KR100365965B1 - Plasma/Catalyst System for Reduction of Nox in Diesel Engine Exhaust Gas - Google Patents

Plasma/Catalyst System for Reduction of Nox in Diesel Engine Exhaust Gas Download PDF

Info

Publication number
KR100365965B1
KR100365965B1 KR1020000008400A KR20000008400A KR100365965B1 KR 100365965 B1 KR100365965 B1 KR 100365965B1 KR 1020000008400 A KR1020000008400 A KR 1020000008400A KR 20000008400 A KR20000008400 A KR 20000008400A KR 100365965 B1 KR100365965 B1 KR 100365965B1
Authority
KR
South Korea
Prior art keywords
plasma
nox
reactor
catalyst system
exhaust gas
Prior art date
Application number
KR1020000008400A
Other languages
Korean (ko)
Other versions
KR20010082877A (en
Inventor
전배혁
이관영
전광민
이대원
류재홍
송승진
이형상
Original Assignee
전배혁
이관영
전광민
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전배혁, 이관영, 전광민 filed Critical 전배혁
Priority to KR1020000008400A priority Critical patent/KR100365965B1/en
Publication of KR20010082877A publication Critical patent/KR20010082877A/en
Application granted granted Critical
Publication of KR100365965B1 publication Critical patent/KR100365965B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3865Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation drinking cups or like containers
    • B65D81/3869Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation drinking cups or like containers formed with double walls, i.e. hollow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • B65D77/10Container closures formed after filling
    • B65D77/20Container closures formed after filling by applying separate lids or covers, i.e. flexible membrane or foil-like covers
    • B65D77/2024Container closures formed after filling by applying separate lids or covers, i.e. flexible membrane or foil-like covers the cover being welded or adhered to the container
    • B65D77/2028Means for opening the cover other than, or in addition to, a pull tab
    • B65D77/2032Means for opening the cover other than, or in addition to, a pull tab by peeling or tearing the cover from the container
    • B65D77/204Means for opening the cover other than, or in addition to, a pull tab by peeling or tearing the cover from the container the cover having an unsealed portion for initiating removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • B65D85/72Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for for edible or potable liquids, semiliquids, or plastic or pasty materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • B65D85/72Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for for edible or potable liquids, semiliquids, or plastic or pasty materials
    • B65D85/78Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for for edible or potable liquids, semiliquids, or plastic or pasty materials for ice-cream

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

본 발명은 디젤엔진 배기가스의 질소산화물(Nox)를 저감시키기 위한 플라즈마/촉매 시스템에 관한 것이다.The present invention relates to a plasma / catalyst system for reducing nitrogen oxides (Nox) in diesel exhaust gas.

본 발명의 플라즈마/촉매 시스템은 금속재 반응관이 양극이고 금속재 반응관의 중심부의 철선이 음극인, 직류펄스전원(DC pulse power)이 공급되는 플라즈마 반응기와 플라즈마 반응기에 직렬로 연결된 Ag/Al2O3촉매가 충전된 충전탑 형태의 촉매 반응기로 이루어지며, 처리하고자 하는 디젤엔진 배기가스가 상압에서 운전되는 플라즈마 반응기와 촉매 반응기를 순차적으로 거쳐가며 처리된다.In the plasma / catalyst system of the present invention, Ag / Al 2 O connected in series to a plasma reactor and a plasma reactor supplied with a DC pulse power, wherein the metal reaction tube is an anode and the iron wire in the center of the metal reaction tube is a cathode. It consists of a catalytic reactor in the form of a packed tower filled with three catalysts, and the diesel engine exhaust gas to be treated is sequentially processed through a plasma reactor and a catalytic reactor operated at atmospheric pressure.

Description

디젤엔진 배기가스의 Nox 저감을 위한 플라즈마/촉매 시스템 {Plasma/Catalyst System for Reduction of Nox in Diesel Engine Exhaust Gas}Plasma / Catalyst System for Reduction of Nox in Diesel Engine Exhaust Gas}

본 발명은 내연기관의 배기가스 특히, 디젤엔진 배기가스의 질소산화물(Nox)를 저감시키기 플라즈마/촉매 시스템에 관한 것이다.The present invention relates to a plasma / catalyst system for reducing nitrogen oxides (Nox) in exhaust gases of internal combustion engines, in particular diesel engine exhaust gases.

