JP2022183773A - Continuous casting method for steel - Google Patents

Continuous casting method for steel Download PDF

Info

Publication number
JP2022183773A
JP2022183773A JP2021091254A JP2021091254A JP2022183773A JP 2022183773 A JP2022183773 A JP 2022183773A JP 2021091254 A JP2021091254 A JP 2021091254A JP 2021091254 A JP2021091254 A JP 2021091254A JP 2022183773 A JP2022183773 A JP 2022183773A
Authority
JP
Japan
Prior art keywords
slab
steel
mass
continuous casting
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021091254A
Other languages
Japanese (ja)
Inventor
慎 高屋
Makoto Takaya
太朗 廣角
Taro Hirokado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2021091254A priority Critical patent/JP2022183773A/en
Publication of JP2022183773A publication Critical patent/JP2022183773A/en
Pending legal-status Critical Current

Links

Images

Abstract

To suppress the surface crack generated when a slab is corrected in continuous casting of a steel having high Si concentration and Mn concentration.SOLUTION: A continuous casting method for a steel that is a method for continuously casting a slab of a steel having high Si concentration and Mn concentration and a predetermined chemical composition using a continuous casting machine having a correction point includes: cooling the slab so that TA(s) defined by the following expression (1) is 30 or more, when a time during which the surface temperature of the slab is 350 to 450°C is represented by TL(s), and a time during which the surface temperature thereof is 550 to 650°C is represented by TH(s), before the slab reaches the bend correction point from the direct below of the slab; and heating the surface temperature of the slab to a temperature range of Ac3 temperature or higher again before the slab reaches the correction point. Expression (1): TA=TL×[Mn]-0.6×[Si]-1.1+TH×10-1×[Mn]-1.1. In the expression (1), [Si] and [Mn] are concentrations (mass%) of Si and Mn in the steel.SELECTED DRAWING: None

Description

本願は鋼の連続鋳造方法を開示する。 The present application discloses a method for continuous casting of steel.

近年、薄鋼板等の高強度鉄鋼材料において、機械特性向上のため、SiやMnといった合金元素を多量に含む鋼が多く製造されている。 BACKGROUND ART In recent years, in high-strength steel materials such as thin steel sheets, many steels containing large amounts of alloying elements such as Si and Mn have been produced in order to improve mechanical properties.

しかしながら、これらの合金元素の添加に伴い、連続鋳造において製造された鋳片に表面割れという欠陥が生じ、操業上および製品の品質上の問題となっている。表面割れとは、横ひび割れ、横割れ、コーナー割れといった割れ形態の総称を意味する。 However, with the addition of these alloying elements, defects such as surface cracks occur in slabs produced in continuous casting, which pose problems in terms of operation and product quality. A surface crack is a general term for crack forms such as horizontal cracks, horizontal cracks, and corner cracks.

連続鋳造の二次冷却帯以降で発生する表面割れは鋳片表層の旧オーステナイト粒界に沿った割れであることが知られている。この割れはAlNやNbC等の析出により脆化したオーステナイト粒界や、旧オーステナイト粒界に沿って生成するフィルム状フェライトに応力が集中することで発生し得る。割れの形態はかかる応力の方向により異なり、横ひび割れは鋳造方向への引張応力、縦割れは鋳片幅方向への引張応力によって生じる。これらの割れは、特に、オーステナイトからフェライトへの相変態領域近傍の温度域において発生しやすい。したがって、通常は、機械的な応力が鋳片表面にかかる曲げや矯正帯での表面温度を延性が低下する温度域(脆化温度域)から回避し、割れの発生を抑制する方法が取られている。しかしながら、近年、機械特性向上のため様々な元素が添加された鋼種が増えるにつれ、割れ感受性が高い鋼種が増加しており、上記の連続鋳造方法のみでは必ずしも割れ発生を防止することができない。 It is known that the surface cracks that occur after the secondary cooling zone in continuous casting are along the prior austenite grain boundaries in the slab surface layer. These cracks can occur due to concentration of stress on austenite grain boundaries embrittled by precipitation of AlN, NbC, etc., and film-like ferrite generated along prior austenite grain boundaries. The form of cracks differs depending on the direction of the applied stress. Transverse cracks are caused by tensile stress in the casting direction, and longitudinal cracks are caused by tensile stress in the width direction of the slab. These cracks are particularly likely to occur in the temperature range near the phase transformation region from austenite to ferrite. Therefore, usually, a method is taken to prevent the occurrence of cracks by avoiding the temperature range where the ductility decreases (brittleness temperature range) in the bending or straightening zone where mechanical stress is applied to the surface of the cast slab. ing. However, in recent years, as the number of steel types to which various elements have been added to improve mechanical properties has increased, the number of steel types with high crack susceptibility has increased, and the above continuous casting method alone cannot necessarily prevent the occurrence of cracks.

特許文献1には、連続鋳造の鋳型直下から矯正点の手前の冷却過程において、鋼の連続冷却変態線図でのベイナイト、フェライトあるいはパーライト変態開始温度を下回る温度まで鋳片の表層部を冷却し、次いでAc以上の温度まで3℃/s以上50℃/s以下の昇温速度にて復熱させる、もしくはAr-100℃を下回る温度まで鋳片の表層部を冷却し、次いでAc以上の温度まで1.4℃/s以下の昇温速度にて復熱させることを特徴とする鋼の連続鋳造方法が提案されている。 In Patent Document 1, in the cooling process from directly below the mold in continuous casting to before the correction point, the surface layer of the cast slab is cooled to a temperature below the bainite, ferrite, or pearlite transformation start temperature in the continuous cooling transformation diagram of steel. Then, it is reheated to a temperature of Ac 3 or higher at a heating rate of 3 ° C./s or higher and 50 ° C./s or lower, or the surface layer of the cast slab is cooled to a temperature lower than Ar 3 -100 ° C., and then Ac 3 A continuous casting method for steel has been proposed in which the steel is reheated to the above temperature at a heating rate of 1.4° C./s or less.

特許文献2には、連続鋳造の鋳型直下において鋼の連続冷却変態線図におけるフェライト-パーライト変態終了温度未満かつベイナイト変態開始温度を超える温度域までの鋳片の表層部を冷却し、その後、前記連続冷却変態線図におけるフェライト-パーライト変態のノーズを通る一定速度の冷却曲線と交差するまで、フェライト-パーライト変態終了温度未満かつベイナイト変態開始温度を超える温度域に保持することを特徴とする連続鋳造方法が提案されている。 In Patent Document 2, the surface layer of the cast slab is cooled to a temperature range below the ferrite-pearlite transformation end temperature and above the bainite transformation start temperature in the continuous cooling transformation diagram of steel immediately below the mold for continuous casting. Continuous casting characterized by maintaining a temperature range below the ferrite-pearlite transformation end temperature and above the bainite transformation start temperature until it intersects with a constant rate cooling curve passing through the nose of ferrite-pearlite transformation in the continuous cooling transformation diagram. A method is proposed.

特許文献3には、連続鋳造の鋳型直下から矯正点までにおいて鋳片の表面温度が350~475℃の間にある時間Tと600~675℃にある時間Tとから求められる時間Tが60以上となるように前記鋳片を冷却し、Ac以上の温度域まで復熱させることを特徴とする、Ni含有低合金鋼の連続鋳造方法が提案されている。 In Patent Document 3, the time T A obtained from the time T L at which the surface temperature of the slab is between 350 and 475° C. and the time T at which the surface temperature is between 600 and 675° C. from directly below the mold in continuous casting to the correction point . A continuous casting method for Ni-containing low-alloy steel has been proposed, characterized in that the cast slab is cooled so that the slab becomes 60 or more, and reheated to a temperature range of Ac 3 or more.

