかの欠点が生じる。まず、MEMSミラーを形成するために必要となるすべての工程は、VCSELの化学的性質と適合していなければならない。また、複雑な作製過程は製造歩留まりに影響する。
他のクラスのMEMS波長可変VCSELは、MEMSミラー装置をVCSEL装置に接合することに基づいている。これにより、レーザーの光空洞共振器の外部にある別体の静電共振器を形成できる。また、この空洞共振器構成を用いることで、活性領域およびVCSEL装置の表面から離れるようにMEMSミラーを引っ張ることにより、MEMSミラーを同調させることが可能である。これにより、破損のおそれが低減される。また、この場合、MEMSミラー装置はVCSEL装置に接合されているので、MEMSミラー装置を作製するために用いる技術の自由度がはるかに高まる。
本発明は、MEMS波長可変VCSELに関する。しかしながら、これまでの波長可変VCSELとは異なり、VCSEL装置に向かってまたはVCSEL装置から離れるようにミラーを押し引きすることが可能である。また、いくつかの実施形態および/または操作のモードにおいて、前記ミラーはいずれの方向にも動的に引っ張ることが可能である。他の場合には、前記ミラーを初期位置へ引っ張ってから、さらにその方向に引っ張ってもよいし、または他の方向に引っ張ってもよい。
概して、一態様によれば、本発明はMEMS波長可変VCSELに関する。前記MEMS波長可変VCSELは、ミラーと、光共振器を大きくするために前記ミラーを移動させる先端側静電共振器とを有する薄膜(membrane)装置を備える。VCSEL装置は、光を増幅する活性領域を有する。また、前記VCSEL装置と前記薄膜装置との間に、光共振器を小さくするために前記ミラーを移動させる基端側静電共振器が形成されている。
概して、他の態様によれば、本発明は波長可変垂直共振器面発光レーザー(VCSEL)に関する。前記VCSELは、光を増幅する活性領域を有するVCSEL装置と、前記VCSEL装置に接合された薄膜装置であって、ミラーおよびそのミラーを移動させて光共振器を大きくする先端側静電共振器を有する薄膜装置とを備える。前記VCSEL装置と前記薄膜装置との間に、前記光共振器を小さくするために前記ミラーを移動させる基端側静電共振器が形成されている。
実施形態では、前記薄膜装置は、前記VCSELに接合された金属である。また、前記基端側静電共振器は、前記薄膜装置の薄膜構造と、前記VCSEL装置における基端側静電共振器の電極金属層との間に形成してもよい。さらに、前記薄膜装置上のワイヤーボンディングパッドは、前記基端側静電共振器の電極金属層に電気的に接続されていてもよい。
さらに、前記薄膜構造は、伝導率を高めるためにドープされていてもよい。
好ましくは、前記VCSELは、絶縁スタンドオフを用いて前記基端側静電共振器のギャップが0にならないようにすることにより、前記基端側静電共振器における電気的超過ストレスによる損傷から保護されている。この絶縁スタンドオフは、高反射性誘電体コーティングであってもよい。
好ましくは、先端側静電共振器ドライバーを用いて前記薄膜装置に電圧を印加し、基端側静電共振器ドライバーを用いて前記VCSEL装置に電圧を印加する。
前記薄膜装置にワイヤーボンディングパッドが設けられており、前記ワイヤーボンディングパッドに、前記先端側静電共振器ドライバーと前記先端側静電共振器ドライバーとが接続されていてもよい。
概して、他の態様によれば、本発明は波長可変垂直共振器面発光レーザー(VCSEL)の操作方法に関する。前記方法は、VCSEL装置の活性領域において光を増幅することと、前記VCSEL装置のミラー層と薄膜装置のミラーとの間に前記光のための光共振器を形成することと、先端側静電共振器を用いて前記ミラーを移動させて、前記光共振器を大きくすることと、基端側静電共振器を用いて前記ミラーを移動させて、前記光共振器を小さくすることとを含む。
以下において、添付の図面に言及しつつ、種々の新規な構造的細部および部分の組み合わせを含む本発明の上記特徴および他の特徴ならびに他の効果について、より具体的に説明する。また、これらは、添付の請求の範囲でも特定されている。なお、本発明を実施する具体的な方法および装置は、あくまでも例示的に示したものであり、本発明を限定するものではないと理解されたい。本発明の原則および特徴は、本発明の範囲から逸脱することなく、多くの様々な実施形態で採用することができる。
添付の図面において、参照符号は、異なる図面を通して同じ部分を指している。図面は必ずしも縮尺に沿ったものではなく、本発明の原則を説明するにあたり強調が加えられている。