열기관이나 생산공정에서 생성되는 유해한 대기오염물질의 저감방법으로는 촉매를 이용한 선택적 산화·환원법, 첨가제의 사용, 후연소 또는 포집 등의 방법이 채택되고 있다.As a method of reducing harmful air pollutants generated in a heat engine or a production process, selective oxidation and reduction methods using a catalyst, use of additives, post combustion or collection, etc. have been adopted.

그러나, 상기 방법들은 그 적용범위가 한정되어 자동차와 같이 연소조건이 다양하게 변화하면서 이동하는 오염원에는 적용하기 어려운 단점이 있다. 특히, 디젤엔진 배기가스는 공연비가 희박한 조건에서 운전되기 때문에 산소 및 질소산화물(Nox)의 농도가 높고, Nox와 매연(particulate matter, PM)은 특성상 한 쪽을 줄이면 다른 쪽이 늘어나는 트레이드 오프(trade off)의 관계에 있어 이를 동시에 저감시키기가 매우 어렵다. 매연은 엔진을 개선하고 디젤분진필터(diesel particulate filter, DPF)를 사용함으로써 규제치를 충분히 만족시킬 수 있으나 Nox는 아직 후처리 측면에서 아직 만족할 만한 방법이 제시되지 않고 있다.However, the above methods have a disadvantage in that they are difficult to be applied to pollutants that move while varying combustion conditions such as automobiles due to their limited application range. In particular, since diesel engine exhaust gas is operated under conditions where the air-fuel ratio is rare, the concentration of oxygen and nitrogen oxides (NOx) is high, and the characteristics of Nox and particulate matter (PM) decrease when one side is reduced, and the other side increases. off), it is very difficult to reduce it at the same time. Soot can meet the regulations by improving the engine and using diesel particulate filters (DPF), but Nox has not yet offered a satisfactory method for post-processing.

Nox의 저감방법으로는 배기가스 재순환(exhaust gas recirculation, EGR) 방법과 촉매를 이용하는 방법이 제시되고 있으나 배기가스 재순환(EGR)은 엔진의 열효율과 내구성을 감소시키고 매연을 증가시키는 문제점이 있고, 촉매를 이용하는 방법은 디젤엔진과 같이 산소농도가 높은 경우에는 Nox가 효과적으로 환원되지 않는 단점이 있다.As a method of reducing NOx, exhaust gas recirculation (EGR) method and a method using a catalyst have been proposed, but exhaust gas recirculation (EGR) has a problem of reducing the thermal efficiency and durability of the engine and increasing the smoke, and the catalyst. Using the method has a disadvantage in that Nox is not effectively reduced when the oxygen concentration is high, such as a diesel engine.

최근에는 플라즈마를 이용한 기술 특히, 플라즈마 반응과 촉매에 의한 반응을 동시에 수행하는 플라즈마/촉매 복합 시스템이 활발히 연구되고 있는데 플라즈마 반응에 의해 생성되는 반응성이 높은 중간 생성물은 촉매 반응기의 촉매활성을높이고 작동온도의 범위를 넓히는 효과가 있는 것으로 보고되고 있다. [M. Iwamoto et al., Appl. Catal. B: Environ. 5, L1-L5 (1994)]Recently, plasma-based catalysts, especially plasma / catalyst systems that simultaneously perform plasma and catalyst reactions, have been actively studied. Highly reactive intermediate products produced by plasma reactions increase the catalytic activity of the catalytic reactor and operate temperatures. It is reported that there is an effect of widening the range of. [M. Iwamoto et al., Appl. Catal. B: Environ. 5, L1-L5 (1994)]

본 발명의 목적은 디젤엔진 배기가스에서 Nox를 고효율로 제거하는 플라즈마/촉매 시스템을 제공하는 것이다.It is an object of the present invention to provide a plasma / catalyst system that removes NOx from diesel engine exhaust gas with high efficiency.

도 1은 본 발명의 플라즈마/촉매 시스템이 포함된 측정장치의 개요도이다.1 is a schematic diagram of a measuring device including a plasma / catalyst system of the present invention.