特許第5928413号公報Japanese Patent No. 5928413 特許第5884479号公報Japanese Patent No. 5884479 特開2020-131203号公報Japanese Patent Application Laid-Open No. 2020-131203

上記の従来技術はいずれも、鋼の相変態を利用して結晶粒を微細化し、矯正点における延性を改善させることを目的とした技術である。しかしながら、鋼の組成によっては2次冷却帯に相当する冷却速度においてArを定義できない鋼種や、当該の温度履歴を経たとしても表面割れが抑制できない鋼種も実際に生産されている。例えば、Si濃度及びMn濃度が高い鋼に対して上記の従来技術を適用することは難しい。Si濃度及びMn濃度が高い鋼の連続鋳造において、鋳片の矯正を行う際に発生する表面割れを安定して抑制するためには、連続鋳造時の鋳型直下における鋳片の冷却に関して新たな技術指針が必要である。 All of the above-mentioned prior arts are techniques aimed at refining crystal grains by utilizing phase transformation of steel and improving ductility at the straightening point. However, depending on the composition of the steel, there are actually produced steel types in which Ar 3 cannot be defined at the cooling rate corresponding to the secondary cooling zone, and steel types in which surface cracks cannot be suppressed even after going through the relevant temperature history. For example, it is difficult to apply the above conventional technology to steel with high Si and Mn concentrations. In continuous casting of steel with high Si concentration and Mn concentration, in order to stably suppress surface cracks that occur when straightening the slab, a new technology for cooling the slab immediately below the mold during continuous casting. Guidance is needed.

本発明者は、鋳型直下の二次冷却帯で鋳片表層に急冷復熱の温度履歴を与え、表層組織を微細化し、割れを回避するためには、変態挙動に及ぼす合金元素の影響を十分に考慮する必要があると発想した。特にSi濃度及びMn濃度は鋼の変態挙動に大きな影響を与えるため、これらの元素の影響を基礎的に調査した。具体的には、ベイナイト変態のノーズ近傍となる350~450℃と、フェライト-パーライト変態のノーズ近傍となる550~650℃の2つの温度域に着目し、これらの温度帯での滞在時間T、Tと組織微細化との関係について鋭意検討した。その結果、Si濃度及びMn濃度と滞在時間T、Tとを用いて下記式(1)の通りに求められるTが所定以上となるように鋳型直下において鋳片を冷却したのちに、Ac点以上まで復熱させることで、矯正点に至る前に鋳片表層組織を微細化できることがわかった。
=T×[Mn]-0.6×[Si]-1.1+T×10-1×[Mn]-1.1 (1)
In order to give the surface layer of the cast slab a temperature history of quenching recuperation in the secondary cooling zone immediately below the mold, refine the surface layer structure, and avoid cracking, the effect of the alloying elements on the transformation behavior must be sufficiently examined. I thought that it was necessary to consider In particular, Si concentration and Mn concentration greatly affect the transformation behavior of steel, so the influence of these elements was fundamentally investigated. Specifically, attention is paid to two temperature ranges of 350 to 450°C near the nose of bainite transformation and 550 to 650°C near the nose of ferrite-pearlite transformation, and the residence time T L in these temperature ranges. , TH and microstructure refinement. As a result, the slab was cooled immediately below the mold so that T A obtained by the following formula (1) using the Si concentration and Mn concentration and the residence times T L and T H was equal to or greater than a predetermined value. It was found that the cast slab surface layer structure can be refined before reaching the correction point by reheating to Ac 3 point or more.
T A =T L ×[Mn] −0.6 ×[Si] −1.1 +T H ×10 −1 ×[Mn] −1.1 (1)

以上の知見に基づき、本願は上記課題を解決するための手段の一つとして、
質量%で、C:0.10~0.40%、Si:1.0~3.0%、Mn:1.0~3.0%、Cr:0~0.60%、Mo:0~0.600%、Ni:0~0.50%、N:0~0.0250%の組成を有する鋼の鋳片を、矯正点を有する連続鋳造機を用いて連続的に鋳造する方法であって、
鋳型の直下から前記矯正点に至る前において、前記鋳片の表面温度が350~450℃の間にある時間をT(s)、550~650℃にある時間をT(s)として、下記式(1)で定められるT(s)が30以上となるように前記鋳片を冷却し、
次いで前記矯正点に至る前に、前記鋳片の表面温度をAc以上の温度域まで復熱させる、
鋼の連続鋳造方法
を開示する。
Based on the above findings, the present application as one means for solving the above problems,
% by mass, C: 0.10-0.40%, Si: 1.0-3.0%, Mn: 1.0-3.0%, Cr: 0-0.60%, Mo: 0- A method of continuously casting steel slabs having a composition of 0.600%, Ni: 0 to 0.50%, and N: 0 to 0.0250% using a continuous casting machine having a straightening point. hand,
T L (s) is the time when the surface temperature of the slab is between 350 and 450° C. and T H (s) is the time when the surface temperature of the slab is between 550 and 650° C., from directly below the mold to the correction point, Cooling the slab so that T A (s) determined by the following formula (1) is 30 or more,
Then, before reaching the correction point, the surface temperature of the cast slab is restored to a temperature range of Ac 3 or higher,
A method for continuous casting of steel is disclosed.

=T×[Mn]-0.6×[Si]-1.1+T×10-1×[Mn]-1.1 (1)
(式(1)において[Si]及び[Mn]は、鋼におけるSi及びMnの濃度(質量%)である。)
T A =T L ×[Mn] −0.6 ×[Si] −1.1 +T H ×10 −1 ×[Mn] −1.1 (1)
([Si] and [Mn] in formula (1) are the concentrations (mass%) of Si and Mn in the steel.)

本開示の方法において、前記鋳片は、質量%で、Al:0~0.10%、Ti:0~0.100%、V:0~0.400%、Ca:0~0.0100%、Mg:0~0.0100%、REM:0~0.0100%、Nb:0~0.050%、B:0~0.0040%の組成を有してもよい。 In the method of the present disclosure, the cast slab is, in mass%, Al: 0 to 0.10%, Ti: 0 to 0.100%, V: 0 to 0.400%, Ca: 0 to 0.0100% , Mg: 0 to 0.0100%, REM: 0 to 0.0100%, Nb: 0 to 0.050%, B: 0 to 0.0040%.

本開示の方法によれば、Si濃度及びMn濃度が高い鋼の連続鋳造において、鋳片の矯正を行う際に発生する表面割れを安定して抑制することができる。本開示の方法で製造した鋳片を熱間圧延することにより、表面割れ等の発生が抑制された鋼板や鋼片を得ることができる。 According to the method of the present disclosure, in continuous casting of steel with high Si and Mn concentrations, it is possible to stably suppress surface cracks that occur when the slab is straightened. By hot-rolling the cast slab produced by the method of the present disclosure, it is possible to obtain a steel plate and a steel slab in which the occurrence of surface cracks and the like is suppressed.

本開示の鋼の連続鋳造方法にて採用される連続鋳造機の一例を説明するための概略図である。1 is a schematic diagram for explaining an example of a continuous casting machine employed in the steel continuous casting method of the present disclosure; FIG. 、Tについて補足説明するための図である。It is a figure for supplementary description about T L and T H. モデル実験により得られた鋳片表層組織の状態の一例を示す写真図である。FIG. 2 is a photographic diagram showing an example of the state of a cast slab surface layer structure obtained by a model experiment. 鋼種Aについて、フォーマスタ装置による熱処理パターンと、得られた組織との関係を示す図である。FIG. 4 is a diagram showing the relationship between the heat treatment pattern by the Formaster device and the structure obtained for steel type A. FIG. 鋼種Bについて、フォーマスタ装置による熱処理パターンと、得られた組織との関係を示す図である。FIG. 4 is a diagram showing the relationship between the heat treatment pattern by the Formaster device and the structure obtained for steel type B. FIG. 鋼種Cについて、フォーマスタ装置による熱処理パターンと、得られた組織との関係を示す図である。FIG. 4 is a diagram showing the relationship between the heat treatment pattern by the Formaster device and the structure obtained for steel type C. FIG. 鋼種Dについて、フォーマスタ装置による熱処理パターンと、得られた組織との関係を示す図である。FIG. 10 is a diagram showing the relationship between the heat treatment pattern by the Formaster device and the structure obtained for steel type D. FIG.