本発明に係るMEMS波長可変VCSELの分解斜視図である。 同MEMS波長可変VCSELを示す正面図であり、VCSEL装置が仮想線で示されている。 同MEMS波長可変VCSELを示す側面図であり、MEMSミラー装置の光学ポートが仮想線で示されている。 同MEMS波長可変VCSELを示す正面図である。 図4のA-A線断面図である。 図4のB-B線に沿った詳細な断面図である。 VCSEL装置を示す正面図である。
以下において、本発明の例示的な実施形態を示す添付の図面に言及しつつ、本発明について一層充分に説明する。しかしながら、本発明は、多様な形態で実施することができ、本明細書に記載の実施形態に限定されると解釈すべきではない。むしろ、これらの実施形態は、本開示を詳細で完全なものとし、当業者が本発明の範囲を十分に把握できるように記載されている。
本明細書において、「および/または」という用語には、関連して挙げられた項目の1つ以上の任意かつあらゆる組み合わせが含まれる。さらに、単数形の記載、「1個」、「1つ」や「前記」などの記載は、特に明記されない限り、複数の場合も含むことを意図している。さらに、「含む」および/または「備える」などの用語は、本明細書において用いる場合、記載されている構成、整数、工程、動作、要素、および/または部品が存在することを特定するものであって、1つ以上の他の構成、整数、工程、動作、要素、部品、および/またはそれらの群が存在することまたは追加されることを除外するものではないと理解されたい。さらに、ある要素(部品またはサブシステムを含む)が、他の要素と接続または連結されているものとして言及および/または図示されている場合、その要素は当該他の要素に直接接続または連結されていてもよいし、介在する要素が存在してもよいと理解されたい。
特に定義されない限り、本明細書において用いられるすべての用語(技術用語および科学用語を含む)の意味は、本発明が属する技術分野の当業者が一般的に理解する意味と同じである。さらに、一般的に使用される辞書に定義されているような用語は、関連分野におけるそれらの用語の意味と一致する意味を有するものとして解釈すべきであり、本明細書において明確に定義されない限り、理想とされる意味または過度に形式的な意味では解釈されないと理解されたい。
図1には、本発明の原則に従って構成されたMEMS波長可変VCSEL100であって、VCSELチップまたは装置112に接合されたMEMS薄膜(ミラー)装置110を備えるMEMS波長可変VCSEL100が示されている。
図示された設計では、MEMSミラー装置110をVCSEL装置112から分離する別体のスペーサ装置は設けられていない。全体的な目的としては、波長可変VCSEL100の光共振器をできるだけ小さくすることである。よって、光共振器の自由空間部分の大きさを調整するために、MEMSミラー装置110および/またはVCSEL装置112に、ギャップを調整するための様々な材料層が堆積されている。このギャップは、VCSEL装置の表面とMEMSミラー装置の表面との間に延在する自由空間部分を画定している。また、本発明によれば、基端側静電共振器は、MEMSミラー装置110および/またはVCSEL装置112の間に延在している。
光学薄膜装置110は、支持体として機能するハンドルウェハ材料210を備える。ここでは、前記ハンドルは、ドープシリコン(抵抗率<0.1Ω・cm、キャリア濃度>l×1017cm-3)からなり、電気的な接触を促進する。
ハンドルウェハ材料210に、光学薄膜またはデバイス層212がさらに設けられている。通常、シリコン・オン・インシュレータ(SOI)ウェハが用いられる。この光学薄膜層212には、薄膜構造214が形成されている。本実施例では、薄膜層212は低ドープシリコン(抵抗率>1Ω・cm、キャリア濃度<5×1013cm-3)であり、伝達される光の自由キャリア吸収を最小限に抑える。電気的接触のために、薄膜層の表面は、通常、イオン注入によりさらにドープされており、高度にドープされた表面層を形成している(通常は>1×1018cm-3まで、少なくとも1×1017cm-3までドープされ、厚さは少なくとも200オングストローム(A)、通常500~2000Aである)。この方法により、層全体が高度にドープされている場合に生じる、薄膜層自体における光吸収を最小限に抑える。絶縁(埋め込み二酸化珪素)層216は、ハンドルウェハ材料210から光学薄膜層212を分離する。通常、シリコン・オン・インシュレータ(SOI)ウェハが用いられる。
製造時において、絶縁層216は犠牲層/剥離層として機能し、この層は、ハンドルウェハ材料210から薄膜構造214を剥離するために部分的に除去される。その後、動作中、絶縁層216の残りの部分は、パターン状のデバイス層212とハンドル材料210との間の電気的絶縁をなす。