도 2는 본 발명의 시스템중 플라즈마 반응기의 개요도이다.2 is a schematic diagram of a plasma reactor in a system of the present invention.

** 도면의 주요부분에 대한 부호의 설명 **** Explanation of symbols for main parts of drawings **

11: 플라즈마 반응기 12: 촉매 반응기11: plasma reactor 12: catalytic reactor

13: DC펄스파워 14: 오실로스코프13: DC pulse power 14: oscilloscope

15: Nox측정기 16: 가스크로마토그래피15: Nox Meter 16: Gas Chromatography

17: 가스 18: 질량유량계17: gas 18: mass flow meter

19: 예비히터 111: 양극19: preheater 111: anode

112: 음극 113: 열전대112: cathode 113: thermocouple

114: 압력계114: pressure gauge

상기 목적을 달성하기 위한 본 발명의 플라즈마/촉매 시스템은 금속재 반응관이 양극이고 금속재 반응관의 중심부의 철선이 음극인, 직류펄스전원(DC pulse power)이 공급되는 플라즈마 반응기(11)와 플라즈마 반응기에 직렬로 연결된 Ag/Al2O3촉매가 충전된 충전탑 형태의 촉매 반응기(12)로 이루어지며, 처리하고자 하는 디젤엔진 배기가스가 플라즈마 반응기와 촉매 반응기를 순차적으로 거치며 처리되는 것을 특징으로 한다.Plasma / catalyst system of the present invention for achieving the above object is a plasma reactor 11 and plasma reactor is supplied with a DC pulse power, the metal reaction tube is an anode and the iron wire in the center of the metal reaction tube is a cathode It is composed of a catalytic reactor (12) of a packed tower type packed with an Ag / Al 2 O 3 catalyst connected in series, characterized in that the diesel engine exhaust gas to be treated is sequentially processed through a plasma reactor and a catalytic reactor. .

플라즈마 반응기의 형태는 도 2에 도시하였다. 양극(anode)(111)은 반응관 중심부를 지나는 철선(steel wire)이고 음극(cathode)(112)은 금속재 반응관 그 자체이다.The form of the plasma reactor is shown in FIG. 2. The anode 111 is a steel wire passing through the center of the reaction tube and the cathode 112 is a metal reaction tube itself.

플라즈마 반응기는 배기가스 단위유량당 10-100J/L의 에너지를 공급하며, 상압에서 운전된다.The plasma reactor supplies 10-100 J / L of energy per unit flow of exhaust gas and is operated at atmospheric pressure.

촉매 반응기에는 AgNO3수용액을 γ-Al2O3에 담지시켜 소성하는 공지방법에 의하여 제조된 촉매를 충전하며, 운전온도는 200-450℃이다.The catalytic reactor was filled with a catalyst prepared by a known method of supporting AgGa 3 aqueous solution in γ-Al 2 O 3 and calcining, and the operating temperature was 200-450 ° C.

처리하고자 하는 배기가스는 플라즈마 반응기와 촉매 반응기를 순차적으로거치게 한다. 플라즈마 반응기에서는 배기가스중의 NO가 NO2로 전환되는 Nox 전환반응이, 촉매 반응기에서는 NO2가 N2로 환원되는 Nox 환원반응이 일어난다. 즉, 플라즈마 반응기에서는 근본적으로 Nox가 제거되지는 않고, NO2가 무해한 N2로 환원되어 Nox가 제거되는 반응은 촉매 반응기에서 일어나는 것이다.The exhaust gas to be treated causes the plasma reactor and the catalytic reactor to pass sequentially. In the plasma reactor, the Nox conversion of NO in the exhaust gas is converted to NO 2, the catalyst in the reactor takes place Nox reduction the NO 2 is reduced to N 2. That is, in the plasma reactor is not without fundamentally Nox is removed, is reduced to N 2 is NO 2 harmless reaction Nox is removed, will take place in the catalytic reactor.

본 발명의 구성은 다음의 실시예에서 더욱 명확해 질 것이다.The construction of the present invention will become more apparent in the following examples.

<실시예><Example>

1. 실험장치1. Experiment apparatus

본 발명의 플라즈마/촉매 시스템의 Nox 저감성능을 측정하기 위하여 도 1과 같이 실험장치를 구성하였다.In order to measure the NOx reduction performance of the plasma / catalyst system of the present invention, an experimental apparatus was configured as shown in FIG. 1.