図1を参照しつつ本開示の鋼の連続鋳造方法について説明する。図1においては分かり易さのため冷却スプレーノズル等を省略して示している。冷却スプレーノズルは、例えば、鋳型10の直下から矯正点20に至る前までの間のサポートロール間に備えられ、鋳片1の両面側から冷却水を噴射し得る。図1においては垂直曲げ型の連続鋳造機100を例示したが、本開示の連続鋳造方法は矯正点を有するいずれの連続鋳造機を用いた場合にも適用可能である。例えば、湾曲型の連続鋳造機を用いてもよい。尚、「矯正点」とは、鋳片1の鋳造方向を湾曲から水平方向に矯正するために歪を加える点をいう。なお、矯正は複数個所で行ってもよい。鋳型10、矯正点20等を備える連続鋳造機100の構成そのものについては従来公知の構成と同様とすればよいことから、ここでは詳細な説明を省略する。 The continuous casting method for steel of the present disclosure will be described with reference to FIG. In FIG. 1, the cooling spray nozzle and the like are omitted for the sake of clarity. The cooling spray nozzles are provided, for example, between support rolls from directly below the mold 10 to before reaching the straightening point 20, and can spray cooling water from both sides of the slab 1. Although FIG. 1 illustrates a vertical bending type continuous casting machine 100, the continuous casting method of the present disclosure is applicable to any continuous casting machine having a straightening point. For example, a curved continuous casting machine may be used. The term "correction point" refers to a point at which strain is applied to correct the casting direction of the cast slab 1 from the curved direction to the horizontal direction. Note that correction may be performed at a plurality of locations. Since the configuration itself of the continuous casting machine 100 including the mold 10, the correction point 20, etc. may be the same as the conventionally known configuration, detailed description thereof is omitted here.

図1に示されるように、本開示の鋼の連続鋳造方法は、質量%で、C:0.10~0.40%、Si:1.0~3.0%、Mn:1.0~3.0%、Cr:0~0.60%、Mo:0~0.600%、Ni:0~0.50%、N:0~0.0250%の組成を有する鋼の鋳片1を、矯正点20を有する連続鋳造機を用いて連続的に鋳造する方法であって、鋳型10の直下から矯正点20に至る前において、鋳片1の表面温度が350~450℃の間にある時間をT(s)、550~650℃にある時間をT(s)として、下記式(1)で定められるT(s)が30以上となるように鋳片1を冷却し、次いで矯正点20に至る前に、鋳片1の表面温度をAc以上の温度域まで復熱させることを特徴とする。 As shown in FIG. 1, the steel continuous casting method of the present disclosure is, in mass%, C: 0.10 to 0.40%, Si: 1.0 to 3.0%, Mn: 1.0 to A steel slab 1 having a composition of 3.0%, Cr: 0 to 0.60%, Mo: 0 to 0.600%, Ni: 0 to 0.50%, and N: 0 to 0.0250% , a method of continuously casting using a continuous casting machine having a correction point 20, wherein the surface temperature of the slab 1 is between 350 and 450 ° C. from directly below the mold 10 to before reaching the correction point 20. The time is T L (s), the time at 550 to 650 ° C. is T H (s), and the cast slab 1 is cooled so that T A (s) determined by the following formula (1) is 30 or more, Next, before reaching the correction point 20, the surface temperature of the cast slab 1 is reheated to a temperature range of Ac 3 or higher.

=T×[Mn]-0.6×[Si]-1.1+T×10-1×[Mn]-1.1 (1)
(式(1)において[Si]及び[Mn]は、鋼におけるSi及びMnの濃度(質量%)である。)
T A =T L ×[Mn] −0.6 ×[Si] −1.1 +T H ×10 −1 ×[Mn] −1.1 (1)
([Si] and [Mn] in formula (1) are the concentrations (mass%) of Si and Mn in the steel.)

1.鋼種
本開示の連続鋳造方法において、鋳造対象となる鋼にはFe以外にC、Si及びMnが必須で含まれる。また、任意元素として、例えば、Cr、Mo、Ni、N、Al、Ti、V、Ca、Mg、REM、Nb及びBから選ばれる少なくとも一つが含まれていてもよい。また、不純物として、例えば、PやSが含まれていてもよい。
1. Steel Type In the continuous casting method of the present disclosure, the steel to be cast essentially contains C, Si and Mn in addition to Fe. At least one selected from Cr, Mo, Ni, N, Al, Ti, V, Ca, Mg, REM, Nb and B may be included as an optional element. Moreover, P and S may be included as impurities, for example.

1.1 C:0.10~0.40%
Cは鋼の静的強度だけでなく、疲労強度、靭性、延性に影響する最も基本的な元素である。Cが少な過ぎると鋼の静的強度および疲労強度が不十分となる場合がある。この点、Cの含有量の下限は0.10質量%以上又は0.15質量%以上であってもよい。また、Cが多過ぎると鋼の靭性が劣化し易い。この点、Cの含有量の上限は0.40質量%以下又は0.35質量%以下であってもよい。
1.1 C: 0.10-0.40%
C is the most basic element that affects not only static strength of steel but also fatigue strength, toughness and ductility. Too little C may result in insufficient static strength and fatigue strength of the steel. In this regard, the lower limit of the C content may be 0.10% by mass or more, or 0.15% by mass or more. Moreover, if there is too much C, the toughness of steel tends to deteriorate. In this regard, the upper limit of the C content may be 0.40% by mass or less or 0.35% by mass or less.

1.2 Si:1.0~3.0%
SiはCに次いで固溶強化能が大きい重要な元素である。高強度鋼を得る場合はSiの濃度を高濃度とする。具体的には、Siの含有量の下限は1.0質量%以上又は1.1質量%以上であってもよい。一方で、Siの含有量が多過ぎると靭性や加工性を劣化させる虞がある。この点、Siの含有量の上限は3.0質量%以下又は2.5質量%以下であってもよい。
1.2 Si: 1.0 to 3.0%
Si is an important element having a large solid-solution strengthening ability next to C. When obtaining high-strength steel, the concentration of Si is made high. Specifically, the lower limit of the Si content may be 1.0% by mass or more or 1.1% by mass or more. On the other hand, if the Si content is too high, there is a risk of deteriorating toughness and workability. In this regard, the upper limit of the Si content may be 3.0% by mass or less or 2.5% by mass or less.

1.3 Mn:1.0~3.0%
Mnは焼入れ性を向上させ、冷却速度が不十分な場合でも部品の内部まで硬度を確保するのに重要な元素である。高強度鋼を得る場合はMnの濃度を高濃度とする。具体的には、Mnの含有量の下限は1.0質量%以上又は1.5質量%以上であってもよい。一方で、Mnが多過ぎると靭性や加工性を劣化させる虞がある。この点、Mnの含有量の上限は3.0質量%以下又は2.5質量%以下であってもよい。
1.3 Mn: 1.0-3.0%
Mn is an important element for improving hardenability and securing hardness to the inside of parts even when the cooling rate is insufficient. When obtaining high-strength steel, the concentration of Mn is made high. Specifically, the lower limit of the Mn content may be 1.0% by mass or more or 1.5% by mass or more. On the other hand, too much Mn may deteriorate the toughness and workability. In this regard, the upper limit of the Mn content may be 3.0% by mass or less or 2.5% by mass or less.

1.4 Cr:0~0.60%
Crは、例えば鋼の焼入れ性を向上させるために任意に添加される元素である。ただし、Crが多過ぎる場合、鋳型直下において上記式(1)を満たすように鋳片の冷却を行ったとしても、鋳片の矯正を行う際に発生する表面割れを安定して抑制することが難しくなる虞がある。この点、Crの含有量の下限は0質量%であってもよく、上限は0.60質量%以下、0.40質量%以下、0.20質量%以下又は0.10質量%以下であってもよい。
1.4 Cr: 0 to 0.60%
Cr is an element optionally added to improve the hardenability of steel, for example. However, if Cr is too much, even if the slab is cooled so as to satisfy the above formula (1) immediately below the mold, it is possible to stably suppress surface cracks that occur when the slab is straightened. It is likely to become difficult. In this regard, the lower limit of the Cr content may be 0% by mass, and the upper limit is 0.60% by mass or less, 0.40% by mass or less, 0.20% by mass or less, or 0.10% by mass or less. may

