JP2022187305A - Nitrous oxide purification system and nitrous oxide purification method using the same - Google Patents

Nitrous oxide purification system and nitrous oxide purification method using the same Download PDF

Info

Publication number
JP2022187305A
JP2022187305A JP2021095277A JP2021095277A JP2022187305A JP 2022187305 A JP2022187305 A JP 2022187305A JP 2021095277 A JP2021095277 A JP 2021095277A JP 2021095277 A JP2021095277 A JP 2021095277A JP 2022187305 A JP2022187305 A JP 2022187305A
Authority
JP
Japan
Prior art keywords
decomposition
nitrous oxide
gas
reactor
decomposition catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021095277A
Other languages
Japanese (ja)
Inventor
雄二 ▲榊▼原
Yuji Sakakibara
豪 濱口
Takeshi Hamaguchi
千和 加藤
Yukikazu Kato
美穂 畑中
Yoshio Hatanaka
哲哉 佐久間
Tetsuya Sakuma
康正 野竹
Yasumasa Notake
大輝 田島
Daiki Tajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2021095277A priority Critical patent/JP2022187305A/en
Publication of JP2022187305A publication Critical patent/JP2022187305A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

To provide a nitrous oxide purification system excellent in N2O decomposition performance in a steady state under a temperature of 100°C or lower.SOLUTION: A nitrous oxide purification system comprises; a reactor 2 with an N2O decomposition catalyst 1 decomposing nitrous oxide (N2O) under the existence of hydrogen (H2); a hydrogen supply portion 4 continuously supplying H2 into the reactor 2; and a temperature control unit controlling temperature in the reactor 2 in a range of 0-100°C. The N2O decomposition catalyst 1 contains rhodium (Rh) and platinum (Pt).SELECTED DRAWING: Figure 1

Description

本発明は、亜酸化窒素浄化システム及びそれを用いた亜酸化窒素浄化方法に関する。 The present invention relates to a nitrous oxide purification system and a nitrous oxide purification method using the same.

燃焼炉や自動車などから排出される燃焼排ガスや、加熱装置や化学プラントなどから排出される各種産業排ガス中に含まれる亜酸化窒素(NO)は、成層圏で分解して一酸化窒素を生成し、また高い温室効果を示すことから、その効率的な分解除去方法の開発が望まれ、各種のNO分解触媒や分解装置及び分解方法が研究されている。 Nitrous oxide (N 2 O) contained in flue gas emitted from combustion furnaces, automobiles, etc., and various industrial exhaust gases emitted from heating equipment, chemical plants, etc. is decomposed in the stratosphere to produce nitric oxide. Also, since it exhibits a high greenhouse effect, the development of an efficient decomposition removal method is desired, and various N 2 O decomposition catalysts, decomposition apparatuses, and decomposition methods are being studied.

例えば、E.V.Kondratenkoら、Applied Catalysis A:General、2006年、第298巻、73~79頁(非特許文献1)には、白金(Pt)、ロジウム(Rh)、又はPt-Rh合金を用いたNOの分解反応について記載されており、750℃の高温下においては、RhのみからなるNO分解触媒が最もNO分解性能に優れており、PtのみからなるNO分解触媒やPt-Rh合金からなるNO分解触媒はNO分解性能に劣ることが示されている。 For example, E. V. Kondratenko et al., Applied Catalysis A: General, 2006, 298, 73-79, N 2 O using platinum (Pt), rhodium (Rh), or Pt—Rh alloy At a high temperature of 750 ° C., the N 2 O decomposition catalyst consisting only of Rh is the most excellent in N 2 O decomposition performance, and the N 2 O decomposition catalyst consisting only of Pt and Pt- It has been shown that N 2 O decomposition catalysts made of Rh alloys are inferior in N 2 O decomposition performance.

また、特開2014-237117号公報(特許文献1)には、Rh、Pt、Cu、Co、Ni、Fe、Au及びAgからなる群から選択される少なくとも1種の活性金属と、Ceを含有する担体と、を含むNO分解触媒が開示されており、Rhセリア複合酸化物からなるNO分解触媒が、50℃の低温下において過渡NO分解活性を示すことが具体的に記載されている。 In addition, Japanese Patent Application Laid-Open No. 2014-237117 (Patent Document 1) describes at least one active metal selected from the group consisting of Rh, Pt, Cu, Co, Ni, Fe, Au and Ag, and Ce Specifically, the N 2 O decomposition catalyst comprising a Rh-ceria composite oxide exhibits transient N 2 O decomposition activity at a low temperature of 50°C. Are listed.

特開2014-237117号公報JP 2014-237117 A

E.V.Kondratenkoら、Applied Catalysis A:General、2006年、第298巻、73~79頁E. V. Kondratenko et al., Applied Catalysis A: General, 2006, 298, 73-79.

しかしながら、RhのみからなるNO分解触媒やRhセリア複合酸化物からなるNO分解触媒は、100℃以下の低温下、定常状態でのNO分解性能が高いものではなかった。 However, an N 2 O decomposition catalyst consisting of Rh alone and an N 2 O decomposition catalyst consisting of a Rh-ceria composite oxide did not have high N 2 O decomposition performance in a steady state at a low temperature of 100° C. or less.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、100℃以下の低温下、定常状態でのNO分解性能に優れた亜酸化窒素浄化システム及びそれを用いた亜酸化窒素浄化方法を提供することを目的とする。 The present invention has been made in view of the above problems of the prior art, and provides a nitrous oxide purification system excellent in N 2 O decomposition performance in a steady state at a low temperature of 100 ° C. or less and a nitrous oxide purification system using the same. It is an object of the present invention to provide a nitrogen purification method.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、750℃の高温下では、RhのみからなるNO分解触媒に比べて、定常状態でのNO分解性能に劣っていたRhとPtとを含有するNO分解触媒が、100℃以下の低温下かつ水素の存在下において、定常状態でのNO分解性能に優れていることを見出し、本発明を完成するに至った。 The present inventors have made intensive studies to achieve the above object, and as a result, at a high temperature of 750°C, the N 2 O decomposition performance in a steady state is inferior to that of an N 2 O decomposition catalyst consisting only of Rh. The inventors have found that an N 2 O decomposition catalyst containing Rh and Pt, which has been used in the past, has excellent N 2 O decomposition performance in a steady state at a low temperature of 100° C. or less and in the presence of hydrogen, and completed the present invention. came to.

すなわち、本発明の亜酸化窒素浄化システムは、水素(H)の存在下で亜酸化窒素(NO)を分解するためのNO分解触媒を備える反応器と、前記反応器にHを連続的に供給するための水素供給部と、前記反応器内の温度を0~100℃の範囲内に制御するための温度制御装置と、を備えており、前記NO分解触媒がロジウム(Rh)と白金(Pt)とを含有するものであることを特徴とするものである。 That is, the nitrous oxide purification system of the present invention includes a reactor equipped with an N 2 O decomposition catalyst for decomposing nitrous oxide (N 2 O) in the presence of hydrogen (H 2 ), and H 2 , and a temperature control device for controlling the temperature in the reactor within a range of 0 to 100° C., wherein the N 2 O decomposition catalyst is It is characterized by containing rhodium (Rh) and platinum (Pt).

本発明の亜酸化窒素浄化システムにおいては、前記NO分解触媒におけるRhとPtのモル比がRh:Pt=95:5~20:80の範囲内にあることが好ましい。 In the nitrous oxide purification system of the present invention, the molar ratio of Rh and Pt in the N 2 O decomposition catalyst is preferably within the range of Rh:Pt=95:5 to 20:80.

また、本発明の亜酸化窒素浄化方法は、前記本発明の亜酸化窒素浄化システムを用いて亜酸化窒素(NO)を浄化する方法であって、前記反応器にNOを含むガスを供給するとともに、前記水素供給部から前記反応器に水素(H)を連続的に供給し、0~100℃の範囲内の温度下、Hの存在下でNOを前記NO分解触媒に接触させることを特徴とする方法である。 Further, the nitrous oxide purifying method of the present invention is a method of purifying nitrous oxide (N 2 O) using the nitrous oxide purifying system of the present invention, wherein the reactor contains a gas containing N 2 O and continuously supplying hydrogen (H 2 ) from the hydrogen supply unit to the reactor, and N 2 O in the presence of H 2 at a temperature within the range of 0 to 100 ° C. This method is characterized by contacting with an O decomposition catalyst.