플라즈마 반응기(11, 도 2)는 내경 36mm, 길이 300mm의 원통형이고, 스테인레스 스틸로 제작하였다. 전극(111)의 직경은 1.4mm이고, 전원은 펄스폭이 약 1μsec이며 펄스 반복율을 조절할 수 있는 DC펄스파워(13)를 사용하였다. 방전시의 전압과 전류는 고전압 프로브(Tektronix P6015)(미도시), 전류측정기(A6302, A503B)(미도시) 및 오실로스코프(LeCroy 140)(14)로 측정 및 기록하였다.The plasma reactor 11 (FIG. 2) was cylindrical with an inner diameter of 36 mm and a length of 300 mm, and made of stainless steel. The diameter of the electrode 111 is 1.4 mm, and the power source uses a DC pulse power 13 that has a pulse width of about 1 μsec and whose pulse repetition rate can be adjusted. The voltage and current during discharge were measured and recorded with a high voltage probe (Tektronix P6015) (not shown), current meters A6302 and A503B (not shown), and an oscilloscope (LeCroy 140) 14.

촉매 반응기(12)는 내경 25mm, 길이 300mm의 연속흐름식 고정층 반응기로서 유리로 제작하였다. 촉매는 반응관 내부에 글래스 필터(glass filter)를 설치하고 이를 통하여 지지하였다. 반응기 내의 온도는 촉매층에 열전대(thermocouple)를 접촉시켜 측정하며 제어하였다.The catalytic reactor 12 was made of glass as a continuous flow fixed bed reactor having an inner diameter of 25 mm and a length of 300 mm. The catalyst was supported by installing a glass filter (glass filter) inside the reaction tube. The temperature in the reactor was measured and controlled by contacting a thermocouple to the catalyst bed.

플라즈마 반응기 및 촉매 반응기를 통과한 시료가스(배기가스)의 Nox농도는 각 반응기 후단에 Nox측정기(Thermo Environmental Instrument, Model 42H)(15)와 가스크로마토그래피(Youngin, 600D)(16)를 연결여 정량적으로 측정하였다. 컬럼으로는 Porapak Q(1/8"o.d.×2m)와 몰레큘라 시브(molecular sieve) 5A(1/8"o.d.×2m)를 사용하였으며, Porapak Q의 온도는 100℃, 몰레큘라 시브의 온도는 25℃로 설정하였다. 그리고, 열전도도 측정기(thermal conductivity detector,TCD)의 온도는 100℃로 설정하였다.The Nox concentration of the sample gas (exhaust gas) passed through the plasma reactor and the catalytic reactor was connected to the Nox measuring instrument (Thermo Environmental Instrument, Model 42H) (15) and gas chromatography (Youngin, 600D) (16) at the rear of each reactor. It was measured quantitatively. Porapak Q (1/8 "od × 2m) and Molecular Sieve 5A (1/8" od × 2m) were used as the column. The temperature of Porapak Q is 100 ℃ and the temperature of Molecular Sieve is It was set at 25 ° C. The temperature of the thermal conductivity detector (TCD) was set to 100 ° C.

시료가스(17)는 순수한 산소, 프로필렌(C3H6), He에 희석된 Nox가스 및 N2에 희석된 Nox가스를 질량유량계(mass flow controller, MFC)(18)를 통하여 일정한 유속으로 반응기에 공급하는 방법으로 제조하였다.Sample gas (17) is a reactor for a constant flow rate of pure oxygen, propylene (C 3 H 6 ), Nox gas diluted in He and Nox gas diluted in N 2 through a mass flow controller (MFC) (18) It was prepared by the method of feeding.

다음은 실시예에서 사용한 시료가스의 조성이다.The following is the composition of the sample gas used in the examples.