1.5 Mo:0~0.600%
Moは、例えば鋼の焼戻し時の2次硬化、疲労強度の改善、焼入れ性の向上等を狙って任意に添加される元素である。ただし、Moが多過ぎる場合、鋳型直下において上記式(1)を満たすように鋳片の冷却を行ったとしても、鋳片の矯正を行う際に発生する表面割れを安定して抑制することが難しくなる虞がある。この点、Moの含有量の下限は0質量%であってもよく、上限は0.600質量%以下、0.400質量%以下、0.200質量%以下又は0.100質量%以下であってもよい。
1.5 Mo: 0-0.600%
Mo is an element that is arbitrarily added with the aim of, for example, secondary hardening during tempering of steel, improvement of fatigue strength, improvement of hardenability, and the like. However, if Mo is too large, even if the slab is cooled so as to satisfy the above formula (1) immediately below the mold, it is possible to stably suppress surface cracks that occur when the slab is straightened. It is likely to become difficult. In this regard, the lower limit of the Mo content may be 0% by mass, and the upper limit is 0.600% by mass or less, 0.400% by mass or less, 0.200% by mass or less, or 0.100% by mass or less. may

1.6 Ni:0~0.50%
Niは、例えば鋼の強度及び靭性の確保、焼入れ性の向上等を狙って任意に添加される元素である。ただし、Niが多過ぎる場合、鋳型直下において上記式(1)を満たすように鋳片の冷却を行ったとしても、鋳片の矯正を行う際に発生する表面割れを安定して抑制することが難しくなる虞がある。この点、Niの含有量の下限は0質量%であってもよく、上限は0.50質量%以下、0.30質量%以下又は0.10質量%以下であってもよい。
1.6 Ni: 0 to 0.50%
Ni is an element that is arbitrarily added with the aim of, for example, ensuring the strength and toughness of steel and improving hardenability. However, if Ni is too much, even if the slab is cooled so as to satisfy the above formula (1) immediately below the mold, it is possible to stably suppress surface cracks that occur when the slab is straightened. It is likely to become difficult. In this regard, the lower limit of the Ni content may be 0% by mass, and the upper limit may be 0.50% by mass or less, 0.30% by mass or less, or 0.10% by mass or less.

1.7 N:0~0.0250%
Nは、例えば鋼において窒化物を生成し、結晶粒粗大化抑制効果を発現させ得る。しかし、Nが多過ぎると窒化物の粗大化を招き、鋼の疲労強度を低下させる虞がある。また、熱間延性を低下させ、鋳造時あるいは圧延時に表面疵の要因となる虞がある。この点、Nの含有量の上限は0.0250質量%以下であってもよく、鋼材清浄性の観点から、0.0200質量%以下であってもよい。Nの含有量の下限は0質量%であってもよく、0.0020質量%以上であってもよい。
1.7 N: 0 to 0.0250%
N forms nitrides in steel, for example, and can exert an effect of suppressing grain coarsening. However, if N is too much, coarsening of nitrides may be caused and the fatigue strength of the steel may be lowered. In addition, it may reduce hot ductility and cause surface defects during casting or rolling. In this regard, the upper limit of the N content may be 0.0250% by mass or less, and may be 0.0200% by mass or less from the viewpoint of steel cleanliness. The lower limit of the N content may be 0% by mass, or may be 0.0020% by mass or more.

本開示の連続鋳造方法において、鋳造対象となる鋼は上記の元素に加えて、さらに、以下の元素を含んでいてもよい。すなわち、鋳片1は、質量%で、Al:0~0.10%、Ti:0~0.100%、V:0~0.400%、Ca:0~0.0100%、Mg:0~0.0100%、REM:0~0.0100%、Nb:0~0.050%、B:0~0.0040%の組成を有してもよい。尚、本開示の連続鋳造方法によれば、鋳型直下において上記式(1)を満たすように鋳片の冷却を行うことで、鋳片に含まれるAl、Ti、V、Ca、Mg、REM、Nb及びBといった任意元素の含有量によらず、鋳片の矯正を行う際に発生する表面割れを安定して抑制することができる。すなわち、以下に説明する元素は、上記式(1)の妥当性に実質的に影響を与えない。 In the continuous casting method of the present disclosure, the steel to be cast may further contain the following elements in addition to the above elements. That is, the slab 1 is, in mass%, Al: 0 to 0.10%, Ti: 0 to 0.100%, V: 0 to 0.400%, Ca: 0 to 0.0100%, Mg: 0 ~0.0100%, REM: 0-0.0100%, Nb: 0-0.050%, B: 0-0.0040%. According to the continuous casting method of the present disclosure, by cooling the slab immediately below the mold so as to satisfy the above formula (1), the Al, Ti, V, Ca, Mg, REM, and Regardless of the content of arbitrary elements such as Nb and B, it is possible to stably suppress surface cracks that occur when straightening the cast slab. That is, the elements described below do not substantially affect the validity of the above formula (1).

1.8 Al:0~0.10%
Alは脱酸目的で最も広く用いられる元素であり、またAlNを生成して結晶粒の粗大化を抑制する効果がある。しかし、Alが多過ぎると、Alの凝集合に伴い鋳造中にノズル詰まりが発生したり、鋼中に残存するAlが性能を劣化させたりするなどの不具合が生じる虞がある。この点、Alの含有量の上限は0.10質量%以下又は0.05質量%以下であってもよい。Alの含有量の下限は、0質量%であってもよく、0.01質量%以上であってもよい。
1.8 Al: 0 to 0.10%
Al is the most widely used element for deoxidizing purposes, and has the effect of forming AlN to suppress the coarsening of crystal grains. However, if the amount of Al is too large, problems such as nozzle clogging during casting due to agglomeration of Al 2 O 3 and Al 2 O 3 remaining in the steel deteriorating performance may occur. be. In this regard, the upper limit of the Al content may be 0.10% by mass or less or 0.05% by mass or less. The lower limit of the Al content may be 0% by mass or 0.01% by mass or more.

1.9 Ti:0~0.100%
TiはAlと同様に窒化物を生成し得る元素であり、熱的安定性に優れ、より高温まで結晶粒粗大化抑制効果を持続させる。しかし、Tiが多過ぎると、TiNが粗大に成長しやすくなり、疲労強度を低下させる虞がある。この点、Tiの含有量の上限は0.100質量%以下であってもよい。Tiの含有量の下限は、0質量%であってもよく、0.001質量%以上又は0.002質量%以上であってもよい。
1.9 Ti: 0 to 0.100%
Ti, like Al, is an element capable of forming nitrides, is excellent in thermal stability, and maintains the effect of suppressing grain coarsening up to higher temperatures. However, if Ti is too much, TiN tends to grow coarsely, which may reduce the fatigue strength. In this respect, the upper limit of the Ti content may be 0.100% by mass or less. The lower limit of the Ti content may be 0% by mass, 0.001% by mass or more, or 0.002% by mass or more.

1.10 V:0~0.400%
VはTi及びAlと同様に窒化物を生成し得る元素であり、強度改善のために用いられる。しかし、Vが多過ぎると、VNが粗大に成長しやすくなり、疲労強度を低下させる虞がある。この点、Vの含有量の上限は0.400質量%以下であってもよい。Vの含有量の下限は、0質量%であってもよく、0.001質量%以上又は0.002質量%以上であってもよい。
1.10 V: 0 to 0.400%
V is an element capable of forming nitrides like Ti and Al, and is used for strength improvement. However, if V is too much, VN tends to grow coarsely, which may reduce the fatigue strength. In this regard, the upper limit of the V content may be 0.400% by mass or less. The lower limit of the V content may be 0% by mass, or may be 0.001% by mass or more, or 0.002% by mass or more.

1.11 Ca:0~0.0100%
CaはAlを改質し、酸化物系介在物の粗大化を抑制する効果がある。しかし、Caが多過ぎると、CaO-Alを主成分とする却って粗大な酸化物系介在物を形成し、疲労破壊の基点となる虞がある。この点、Caの含有量の上限は0.0100質量%以下であってもよい。Caの含有量の下限は、0質量%であってもよく、0.0001質量%以上又は0.0002質量%以上であってもよい。
1.11 Ca: 0 to 0.0100%
Ca modifies Al 2 O 3 and has the effect of suppressing coarsening of oxide-based inclusions. However, if Ca is too much, rather coarse oxide-based inclusions containing CaO—Al 2 O 3 as a main component are formed, which may become starting points of fatigue fracture. In this regard, the upper limit of the Ca content may be 0.0100% by mass or less. The lower limit of the Ca content may be 0% by mass, 0.0001% by mass or more, or 0.0002% by mass or more.