本実施形態では、薄膜構造214は本体部分218を備える。装置100の光学軸は、該本体部分218を同心状に通過し、かつ薄膜層212により定められる平面に対して垂直に通過している。該本体部分218の直径は300~600μmであることが好ましく、本実施形態では約500μmである。
円弧状スロット225により形成されるテザー220(図示の例では4個のテザー)がデバイス層212に設けられている。テザー220は、本体部分218から外側部分222へ径方向に延びており、この外側部分は、テザー220の末端となるリングを有する。本実施形態では、らせん状のテザーパターンが用いられている。
薄膜構造214の本体部分218には薄膜ミラードット250が設けられている。いくつかの実施形態では、薄膜ミラー250は光学的に湾曲し、光学的に凹の光学素子を形成することで、湾曲ミラーレーザー空洞共振器を形成している。他の場合においては、薄膜ミラー250は平面鏡であり、または凸面鏡であってもよい。
湾曲した薄膜ミラー250が所望される場合、この湾曲は、本体部分218に凹部を形成し、その後、この凹部の上にミラー250を形成する1層以上の材料層を堆積することにより形成することができる。他の例においては、薄膜ミラー250は、湾曲を生じさせる大きな圧縮材料応力を与えながら堆積させることができる。
薄膜ミラードット250は、好ましくは、反射性誘電体ミラースタックである。いくつかの例においては、レーザー100において生成されるレーザー光の波長に対して定められた反射率(1~10%の範囲など)を与えるダイクロイックミラーフィルターであり、光学ドット250は、VCSEL装置112における活性領域を光学的にポンピングするために用いられる光の波長に対して透過性を有する。さらに他の例においては、光学ドットは、アルミニウムまたは金などの反射性金属層である。
図示された実施形態では、薄膜装置110の基端側に3個の金属パッド234が堆積されている。これらのパッドは、例えば、薄膜装置110の基端側面にVCSEL装置112を半田付けまたは熱圧着するために用いられる。また、上部パッドは、VCSEL装置112に対する電気的接続をなす。
また、3個のワイヤーボンディングパッド334A,334B,および334Cが設けられている。左側のVCSEL電極ワイヤーボンディングパッド334Aは、金属パッド234に対する電気的接続をなすために用いられる。一方、右側の薄膜ワイヤーボンディングパッド334Bは、薄膜層212およびこれにより薄膜構造214に対する電気的接続をなすために用いられる。そして、ハンドルワイヤーボンディングパッド334Cは、ハンドルウェハ材料210に対する電気的接続をなすために用いられる。
一般に、VCSEL装置112は、任意で設けられる反射防止コーティング114と、好ましくは1つまたは複数の量子井戸構造を有する活性領域118とを有する。キャップ層は、反射防止コーティング114が設けられている場合、この反射防止コーティング114と活性領域118との間に用いることができる。このキャップ層は、ARコーティングおよび/またはエアに対する界面における表面/界面効果から前記活性領域を保護する。レーザー空洞共振器のバックミラー116は、分布ブラッグ反射型(DBR)ミラーにより形成される。そして、GaASなどのVCSELスペーサ115は、基板および機械的な支持体として機能する。
VCSEL装置112の活性領域118の材料系は、所望する分光動作範囲に基づいて選択される。一般的な材料系は、III-V族半導体材料をベースとするものであり、GaN,GaAs,InP,GaSb,InAsなどの二元系材料、ならびにInGaN,InAlGaN,InGaP,AlGaAs,InGaAs,GaInNAs,GaInNAsSb,AlInGaAs,InGaAsP,AlGaAsSb,AlGaInAsSb,AlAsSb,InGaSb,InAsSb,およびInGaAsSbなどの三元系、四元系、五元系合金が含まれる。集合的には、これらの材料系は約400nm~2000nmの動作波長(数μmの波長までのより長い波長範囲を含む)をサポートする。半導体量子井戸領域および量子ドットゲイン領域は、通常、特に広いゲインおよび分光発光バンド幅を実現するために用いられる。
好適な実施形態において、MEMS波長可変VCSEL100により生成される光の偏光が、好ましくは制御され、少なくとも安定化される。一般に、このクラスの装置は、直線偏光された光を発する円筒共振器を有する。通常、この光は結晶方向に沿って偏光されており、通常、これらの方向のうちの一方向が他方向よりも強い。同時に、偏光の方向はレーザー流またはポンピングレベルによって変えることができ、その挙動はヒステリシスを発現することが多い。