구분division NONO NO2 NO 2 O2 O 2 C3H6 C 3 H 6 분위기 가스Atmosphere gas 시료가스 1Sample gas 1 1755ppm1755ppm 145ppm145 ppm 5%5% 1000/2000ppm1000 / 2000ppm HeHe 시료가스 2Sample Gas 2 1900ppm1900 ppm -- 5%5% 1000/2000ppm1000 / 2000ppm N2 N 2

시료가스 2는 디젤엔진 배기가스의 조성과 유사하게 만든 인공 배기가스이고, 시료가스 1은 시료가스 2의 경우 질소농도가 높아 Nox에서 N2로 전환된 양 즉, N2농도를 정확히 측정하기 어려우므로 분위기 가스를 He으로 한 비교가스이다.Sample gas 2 is a man-made exhaust gas made in analogy to the composition of diesel exhaust gas, a sample gas 1 is the case of the sample gas 2 is difficult to exactly measure the amount that is, N 2 concentration converted to N 2 in the Nox increases the nitrogen concentration Therefore, it is a comparative gas in which atmospheric gas is He.

2. 실험방법2. Experimental method

NOx의 저감은 무해한 N2로의 전환으로 이루어져야 하므로 N2농도변화를 정확히 측정하기 위하여 He를 분위기 가스로 한 시료가스 1을 통하여 Nox의 N2로의 저감을 평가하였다.Since NOx reduction should be made by converting to harmless N 2 , the reduction of Nox to N 2 was evaluated through sample gas 1 using He as an atmospheric gas to accurately measure the change in N 2 concentration.

시료가스는 예비히터(19)로 200℃까지 승온시켜 1L/min의 유속으로 플라즈마 반응기로 유입시켰다. 플라즈마 반응기는 200℃에서 코로나 방전되도록 하였고, 촉매 반응기는 250℃-550℃에서 운전하였다. 정상상태에서 Nox 측정기와 가스크로마토그래피를 사용하여 배출가스에서의 Nox의 저감량과 Nox의 N2로의 전환율을 동시에 측정하였다. 단, 시료가스 2는 N2로농도가 높아 그 농도변화를 정확히 측정하기 어려우므로 Nox 저감량만 측정하였다.The sample gas was heated up to 200 ° C. with the preliminary heater 19 and introduced into the plasma reactor at a flow rate of 1 L / min. The plasma reactor was allowed to corona discharge at 200 ° C. and the catalytic reactor was operated at 250 ° C.-550 ° C. Using a gas chromatography instrument and Nox in the steady state was measured of Nox Reduction and Nox conversion rates of the exhaust gas to N 2 at the same time. However, since sample gas 2 has a high concentration of N 2, it is difficult to accurately measure the change in concentration, and thus only the Nox reduction amount was measured.

플라즈마 반응기는 플라즈마 반응을 통한 Nox 전환율이 서로 유사해지도록 에너지 투입량을 DC펄스전원을 조절하였다. 분위기 가스인 질소와 헬륨의 활성화 에너지가 다르기 때문이다. 본 실시예에서는 시료가스 1은 플라즈마 발생전압을 3.5kV로 하였고, 시료가스 2는 10kV로 하였다.(이 때, 단위유량당 에너지 공급량은 시료가스 1의 경우 10J/L, 시료가스 2의 경우 37J/L가 된다.)In the plasma reactor, the energy input amount was adjusted to the DC pulse power source so that the Nox conversion rates through the plasma reaction were similar to each other. This is because the activation energy of nitrogen and helium, which are atmospheric gases, is different. In this embodiment, the sample gas 1 has a plasma generation voltage of 3.5 kV and the sample gas 2 of 10 kV. (At this time, the energy supply per unit flow rate is 10 J / L for sample gas 1 and 37 J for sample gas 2). / L)

시료가스 1의 실험결과와 시료가스 2의 실험결과를 비교하여 시료가스 2에서 저감된 Nox중 N2로의 전환율을 예측하였다.By comparing the experimental results of the sample gas 1 and the experimental results of the sample gas 2, the conversion rate of the reduced Nox to N 2 in the sample gas 2 was estimated.

<실시예 1><Example 1>

본 실시예에서는 시료가스 1과 시료가스 2를 플라즈마 반응기를 통과시켰을 때 시료가스중의 Nox의 조성변화를 조사하였다. 결과는 다음의 표에 정리하였다.In this example, the composition change of Nox in the sample gas was examined when the sample gas 1 and the sample gas 2 were passed through the plasma reactor. The results are summarized in the following table.