なお、本発明によって、100℃以下の低温下、定常状態において高い分解率でNOを分解除去することが可能となる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、活性点としてRhのみを含有するNO分解触媒においては、NOの分解反応によって酸化状態となったRhが、水素(H)の存在下であっても、100℃以下の低温下では、還元(メタル化)されにくく、Rhの高いNO分解活性の定常的な維持が困難であるため、定常状態でのNO分解性能が低くなると推察される。また、活性点としてPtのみを含有するNO分解触媒においては、NOの分解反応によって酸化状態となったPtは還元(メタル化)されやすいが、PtのNO分解活性が低いため、定常状態でのNO分解性能は低くなると推察される。 The reason why it is possible to decompose and remove N 2 O at a high decomposition rate in a steady state at a low temperature of 100° C. or less according to the present invention is not necessarily clear, but the present inventors speculate as follows. do. That is, in the N 2 O decomposition catalyst containing only Rh as an active site, Rh in an oxidized state due to the decomposition reaction of N 2 O has a temperature of 100° C. or less even in the presence of hydrogen (H 2 ). At low temperatures, it is difficult to reduce (metalate), and it is difficult to constantly maintain the high Rh N 2 O decomposition activity, so it is presumed that the N 2 O decomposition performance in the steady state is low. In addition, in the N 2 O decomposition catalyst containing only Pt as an active site, Pt in an oxidized state due to the decomposition reaction of N 2 O is easily reduced (metallized), but the N 2 O decomposition activity of Pt is low. Therefore, it is presumed that the N 2 O decomposition performance in the steady state is low.

一方、本発明に用いられるNO分解触媒においては、RhにPtが複合化されているため、NOの分解反応によって酸化状態となったRhが、Ptの触媒作用により、100℃以下の低温下であっても、Hの存在下で還元(メタル化)されると推察される。その結果、Rhの高いNO分解活性が定常的に維持されるため、定常状態でのNO分解性能が高くなると推察される。 On the other hand, in the N 2 O decomposition catalyst used in the present invention, since Pt is combined with Rh, Rh in an oxidized state due to the decomposition reaction of N 2 O is reduced to 100° C. or less by the catalytic action of Pt. is assumed to be reduced ( metalated) in the presence of H2 even at a low temperature of . As a result, since the high N 2 O decomposition activity of Rh is constantly maintained, it is presumed that the N 2 O decomposition performance in the steady state increases.

他方、RhにPtが複合化されているNO分解触媒であっても、Hが存在しない場合には、NOの分解反応によって酸化状態となったRhが、還元(メタル化)されにくく、Rhの高いNO分解活性の定常的な維持が困難であるため、定常状態でのNO分解性能は低くなると推察される。 On the other hand, even with an N 2 O decomposition catalyst in which Pt is combined with Rh, in the absence of H 2 , Rh in an oxidized state due to the decomposition reaction of N 2 O is reduced (metalated). It is assumed that the steady-state N 2 O decomposition performance is low because it is difficult to constantly maintain the high N 2 O decomposition activity of Rh.

本発明によれば、100℃以下の低温下、定常状態において高い分解率でNOを分解除去することが可能となる。 According to the present invention, it becomes possible to decompose and remove N 2 O at a low temperature of 100° C. or less and in a steady state with a high decomposition rate.

本発明の亜酸化窒素浄化システムの好適な一実施態様を示す模式図である。1 is a schematic diagram showing a preferred embodiment of a nitrous oxide purification system of the present invention; FIG. 本発明の亜酸化窒素浄化システムの他の好適な一実施態様を示す模式図である。FIG. 3 is a schematic diagram showing another preferred embodiment of the nitrous oxide purification system of the present invention; 実施例1~4及び比較例1~2で実施した亜酸化窒素(NO)の60℃での分解実験におけるNOの分解率を示すグラフである。4 is a graph showing the decomposition rate of N 2 O in decomposition experiments of nitrous oxide (N 2 O) at 60° C. performed in Examples 1 to 4 and Comparative Examples 1 and 2. FIG. 実施例1~4及び比較例1で実施した亜酸化窒素(NO)の100℃での分解実験におけるNOの分解率を示すグラフである。4 is a graph showing the decomposition rate of N 2 O in experiments on decomposition of nitrous oxide (N 2 O) at 100° C. performed in Examples 1 to 4 and Comparative Example 1. FIG. 参考例1~5で実施した亜酸化窒素(NO)の150℃での分解実験におけるNOの分解率を示すグラフである。2 is a graph showing the decomposition rate of N 2 O in decomposition experiments of nitrous oxide (N 2 O) at 150° C. performed in Reference Examples 1 to 5. FIG. 参考例1~5で実施した亜酸化窒素(NO)の200℃での分解実験におけるNOの分解率を示すグラフである。2 is a graph showing the decomposition rate of N 2 O in decomposition experiments of nitrous oxide (N 2 O) at 200° C. performed in Reference Examples 1 to 5. FIG. 比較例3~8で実施した亜酸化窒素(NO)の300℃での分解実験におけるNOの分解率を示すグラフである。FIG. 10 is a graph showing the decomposition rate of N 2 O in nitrous oxide (N 2 O) decomposition experiments at 300° C. performed in Comparative Examples 3 to 8. FIG. Rh:Pt=9:1のNO分解触媒による亜酸化窒素(NO)の分解実験におけるNO分解率の温度依存性を示すグラフである。1 is a graph showing the temperature dependence of the N 2 O decomposition rate in a nitrous oxide (N 2 O) decomposition experiment using an Rh:Pt=9:1 N 2 O decomposition catalyst. Rh:Pt=7:3のNO分解触媒による亜酸化窒素(NO)の分解実験におけるNO分解率の温度依存性を示すグラフである。1 is a graph showing the temperature dependence of the N 2 O decomposition rate in a nitrous oxide (N 2 O) decomposition experiment using an Rh:Pt=7:3 N 2 O decomposition catalyst. Rh:Pt=5:5のNO分解触媒による亜酸化窒素(NO)の分解実験におけるNO分解率の温度依存性を示すグラフである。1 is a graph showing the temperature dependence of the N 2 O decomposition rate in a nitrous oxide (N 2 O) decomposition experiment using an N 2 O decomposition catalyst of Rh:Pt=5:5. Rh:Pt=3:7のNO分解触媒による亜酸化窒素(NO)の分解実験におけるNO分解率の温度依存性を示すグラフである。1 is a graph showing the temperature dependence of the N 2 O decomposition rate in a nitrous oxide (N 2 O) decomposition experiment using an N 2 O decomposition catalyst of Rh:Pt=3:7. Rh:Pt=10:0のNO分解触媒による亜酸化窒素(NO)の分解実験におけるNO分解率の温度依存性を示すグラフである。1 is a graph showing the temperature dependence of the N 2 O decomposition rate in a nitrous oxide (N 2 O) decomposition experiment using an N 2 O decomposition catalyst of Rh:Pt=10:0.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明するが、本発明は前記図面に限定されるものではない。なお、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する場合もある。 Preferred embodiments of the present invention will be described in detail below with reference to the drawings, but the present invention is not limited to the drawings. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description may be omitted.

〔亜酸化窒素浄化システム〕
先ず、本発明の亜酸化窒素浄化システムについて説明する。本発明の亜酸化窒素浄化システムは、水素(H)の存在下で亜酸化窒素(NO)を分解するためのNO分解触媒を備える反応器と、前記反応器にHを連続的に供給するための水素供給部と、前記反応器内の温度を0~100℃の範囲内に制御するための温度制御装置とを備えるものであり、前記NO分解触媒はロジウム(Rh)と白金(Pt)とを含有するものである。
[Nitrous oxide purification system]
First, the nitrous oxide purification system of the present invention will be described. The nitrous oxide purification system of the present invention includes a reactor equipped with a N 2 O decomposition catalyst for decomposing nitrous oxide (N 2 O) in the presence of hydrogen (H 2 ), and supplying H 2 to the reactor. A hydrogen supply unit for continuously supplying hydrogen, and a temperature control device for controlling the temperature in the reactor within the range of 0 to 100 ° C. The N 2 O decomposition catalyst is rhodium ( Rh) and platinum (Pt).