1.12 Mg:0~0.0100%
MgはCa同様、Alを改質し、酸化物系介在物の粗大化を抑制する効果がある。また、硫化物系介在物にも作用し、アスペクト比を低下させる効果がある。しかし、Mgが多過ぎると、MgOを主成分とする粗大なクラスター状酸化物系介在物を形成し、疲労破壊の基点となる虞がある。この点、Mgの含有量の上限は0.0100質量%以下であってもよい。Mgの含有量の下限は、0質量%であってもよく、0.0001質量%以上又は0.0002質量%以上であってもよい。
1.12 Mg: 0-0.0100%
Like Ca, Mg has the effect of modifying Al 2 O 3 and suppressing coarsening of oxide inclusions. It also acts on sulfide-based inclusions and has the effect of lowering the aspect ratio. However, if Mg is too much, coarse cluster-like oxide-based inclusions containing MgO as a main component may be formed, which may become starting points of fatigue fracture. In this regard, the upper limit of the Mg content may be 0.0100% by mass or less. The lower limit of the Mg content may be 0% by mass, or may be 0.0001% by mass or more, or 0.0002% by mass or more.

1.13 REM:0~0.0100%
REMもまたAlを改質し、酸化物系介在物の粗大化を抑制する効果がある。しかし、REMが多過ぎると、鋼の清浄性を低下させ、母材の靭性を劣化させる虞がある。この点、REMの含有量の上限は0.0100質量%以下であってもよい。REMの含有量の下限は、0質量%であってもよく、0.0001質量%以上又は0.0002質量%以上であってもよい。REMとはLaやCe等の希土類元素を表すが、そのうちの任意の1種類、あるいは2種類以上のREMを用いることができる。
1.13 REM: 0-0.0100%
REM also modifies Al 2 O 3 and has the effect of suppressing coarsening of oxide inclusions. However, too much REM may reduce the cleanliness of the steel and degrade the toughness of the base material. In this regard, the upper limit of the REM content may be 0.0100% by mass or less. The lower limit of the REM content may be 0% by mass, or may be 0.0001% by mass or more, or 0.0002% by mass or more. REM represents a rare earth element such as La or Ce, and any one or two or more of these REMs can be used.

1.14 Nb:0~0.050%
Nbは強度および靭性の改善に効果がある。ただし、Nbが多過ぎると効果が飽和する。この点、Nbの含有量の上限は0.050質量%以下であってもよい。Nbの含有量の下限は、0質量%であってもよく、0.001質量%以上又は0.002質量%以上であってもよい。
1.14 Nb: 0 to 0.050%
Nb is effective in improving strength and toughness. However, if the Nb content is too large, the effect is saturated. In this regard, the upper limit of the Nb content may be 0.050% by mass or less. The lower limit of the Nb content may be 0% by mass, or may be 0.001% by mass or more, or 0.002% by mass or more.

1.15 B:0~0.0040%
Bは少量で大きな焼入れ性向上効果がある。ただし、Bが多過ぎると効果が飽和する。この点、Bの含有量の上限は0.0040質量%以下であってもよい。Bの含有量の下限は、0質量%であってもよく、0.0001質量%以上又は0.0002質量%以上であってもよい。
1.15B: 0 to 0.0040%
A small amount of B has a large effect of improving the hardenability. However, if B is too much, the effect is saturated. In this regard, the upper limit of the B content may be 0.0040% by mass or less. The lower limit of the B content may be 0% by mass, or may be 0.0001% by mass or more, or 0.0002% by mass or more.

2.鋳片1の2次冷却
図1に示されるように、本開示の連続鋳造方法においては、上記組成を有する鋼の鋳片1を鋳型10から連続的に引き抜き、鋳型10の直下から矯正点20に至る前に、鋳片1の表面に冷却水を噴射する等して鋳片1の2次冷却を行う。ここで、本開示の連続鋳造方法においては、鋳型10の直下から矯正点20に至る前において、鋳片1の表面温度が350~450℃の間にある時間をT(s)、550~650℃にある時間をT(s)として、上記式(1)で定められるT(s)が30以上となるように鋳片1を冷却することが重要である。
2. Secondary Cooling of Slab 1 As shown in FIG. 1 , in the continuous casting method of the present disclosure, a steel slab 1 having the above composition is continuously drawn out from a mold 10 and cast at a straightening point 20 from directly below the mold 10 . Before reaching the temperature, secondary cooling of the slab 1 is performed by spraying cooling water on the surface of the slab 1 or the like. Here, in the continuous casting method of the present disclosure, T L (s) is the time during which the surface temperature of the cast slab 1 is between 350 and 450° C. from directly below the mold 10 to the correction point 20, 550 to It is important to cool the slab 1 so that T A (s) determined by the above formula (1) is 30 or more, where T H (s) is the time at 650°C.

尚、本開示の連続鋳造方法においては、Tの温度範囲の下限を350℃としているが、鋼種によってはこの温度がマルテンサイト変態開始温度を下回り、組織の一部あるいは全部がマルテンサイトになることも考えられる。しかしながら、その場合でも逆変態後には表層組織の微細化が可能であり、所望の効果を得ることが可能である。 In the continuous casting method of the present disclosure, the lower limit of the temperature range of TL is set to 350°C, but depending on the steel type, this temperature is lower than the martensite transformation start temperature, and part or all of the structure becomes martensite. It is also possible. However, even in that case, the surface layer structure can be refined after the reverse transformation, and the desired effect can be obtained.

実機の連続鋳造機内においては、鋳片1が鋳型10の直下から矯正点20に至る前までの間において、鋳片1の表面の温度が350~450℃、550~650℃の領域を複数回通過することもあり得る。この場合は、T、Tはそれぞれの温度領域を通過した時間の和で表される。例えば図2に示されるような熱履歴において、T、Tは以下の式(2)、(3)で求めることができる。 In the actual continuous casting machine, the temperature of the surface of the slab 1 is 350 to 450° C. and 550 to 650° C. multiple times from directly below the mold 10 to before reaching the correction point 20. It is possible to pass through. In this case, T L and T H are represented by the sum of the time spent passing through each temperature range. For example, in the thermal history as shown in FIG. 2, T L and T H can be obtained by the following equations (2) and (3).

=t-t (2)
=(t-t)+(t-t) (3)
T L =t 4 -t 3 (2)
T H =(t 2 −t 1 )+(t 6 −t 5 ) (3)

2次冷却帯において鋳片1を冷却する方法としては、上述した冷却スプレーノズルを用いて冷却水を噴射する方法のほか、気流を用いる方法、特別な冷却設備を備えず放冷する方法等いずれも有効である。さらに、これらを組み合わせて冷却する方法でも構わない。鋳片1の冷却速度は特に限定されるものではなく、いずれの冷却速度であっても所望の効果が発揮される。 As a method for cooling the slab 1 in the secondary cooling zone, in addition to the method of injecting cooling water using the cooling spray nozzle described above, a method using airflow, a method of allowing to cool without providing special cooling equipment, etc. is also valid. Furthermore, a method of cooling by combining these methods may be used. The cooling rate of the slab 1 is not particularly limited, and desired effects can be exhibited at any cooling rate.

3.鋳片1の復熱
本開示の連続鋳造方法において、2次冷却帯でオーステナイトを分解した後は、矯正点20に至る前(例えば、図2のtの時点)に鋳片1の表面温度をAc以上の温度に復熱させる。この復熱は、鋳片1の表層組織を微細なオーステナイト組織にする、いわゆる逆変態組織を得るために必須である。復熱温度がAcに満たない場合、逆変態が起こらない場所が残存する。このような組織は矯正歪に対して割れを呈しやすい鋳造まま組織の影響を有するため、Ac以上にまで復熱させ、オーステナイト単相組織とすることが割れ発生抑制に有効である。尚、矯正点20に至る迄に鋳片1の表面温度を一旦Ac以上にまで復熱していれば、その後は鋳片1の表面の熱間延性が高く保たれるため、矯正点20において温度が低下しても表面割れは問題とはならない。
3. Reheating of slab 1 In the continuous casting method of the present disclosure, after austenite is decomposed in the secondary cooling zone , the surface temperature of the slab 1 is is reheated to a temperature above 3 Ac. This reheating is essential for obtaining a so-called reverse-transformed structure, in which the surface layer structure of the slab 1 is made into a fine austenitic structure. If the recuperation temperature is less than Ac 3 , there remain places where reverse transformation does not occur. Since such a structure has the effect of the as-cast structure, which tends to crack due to corrective strain, it is effective to reheat to Ac 3 or more to form an austenite single-phase structure to suppress the occurrence of cracks. In addition, if the surface temperature of the slab 1 is once restored to Ac 3 or higher before reaching the correction point 20, the hot ductility of the surface of the slab 1 is kept high after that, so at the correction point 20 Surface cracks are not a problem even if the temperature drops.

Acまで復熱させることにより、鋳片1の表層組織は改質され、適正な2次冷却と組み合わせて表面割れの少ない鋳片を得ることができる。鋳片1内の表面温度や組織のバラつきを一層抑える観点からは、復熱後の最高温度をAc+30℃以上としてもよい。尚、復熱温度が高すぎるとオーステナイト結晶粒が再び粗大化する虞がある。この点、復熱後の最高温度は1200℃以下であってもよい。 By reheating to Ac 3 , the surface layer structure of the slab 1 is modified, and in combination with appropriate secondary cooling, a slab with less surface cracks can be obtained. From the viewpoint of further suppressing variations in surface temperature and structure in the slab 1, the maximum temperature after reheating may be Ac 3 +30° C. or higher. If the recuperation temperature is too high, the austenite grains may coarsen again. In this regard, the maximum temperature after reheating may be 1200° C. or less.

尚、Acは、変態点記録測定装置(フォーマスタ装置)等を用いて測定することができる。或いは、先行文献(邦武立郎: 熱処理, 43, p. 100(2003))で提案されている以下の式(4)を用いてAcを特定することもできる。 Incidentally, Ac3 can be measured using a transformation point recording measuring device (Formaster device) or the like. Alternatively, Ac3 can also be specified using the following formula (4) proposed in a prior document (Tatsuro Kunitake: Heat Treatment, 43, p. 100 (2003)).

Ac=(32[Si]+17[Mo])-(231[C]+20[Mn]+40[Cu]+18[Ni]+15[Cr])+912 (4)
(式(4)中の[Si]、[Mo]、[C]、[Mn]、[Cu]、[Ni]、[Cr]は、それぞれの成分の濃度(質量%)を表す。)
Ac 3 = (32[Si]+17[Mo])-(231[C]+20[Mn]+40[Cu]+18[Ni]+15[Cr])+912 (4)
([Si], [Mo], [C], [Mn], [Cu], [Ni], and [Cr] in formula (4) represent the concentration (mass %) of each component.)

鋳片1表面の復熱は、鋳片1の内部から伝わる熱量が鋳片1の表面から放出される熱量を上回ることによっておこる現象である。鋳片1の表面の復熱は、2次冷却帯の冷却を緩和させることで比較的簡単に行うことができる。或いは、鋳造ラインの周囲に熱源や高周波誘導加熱設備を配し、表面を加熱してもよい。鋳片1の復熱速度(昇温速度)は特に限定されるものではなく、いずれの復熱速度であっても所望の効果が発揮される。 The heat recovery on the surface of the slab 1 is a phenomenon that occurs when the amount of heat transferred from the inside of the slab 1 exceeds the amount of heat released from the surface of the slab 1 . The heat recovery of the surface of the slab 1 can be performed relatively easily by relaxing the cooling in the secondary cooling zone. Alternatively, a heat source or high-frequency induction heating equipment may be arranged around the casting line to heat the surface. The reheating rate (heating rate) of the slab 1 is not particularly limited, and the desired effect can be exhibited at any reheating rate.

以上の通り、本開示の連続鋳造方法によれば、Si濃度及びMn濃度が高い鋼の連続鋳造において、鋳片の矯正を行う際に発生する、鋳片の表面割れを安定して抑制することができる。尚、本願において、「鋳片の表面」とは、鋳片の表面全体である必要は無い。すなわち、鋳片の表面のうち、少なくとも表面割れを抑制したい部分について、上記式(1)が満たされるように鋳型直下において冷却を行い、その後、Ac以上の温度に復熱させればよい。 As described above, according to the continuous casting method of the present disclosure, in continuous casting of steel with high Si concentration and Mn concentration, surface cracks of the slab that occur when the slab is straightened can be stably suppressed. can be done. In the present application, the "surface of the slab" does not necessarily mean the entire surface of the slab. That is, at least the portion of the surface of the slab where surface cracks are desired to be suppressed is cooled immediately below the mold so that the above formula (1) is satisfied, and then reheated to a temperature of Ac 3 or higher.

以下、実施例を示しつつ本開示の技術による効果等について、より詳細に説明するが、本開示の技術は以下の実施例に限定されるものではない。 Hereinafter, the effects and the like of the technology of the present disclosure will be described in more detail while showing examples, but the technology of the present disclosure is not limited to the following examples.

1.モデル実験1
2次冷却および復熱による鋳片表層組織微細化効果を十分に得るための条件を解明するために、変態点記録測定装置(フォーマスタ装置)を用いたモデル実験を実施した。
1. Model experiment 1
In order to clarify the conditions for sufficiently obtaining the effect of refining the cast slab surface layer structure by secondary cooling and reheating, a model experiment was carried out using a transformation point recording measuring device (Formaster device).

下記表1に示される組成を有する鋼種A~Dの各々について、フォーマスタ装置により、1400℃に加熱後、350~750℃の所定の温度までヘリウムガスで急冷し、急冷したサンプルを30~3000sec等温保持したのち、900℃まで20℃/sで加熱し、0.4℃/sで室温まで冷却した。得られたサンプルの断面をナイタールエッチングし、SEMで観察した。 For each of the steel types A to D having the compositions shown in Table 1 below, after heating to 1400 ° C. with a Formaster device, quenched with helium gas to a predetermined temperature of 350 to 750 ° C. The quenched sample was cooled for 30 to 3000 seconds. After isothermally maintained, it was heated to 900° C. at 20° C./s and cooled to room temperature at 0.4° C./s. A cross section of the obtained sample was etched with nital and observed with an SEM.

Figure 2022183773000001
Figure 2022183773000001

観察例を図3(A)及び(B)に示す。断面観察にて確認された組織は、図3(A)に示される組織A及び/又は図3(B)に示される組織Bで構成されていた。図3(A)から明らかなように、組織Aにおいては数十μmオーダーの細かな粒状のフェライトが観察され、粒界フェライトは不明瞭であり、割れ感受性の低い組織であると考えられる。一方、図3(B)から明らかなように、組織Bにおいては粒状フェライトが観察されず、一部粒界フェライトが観察され、割れ感受性の高い組織であると考えられる。 Observation examples are shown in FIGS. The tissue confirmed by the cross-sectional observation consisted of the tissue A shown in FIG. 3(A) and/or the tissue B shown in FIG. 3(B). As is clear from FIG. 3(A), in the structure A, fine granular ferrite on the order of several tens of μm is observed, grain boundary ferrite is unclear, and the structure is considered to be a structure with low crack sensitivity. On the other hand, as is clear from FIG. 3(B), in the structure B, no granular ferrite was observed, and grain boundary ferrite was partially observed.

鋼種A~Dのそれぞれについて、フォーマスタ装置による熱処理の温度パターンと、得られた組織との関係を図4~7に示す。図4が鋼種Aの場合、図5が鋼種Bの場合、図6が鋼種Cの場合、図7が鋼種Dの場合である。図4~7においては、得られた組織が全面Aであった場合を「○」、AとBの混相であった場合を「△」、全面Bであった場合を「×」としてそれぞれ示した。図4~7から明らかなように、鋼種ごとに組織Aが得られる温度条件が大きく異なった。すなわち、Si及びMn濃度の影響を考慮しなければ、割れ感受性の低い組織を得るための適切な温度条件を決定できないことが分かった。このモデル実験から、オーステナイトの分解は350-450℃のベイナイト変態、550-650℃のフェライト-パーライト変態の起こる2つの温度域における滞在時間が重要であると分かる。ここから、実際の連続鋳造において鋳片表層がこれら2つの温度域両方をまたぐ際の変態挙動を把握すべく、モデル実験を実施した。 4 to 7 show the relationship between the temperature pattern of the heat treatment by the Formaster apparatus and the obtained structure for each of the steel types A to D. FIG. 4 is for steel type A, FIG. 5 is for steel type B, FIG. 6 is for steel type C, and FIG. In FIGS. 4 to 7, the case where the obtained structure was A on the entire surface is indicated by “◯”, the case where the obtained structure was a mixed phase of A and B by “Δ”, and the case where the obtained structure was on the entire surface by “X”. rice field. As is clear from FIGS. 4 to 7, the temperature conditions under which the structure A was obtained differed greatly depending on the steel type. In other words, it was found that appropriate temperature conditions for obtaining a structure with low crack susceptibility cannot be determined unless the effects of Si and Mn concentrations are considered. From this model experiment, it can be seen that the residence time in two temperature ranges where bainite transformation at 350-450° C. and ferrite-pearlite transformation at 550-650° C. occur are important for austenite decomposition. Based on this, a model experiment was conducted in order to understand the transformation behavior when the slab surface layer crosses over both of these two temperature ranges in actual continuous casting.

2.モデル実験2
上記モデル実験1と同様の鋼種A、B及びDについて、フォーマスタ装置を用いて1400℃に加熱後、400℃にて所定の時間保持した後で、さらに600℃で所定の時間保持し、900℃まで20℃/sで再加熱し、その後、0.4℃/sで室温まで冷却した。400℃及び600℃における各々の保持時間と得られた組織との関係を下記表2に示す。下記表2においては、得られた組織が全面Aであった場合を「○」、AとBの混相であった場合を「△」、全面Bであった場合を「×」としてそれぞれ示した。
2. Model experiment 2
Steel grades A, B, and D, which are the same as in model experiment 1, were heated to 1400°C using a Formaster device, held at 400°C for a predetermined time, and further held at 600°C for a predetermined time. °C at 20 °C/s and then cooled at 0.4 °C/s to room temperature. Table 2 below shows the relationship between each holding time at 400°C and 600°C and the structure obtained. In Table 2 below, the case where the obtained structure was A on the entire surface was indicated as "◯", the case where the obtained structure was a mixed phase of A and B as "△", and the case where the entire surface was B was indicated as "×". .

Figure 2022183773000002
Figure 2022183773000002

表2に示される結果から明らかなように、400℃で40秒保持したサンプルは、続く625℃での保持が、鋼種Aについては40秒以下、鋼種Bについては40~120秒、鋼種Dについては240~600秒で全面組織Aを呈したのに対し、400℃で20秒保持したサンプルは、続く600℃での保持が、鋼種Aについては40~120秒、鋼種Bについては120~360秒、鋼種Dについては240~600秒で全面組織Aを呈した。この時、粗大なオーステナイトは400℃保持中にベイナイトに、600℃保持中にはこの時点で未変態のオーステナイトがフェライト-パーライトにそれぞれ変態していると推定される。すなわち、ベイナイト変態量とフェライト-パーライト変態量との和が変態前のオーステナイト量と釣り合った時点でオーステナイトの分解が完了し、続く900℃までの復熱を経て、徐冷中に組織Aを呈すると考えられる。 As is clear from the results shown in Table 2, the samples held at 400 ° C. for 40 seconds were held at 625 ° C. for 40 seconds or less for steel type A, 40 to 120 seconds for steel type B, and 40 to 120 seconds for steel type D. exhibited the overall structure A in 240 to 600 seconds, while the sample held at 400 ° C. for 20 seconds was held at 600 ° C. for 40 to 120 seconds for steel type A and 120 to 360 seconds for steel type B. Seconds, steel grade D exhibited the overall structure A at 240 to 600 seconds. At this time, it is presumed that coarse austenite transforms into bainite during holding at 400°C, and untransformed austenite transforms into ferrite-pearlite during holding at 600°C. That is, when the sum of the amount of bainite transformation and the amount of ferrite-pearlite transformation balances with the amount of austenite before transformation, the decomposition of austenite is completed. be done.

Si濃度及びMn濃度が高い鋼種について、350-450℃の温度域、及び、550-650℃の温度域における滞在時間T(s)、T(s)と、鋳片表層組織との関係について、上記と同様にして種々のモデル実験を行った。その結果、下記式(1)で示されるT(変態温度域での保持時間の合計値)(s)が30以上であるとき、その後のAc以上の復熱と冷却とを経ることで、割れ感受性の低い組織が生成するという知見が得られた。 Relationship between residence times T L (s) and T H (s) in temperature ranges of 350-450°C and 550-650°C and cast slab surface layer structure for steel grades with high Si and Mn concentrations Various model experiments were conducted in the same manner as above. As a result, when T A (the total value of the holding time in the transformation temperature range) (s) shown in the following formula (1) is 30 or more, the subsequent reheating and cooling of Ac 3 or more , it was found that a structure with low cracking susceptibility was generated.

=T×[Mn]-0.6×[Si]-1.1+T×10-1×[Mn]-1.1 (1)
(式(1)において[Si]及び[Mn]は、鋼におけるSi及びMnの濃度(質量%)である。)
T A =T L ×[Mn] −0.6 ×[Si] −1.1 +T H ×10 −1 ×[Mn] −1.1 (1)
([Si] and [Mn] in formula (1) are the concentrations (mass%) of Si and Mn in the steel.)

上記式(1)は、上記鋼種A~D以外の鋼種であってSi濃度及びMn濃度の高い鋼種を用いて実施した実験においても成立することが確認されている。すなわち、質量%で、C:0.10~0.40%、Si:1.0~3.0%、Mn:1.0~3.0%、Cr:0~0.60%、Mo:0~0.600%、Ni:0~0.50%、N:0~0.0250%の組成を有する鋼を鋳造対象とした場合、上記式(1)が30以上となるように鋳片の2次冷却を行うことで、鋳片表層組織の微細化が可能であり、矯正点における鋳片表面割れを抑制することができる。 It has been confirmed that the above formula (1) holds true also in experiments conducted using steel types other than the above steel types A to D, which have high Si and Mn concentrations. That is, in mass%, C: 0.10 to 0.40%, Si: 1.0 to 3.0%, Mn: 1.0 to 3.0%, Cr: 0 to 0.60%, Mo: When casting steel having a composition of 0 to 0.600%, Ni: 0 to 0.50%, and N: 0 to 0.0250%, the above formula (1) is 30 or more. By performing the secondary cooling, it is possible to refine the cast slab surface layer structure, and it is possible to suppress the cast slab surface cracks at the correction point.

3.実機試験
上記のモデル実験の妥当性を検証すべく、スラブ連続鋳造機において実機試験を行った。具体的には、下記表3に示される組成の溶鋼について、曲率半径12.0mの湾曲型連鋳機を用いて240mm×1500mmのサイズの鋳片を鋳造した。鋳造速度は1.0~1.4m/minである。鋳型から引き抜いた鋳片は鋳型直下に設置したゾーン長さ1mのスプレー急冷装置にて急冷した。ゾーン通過後は通常の2次冷却スプレーの水量を調整し、復熱を制御した。鋳片はガス切断機にて5.0±0.2mの長さに切断後、表面の観察に供した。
3. Actual machine test In order to verify the validity of the model experiment described above, an actual machine test was conducted using a slab continuous casting machine. Specifically, from molten steel having the composition shown in Table 3 below, a slab having a size of 240 mm×1500 mm was cast using a curved continuous caster having a radius of curvature of 12.0 m. The casting speed is 1.0-1.4 m/min. The slab pulled out from the mold was quenched by a spray quenching device with a zone length of 1 m installed directly under the mold. After passing through the zone, the amount of water in the normal secondary cooling spray was adjusted to control reheating. The slab was cut into lengths of 5.0±0.2 m with a gas cutter, and then subjected to surface observation.

Figure 2022183773000003
Figure 2022183773000003

なお、鋳片表面の温度は伝熱凝固計算により算出した鋳片L面中心の温度である。伝熱凝固計算により算出した温度は、連続鋳造機内に設置した鋳片表面温度系のデータと比較により十分高い精度であることを検証した。また、復熱後最高到達温度の目標となるAcの値は上記式(4)で特定した。 The temperature of the slab surface is the temperature at the center of the L surface of the slab calculated by heat transfer solidification calculation. It was verified that the temperature calculated by heat transfer solidification calculation has sufficiently high accuracy by comparison with the data of the slab surface temperature system installed in the continuous casting machine. Also, the value of Ac3 , which is the target of the highest temperature after recuperation, is specified by the above formula (4).

得られた鋼片の表面割れを目視観察した。冷却ゾーンにおいて鋳片表層温度が350~450℃の間にあった時間T、550~650℃の間にあった時間T、および復熱が始まってから矯正点に至るまでの最高温度と併せて調査結果を下記表4に示す。下記表4において、表面割れの評価は、割れがないものを「○」、割れの深さがいずれも0.5mm未満かつ割れの数が鋳片1本当たり10箇所以下であったものを「△」、いずれにも該当しないものを「×」として表した。 Surface cracks in the obtained steel slabs were visually observed. Investigation results together with the time T L during which the cast slab surface temperature was between 350 and 450° C. in the cooling zone, the time T H during which it was between 550 and 650° C., and the maximum temperature from the start of reheating to the straightening point. are shown in Table 4 below. In Table 4 below, the evaluation of surface cracks is "○" for those with no cracks, and "○" for those whose depth of cracks is less than 0.5 mm and the number of cracks is 10 or less per slab. △”, and those that do not correspond to any of the above are indicated as “x”.

Figure 2022183773000004
Figure 2022183773000004

表4に示される結果から明らかなように、上記式(1)で示されるTが30以上となるように鋳型直下において鋳片表面の冷却を行い、次いで、矯正点に至る前においてAc以上まで復熱した鋳片(実施例1~9)については、表面に割れは見られず、鋳片表層組織もフェライトが分散した微細組織が観察された。一方で、式(1)で示されるTが30未満である場合(比較例1、2、4、5、7及び8)や、復熱が始まってから矯正点に至るまでの最高温度がAc未満である場合(比較例3、6及び9)については、鋳片表面に割れが観察された。 As is clear from the results shown in Table 4, the slab surface was cooled immediately below the mold so that the T A shown in the above formula (1) was 30 or more, and then Ac 3 before reaching the straightening point. For the slabs (Examples 1 to 9) that had been reheated up to the above, no cracks were observed on the surface, and a fine structure in which ferrite was dispersed was observed in the surface layer structure of the slab. On the other hand, when TA shown by formula (1) is less than 30 (Comparative Examples 1, 2, 4, 5, 7 and 8), the maximum temperature from the start of reheating to the correction point is When Ac was less than 3 (Comparative Examples 3, 6 and 9), cracks were observed on the slab surface.

1 鋳片
10 鋳型
20 矯正点
100 連続鋳造機
1 slab 10 mold 20 straightening point 100 continuous casting machine

Claims (2)

質量%で、C:0.10~0.40%、Si:1.0~3.0%、Mn:1.0~3.0%、Cr:0~0.60%、Mo:0~0.600%、Ni:0~0.50%、N:0~0.0250%の組成を有する鋼の鋳片を、矯正点を有する連続鋳造機を用いて連続的に鋳造する方法であって、
鋳型の直下から前記矯正点に至る前において、前記鋳片の表面温度が350~450℃の間にある時間をT(s)、550~650℃にある時間をT(s)として、下記式(1)で定められるT(s)が30以上となるように前記鋳片を冷却し、
次いで前記矯正点に至る前に、前記鋳片の表面温度をAc以上の温度域まで復熱させる、
鋼の連続鋳造方法。
=T×[Mn]-0.6×[Si]-1.1+T×10-1×[Mn]-1.1 (1)
(式(1)において[Si]及び[Mn]は、鋼におけるSi及びMnの濃度(質量%)である。)
% by mass, C: 0.10-0.40%, Si: 1.0-3.0%, Mn: 1.0-3.0%, Cr: 0-0.60%, Mo: 0- A method of continuously casting steel slabs having a composition of 0.600%, Ni: 0 to 0.50%, and N: 0 to 0.0250% using a continuous casting machine having a straightening point. hand,
T L (s) is the time when the surface temperature of the slab is between 350 and 450° C. and T H (s) is the time when the surface temperature of the slab is between 550 and 650° C., from directly below the mold to the correction point, Cooling the slab so that T A (s) determined by the following formula (1) is 30 or more,
Then, before reaching the correction point, the surface temperature of the cast slab is restored to a temperature range of Ac 3 or higher,
A method of continuous casting of steel.
T A =T L ×[Mn] −0.6 ×[Si] −1.1 +T H ×10 −1 ×[Mn] −1.1 (1)
([Si] and [Mn] in formula (1) are the concentrations (mass%) of Si and Mn in the steel.)
前記鋳片は、質量%で、Al:0~0.10%、Ti:0~0.100%、V:0~0.400%、Ca:0~0.0100%、Mg:0~0.0100%、REM:0~0.0100%、Nb:0~0.050%、B:0~0.0040%の組成を有する、
請求項1に記載の方法。
The cast slab, in mass%, Al: 0 to 0.10%, Ti: 0 to 0.100%, V: 0 to 0.400%, Ca: 0 to 0.0100%, Mg: 0 to 0 .0100%, REM: 0 to 0.0100%, Nb: 0 to 0.050%, B: 0 to 0.0040%,
The method of claim 1.
JP2021091254A 2021-05-31 2021-05-31 Continuous casting method for steel Pending JP2022183773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021091254A JP2022183773A (en) 2021-05-31 2021-05-31 Continuous casting method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021091254A JP2022183773A (en) 2021-05-31 2021-05-31 Continuous casting method for steel

Publications (1)

Publication Number Publication Date
JP2022183773A true JP2022183773A (en) 2022-12-13

Family

ID=84437702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021091254A Pending JP2022183773A (en) 2021-05-31 2021-05-31 Continuous casting method for steel

Country Status (1)

Country Link
JP (1) JP2022183773A (en)

Similar Documents

Publication Publication Date Title
JP5605527B2 (en) Hot-rolled steel sheet and manufacturing method thereof
KR101899691B1 (en) Pressure vessel steel plate with excellent hydrogen induced cracking resistance and manufacturing method thereof
JP4951997B2 (en) A method for producing a high-tensile steel sheet having a tensile strength of 550 MPa or more.
JP5928405B2 (en) Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same
KR100723166B1 (en) High strength linepipe steel with high toughness and high hic resistance at the h2 s containing environment, and manufacturing method therefor
JP7211530B2 (en) WEAR RESISTANT STEEL AND METHOD FOR MANUFACTURING WEAR RESISTANT STEEL
KR20120071614A (en) Thick plate having excellent wear resistant and low-temperature toughness, and method for manufacturing the same
KR100256350B1 (en) The manufacturing method for yield strength 50kgf/mm2 steel with excellent anti hydrogen cracking and stress corrosion cracking property
JP7221476B6 (en) Steel material excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP6131833B2 (en) Method for continuous casting of Ti deoxidized steel
CA3085298C (en) Hot-rolled steel sheet for coiled tubing and method for manufacturing the same
JP7230561B2 (en) Steel continuous casting method
JP7238282B2 (en) PC steel bar
KR101657823B1 (en) Steel having excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
JP2022183773A (en) Continuous casting method for steel
JP7230562B2 (en) Continuous casting method for Ni-containing low alloy steel
KR101639902B1 (en) Steel having excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
JP2023160565A (en) Continuously casting method for steel
JP2006022390A (en) High strength cold rolled steel sheet and production method therefor
JP3218447B2 (en) Method of producing sour resistant thin high strength steel sheet with excellent low temperature toughness
KR101889186B1 (en) High-strength hot-rolled steel plate having excellent hydrogen induced cracking resistance and dwtt toughness at low temperature, and method for manufacturing the same
KR100825650B1 (en) Low mo type wide and thick plate having excellent plate distortion property and method for manufacturing the same
JPH09324216A (en) Manufacture of high strength steel or line pipe, excellent in hic resistance
RU2803300C1 (en) Wear-resistant steel sheet and method for manufacturing wear-resistant steel sheet
KR100345704B1 (en) A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240122