구분division 시료가스 1Sample gas 1 시료가스 2Sample Gas 2 C3H6가 1000ppm인 경우When C 3 H 6 is 1000 ppm C3H6가 2000ppm인 경우When C 3 H 6 is 2000 ppm C3H6가 1000ppm인 경우When C 3 H 6 is 1000 ppm C3H6가 2000ppm인 경우When C 3 H 6 is 2000 ppm NO의 농도NO concentration 14871487 13731373 15001500 14071407 NO2의 농도NO 2 concentration 404404 507507 343343 432432

플라즈마 반응을 통하여는 NO가 NO2로 산화되었을 뿐 Nox의 총량은 변하지 않았음을 알 수 있다. 또한, 시료가스 1과 시료가스 2 모두에서 탄화수소의 농도가 높은 쪽이 보다 많은 양의 NO가 NO2로 산화되었음을 알 수 있다.Through the plasma reaction, it can be seen that the total amount of Nox was not changed only when NO was oxidized to NO 2 . In addition, it can be seen that the higher the concentration of hydrocarbon in both the sample gas 1 and the sample gas 2, the greater the amount of NO is oxidized to NO 2 .

<실시예 2><Example 2>

본 실시예에서는 시료가스 1에 대하여 플라즈마/촉매 시스템의 Nox 제거율을 촉매 반응기만의 Nox 제거율과 비교하였다. 400℃에서 실험하였다.In this example, the Nox removal rate of the plasma / catalyst system was compared with the Nox removal rate of the catalytic reactor only for the sample gas 1. Experiment at 400 ° C.

구분division C3H6가 1000ppm인 경우When C 3 H 6 is 1000 ppm C3H6가 2000ppm인 경우When C 3 H 6 is 2000 ppm 촉매반응기Catalytic reactor 플라즈마/촉매 반응기Plasma / catalyst reactor 촉매 반응기Catalytic reactor 플라즈마/촉매 반응기Plasma / catalyst reactor Nox(NO+NO2)의 전환율Nox (NO + NO 2 ) Conversion Rate 1818 3232 4545 92%92% Nox(NO+NO2)의 N2로의 전환율Nox (NO + NO 2 ) Conversion to N 2 1414 2424 3939 68%68%

촉매 반응기만을 사용한 경우보다 플라즈마 반응기를 함께 사용한 플라즈마/촉매 시스템에서의 Nox 제거율이 높음을 알 수 있다. 실시예 1과 마찬가지로 여기서도 탄화수소의 농도가 높은 경우의 Nox 제거율이 높았다. 특히, 탄화수소 농도 2000ppm인 경우 플라즈마/촉매 시스템에서는 Nox 전환율이 92%, Nox의 N2로의 전환율이 68%로 가장 높았다. 촉매 반응기만을 사용한 경우보다 플라즈마 반응기를 함께 사용한 플라즈마/촉매 시스템에서 Nox 제거율이 높은 것은 플라즈마 반응을 통하여 반응물이 활성화되어 촉매와의 반응성이 증가하였기 때문으로 해석된다.It can be seen that the removal rate of Nox in the plasma / catalyst system using the plasma reactor is higher than the case of using only the catalytic reactor. In the same manner as in Example 1, the removal rate of Nox was high when the concentration of hydrocarbon was high. In particular, in the case of 2000 ppm of hydrocarbon concentration, the plasma / catalyst system had the highest Nox conversion rate of 92% and Nox conversion rate of N 2 at 68%. The higher NOx removal rate in the plasma / catalyst system using the plasma reactor than the catalyst reactor alone is attributed to the increased reaction with the catalyst due to the activation of the reactants through the plasma reaction.

<실시예 3><Example 3>

본 실시예에서는 시료가스 1에 대하여 온도와 시료가스에 함유된 탄화수소의 농도에 따른 Nox 제거율을 조사하였다. 하기 표에서 C는 촉매 반응기, P/C는 플라즈마/촉매 시스템을 의미한다.In this example, the Nox removal rate was investigated for sample gas 1 according to the temperature and the concentration of hydrocarbon contained in the sample gas. In the following table, C means a catalytic reactor, P / C means a plasma / catalyst system.