図1は、本発明の亜酸化窒素浄化システムの好適な一実施態様を示す模式図である。図1に示した亜酸化窒素浄化システムにおいては、NO分解触媒1を備える反応器2に、NOを含むガスAを供給するための入ガス流路3が接続されており、入ガス流路3には、NOを含むガスAにHが混合され、NOとHとを含むガス(入ガス)Bが反応器2に供給されるように水素供給部4が接続されている。また、反応器2には、NOが浄化されたガス(出ガス)Cを排出するための出ガス流路5が接続されており、反応器2内のガス入口側には温度センサー6が設置されており、この温度センサー6は温度制御装置(図示なし)に接続されている。 FIG. 1 is a schematic diagram showing a preferred embodiment of the nitrous oxide purification system of the present invention. In the nitrous oxide purification system shown in FIG. 1, a reactor 2 equipped with an N 2 O decomposition catalyst 1 is connected to an inlet gas passage 3 for supplying a gas A containing N 2 O. A gas A containing N 2 O is mixed with H 2 , and a hydrogen supply unit 4 is provided in the gas flow path 3 so that a gas (incoming gas) B containing N 2 O and H 2 is supplied to the reactor 2 . is connected. Further, the reactor 2 is connected to an outlet gas flow path 5 for discharging a gas (outgoing gas) C from which N 2 O has been purified, and a temperature sensor 6 is provided on the gas inlet side of the reactor 2. is installed, and this temperature sensor 6 is connected to a temperature control device (not shown).

また、図2は、本発明の亜酸化窒素浄化システムの他の好適な一実施態様を示す模式図である。図2に示した亜酸化窒素浄化システムにおいては、NO分解触媒1を備える反応器2に、NOを含むガスAを供給するための入ガス流路3が接続されており、反応器2内のガス入口側には、NOを含むガスAにHが混合され、NOとHとを含むガス(入ガス)BがNO分解触媒1に供給されるように水素供給部4が接続されている。また、反応器2には、NOが浄化されたガス(出ガス)Cを排出するための出ガス流路5が接続されており、反応器2内のガス入口側には温度センサー6が設置されており、この温度センサー6は温度制御装置(図示なし)に接続されている。 Moreover, FIG. 2 is a schematic diagram showing another preferred embodiment of the nitrous oxide purification system of the present invention. In the nitrous oxide purifying system shown in FIG. 2, a reactor 2 equipped with an N 2 O decomposition catalyst 1 is connected to an inlet gas flow path 3 for supplying a gas A containing N 2 O, and a reaction H 2 is mixed with gas A containing N 2 O, and gas (incoming gas) B containing N 2 O and H 2 is supplied to the N 2 O decomposition catalyst 1 on the gas inlet side of the vessel 2 . The hydrogen supply unit 4 is connected as shown. Further, the reactor 2 is connected to an outlet gas flow path 5 for discharging a gas (outgoing gas) C from which N 2 O has been purified, and a temperature sensor 6 is provided on the gas inlet side of the reactor 2. is installed, and this temperature sensor 6 is connected to a temperature control device (not shown).

本発明に用いられるNO分解触媒1は、RhとPtとを含有するものである。RhとPtとを含有するNO分解触媒においては、NOの分解反応によって酸化状態となったRhが、Ptの触媒作用により、100℃以下の低温下であっても、Hの存在下で還元(メタル化)され、Rhの高いNO分解活性が定常的に維持されるため、定常的に高いNO分解性能を発揮することが可能となる。一方、Ptを含まないNO分解触媒においては、NOの分解反応によって酸化状態となったRhが、Hの存在下であっても、100℃以下の低温下では、還元(メタル化)されにくく、Rhの高いNO分解活性を定常的に得ることが困難となり、定常状態でのNO分解性能が低くなる。また、Rhを含まないNO分解触媒においては、PtのNO分解活性が低いため、定常状態でのNO分解性能は低くなる。 The N 2 O decomposition catalyst 1 used in the present invention contains Rh and Pt. In the N 2 O decomposition catalyst containing Rh and Pt, Rh in an oxidized state due to the decomposition reaction of N 2 O is converted into H 2 by the catalytic action of Pt even at a low temperature of 100° C. or less. In the presence of Rh, it is reduced (metalated), and the high N 2 O decomposition activity of Rh is constantly maintained, so that it is possible to consistently exhibit high N 2 O decomposition performance. On the other hand, in the N 2 O decomposition catalyst that does not contain Pt, even in the presence of H 2 , Rh in an oxidized state due to the decomposition reaction of N 2 O is reduced (metal ), it becomes difficult to steadily obtain N 2 O decomposition activity with high Rh, and the N 2 O decomposition performance in a steady state is lowered. In addition, in the N 2 O decomposition catalyst that does not contain Rh, the N 2 O decomposition performance in the steady state is low because the N 2 O decomposition activity of Pt is low.

このようなNO分解触媒において、RhとPtのモル比としては、Rh:Pt=95:5~20:80が好ましく、90:10~30:70がより好ましく、90:10~40:60が特に好ましい。Rhの割合が前記上限を超えると、相対的にPtの割合が少なくなり、Ptの触媒作用が十分に得られないため、NOの分解反応によって酸化状態となったRhが、Hの存在下であっても、100℃以下の低温下では、還元(メタル化)されにくく、Rhの高いNO分解活性を定常的に得ることが困難となり、定常状態でのNO分解性能が低くなる傾向にある。他方、Rhの割合が前記下限未満になると、Rhの高いNO分解活性が得られないため、定常状態でのNO分解性能は低くなる傾向にある。 In such an N 2 O decomposition catalyst, the molar ratio of Rh and Pt is preferably Rh:Pt = 95:5 to 20:80, more preferably 90:10 to 30:70, more preferably 90:10 to 40: 60 is particularly preferred. If the ratio of Rh exceeds the above upper limit, the ratio of Pt is relatively decreased, and sufficient catalytic action of Pt cannot be obtained. Even in the presence, at a low temperature of 100 ° C. or less, it is difficult to reduce (metalate), and it becomes difficult to steadily obtain N 2 O decomposition activity with high Rh, and the N 2 O decomposition performance in the steady state is poor. tends to be lower. On the other hand, when the ratio of Rh is less than the above lower limit, high N 2 O decomposition activity of Rh cannot be obtained, so the N 2 O decomposition performance in a steady state tends to be low.

また、前記NO分解触媒において、Rh及びPtは担体に担持されていることが好ましい。このような担体としては、例えば、アルミナ、ジルコニア、セリア、シリカ、チタニア等の金属酸化物が挙げられる。これらの金属酸化物は1種を単独で使用しても2種以上を併用してもよい。また、これらの金属酸化物の中でも、酸素吸放出性能に優れているという観点から、セリアが好ましい。さらに、これらの金属酸化物からなる担体は多孔質であることが好ましい。 Moreover, in the N 2 O decomposition catalyst, Rh and Pt are preferably supported on a carrier. Examples of such carriers include metal oxides such as alumina, zirconia, ceria, silica and titania. These metal oxides may be used singly or in combination of two or more. Moreover, among these metal oxides, ceria is preferable from the viewpoint of being excellent in oxygen absorption and release performance. Furthermore, it is preferable that the carrier composed of these metal oxides is porous.

さらに、前記NO分解触媒1の形態としては特に制限はなく、例えば、ハニカム形状のモノリス触媒、ペレット形状のペレット触媒等の公知の形態を採用することができる。また、このような形態のNO分解触媒1に用いられる基材についても特に制限はなく、例えば、モノリス状基材、ペレット状基材、プレート状基材等が挙げられる。さらに、前記基材の材質も特に制限はなく、例えば、コージェライト、炭化ケイ素、ムライト等のセラミックス;クロム、ニッケル及びアルミニウムを含むステンレススチール等の金属が挙げられる。 Furthermore, the form of the N 2 O decomposition catalyst 1 is not particularly limited, and for example, a known form such as a honeycomb-shaped monolith catalyst or a pellet-shaped pellet catalyst can be adopted. Also, the substrate used for the N 2 O decomposition catalyst 1 having such a form is not particularly limited, and examples thereof include monolithic substrates, pellet-shaped substrates, plate-shaped substrates, and the like. Furthermore, the material of the substrate is not particularly limited, and examples thereof include ceramics such as cordierite, silicon carbide, and mullite; and metals such as stainless steel containing chromium, nickel, and aluminum.

本発明に用いられる水素供給部4としては特に制限はないが、例えば、水素ボンベ、水電解装置、NOx浄化用電気化学リアクター等が挙げられる。 Although the hydrogen supply unit 4 used in the present invention is not particularly limited, examples thereof include a hydrogen cylinder, a water electrolysis device, an electrochemical reactor for NOx purification, and the like.