様々なアプローチを用いて偏光を調整することができる。一実施形態では、偏光選択ミラーが用いられる。他の例では、非円筒共振器が用いられる。さらなる実施形態では、電気的なポンピングを採用した場合、非対称の電流注入が用いられる。さらに別の例では、活性領域基板は、非対称の応力、歪み、熱流、または光学エネルギー分散を生じさせる溝部または材料層を有し、指定された安定な偏光軸に沿って偏光を安定化させるために用いられる。さらに別の例では、参照により本願の一部を成すものとして引用される、Bartley C. Johnson, et al.による2019年5月10日出願の米国特許出願第16/409,295号("Tunable VCSEL polarization control through dissimilar die bonding";以下、Johnsonと記載する)に記載されるように、非対称の機械的応力がVCSEL装置112に対して加えられる。
レーザー空洞共振器の他端は、VCSEL装置112に形成されたリアミラー116により画定される。一例では、これは、一部の光(例えば、1~10%)を反射して空洞共振器へ戻す屈折率の非連続性を生じさせる活性領域116に隣接する層である。他の例では、リアミラー116は、90%を超える光を反射してレーザー空洞共振器へ戻す高反射性層である。
さらに別の例では、リアVCSEL分布ブラッグ反射型(DBR)ミラー116は、レーザー100において生成されるレーザー光の波長に対して定められた反射率(例えば、1~100%の範囲)を与えるダイクロイックミラーフィルターであり、リアミラー116は、VCSEL装置112における活性領域を光学的にポンピングするために用いられる光の波長に対して透過性を有し、これにより、VCSEL装置112がポンプ光の入力ポートとして機能できる。
図2は、MEMS波長可変VCSEL100を示す正面図であり、VCSEL装置112が仮想線で示されている。
特に、図2には、VCSEL装置ボンディングパッド120A~120Eの配置が示されている。これらのボンディングパッドはVCSEL装置112の基端側に円弧状に設けられていることにより、VCSEL装置112を光学薄膜装置110のボンディングパッド234にボンディングすることができる。
図3は、MEMS波長可変VCSEL100を示す側面断面図である。
ミラー250が出力反射体としてまたはモニタリングに使用される場合、光学ポート240が設けられており、ハンドルウェハ材料210の先端側から薄膜構造へ延びている。反射体250が後方反射体として使用されるのであれば、一部の場合において、ポート240は不要である。
さらに、この光学ポート240が必要かどうかは、MEMS波長可変VCSEL100が動作する必要のある光学波長におけるハンドルウェハ材料210の透過性にもよる。通常、ポートがない場合、機能性のために裏側から透過することが求められるのであれば、光学軸に沿ったハンドルウェハ材料210に対し、反射防止(AR)コーティングが施されていることが必要である。
図4は、MEMS波長可変VCSEL100を示す正面図であり、切断線A-AおよびB-Bが示されている。
図5は、MEMS波長可変VCSEL100をA-A線断面図で模式的に示したものであり、基端側静電共振器および先端側静電共振器224を示している。
光学ポート240は概ね内方に傾斜する側壁244を有し、側壁244はポート開口246において終端となる。その結果、ハンドルウェハ210の先端側から見ると、薄膜構造214の本体部分218が見える。このポートは、薄膜ミラードット250と同心であることが好ましい。さらに、いくつかの例において、本体部分218の裏側に、薄膜裏側ARコーティング119が施されている。このARコーティング119は、レーザー空洞共振器へ入るポンプ光の結合および/または空洞共振器から出るレーザー光の結合を促進するために用いられる。さらに別の例では、上記コーティングは、ポンプ光をレーザー空洞共振器へ戻すために、ポンプ光に対して反射性を有する。
絶縁層216の厚さによって、先端側静電共振器224の静電共振器長さが定まる。ここでは、絶縁層216の厚さは3.0~6.0μmの範囲である。一般的な経験則として、静電素子は、静電共振器の距離の3分の1以下の範囲で同調できる。その結果、一実施形態では、本体部分218およびこれによりミラー光学コーティング230は、先端方向に(つまり、VCSEL装置112から離れるように)1~3μmの範囲で偏向させることができる。
また、薄膜装置110に対するVCSEL装置112の接合方法に関する詳細についても図示されている。MEMS装置ボンディングパッド234は、VCSEL基端側静電共振器の電極金属122に接合する。これらの金属層は電気的に絶縁されている。具体的には、MEMS装置ボンディングパッド234は、MEMS装置ボンディングパッド絶縁酸化物236により薄膜層212から分離されている。VCSEL基端側静電共振器の電極金属122は、VCSEL絶縁酸化層128によりVCSEL装置の他の部分から絶縁されている。VCSEL基端側静電共振器の電極金属122およびVCSEL絶縁酸化層128はいずれも、前記レーザーの光共振器の自由空間部分252の領域に延在していないので、光学動作を阻害しない。
先端側静電共振器224および基端側静電共振器226は、薄膜構造214のいずれかの側に位置している。具体的には、先端側静電共振器224は、ハンドルウェハ材料210と、薄膜層212の垂下部である薄膜構造214との間に形成されている。ハンドルウェハ材料210と薄膜層212との間の電圧電位により、これらの層の間に静電吸引力が生じ、薄膜構造214をハンドルウェハ材料210に向かって引っ張る。一方、基端側静電共振器226は、薄膜構造214とVCSEL基端側静電共振器の電極金属122との間に形成されている。薄膜層212とVCSEL基端側静電共振器の電極金属122との間の電圧電位により、これらの層の間に静電吸引力が生じ、薄膜構造214をVCSEL装置112に向かって引っ張る。
一般に、前記装置の光学軸に沿って測定される基端側静電共振器226の大きさは、ボンディング金属の厚さ、VCSEL基端側静電共振器の電極金属122およびMEMS装置ボンディングパッド234の厚さ、ならびにVCSEL絶縁酸化層128およびMEMS装置ボンディングパッド絶縁酸化物236の厚さによって定まる。
最小酸化物厚さは、必要となる電圧絶縁によって決まる。酸化膜破壊は、公称値でいえば、1000V/μmで生じる。よって、200Vを絶縁するためには2000Aとなり、好ましくは、余裕を持たせて二倍の値とする。よって、VCSEL絶縁酸化層128およびMEMS装置ボンディングパッド絶縁酸化物236の層の厚さは4000Aよりも厚い。
ここで、金属ボンディングの厚さは(一層につき)6000Aであり、ボンディング時の圧縮は約3000Aである。これに基づくと、基端側静電共振器226の最小サイズは、0.85μmである。
この最小静電ギャップ地点において、薄膜ミラードット250の厚さが1.7μmのとき、ゼロ光学ギャップが生じる。
この光学ギャップを大きくするために、空洞共振器の動作に影響を与えることなく、VCSEL絶縁酸化層128の厚さを大きくすることができる。
一実施形態では、VCSEL反射防止コーティング114、VCSEL基端側静電共振器の電極金属122、MEMS装置ボンディングパッド234およびMEMS装置ボンディングパッド絶縁酸化物236、ならびにHRコーティング(250)の膜厚は、偏向可能な薄膜構造(214)がVCSEL装置(112)に向かって引っ張られる際の電気的超過ストレス下において、薄膜構造214がVCSEL基端側電極金属122に接触する前に、薄膜ミラードット250の表面がVCSEL装置112の表面に触れるような厚さである。導電性の高いVCSEL電極金属に薄膜が接触すると、前記装置に永久的な電気的損傷が生じ得るが、薄膜ミラードット250は絶縁体である。この構成により、こうした電気的超過ストレスによる損傷から前記装置を保護する。
一方、絶縁酸化層128は不可欠ではない。実際のところ、VCSEL装置が絶縁されていなければ、金属電極と同様に活性領域も帯電する。HRコーティング250のスタックは誘電性であるので、薄膜からVCSELまでのエアギャップに相当するギャップがより小さい。これにより、薄膜およびHRスタックが引っ張られるときの静電力に顕著な影響を与えることとなる。
図6は、B-B線断面であり、ハンドルワイヤーボンディングパッド334Cの領域における薄膜装置110の部分を示している。
ハンドルワイヤーボンディングパッド334Cは、薄膜層112を貫通する孔345と、埋め込み酸化絶縁層216を貫通する他の孔342とを形成することにより作製されている。これにより、ハンドルワイヤーボンディングパッド334Cが堆積したハンドルウェハ材料210を露出させる。
図7は、VCSEL装置112の基端側における金属パターンを示している。
しかしながら、いくつかの例では、パッドが4個しか用いられない。上部パッド120Cをなくすことで、Johnsonに記載されるように、偏光制御のために好適な応力方向が得られる。
VCSEL基端側静電共振器の電極金属122は、VCSEL装置112の基端側の中央部を覆っているが、最も中央は覆われておらず、VCSEL反射防止コーティング114が露出した状態に保たれている。
VCSEL基端側静電共振器の電極金属122は、各VCSELボンディングパッドの電極ブリッジ124B~124Dにより、VCSEL装置ボンディングパッド120B~120Dに電気的に接続されている。
組み立てられた状態で、VCSEL基端側静電共振器の電極金属122は、VCSEL装置ボンディングパッド120B,120C,120DとMEMS装置ボンディングパッド234との間の金属ボンディングにより、VCSEL電極ワイヤーボンディングパッド334Aに電気的に接続されている。また、MEMS装置ボンディングパッド234は、VCSELブリッジ金属340により、VCSEL基端側静電共振器の電極金属122に電気的に接続されている。
このように、図2を参照すると、先端側静電共振器ドライバー424は、ハンドルワイヤーボンディングパッド334Cを介してのハンドルウェハ材料210と、薄膜ワイヤーボンディングパッド334Bを介しての薄膜層212との間に電圧を印加する。基端側静電共振器ドライバー426は、ハンドルワイヤーボンディングパッド334Cを介してのハンドルウェハ材料210と、左側のVCSEL電極ワイヤーボンディングパッド334Aを介してのVCSEL112(具体的にはVCSEL基端側静電共振器の電極金属122)との間に電圧を印加する。これにより、コントローラー400は、基端側静電共振器ドライバー426を制御して薄膜層212の本体部分214をVCSEL装置112に向かって平行移動させることにより、基端側静電共振器226を調整する。また、コントローラー400は、先端側静電ドライバー424を制御して薄膜層212の本体部分214をハンドル材料210に向かって平行移動させることにより、先端側静電共振器224を調整する。
本発明について、好適な実施形態に言及しつつ具体的に図示および説明を行ったが、当業者であれば、添付の請求の範囲に含まれる本発明の範囲を逸脱することなく、本発明において形態および細部に様々な変更を施すことが可能であるということを理解するであろう。

Claims (19)

  1. 波長可変垂直共振器面発光レーザー(VCSEL)であって、
    光を増幅する活性領域を有するVCSEL装置と、
    前記VCSEL装置に接合された薄膜装置であって、ミラーおよびそのミラーを移動させて光共振器を大きくする先端側静電共振器を有する薄膜装置とを備え、
    前記VCSEL装置と前記薄膜装置との間に、前記ミラーを移動させて前記光共振器を小さくする基端側静電共振器が形成されているVCSEL。
  2. 請求項1に記載のVCSELにおいて、前記薄膜装置が、前記VCSELに接合された金属であるVCSEL。
  3. 請求項1に記載のVCSELにおいて、前記基端側静電共振器が、前記薄膜装置の薄膜構造と、前記VCSEL装置における基端側静電共振器の電極金属層との間に形成されているVCSEL。
  4. 請求項3に記載のVCSELにおいて、前記薄膜装置上のワイヤーボンディングパッドが、前記基端側静電共振器の電極金属層に電気的に接続されているVCSEL。
  5. 請求項1に記載のVCSELにおいて、前記薄膜構造が、伝導率を高めるためにドープされているVCSEL。
  6. 請求項1に記載のVCSELにおいて、前記VCSELが、絶縁スタンドオフを用いて前記基端側静電共振器のギャップが0にならないようにすることにより、前記基端側静電共振器における電気的超過ストレスによる損傷から保護されているVCSEL。
  7. 請求項6に記載のVCSELにおいて、前記絶縁スタンドオフが、高反射性誘電体コーティングであるVCSEL。
  8. 請求項1に記載のVCSELにおいて、前記薄膜装置に電圧を印加する先端側静電共振器ドライバーと、前記VCSEL装置に電圧を印加する基端側静電共振器ドライバーとをさらに備えるVCSEL。
  9. 請求項8に記載のVCSELにおいて、前記薄膜装置にワイヤーボンディングパッドがさらに設けられており、前記ワイヤーボンディングパッドに、前記先端側静電共振器ドライバーと前記先端側静電共振器ドライバーとが接続されているVCSEL。
  10. 波長可変垂直共振器面発光レーザー(VCSEL)の操作方法であって、
    VCSEL装置の活性領域において光を増幅することと、
    前記VCSEL装置のミラー層と薄膜装置のミラーとの間に前記光のための光共振器を形成することと、
    先端側静電共振器を用いて前記ミラーを移動させて、前記光共振器を大きくすることと、
    基端側静電共振器を用いて前記ミラーを移動させて、前記光共振器を小さくすることとを含む方法。
  11. 請求項10に記載の方法において、前記薄膜装置が、前記VCSELに接合された金属である方法。
  12. 請求項10に記載の方法において、前記基端側静電共振器が、前記薄膜装置の薄膜構造と前記VCSEL装置との間に形成されている方法。
  13. 請求項12に記載の方法において、前記薄膜装置上のワイヤーボンディングパッドにワイヤボンディングすることにより、前記VCSEL装置を電気的に接続することをさらに含む方法。
  14. 請求項10に記載の方法において、前記基端側静電共振器が、前記薄膜装置の薄膜構造と、前記VCSEL装置における基端側静電共振器の電極金属層との間に形成されている方法。
  15. 請求項10に記載の方法において、前記薄膜構造が、伝導率を高めるためにドープされている方法。
  16. 請求項10に記載の方法において、前記VCSELが、絶縁スタンドオフを用いて前記基端側静電共振器のギャップが0にならないようにすることにより、前記基端側静電共振器における電気的超過ストレスによる損傷から保護されている方法。
  17. 請求項16に記載の方法において、前記絶縁スタンドオフが、高反射性誘電体コーティングである方法。
  18. 請求項10に記載の方法において、前記薄膜装置に電圧を印加する先端側静電共振器ドライバーと、前記VCSEL装置に電圧を印加する基端側静電共振器ドライバーとをさらに備える方法。
  19. 請求項18に記載の方法において、前記薄膜装置上のワイヤーボンディングパッドに、前記先端側静電共振器ドライバーと前記先端側静電共振器ドライバーとを接続することをさらに含む方法。
JP2021523936A 2018-11-05 2019-11-05 二方向作動を用いる接合型波長可変vcsel Pending JP2022506532A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862755796P 2018-11-05 2018-11-05
US62/755,796 2018-11-05
PCT/US2019/059903 WO2020097105A1 (en) 2018-11-05 2019-11-05 Bonded tunable vcsel with bi-directional actuation

Publications (1)

Publication Number Publication Date
JP2022506532A true JP2022506532A (ja) 2022-01-17

Family

ID=68655774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021523936A Pending JP2022506532A (ja) 2018-11-05 2019-11-05 二方向作動を用いる接合型波長可変vcsel

Country Status (6)

Country Link
US (2) US11431151B2 (ja)
EP (1) EP3878066B1 (ja)
JP (1) JP2022506532A (ja)
KR (1) KR20210086703A (ja)
DK (1) DK3878066T3 (ja)
WO (1) WO2020097105A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11699894B2 (en) * 2021-08-16 2023-07-11 Excelitas Technologies Corp. Bonded tunable VCSEL with bi-directional actuation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721098B2 (en) * 2000-12-22 2004-04-13 Axsun Technologies, Inc. Triple electrode MOEMS tunable filter and fabrication process therefor
US7420738B2 (en) 2003-12-22 2008-09-02 Axsun Technologies, Inc. Dual membrane single cavity Fabry-Perot MEMS filter
US7701588B2 (en) 2006-04-11 2010-04-20 Santec Corporation Swept source type optical coherent tomography system
US9391423B2 (en) * 2008-12-16 2016-07-12 Massachusetts Institute Of Technology Method and applications of thin-film membrane transfer
US20140176958A1 (en) 2012-12-21 2014-06-26 Axsun Technologies, Inc. OCT System with Bonded MEMS Tunable Mirror VCSEL Swept Source
JP2016523444A (ja) * 2013-07-03 2016-08-08 インフェニックス インコーポレイテッドInphenix, Inc. 掃引源光干渉断層撮影システム用の波長同調型垂直キャビティ面発光レーザー
US10359551B2 (en) 2013-08-12 2019-07-23 Axsun Technologies, Inc. Dielectric-enhanced metal coatings for MEMS tunable filters
JP2015062217A (ja) 2013-08-19 2015-04-02 キヤノン株式会社 光源装置と面発光レーザの駆動方法、および画像取得装置
JP2016027648A (ja) 2014-06-30 2016-02-18 キヤノン株式会社 面発光レーザ、及び前記面発光レーザを用いた光干渉断層計
US10951009B2 (en) 2018-05-11 2021-03-16 Excelitas Technologies Corp. Tunable VCSEL polarization control through dissimilar die bonding
JP7443248B2 (ja) 2018-05-11 2024-03-05 エクセリタス テクノロジーズ コーポレイション 幾何学的分離を採用する光ポンピングチューナブルvcsel

Also Published As

Publication number Publication date
WO2020097105A1 (en) 2020-05-14
EP3878066A1 (en) 2021-09-15
DK3878066T3 (da) 2023-03-27
US20230046578A1 (en) 2023-02-16
KR20210086703A (ko) 2021-07-08
US20200144793A1 (en) 2020-05-07
US11431151B2 (en) 2022-08-30
EP3878066B1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
US20210075190A1 (en) OCT System with Bonded MEMS Tunable Mirror VCSEL Swept Source
KR101976729B1 (ko) Ss-oct 시스템에 대한 파장-튜닝가능 수직 캐비티 표면 방출 레이저
JP6553019B2 (ja) 広帯域可変掃引光源
US20190361159A1 (en) Dielectric-Enhanced Metal Coatings for MEMS Tunable Filters
JP7443248B2 (ja) 幾何学的分離を採用する光ポンピングチューナブルvcsel
US6721098B2 (en) Triple electrode MOEMS tunable filter and fabrication process therefor
US20210050712A1 (en) Tunable VCSEL with combined gain and DBR mirror
US20230046578A1 (en) Bonded tunable vcsel with bi-directional actuation
US11699894B2 (en) Bonded tunable VCSEL with bi-directional actuation
JP2021527945A (ja) チューナブルvcsel内の量子井戸配置
WO2016103604A1 (en) Surface emitting laser, information acquiring apparatus, imaging apparatus, laser array, and method of manufacturing surface emitting laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240312