구분division Nox전환율 또는 Nox→N2전환율Nox conversion rate or Nox → N 2 conversion rate 온도Temperature 250℃250 ℃ 350℃350 ℃ 400℃400 ℃ 450℃450 ℃ 550℃550 ℃ C3H6가 1000ppm인 경우When C 3 H 6 is 1000 ppm C(Nox전환율)C (Nox Conversion Rate) 55 1313 1818 4040 3737 C(Nox→N2전환율)C (Nox → N 2 conversion rate) 44 1111 1414 3535 3030 P/C(Nox전환율)P / C (Nox Conversion Rate) 2323 3030 3232 4747 2121 P/C(Nox→N2전환율)P / C (Nox → N 2 conversion rate) 1212 2222 2424 3838 1010 C3H6가 2000ppm인 경우When C 3 H 6 is 2000 ppm C(Nox전환율)C (Nox Conversion Rate) 66 2626 4545 8484 6666 C(NO2→N2전환율)C (NO 2 → N 2 Conversion Rate) 55 2222 3939 6767 5555 P/C(Nox전환율)P / C (Nox Conversion Rate) 3636 9090 9292 9191 2626 P/C(Nox→N2전환율)P / C (Nox → N 2 conversion rate) 2929 7474 6868 6969 2121

탄화수소의 양이 1000ppm인 경우 450℃에서 최고 47%의 Nox전환율이 관찰되었으며 이때의 Nox의 N2로의 전환율은 38%였다. 탄화수소를 2000ppm으로 증가시킨경우에는 350-450℃에서 약 90%의 Nox 전환율과 약 70%의 Nox의 N2로의 전환율을 나타내었다. 플라즈마/촉매 시스템의 경우가 촉매 반응기만 사용하였을 경우보다 촉매의 활성온도범위가 넓어지고, Nox의 전환율도 함께 높아졌다. 그러나, 550℃에서는 플라즈마와 촉매를 함께 사용한 경우가 촉매만을 사용한 경우보다 오히려 활성이 저하됨도 관찰하였다.When the amount of hydrocarbon was 1000 ppm, a maximum of 47% Nox conversion was observed at 450 ° C, and the conversion of Nox to N 2 was 38%. Increasing the hydrocarbon to 2000 ppm showed about 90% Nox conversion and about 70% Nox conversion to N 2 at 350-450 ° C. In the case of the plasma / catalyst system, the active temperature range of the catalyst was wider than in the case of using only the catalytic reactor, and the conversion rate of Nox was also increased. However, it was also observed that at 550 ° C., the use of the plasma and the catalyst together decreased the activity rather than the use of the catalyst alone.

본 발명의 플라즈마/촉매 시스템에 의하면 상압에서 미연소 탄화수소가 함유되어 있고 산소농도가 높은 디젤엔진 배기가스에서 Nox를 효과적으로 제거할 수 있다.According to the plasma / catalyst system of the present invention, NOx can be effectively removed from diesel engine exhaust gas containing unburned hydrocarbon at atmospheric pressure and high oxygen concentration.

Claims (3)

금속재 반응관이 양극이고 금속재 반응관의 중심부의 철선이 음극인, 직류펄스전원(DC pulse power)이 공급되는 플라즈마 반응기와 플라즈마 플라즈마 반응기에 직렬로 연결된 Ag/Al2O3촉매가 충전된 충전탑 형태의 촉매 반응기로 이루어지며, 처리하고자 하는 디젤엔진 배기가스가 플라즈마 반응기와 촉매 반응기를 순차적으로 거쳐가며 처리되는 것을 특징으로 플라즈마/촉매 시스템.A packed column filled with a plasma reactor supplied with a DC pulse power and an Ag / Al 2 O 3 catalyst connected in series with the plasma plasma reactor in which the metal reaction tube is the anode and the iron wire in the center of the metal reaction tube is the cathode. It is composed of a catalytic reactor of the type, the diesel engine exhaust gas to be treated is characterized in that the plasma reactor and the catalytic reactor is sequentially processed through the plasma / catalyst system. 제1항에 있어서, 플라즈마 반응기가 상압에서 작동되는 것을 특징으로 하는 제1항의 플라즈마/촉매 시스템.The plasma / catalyst system of claim 1 wherein the plasma reactor is operated at atmospheric pressure. 제1항에 있어서, 촉매반응기가 250-450℃에서 작동되는 것을 특징으로 하는 제1항의 플라즈마/촉매 시스템.The plasma / catalyst system of claim 1, wherein the catalytic reactor is operated at 250-450 ° C.
KR1020000008400A 2000-02-22 2000-02-22 Plasma/Catalyst System for Reduction of Nox in Diesel Engine Exhaust Gas KR100365965B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000008400A KR100365965B1 (en) 2000-02-22 2000-02-22 Plasma/Catalyst System for Reduction of Nox in Diesel Engine Exhaust Gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000008400A KR100365965B1 (en) 2000-02-22 2000-02-22 Plasma/Catalyst System for Reduction of Nox in Diesel Engine Exhaust Gas