本発明に用いられる温度制御装置は、温度センサー6を用いて反応器2内の温度を測定し、この測定温度に基づいて、反応器2内の温度を0~100℃の範囲内(好ましくは20~80℃の範囲内)に制御できる装置であれば特に制限はなく、例えば、マントルヒーター等の電熱線式ヒーター、赤外炉、ヒーターコア、ヒートポンプ、等の加熱装置や、熱交換器、ペルチェ素子クーラー等の冷却装置が挙げられる。 The temperature control device used in the present invention measures the temperature in the reactor 2 using the temperature sensor 6, and adjusts the temperature in the reactor 2 within the range of 0 to 100 ° C. (preferably There is no particular limitation as long as it can be controlled within the range of 20 to 80 ° C.), for example, heating devices such as electric heating wire heaters such as mantle heaters, infrared furnaces, heater cores, heat pumps, heat exchangers, A cooling device such as a Peltier element cooler may be used.

〔亜酸化窒素浄化方法〕
次に、本発明の亜酸化窒素浄化方法を、図1及び図2に示した亜酸化窒素浄化システムを用いた場合を例に説明する。図1に示した亜酸化窒素浄化システムを用いて亜酸化窒素(NO)を浄化する方法は、本発明の亜酸化窒素浄化方法の好適な一実施態様であり、図2に示した亜酸化窒素浄化システムを用いて亜酸化窒素(NO)を浄化する方法は、本発明の亜酸化窒素浄化方法の他の好適な一実施態様である。なお、前記本発明の亜酸化窒素浄化システムの好適な一実施態様において説明した内容と重複する内容については省略する。
[Nitrous oxide purification method]
Next, the nitrous oxide purification method of the present invention will be described using the nitrous oxide purification system shown in FIGS. 1 and 2 as an example. The method for purifying nitrous oxide (N 2 O) using the nitrous oxide purification system shown in FIG. 1 is a preferred embodiment of the nitrous oxide purification method of the present invention, and the nitrous oxide purification system shown in FIG. A method of purifying nitrous oxide (N 2 O) using a nitrous oxide purification system is another preferred embodiment of the nitrous oxide purification method of the present invention. Contents overlapping with the contents described in the preferred embodiment of the nitrous oxide purification system of the present invention will be omitted.

本発明の亜酸化窒素浄化方法においては、反応器2にNOを含むガスAを供給するとともに、水素供給部4から反応器2に水素(H)を連続的に供給し、0~100℃の範囲内の温度下、Hの存在下でNOをNO分解触媒1に接触させることにより、NOを窒素(N)にまで分解する。 In the nitrous oxide purifying method of the present invention, the gas A containing N 2 O is supplied to the reactor 2, and hydrogen (H 2 ) is continuously supplied from the hydrogen supply unit 4 to the reactor 2. NO2 is decomposed to nitrogen ( N2 ) by contacting N2O with N2O decomposition catalyst 1 in the presence of H2 at a temperature in the range of 100< 0 > C.

図1に示した亜酸化窒素浄化システムでは、入ガス流路3において、NOを含むガスAに、水素供給部4からHを混合し、NOとHとを含むガス(入ガス)Bを反応器2に供給する。また、図2に示した亜酸化窒素浄化システムでは、NOを含むガスAを入ガス流路3から反応器2に供給するとともに、Hを水素供給部4から反応器2に供給し、反応器2内のガス入口側でNOとHとを混合し、NO分解触媒1に供給する。 In the nitrous oxide purification system shown in FIG. 1, in the inlet gas passage 3, the gas A containing N 2 O is mixed with H 2 from the hydrogen supply unit 4 to produce a gas containing N 2 O and H 2 ( Incoming gas) B is supplied to the reactor 2 . Further, in the nitrous oxide purification system shown in FIG. 2, the gas A containing N 2 O is supplied to the reactor 2 from the inlet gas flow path 3, and H 2 is supplied to the reactor 2 from the hydrogen supply unit 4. , N 2 O and H 2 are mixed at the gas inlet side in the reactor 2 and supplied to the N 2 O decomposition catalyst 1 .

OとHとを含むガスにおいて、NOに対するHの体積比としては、H/NO=1~10が好ましく、H/NO=1.2~5がより好ましい。Hの割合が前記下限未満になると、NOの分解反応によって酸化状態となったRhが十分に還元(メタル化)されにくく、Rhの高いNO分解活性を定常的に得ることが困難となり、定常状態でのNO分解性能が低くなる傾向にあり、他方、Hの割合が前記上限を超えると、H供給分のエネルギーが無駄になり、高コスト化する傾向にある。 In the gas containing N 2 O and H 2 , the volume ratio of H 2 to N 2 O is preferably H 2 /N 2 O = 1 to 10, and H 2 /N 2 O = 1.2 to 5. more preferred. When the proportion of H 2 is less than the lower limit, it is difficult to sufficiently reduce (metalate) Rh in an oxidized state due to the decomposition reaction of N 2 O, and high N 2 O decomposition activity of Rh can be constantly obtained. N 2 O decomposition performance in a steady state tends to be low, and on the other hand, if the proportion of H 2 exceeds the upper limit, the energy for H 2 supply is wasted and the cost tends to be high. .

供給されるガスの流量としては特に制限はないが、例えば、NO分解触媒1に供給される入ガス(NOとHとを含むガス)Bの流量が、空間速度(=ガス流量/触媒体積)で、100~10000/分の範囲内にあることが好ましく、150~8000/分の範囲内にあることがより好ましい。 The flow rate of the gas to be supplied is not particularly limited. flow rate/catalyst volume) is preferably in the range of 100 to 10000/min, more preferably in the range of 150 to 8000/min.

本発明の亜酸化窒素浄化方法においては、反応器2内の温度を0~100℃の範囲内に制御し、この温度下、Hの存在下でNOをNO分解触媒1に接触させる必要がある。反応器2内の温度が前記下限未満になると、NO分解触媒の活性が十分に得られない。他方、反応器2内の温度が前記上限を超えると、反応器2内の温度を上げるためにエネルギーが必要となり、高コスト化する。 In the nitrous oxide purification method of the present invention, the temperature in the reactor 2 is controlled within the range of 0 to 100° C., and N 2 O is converted to the N 2 O decomposition catalyst 1 in the presence of H 2 at this temperature. need to make contact. If the temperature in the reactor 2 is below the lower limit, the activity of the N 2 O decomposition catalyst cannot be sufficiently obtained. On the other hand, if the temperature in the reactor 2 exceeds the upper limit, energy is required to raise the temperature in the reactor 2, resulting in an increase in cost.

このように、所定の温度下、Hの存在下でNOをNO分解触媒1に接触させることによって、NOはNにまで分解され、NOが浄化されたガス(出ガス)として出ガス流路5から排出される。そして、このNOの分解反応により、NO分解触媒を構成するRhは酸化状態となるが、本発明においては、NO分解触媒にPtが含まれているため、100℃以下の低温下であって、Hの存在下、Ptの触媒作用により、酸化状態のRhが還元(メタル化)される。その結果、Rhの高いNO分解活性を定常的に維持することができ、定常状態において高い分解率でNOを分解除去することが可能となる。 Thus, by bringing N 2 O into contact with the N 2 O decomposition catalyst 1 in the presence of H 2 at a predetermined temperature, N 2 O is decomposed into N 2 and N 2 O is purified gas. (Out gas) is discharged from the out gas passage 5 . Then, due to this N 2 O decomposition reaction, Rh constituting the N 2 O decomposition catalyst becomes oxidized. At low temperatures and in the presence of H 2 , Pt catalytically reduces (metalates) the oxidized state of Rh. As a result, the high N 2 O decomposition activity of Rh can be constantly maintained, and N 2 O can be decomposed and removed at a high decomposition rate in a steady state.

以上、図1及び図2を参照して本発明の亜酸化窒素浄化システム及び亜酸化窒素浄化方法の好適な実施形態について説明したが、本発明の亜酸化窒素浄化システム及び亜酸化窒素浄化方法は上記実施形態に限定されるものではない。 The preferred embodiments of the nitrous oxide purification system and the nitrous oxide purification method of the present invention have been described above with reference to FIGS. It is not limited to the above embodiment.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail below based on examples and comparative examples, but the present invention is not limited to the following examples.

(調製例1)
イオン交換水100mlに硝酸ロジウム水溶液(株式会社キャタラー製、Rh濃度:2.75質量%)3.27g及び硝酸白金水溶液(株式会社キャタラー製、Rh濃度:4.57質量%)0.41gを添加して撹拌し、さらに、CeO粉末(第一稀元素化学工業株式会社製「酸化セリウム」)10gを添加して撹拌し、得られた混合物を150℃で蒸発乾固させた。得られた乾固物を大気中、300℃で3時間焼成してRhPt担持CeO粒子を得た。その後、このRhPt担持CeO粒子を圧粉成形した後、破砕して、平均粒子径が約1mmのRhPt担持CeO粒子(Rh担持量:CeO100質量部に対して0.9質量部、Pt担持量:CeO100質量部に対して0.2質量部、Rh:Pt(モル比)=9:1)を得た。
(Preparation Example 1)
Add 3.27 g of rhodium nitrate aqueous solution (manufactured by Cataler Co., Ltd., Rh concentration: 2.75% by mass) and 0.41 g of platinum nitrate aqueous solution (manufactured by Cataler Co., Ltd., Rh concentration: 4.57% by mass) to 100 ml of ion-exchanged water. Further, 10 g of CeO 2 powder (“Cerium oxide” manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd.) was added and stirred, and the resulting mixture was evaporated to dryness at 150°C. The resulting dried product was calcined in air at 300° C. for 3 hours to obtain RhPt-supported CeO 2 particles. After that, the RhPt-supported CeO 2 particles were compacted, crushed, and RhPt-supported CeO 2 particles having an average particle diameter of about 1 mm (amount of Rh supported: 0.9 parts by mass with respect to 100 parts by mass of CeO 2 , Amount of Pt supported: 0.2 parts by mass with respect to 100 parts by mass of CeO 2 , Rh:Pt (molar ratio) = 9:1).

(調製例2)
硝酸ロジウム水溶液の量を2.55gに、硝酸白金水溶液の量を1.24gに変更した以外は調製例1と同様にして、平均粒子径が約1mmのRhPt担持CeO粒子(Rh担持量:CeO100質量部に対して0.7質量部、Pt担持量:CeO100質量部に対して0.6質量部、Rh:Pt(モル比)=7:3)を得た。
(Preparation Example 2)
RhPt-supported CeO 2 particles having an average particle size of about 1 mm (Rh supported amount: 0.7 parts by mass with respect to 100 parts by mass of CeO 2 , amount of Pt supported: 0.6 parts by mass with respect to 100 parts by mass of CeO 2 , Rh:Pt (molar ratio)=7:3).

(調製例3)
硝酸ロジウム水溶液の量を1.82gに、硝酸白金水溶液の量を2.07gに変更した以外は調製例1と同様にして、平均粒子径が約1mmのRhPt担持CeO粒子(Rh担持量:CeO100質量部に対して0.5質量部、Pt担持量:CeO100質量部に対して0.95質量部、Rh:Pt(モル比)=5:5)を得た。
(Preparation Example 3)
RhPt-supported CeO 2 particles having an average particle size of about 1 mm (Rh supported amount: 0.5 parts by mass with respect to 100 parts by mass of CeO 2 , amount of Pt supported: 0.95 parts by mass with respect to 100 parts by mass of CeO 2 , Rh:Pt (molar ratio)=5:5).

(調製例4)
硝酸ロジウム水溶液の量を1.09gに、硝酸白金水溶液の量を2.90gに変更した以外は調製例1と同様にして、平均粒子径が約1mmのRhPt担持CeO粒子(Rh担持量:CeO100質量部に対して0.3質量部、Pt担持量:CeO100質量部に対して1.3質量部、Rh:Pt(モル比)=3:7)を得た。
(Preparation Example 4)
RhPt-supported CeO 2 particles having an average particle size of about 1 mm (Rh supported amount: 0.3 parts by mass with respect to 100 parts by mass of CeO 2 , amount of Pt supported: 1.3 parts by mass with respect to 100 parts by mass of CeO 2 , Rh:Pt (molar ratio)=3:7).

(比較調製例1)
硝酸ロジウム水溶液の量を3.64gに変更し、硝酸白金水溶液を用いなかった以外は調製例1と同様にして、平均粒子径が約1mmのRh担持CeO粒子(Rh担持量:CeO100質量部に対して1質量部、Rh:Pt(モル比)=10:0)を得た。
(Comparative Preparation Example 1)
Rh-supported CeO 2 particles having an average particle diameter of about 1 mm (Rh-supported amount: CeO 2 100 1 part by mass, Rh:Pt (molar ratio) = 10:0) was obtained.

(比較調製例2)
硝酸白金水溶液の量を4.14gに変更し、硝酸ロジウム水溶液を用いなかった以外は調製例1と同様にして、平均粒子径が約1mmのPt担持CeO粒子(Pt担持量:CeO100質量部に対して1.9質量部、Rh:Pt(モル比)=0:10)を得た。
(Comparative Preparation Example 2)
2 Pt-supported CeO particles with an average particle size of about 1 mm (Pt supported amount: CeO 2 100 1.9 parts by mass, Rh:Pt (molar ratio) = 0:10) was obtained.

(実施例1)
図1に示した亜酸化窒素浄化システムを用いて、亜酸化窒素(NO)の分解実験を行った。すなわち、先ず、調製例1で得られたRhPt担持CeO粒子(Rh:Pt=9:1)1gを内径12mmの反応器2に充填し(充填量:約1ml)、この反応器2の入ガス流路3に水素供給部4(水素ボンベ)を接続した。
(Example 1)
A nitrous oxide (N 2 O) decomposition experiment was conducted using the nitrous oxide purification system shown in FIG. That is, first, 1 g of RhPt-supported CeO 2 particles (Rh:Pt=9:1) obtained in Preparation Example 1 was charged into a reactor 2 having an inner diameter of 12 mm (filling amount: about 1 ml). A hydrogen supply unit 4 (hydrogen cylinder) was connected to the gas flow path 3 .

次に、窒素ガスを入ガス流路3から反応器2に流量5L/分、温度300℃の条件で5分間供給してRhPt担持CeO粒子(Rh:Pt=9:1)からなる触媒層(NO分解触媒1)に前処理を施した。 Next, nitrogen gas was supplied from the inlet gas flow path 3 to the reactor 2 at a flow rate of 5 L/min and a temperature of 300° C. for 5 minutes to form a catalyst layer composed of RhPt-supported CeO 2 particles (Rh:Pt=9:1). (N 2 O decomposition catalyst 1) was pretreated.

その後、NOと水分とを含有するガスAにHを混合した入ガスB(NO(500ppm)+H(3000ppm)+HO(5%)+N(残部))を、入ガス流路3から反応器2に流量5L/分、温度60℃又は100℃の条件で供給し、NOの分解反応を行った。定常状態におけるNO分解触媒1への入ガスB及び出ガスCのNO濃度を非分散赤外線ガス分析計(NDIR)を用いて測定し、NO分解率を求めた。その結果を表1に示す。 After that, input gas B (N 2 O (500 ppm) + H 2 (3000 ppm) + H 2 O (5%) + N 2 (balance)) obtained by mixing H 2 with gas A containing N 2 O and moisture was introduced. The gas was supplied from the gas passage 3 to the reactor 2 under conditions of a flow rate of 5 L/min and a temperature of 60° C. or 100° C., and N 2 O decomposition reaction was performed. The N 2 O concentrations of the incoming gas B and the outgoing gas C to the N 2 O decomposition catalyst 1 in a steady state were measured using a non-dispersive infrared gas analyzer (NDIR) to obtain the N 2 O decomposition rate. Table 1 shows the results.

(実施例2)
調製例1で得られたRhPt担持CeO粒子(Rh:Pt=9:1)の代わりに調製例2で得られたRhPt担持CeO粒子(Rh:Pt=7:3)1gを用いた以外は実施例1と同様にしてNOの分解反応を行い、定常状態におけるNO分解触媒1への入ガスB及び出ガスCのNO濃度を測定し、NO分解率を求めた。その結果を表1に示す。
(Example 2)
Except that 1 g of the RhPt - supported CeO2 particles (Rh:Pt=7:3) obtained in Preparation Example 2 was used instead of the RhPt-supported CeO2 particles (Rh:Pt=9:1) obtained in Preparation Example 1. performs the N 2 O decomposition reaction in the same manner as in Example 1, measures the N 2 O concentration of the incoming gas B and the outgoing gas C to the N 2 O decomposition catalyst 1 in a steady state, and calculates the N 2 O decomposition rate. asked. Table 1 shows the results.

(実施例3)
調製例1で得られたRhPt担持CeO粒子(Rh:Pt=9:1)の代わりに調製例3で得られたRhPt担持CeO粒子(Rh:Pt=5:5)1gを用いた以外は実施例1と同様にしてNOの分解反応を行い、定常状態におけるNO分解触媒1への入ガスB及び出ガスCのNO濃度を測定し、NO分解率を求めた。その結果を表1に示す。
(Example 3)
Except for using 1 g of the RhPt-supported CeO 2 particles (Rh:Pt=5:5) obtained in Preparation Example 3 instead of the RhPt-supported CeO 2 particles (Rh:Pt=9:1) obtained in Preparation Example 1. performs the N 2 O decomposition reaction in the same manner as in Example 1, measures the N 2 O concentration of the incoming gas B and the outgoing gas C to the N 2 O decomposition catalyst 1 in a steady state, and calculates the N 2 O decomposition rate. asked. Table 1 shows the results.

(実施例4)
調製例1で得られたRhPt担持CeO粒子(Rh:Pt=9:1)の代わりに調製例4で得られたRhPt担持CeO粒子(Rh:Pt=3:7)1gを用いた以外は実施例1と同様にしてNOの分解反応を行い、定常状態におけるNO分解触媒1への入ガスB及び出ガスCのNO濃度を測定し、NO分解率を求めた。その結果を表1に示す。
(Example 4)
Except that 1 g of RhPt-supported CeO 2 particles (Rh:Pt=3:7) obtained in Preparation Example 4 was used instead of the RhPt-supported CeO 2 particles (Rh:Pt=9:1) obtained in Preparation Example 1. performs the N 2 O decomposition reaction in the same manner as in Example 1, measures the N 2 O concentration of the incoming gas B and the outgoing gas C to the N 2 O decomposition catalyst 1 in a steady state, and calculates the N 2 O decomposition rate. asked. Table 1 shows the results.

(比較例1)
調製例1で得られたRhPt担持CeO粒子(Rh:Pt=9:1)の代わりに比較調製例1で得られたRh担持CeO粒子(Rh:Pt=10:0)1gを用いた以外は実施例1と同様にしてNOの分解反応を行い、定常状態におけるNO分解触媒1への入ガスB及び出ガスCのNO濃度を測定し、NO分解率を求めた。その結果を表1に示す。
(Comparative example 1)
1 g of RhPt - supported CeO2 particles (Rh:Pt=10:0) obtained in Comparative Preparation Example 1 was used instead of the RhPt - supported CeO2 particles (Rh:Pt=9:1) obtained in Preparation Example 1. Except for this, the N 2 O decomposition reaction was carried out in the same manner as in Example 1, and the N 2 O concentrations of the incoming gas B and the outgoing gas C to the N 2 O decomposition catalyst 1 in a steady state were measured, and the N 2 O decomposition rate was determined. asked for Table 1 shows the results.

(比較例2)
調製例1で得られたRhPt担持CeO粒子(Rh:Pt=9:1)の代わりに比較調製例2で得られたPt担持CeO粒子(Rh:Pt=0:10)1gを用いた以外は実施例1と同様にしてNOの分解反応(温度60℃のみ)を行い、定常状態におけるNO分解触媒1への入ガスB及び出ガスCのNO濃度を測定し、NO分解率を求めた。その結果を表1に示す。
(Comparative example 2)
1 g of Pt-supported CeO 2 particles (Rh:Pt=0:10) obtained in Comparative Preparation Example 2 was used instead of the RhPt-supported CeO 2 particles (Rh:Pt=9:1) obtained in Preparation Example 1. The decomposition reaction of N 2 O was performed in the same manner as in Example 1 except that the temperature was 60° C. only, and the N 2 O concentrations of the incoming gas B and the outgoing gas C to the N 2 O decomposition catalyst 1 in a steady state were measured. , the N 2 O decomposition rate was obtained. Table 1 shows the results.

(参考例1)
Oと水分とを含有するガスAにHを混合した入ガスB(NO(500ppm)+H(3000ppm)+HO(5%)+N(残部))を、入ガス流路3から反応器2に流量5L/分、温度150℃又は200℃の条件で供給した以外は実施例1と同様にしてNOの分解反応を行い、定常状態におけるNO分解触媒1への入ガスB及び出ガスCのNO濃度を測定し、NO分解率を求めた。その結果を表1に示す。
(Reference example 1)
Input gas B (N 2 O (500 ppm) + H 2 (3000 ppm) + H 2 O (5%) + N 2 (balance)), which is a mixture of H 2 in gas A containing N 2 O and moisture, is added to the input gas stream. N 2 O decomposition reaction was carried out in the same manner as in Example 1, except that the flow rate was 5 L/min and the temperature was 150° C. or 200° C., and the N 2 O decomposition catalyst 1 was obtained in a steady state. The N 2 O concentrations of the incoming gas B and the outgoing gas C were measured to obtain the N 2 O decomposition rate. Table 1 shows the results.

(参考例2)
調製例1で得られたRhPt担持CeO粒子(Rh:Pt=9:1)の代わりに調製例2で得られたRhPt担持CeO粒子(Rh:Pt=7:3)1gを用いた以外は参考例1と同様にしてNOの分解反応を行い、定常状態におけるNO分解触媒1への入ガスB及び出ガスCのNO濃度を測定し、NO分解率を求めた。その結果を表1に示す。
(Reference example 2)
Except that 1 g of the RhPt - supported CeO2 particles (Rh:Pt=7:3) obtained in Preparation Example 2 was used instead of the RhPt-supported CeO2 particles (Rh:Pt=9:1) obtained in Preparation Example 1. performs an N 2 O decomposition reaction in the same manner as in Reference Example 1, measures the N 2 O concentration of the incoming gas B and the outgoing gas C to the N 2 O decomposition catalyst 1 in a steady state, and calculates the N 2 O decomposition rate. asked. Table 1 shows the results.

(参考例3)
調製例1で得られたRhPt担持CeO粒子(Rh:Pt=9:1)の代わりに調製例3で得られたRhPt担持CeO粒子(Rh:Pt=5:5)1gを用いた以外は参考例1と同様にしてNOの分解反応を行い、定常状態におけるNO分解触媒1への入ガスB及び出ガスCのNO濃度を測定し、NO分解率を求めた。その結果を表1に示す。
(Reference example 3)
Except for using 1 g of the RhPt-supported CeO 2 particles (Rh:Pt=5:5) obtained in Preparation Example 3 instead of the RhPt-supported CeO 2 particles (Rh:Pt=9:1) obtained in Preparation Example 1. performs an N 2 O decomposition reaction in the same manner as in Reference Example 1, measures the N 2 O concentration of the incoming gas B and the outgoing gas C to the N 2 O decomposition catalyst 1 in a steady state, and calculates the N 2 O decomposition rate. asked. Table 1 shows the results.

(参考例4)
調製例1で得られたRhPt担持CeO粒子(Rh:Pt=9:1)の代わりに調製例4で得られたRhPt担持CeO粒子(Rh:Pt=3:7)1gを用いた以外は参考例1と同様にしてNOの分解反応を行い、定常状態におけるNO分解触媒1への入ガスB及び出ガスCのNO濃度を測定し、NO分解率を求めた。その結果を表1に示す。
(Reference example 4)
Except that 1 g of RhPt-supported CeO 2 particles (Rh:Pt=3:7) obtained in Preparation Example 4 was used instead of the RhPt-supported CeO 2 particles (Rh:Pt=9:1) obtained in Preparation Example 1. performs an N 2 O decomposition reaction in the same manner as in Reference Example 1, measures the N 2 O concentration of the incoming gas B and the outgoing gas C to the N 2 O decomposition catalyst 1 in a steady state, and calculates the N 2 O decomposition rate. asked. Table 1 shows the results.

(参考例5)
調製例1で得られたRhPt担持CeO粒子(Rh:Pt=9:1)の代わりに比較調製例1で得られたRh担持CeO粒子(Rh:Pt=10:0)1gを用いた以外は参考例1と同様にしてNOの分解反応を行い、定常状態におけるNO分解触媒1への入ガスB及び出ガスCのNO濃度を測定し、NO分解率を求めた。その結果を表1に示す。
(Reference example 5)
1 g of RhPt - supported CeO2 particles (Rh:Pt=10:0) obtained in Comparative Preparation Example 1 was used instead of the RhPt - supported CeO2 particles (Rh:Pt=9:1) obtained in Preparation Example 1. Except for this, the N 2 O decomposition reaction was performed in the same manner as in Reference Example 1, and the N 2 O concentrations of the incoming gas B and the outgoing gas C to the N 2 O decomposition catalyst 1 in a steady state were measured, and the N 2 O decomposition rate was determined. asked for Table 1 shows the results.

(比較例3)
Oを含有する入ガスB(NO(500ppm)+H(0ppm)+HO(0%)+N(残部))を、入ガス流路3から反応器2に流量5L/分、温度300℃の条件で供給した以外は実施例1と同様にしてNOの分解反応を行い、定常状態におけるNO分解触媒1への入ガスB及び出ガスCのNO濃度を測定し、NO分解率を求めた。その結果を表1に示す。
(Comparative Example 3)
Inlet gas B containing N 2 O (N 2 O (500 ppm) + H 2 (0 ppm) + H 2 O (0%) + N 2 (remainder)) was fed from the inlet gas flow path 3 to the reactor 2 at a flow rate of 5 L/min. , N 2 O decomposition reaction was performed in the same manner as in Example 1 except that the temperature was 300 ° C. was measured to obtain the N 2 O decomposition rate. Table 1 shows the results.

(比較例4)
調製例1で得られたRhPt担持CeO粒子(Rh:Pt=9:1)の代わりに調製例2で得られたRhPt担持CeO粒子(Rh:Pt=7:3)1gを用いた以外は比較例3と同様にしてNOの分解反応を行い、定常状態におけるNO分解触媒1への入ガスB及び出ガスCのNO濃度を測定し、NO分解率を求めた。その結果を表1に示す。
(Comparative Example 4)
Except that 1 g of the RhPt - supported CeO2 particles (Rh:Pt=7:3) obtained in Preparation Example 2 was used instead of the RhPt-supported CeO2 particles (Rh:Pt=9:1) obtained in Preparation Example 1. performs an N 2 O decomposition reaction in the same manner as in Comparative Example 3, measures the N 2 O concentration of the incoming gas B and the outgoing gas C to the N 2 O decomposition catalyst 1 in a steady state, and calculates the N 2 O decomposition rate. asked. Table 1 shows the results.

(比較例5)
調製例1で得られたRhPt担持CeO粒子(Rh:Pt=9:1)の代わりに調製例3で得られたRhPt担持CeO粒子(Rh:Pt=5:5)1gを用いた以外は比較例3と同様にしてNOの分解反応を行い、定常状態におけるNO分解触媒1への入ガスB及び出ガスCのNO濃度を測定し、NO分解率を求めた。その結果を表1に示す。
(Comparative Example 5)
Except for using 1 g of the RhPt-supported CeO 2 particles (Rh:Pt=5:5) obtained in Preparation Example 3 instead of the RhPt-supported CeO 2 particles (Rh:Pt=9:1) obtained in Preparation Example 1. performs an N 2 O decomposition reaction in the same manner as in Comparative Example 3, measures the N 2 O concentration of the incoming gas B and the outgoing gas C to the N 2 O decomposition catalyst 1 in a steady state, and calculates the N 2 O decomposition rate. asked. Table 1 shows the results.

(比較例6)
調製例1で得られたRhPt担持CeO粒子(Rh:Pt=9:1)の代わりに調製例4で得られたRhPt担持CeO粒子(Rh:Pt=3:7)1gを用いた以外は比較例3と同様にしてNOの分解反応を行い、定常状態におけるNO分解触媒1への入ガスB及び出ガスCのNO濃度を測定し、NO分解率を求めた。その結果を表1に示す。
(Comparative Example 6)
Except that 1 g of RhPt-supported CeO 2 particles (Rh:Pt=3:7) obtained in Preparation Example 4 was used instead of the RhPt-supported CeO 2 particles (Rh:Pt=9:1) obtained in Preparation Example 1. performs an N 2 O decomposition reaction in the same manner as in Comparative Example 3, measures the N 2 O concentration of the incoming gas B and the outgoing gas C to the N 2 O decomposition catalyst 1 in a steady state, and calculates the N 2 O decomposition rate. asked. Table 1 shows the results.

(比較例7)
調製例1で得られたRhPt担持CeO粒子(Rh:Pt=9:1)の代わりに比較調製例1で得られたRh担持CeO粒子(Rh:Pt=10:0)1gを用いた以外は比較例3と同様にしてNOの分解反応を行い、定常状態におけるNO分解触媒1への入ガスB及び出ガスCのNO濃度を測定し、NO分解率を求めた。その結果を表1に示す。
(Comparative Example 7)
1 g of RhPt - supported CeO2 particles (Rh:Pt=10:0) obtained in Comparative Preparation Example 1 was used instead of the RhPt - supported CeO2 particles (Rh:Pt=9:1) obtained in Preparation Example 1. Except for this, the N 2 O decomposition reaction was performed in the same manner as in Comparative Example 3, and the N 2 O concentrations of the incoming gas B and the outgoing gas C to the N 2 O decomposition catalyst 1 in a steady state were measured, and the N 2 O decomposition rate was determined. asked for Table 1 shows the results.

(比較例8)
調製例1で得られたRhPt担持CeO粒子(Rh:Pt=9:1)の代わりに比較調製例2で得られたPt担持CeO粒子(Rh:Pt=0:10)1gを用いた以外は比較例3と同様にしてNOの分解反応を行い、定常状態におけるNO分解触媒1への入ガスB及び出ガスCのNO濃度を測定し、NO分解率を求めた。その結果を表1に示す。
(Comparative Example 8)
1 g of Pt-supported CeO 2 particles (Rh:Pt=0:10) obtained in Comparative Preparation Example 2 was used instead of the RhPt-supported CeO 2 particles (Rh:Pt=9:1) obtained in Preparation Example 1. The decomposition reaction of N 2 O was performed in the same manner as in Comparative Example 3 except that asked for Table 1 shows the results.

Figure 2022187305000002
Figure 2022187305000002

表1に示した結果に基づいて、各分解温度について、各NO分解触媒のNO分解率を示すグラフを作成した。その結果を図3~図7に示す。 Based on the results shown in Table 1, a graph was created showing the N 2 O decomposition rate of each N 2 O decomposition catalyst for each decomposition temperature. The results are shown in FIGS. 3 to 7. FIG.

図3~図4に示したように、RhとPtとを含有するNO分解触媒を備えているNO浄化システムは、60℃で作動させると、Rhのみを含有するNO分解触媒を備えているNO浄化システム及びPtのみを含有するNO分解触媒を備えているNO浄化システムに比べて、また、100℃で作動させると、Rhのみを含有するNO分解触媒を備えているNO浄化システムに比べて、定常状態でのNO分解率が高くなることがわかった。 As shown in FIGS. 3-4, the N 2 O purification system with the N 2 O decomposition catalyst containing Rh and Pt, when operated at 60° C., produced N 2 O decomposition containing only Rh. Compared to the N 2 O purification system with a catalyst and the N 2 O purification system with an N 2 O decomposition catalyst containing only Pt, and operated at 100° C., N 2 containing only Rh It has been found that steady-state N 2 O decomposition rates are higher compared to N 2 O purification systems with O decomposition catalysts.

一方、図5~図6に示したように、150℃又は200℃で作動させた場合には、RhとPtとを含有するNO分解触媒を備えているNO浄化システム及びRhのみを含有するNO分解触媒を備えているNO浄化システムのいずれにおいても、定常状態でのNO分解率は高くなった。 On the other hand, as shown in FIGS. 5-6, when operated at 150° C. or 200° C., the N 2 O purification system with the N 2 O decomposition catalyst containing Rh and Pt and the In any of the N2O cleanup systems with N2O cracking catalysts containing , the steady state N2O cracking rate was increased.

他方、図7に示したように、Hを供給せずに300℃で作動させた場合には、RhとPtとを含有するNO分解触媒を備えているNO浄化システム、Rhのみを含有するNO分解触媒を備えているNO浄化システム、及びPtのみを含有するNO分解触媒を備えているNO浄化システムのいずれにおいても、定常状態でのNO分解率は低くなった。 On the other hand, as shown in FIG. 7, when operated at 300° C. without supplying H 2 , the N 2 O purification system with the N 2 O decomposition catalyst containing Rh and Pt, Rh In both the N 2 O purification system with the N 2 O decomposition catalyst containing only Pt and the N 2 O purification system with the N 2 O decomposition catalyst containing only Pt, the steady state N 2 The O decomposition rate became low.

また、表1に示した結果に基づいて、各NO分解触媒について、各分解温度におけるNO分解率を示すグラフを作成した。その結果を図8~図12に示す。 Further, based on the results shown in Table 1, a graph showing the N 2 O decomposition rate at each decomposition temperature was created for each N 2 O decomposition catalyst. The results are shown in FIGS. 8 to 12. FIG.

図8~図11に示したように、RhとPtとを含有するNO分解触媒を備えているNO浄化システムは、100℃以下の温度で作動させても、定常状態での高いNO分解率が維持されることがわかった。 As shown in FIGS. 8-11, N 2 O purification systems with N 2 O decomposition catalysts containing Rh and Pt exhibit high steady-state It was found that the N 2 O decomposition rate was maintained.

一方、図12に示したように、Rhのみを含有するNO分解触媒を備えているNO浄化システムは、150℃又は200℃で作動させると、定常状態でのNO分解率は高くなったが、100℃以下の温度で作動させると、定常状態でのNO分解率が低くなることがわかった。 On the other hand, as shown in FIG. 12, the N 2 O purification system with the N 2 O decomposition catalyst containing only Rh, when operated at 150° C. or 200° C., showed a steady-state N 2 O decomposition rate of However, it was found that operating at temperatures below 100° C. resulted in lower steady-state N 2 O decomposition rates.

以上の結果から、RhとPtとを含有するNO分解触媒を備えているNO浄化システムは、100℃以下の低温下で作動させても、定常状態において、優れたNO分解性能を発揮することがわかった。 From the above results, the N 2 O purification system equipped with the N 2 O decomposition catalyst containing Rh and Pt exhibits excellent N 2 O decomposition in a steady state even when operated at a low temperature of 100° C. or less. It was found to perform well.

以上説明したように、本発明によれば、100℃以下の低温下、定常状態において高い分解率でNOを分解除去することが可能となる。 As described above, according to the present invention, it is possible to decompose and remove N 2 O at a low temperature of 100° C. or less and in a steady state with a high decomposition rate.

したがって、本発明の亜酸化窒素浄化システムは、燃焼炉や自動車等から排出される燃焼排ガスや加熱装置や化学プラント等から排出される各種産業排ガスが100℃以下の温度になった場合であっても、これらの排ガスを加熱することなく、これらの排ガス中に含まれるNOを高い分解率で浄化することができるシステムとして有用である。 Therefore, the nitrous oxide purification system of the present invention can be used even when the temperature of combustion exhaust gases emitted from combustion furnaces, automobiles, etc., and various industrial exhaust gases emitted from heating devices, chemical plants, etc. reaches a temperature of 100 ° C. or less. is also useful as a system capable of purifying N 2 O contained in these exhaust gases at a high decomposition rate without heating these exhaust gases.

1:NO分解触媒
2:反応器
3:入ガス流路
4:水素供給部
5:出ガス流路
6:温度センサー
A:NOを含むガス
B:入ガス(NOと水素とを含むガス)
C:出ガス(NOが浄化されたガス)
1: N 2 O decomposition catalyst 2: Reactor 3: Incoming gas flow path 4: Hydrogen supply unit 5: Outgoing gas flow path 6: Temperature sensor A: Gas containing N 2 O B: Incoming gas (N 2 O and hydrogen and gas)
C: outgassing (gas from which N 2 O has been purified)

Claims (3)

水素(H)の存在下で亜酸化窒素(NO)を分解するためのNO分解触媒を備える反応器と、
前記反応器にHを連続的に供給するための水素供給部と、
前記反応器内の温度を0~100℃の範囲内に制御するための温度制御装置と、
を備えており、
前記NO分解触媒がロジウム(Rh)と白金(Pt)とを含有するものである
ことを特徴とする亜酸化窒素浄化システム。
a reactor comprising a N2O decomposition catalyst for decomposing nitrous oxide ( N2O) in the presence of hydrogen ( H2);
a hydrogen supply for continuously supplying H2 to the reactor;
a temperature control device for controlling the temperature in the reactor within a range of 0 to 100° C.;
and
A nitrous oxide purification system, wherein the N 2 O decomposition catalyst contains rhodium (Rh) and platinum (Pt).
前記NO分解触媒におけるRhとPtのモル比がRh:Pt=95:5~20:80の範囲内にあることを特徴とする請求項1に記載の亜酸化窒素浄化システム。 2. The nitrous oxide purification system according to claim 1, wherein the molar ratio of Rh and Pt in said N 2 O decomposition catalyst is within the range of Rh:Pt=95:5 to 20:80. 請求項1又は2に記載の亜酸化窒素浄化システムを用いて亜酸化窒素(NO)を浄化する方法であって、
前記反応器にNOを含むガスを供給するとともに、前記水素供給部から前記反応器に水素(H)を連続的に供給し、0~100℃の範囲内の温度下、Hの存在下でNOを前記NO分解触媒に接触させることを特徴とする亜酸化窒素浄化方法。
A method for purifying nitrous oxide (N 2 O) using the nitrous oxide purification system according to claim 1 or 2,
A gas containing N 2 O is supplied to the reactor, and hydrogen (H 2 ) is continuously supplied from the hydrogen supply unit to the reactor, and H 2 is added at a temperature within the range of 0 to 100 ° C. A method for purifying nitrous oxide, comprising bringing N 2 O into contact with the N 2 O decomposition catalyst in the presence of said N 2 O decomposition catalyst.
JP2021095277A 2021-06-07 2021-06-07 Nitrous oxide purification system and nitrous oxide purification method using the same Pending JP2022187305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021095277A JP2022187305A (en) 2021-06-07 2021-06-07 Nitrous oxide purification system and nitrous oxide purification method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021095277A JP2022187305A (en) 2021-06-07 2021-06-07 Nitrous oxide purification system and nitrous oxide purification method using the same

Publications (1)

Publication Number Publication Date
JP2022187305A true JP2022187305A (en) 2022-12-19

Family

ID=84525634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021095277A Pending JP2022187305A (en) 2021-06-07 2021-06-07 Nitrous oxide purification system and nitrous oxide purification method using the same

Country Status (1)

Country Link
JP (1) JP2022187305A (en)

Similar Documents

Publication Publication Date Title
JP5540421B2 (en) Method for removing nitrogen oxides in exhaust gas
US8062601B2 (en) Emission SCR NOX aftertreatment system having reduced SO3 generation and improved durability
EP0707883B1 (en) Catalyst and method for purifying exhaust gases
JP2006289211A (en) Ammonia oxidation catalyst
JP4189337B2 (en) Exhaust gas purification system
JP6107487B2 (en) N2O decomposition catalyst and N2O-containing gas decomposition method using the same
JP2006026635A (en) Method of removing nitrogen oxides contained in exhaust gas
JP2009208039A (en) Catalyst for removing particulate matter and method for removing particulate matter by using the same
JP2022187305A (en) Nitrous oxide purification system and nitrous oxide purification method using the same
JP2008238069A (en) Purification device for exhaust gas, purification method for exhaust gas, and purification catalyst
JP4704964B2 (en) NOx purification system and NOx purification method
JP2006150223A (en) Exhaust-gas cleaning filter, production method of the filter and exhaust-gas cleaning apparatus
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP2009138591A (en) Exhaust emission control device, exhaust emission control method, and nox emission control catalyst of thermal engine
WO2014125934A1 (en) Exhaust gas purifying apparatus, exhaust gas purifying method and exhaust gas purifying catalyst for internal combustion engines
JP4639381B2 (en) Exhaust gas purification device
JP2023132508A (en) Nitrous oxide purification system and nitrous oxide purification method using the same
JP2002349248A (en) Nitrogen oxide in diesel engine exhaust gas removing method and device
JP2011050855A (en) Exhaust gas purifying apparatus
KR101047362B1 (en) Simultaneous Reduction of Nitrous Oxide and Nitrogen Monoxide Using Carbon Monoxide Reductants on Precious Metal Catalysts Supported on Mixed Metal Oxides
KR20080101451A (en) Purifying device for exhaust gas of internal combusition engine
KR100365965B1 (en) Plasma/Catalyst System for Reduction of Nox in Diesel Engine Exhaust Gas
JP2010184171A (en) Catalyst and method for purification of exhaust gas
JP2009127585A (en) Exhaust emission control device
JP4051514B2 (en) Combustion exhaust gas purification method and combustion exhaust gas purification device