Publications (2)

Publication Number Publication Date
KR20010082877A KR20010082877A (en) 2001-08-31
KR100365965B1 true KR100365965B1 (en) 2002-12-26

Family

ID=19648627

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000008400A KR100365965B1 (en) 2000-02-22 2000-02-22 Plasma/Catalyst System for Reduction of Nox in Diesel Engine Exhaust Gas

Country Status (1)

Country Link
KR (1) KR100365965B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444914B1 (en) * 2001-07-30 2004-08-18 주식회사 블루플래닛 Plasma/Gold Catalyst System for Removal of Nitrogen Oxides in Diesel Engine Exhaust Gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020017511A (en) * 2000-08-30 2002-03-07 이창식 an apparatus for purifying exhaust using the plasma

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444914B1 (en) * 2001-07-30 2004-08-18 주식회사 블루플래닛 Plasma/Gold Catalyst System for Removal of Nitrogen Oxides in Diesel Engine Exhaust Gas

Also Published As

Publication number Publication date
KR20010082877A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
US6772584B2 (en) Apparatus for removing soot and NOx in exhaust gas from diesel engines
CN1890019B (en) Method of reducing NOx in diesel engine exhaust
US6936232B2 (en) Process and apparatus for removing NOx from engine exhaust gases
US20010001435A1 (en) Apparatus and method for removing nox and other pollutants from gas streams using a plasma assisted catalyst
WO2006036311A2 (en) PLASMA-ASSISTED NOx REDUCTION
US6767526B1 (en) Method for treating by combustion carbon-containing particles in an internal combustion engine exhaust circuit
CA2159956A1 (en) Catalyst and method for purifying exhaust gases
KR100365965B1 (en) Plasma/Catalyst System for Reduction of Nox in Diesel Engine Exhaust Gas
JP6107487B2 (en) N2O decomposition catalyst and N2O-containing gas decomposition method using the same
JP2009208039A (en) Catalyst for removing particulate matter and method for removing particulate matter by using the same
CN110462176B (en) Method and system for removing harmful compounds from engine exhaust gas
JP4582806B2 (en) Exhaust gas purification device
JP2006150223A (en) Exhaust-gas cleaning filter, production method of the filter and exhaust-gas cleaning apparatus
OKUBO et al. Diesel engine emission control using pulsed corona plasma-wet chemical hybrid process
JP2007332885A (en) Nox purification system and nox purification method
JP2005344688A (en) Exhaust emission control device of internal combustion engine
EP3615183B1 (en) Method and system for the removal of noxious compounds from flue-gas using fabric filter bags with an scr catalyst
KR20210031084A (en) Ozone oxidation method and system with ceria catalyst for low temperature combustion of lean combustion engine exhaust carbon particulates
JPH04341325A (en) Method and catalyst for purifying exhaust gas
JP2022187305A (en) Nitrous oxide purification system and nitrous oxide purification method using the same
KR100444914B1 (en) Plasma/Gold Catalyst System for Removal of Nitrogen Oxides in Diesel Engine Exhaust Gas
KR100340902B1 (en) Plasma/DPF/Catalyst System for Simultaneous Removal of NOx and Soot in Diesel Engine Exhaust Gas
JP5007691B2 (en) Particulate matter purification catalyst and particulate matter purification method using the same
KR100404417B1 (en) DPF/Plasma/Catalyst System for Removal of Soot and NOx in Diesel Exhaust Gas
JP2010184171A (en) Catalyst and method for purification of exhaust gas

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20091211

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee