JP2022175753A - measuring device - Google Patents

measuring device Download PDF

Info

Publication number
JP2022175753A
JP2022175753A JP2021082426A JP2021082426A JP2022175753A JP 2022175753 A JP2022175753 A JP 2022175753A JP 2021082426 A JP2021082426 A JP 2021082426A JP 2021082426 A JP2021082426 A JP 2021082426A JP 2022175753 A JP2022175753 A JP 2022175753A
Authority
JP
Japan
Prior art keywords
light
receiving element
emitting element
light receiving
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021082426A
Other languages
Japanese (ja)
Inventor
信行 北島
Nobuyuki Kitajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamashin Filter Corp
Original Assignee
Yamashin Filter Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamashin Filter Corp filed Critical Yamashin Filter Corp
Priority to JP2021082426A priority Critical patent/JP2022175753A/en
Publication of JP2022175753A publication Critical patent/JP2022175753A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To certainly measure the degree of contamination even if positional deviation of a light emitting element or a light receiving element occurs.SOLUTION: A measuring device comprises: piping in which liquid passes, the piping being at least partially light transmissive material; a light irradiation unit having a first substrate provided with a first light emitting element that continuously irradiates the liquid passing through the piping with light and a second light emitting element adjacent thereto; a light receiving unit having a first light receiving element that continuously receives the light radiated from the first light emitting element and passing through the liquid, a second light receiving element that is provided adjacent to the first light receiving element and continuously receives the light passing through the liquid in the same manner, and a second substrate that is provided with the first light receiving element and the second light receiving element; a housing that is provided with the first substrate and the second substrate; and a contamination degree measuring unit that measures the liquid based on an output signal from the light receiving unit. The piping is inserted into holes in the housing, and the first light emitting element and first light receiving element and the second light emitting element and second light receiving element are arranged with the piping therebetween. The optical axes of the first light emitting element and the first light receiving element substantially match each other, and the optical axes of the second light emitting element and the second light receiving element substantially match each other.SELECTED DRAWING: Figure 1

Description

本発明は、測定装置に関する。 The present invention relates to measuring devices.

特許文献1には、受光部で変換した電気信号を第1の倍率で増幅して生成した信号である粒子検出信号と、受光部で変換した電気信号を第1の倍率より小さい第2の倍率で増幅して生成した信号である気泡検出信号とに基づいて、液体の汚染度を測定するための信号を生成する測定装置が開示されている。 Patent Document 1 discloses a particle detection signal that is a signal generated by amplifying an electrical signal converted by a light receiving section by a first magnification, and a second magnification that is smaller than the first magnification of the electrical signal converted by the light receiving section. Disclosed is a measuring device that generates a signal for measuring the degree of contamination of a liquid based on a bubble detection signal, which is a signal generated by amplifying at .

特開2016-45033号公報JP 2016-45033 A

特許文献1に記載の発明では、1つの発光素子から照射された光を2つの受光素子で受光するため、2つの受光素子に光を均等に当てる必要がある。しかしながら、測定装置を建設機械に設けて高温下で動作させる場合には、発光素子や受光素子の取付基板等が熱変形することで、2つの受光素子に光が均等に当たらなくなり、汚染度が測定できなくなるおそれがある。 In the invention described in Patent Document 1, light emitted from one light-emitting element is received by two light-receiving elements, so it is necessary to apply light to the two light-receiving elements evenly. However, when the measuring device is installed in construction machinery and operated under high temperature, the mounting substrate of the light emitting element and the light receiving element is thermally deformed, so that the light does not reach the two light receiving elements evenly, and the degree of contamination increases. Measurement may not be possible.

本発明はこのような事情に鑑みてなされたもので、発光素子や受光素子の位置ずれが発生しても確実に汚染度を測定することができる測定装置を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a measuring apparatus capable of reliably measuring the degree of contamination even when a light emitting element or a light receiving element is misaligned.

上記課題を解決するために、本発明に係る測定装置は、例えば、内部を液体が通過する配管であって、少なくとも一部が光透過性の材料で形成された配管と、前記配管を通過する前記液体に光を連続して照射する第1発光素子と、前記第1発光素子に隣接して設けられた第2発光素子と、前記第1発光素子及び前記第2発光素子が設けられた第1基板と、を有する光照射部と、前記第1発光素子から連続して照射されて前記液体を通った光を連続して受光する第1受光素子と、前記第1受光素子に隣接して設けられており、前記第1発光素子から連続して照射されて前記液体を通った光を連続して受光する第2受光素子と、前記第1受光素子及び前記第2受光素子が設けられた第2基板と、を有する受光部と、前記第1基板及び前記第2基板が設けられている筐体と、前記受光部からの出力信号に基づいて、前記液体の汚染度を測定するための信号を生成する汚染度測定部と、を備え、前記筐体には孔が設けられており、当該孔には前記配管が挿入されており、前記第1発光素子と前記第1受光素子とは、前記配管を挟んで配置されており、前記第2発光素子と前記第2受光素子とは、前記配管を挟んで配置されており、前記第1発光素子の光軸は、前記第1受光素子の光軸と略一致し、前記第2発光素子の光軸は、前記第2受光素子の光軸と略一致することを特徴とする。 In order to solve the above problems, the measuring device according to the present invention includes, for example, a pipe through which a liquid passes, at least a part of which is formed of a light-transmitting material, and a pipe that passes through the pipe. a first light emitting element for continuously irradiating the liquid with light; a second light emitting element provided adjacent to the first light emitting element; and a second light emitting element provided with the first light emitting element and the second light emitting element. a light irradiation unit having a substrate; a first light receiving element for continuously receiving light emitted from the first light emitting element and passing through the liquid; and adjacent to the first light receiving element. a second light-receiving element for continuously receiving light emitted from the first light-emitting element and passing through the liquid; and the first light-receiving element and the second light-receiving element. a light receiving unit having a second substrate; a housing in which the first substrate and the second substrate are provided; a contamination degree measuring unit that generates a signal, the housing is provided with a hole, the pipe is inserted into the hole, and the first light emitting element and the first light receiving element are and the second light emitting element and the second light receiving element are arranged with the pipe interposed therebetween, and the optical axis of the first light emitting element is aligned with the first light receiving element and the optical axis of the second light emitting element substantially coincides with the optical axis of the second light receiving element.

本発明に係る測定装置によれば、第1発光素子と第1受光素子及び第2発光素子と第2受光素子とは、それぞれ配管を挟んで配置されており、第1発光素子の光軸と第1受光素子の光軸とが略一致し、第2発光素子の光軸と第2受光素子の光軸とが略一致する。これにより、発光素子や受光素子の位置ずれが発生しても確実に汚染度を測定することができる。 According to the measuring device according to the present invention, the first light emitting element and the first light receiving element and the second light emitting element and the second light receiving element are arranged with the pipe interposed therebetween, and the optical axis of the first light emitting element and the The optical axis of the first light receiving element substantially coincides, and the optical axis of the second light emitting element substantially coincides with the optical axis of the second light receiving element. As a result, the degree of contamination can be reliably measured even if the positions of the light-emitting element and the light-receiving element are misaligned.

前記汚染度測定部は、前記第1受光素子からの出力信号と前記第2受光素子からの出力信号との差分に基づいて前記液体の汚染度を測定してもよい。これにより、気泡の影響を除去して汚染度を測定することができる。 The contamination level measurement section may measure the contamination level of the liquid based on a difference between an output signal from the first light receiving element and an output signal from the second light receiving element. This makes it possible to measure the degree of contamination while removing the effects of air bubbles.

本発明によれば、発光素子や受光素子の位置ずれが発生しても確実に汚染度を測定することができる。 According to the present invention, the degree of contamination can be reliably measured even if the positions of the light-emitting element and the light-receiving element are misaligned.

測定装置1の概略を示す断面図である。1 is a cross-sectional view showing an outline of a measuring device 1; FIG. 測定装置1の電気的な構成の概略を示すブロック図である。2 is a block diagram showing an outline of the electrical configuration of the measuring device 1; FIG. 従来の測定装置100の概略を示す図である。It is a figure which shows the outline of the conventional measuring apparatus 100. FIG.

以下、本発明の実施形態を、図面を参照して詳細に説明する。本発明の測定装置は、建設機械、油圧機器等の、液体を用いて所望の動作を行う装置の所望の位置に設けられ、液体の汚染度を測定するものである。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The measuring device of the present invention is provided at a desired position of a device that performs a desired operation using liquid, such as construction machinery and hydraulic equipment, and measures the degree of contamination of the liquid.

図1は、測定装置1の概略を示す断面図である。なお、図1では、断面を示すハッチングを一部省略する。測定装置1は、主として、光照射部10と、受光部20と、筐体30と、配管39とを有する。 FIG. 1 is a cross-sectional view showing the outline of the measuring device 1. As shown in FIG. In addition, in FIG. 1, the hatching which shows a cross section is partially abbreviate|omitted. The measuring device 1 mainly has a light irradiation section 10 , a light receiving section 20 , a housing 30 and a pipe 39 .

光照射部10は、主として、2つの発光素子11と、発光素子11が設けられた基板15とを有する。2つの発光素子11は隣接して設けられている。発光素子11は、例えば、LEDであり、配管39内に光を照射する。 The light irradiation section 10 mainly has two light emitting elements 11 and a substrate 15 on which the light emitting elements 11 are provided. The two light emitting elements 11 are provided adjacent to each other. The light emitting element 11 is, for example, an LED, and irradiates the inside of the pipe 39 with light.

受光部20は、主として、2つの受光素子21と、受光素子21が設けられた基板25とを有する。受光素子21は、例えばフォトダイオード(PD)であり、光の照射による透過光を検出する。 The light receiving section 20 mainly has two light receiving elements 21 and a substrate 25 provided with the light receiving elements 21 . The light-receiving element 21 is, for example, a photodiode (PD), and detects transmitted light due to light irradiation.

発光素子11と受光素子21とは、配管39を挟んで配置されている。また、発光素子11の光軸ax1は、受光素子21の光軸ax2と略一致する。 The light emitting element 11 and the light receiving element 21 are arranged with a pipe 39 interposed therebetween. Also, the optical axis ax1 of the light emitting element 11 substantially coincides with the optical axis ax2 of the light receiving element 21 .

以下、上流側の発光素子11及び受光素子21を発光素子11a及び受光素子21aとし、下流側の発光素子11及び受光素子21を発光素子11b及び受光素子21bとする。そして、発光素子11aの光軸ax1は、受光素子21aの光軸ax2と略一致し、発光素子11bの光軸ax1は、受光素子21bの光軸ax2と略一致する。 Hereinafter, the light emitting element 11 and the light receiving element 21 on the upstream side are referred to as a light emitting element 11a and a light receiving element 21a, and the light emitting element 11 and the light receiving element 21 on the downstream side are referred to as a light emitting element 11b and a light receiving element 21b. The optical axis ax1 of the light emitting element 11a substantially coincides with the optical axis ax2 of the light receiving element 21a, and the optical axis ax1 of the light emitting element 11b substantially coincides with the optical axis ax2 of the light receiving element 21b.

なお、図1では、発光素子11の光軸ax1は受光素子21の光軸ax2と一致しているが、光軸ax1と光軸ax2とは一致していなくてもよく、光軸ax1と光軸ax2とが微小量だけずれていてもよい。 In FIG. 1, the optical axis ax1 of the light emitting element 11 is aligned with the optical axis ax2 of the light receiving element 21, but the optical axis ax1 and the optical axis ax2 may not be aligned. It may be slightly deviated from the axis ax2.

配管39は、少なくとも一部が光透過性の材料で形成されており、測定対象である油、水等の液体が内部を通過する。配管39の光透過性材料で形成された部分に対し、一方から発光素子11が光を照射し、反対側で受光素子21が光を受光する。 At least a part of the pipe 39 is made of a light-transmitting material, and the liquid to be measured, such as oil or water, passes through the pipe 39 . The light emitting element 11 irradiates the portion of the pipe 39 made of the light transmissive material with light from one side, and the light receiving element 21 receives the light from the other side.

なお、配管39は全体が光透過性の材料で形成されたものであってもよいし、一部に光を導入及び導出するための窓が形成されたものであってもよい。図1では、配管39は、全体が光透過性の材料で形成されている。 The pipe 39 may be entirely made of a light-transmissive material, or partially formed with a window for introducing and leading light. In FIG. 1, the pipe 39 is entirely made of a light transmissive material.

配管39は、筐体30の内部に設けられている。筐体30は、主として、第1筐体31と、第2筐体32と、第3筐体33とを有する。 The pipe 39 is provided inside the housing 30 . The housing 30 mainly has a first housing 31 , a second housing 32 and a third housing 33 .

第1筐体31は、両端にそれぞれ設けられた穴31aと、2つの穴31aを連通する孔31bと、が設けられている。穴31aの中心軸と孔31bの中心軸は略一致する。 The first housing 31 is provided with holes 31a provided at both ends thereof, and a hole 31b connecting the two holes 31a. The central axis of the hole 31a and the central axis of the hole 31b are substantially aligned.

孔31bには配管39が挿入されており、穴31aにはそれぞれ第2筐体32が挿入されている。また、穴31aには、第2筐体32の外側に第3筐体33の一部が挿入されている。穴31aには雌ねじ部31cが形成されており、第2筐体32及び第3筐体33の外周面に形成された雄ねじ部32a、33aが螺合することにより、第2筐体32及び第3筐体33が穴31aに設けられる。 A pipe 39 is inserted into the hole 31b, and a second housing 32 is inserted into each of the holes 31a. A portion of the third housing 33 is inserted outside the second housing 32 into the hole 31a. A female threaded portion 31c is formed in the hole 31a, and the male threaded portions 32a and 33a formed on the outer peripheral surfaces of the second housing 32 and the third housing 33 are screwed together so that the second housing 32 and the third housing 33 are screwed together. 3 housing 33 is provided in the hole 31a.

第2筐体32及び第3筐体33には、それぞれ孔32b、33bが設けられている。孔32b、33bは、配管39の中空部と連通しており、液体の流路となる。 Holes 32b and 33b are provided in the second housing 32 and the third housing 33, respectively. The holes 32b and 33b communicate with the hollow portion of the pipe 39 and serve as flow paths for the liquid.

なお、本実施の形態では、第2筐体32と第3筐体33とは別部材であるが、第2筐体32と第3筐体33とは一つの部材であってもよい。 In this embodiment, the second housing 32 and the third housing 33 are separate members, but the second housing 32 and the third housing 33 may be one member.

第1筐体31は、凹部31d、31eを有する。凹部31dには基板15が設けられ、凹部31eには基板25が設けられている。凹部31dの底面には孔31gが設けられており、孔31gに発光素子11が設けられている。また、凹部31eの底面には孔31fが設けられており、発光素子11から照射された光は、配管39及び孔31fを通って受光素子21に入射する。 The first housing 31 has recesses 31d and 31e. A substrate 15 is provided in the recess 31d, and a substrate 25 is provided in the recess 31e. A hole 31g is provided in the bottom surface of the recess 31d, and the light emitting element 11 is provided in the hole 31g. A hole 31f is provided in the bottom surface of the concave portion 31e, and the light emitted from the light emitting element 11 enters the light receiving element 21 through the pipe 39 and the hole 31f.

図2は、測定装置1の電気的な構成の概略を示すブロック図である。測定装置1は、汚染度測定部41と、出力部43と、表示部45と、を有する。また、光照射部10は、駆動回路17を有し、受光部20はアンプ27を有する。 FIG. 2 is a block diagram showing an outline of the electrical configuration of the measuring device 1. As shown in FIG. The measuring device 1 has a contamination degree measuring unit 41 , an output unit 43 and a display unit 45 . Further, the light irradiation section 10 has a driving circuit 17 and the light receiving section 20 has an amplifier 27 .

駆動回路17は、2つの発光素子11を駆動し、2つの発光素子11の出力を同じにする。この駆動回路17は、発光素子11の発光量を一定とする定電流回路等を含む。駆動回路17は、発光素子11から連続して光を照射させる。そして、2つの受光素子21は、発光素子11から照射されて液体を通った光を連続して受光する。なお、駆動回路17は、受光素子21の受光量をフィードバックするAPC回路を含んでもよい。 The drive circuit 17 drives the two light emitting elements 11 to make the outputs of the two light emitting elements 11 the same. The drive circuit 17 includes a constant current circuit or the like that keeps the amount of light emitted from the light emitting element 11 constant. The drive circuit 17 causes the light emitting element 11 to emit light continuously. The two light receiving elements 21 continuously receive the light emitted from the light emitting element 11 and passing through the liquid. The drive circuit 17 may include an APC circuit that feeds back the amount of light received by the light receiving element 21 .

2つの受光素子21の出力信号は、それぞれ、アンプ27により増幅される。受光素子21aの信号を増幅するアンプ27をアンプ27aとし、受光素子21bの信号を増幅するアンプ27をアンプ27bとする。 Output signals from the two light receiving elements 21 are amplified by amplifiers 27, respectively. The amplifier 27 that amplifies the signal of the light receiving element 21a is referred to as an amplifier 27a, and the amplifier 27 that amplifies the signal of the light receiving element 21b is referred to as an amplifier 27b.

受光素子21aの出力信号はアンプ27aにより増幅された後に加減算器28に入力され、受光素子21bの出力信号はアンプ27bにより増幅された後に加減算器28に入力される。そして、加減算器28からは受光素子21(21a、21b)の差動出力が得られる。受光素子21からの出力信号は連続した信号であるため、受光素子21の差動出力も連続した信号である。 The output signal of the light receiving element 21a is input to the adder/subtractor 28 after being amplified by the amplifier 27a, and the output signal of the light receiving element 21b is input to the adder/subtractor 28 after being amplified by the amplifier 27b. An adder/subtractor 28 provides a differential output of the light receiving element 21 (21a, 21b). Since the output signal from the light receiving element 21 is a continuous signal, the differential output of the light receiving element 21 is also a continuous signal.

作動出力は、汚染度測定部41に入力される。そして、汚染度測定部41は、受光素子21の差動出力を基に、配管39内を流れる液体に含まれる粒子の量を測定する。以下、粒子Dがx1→x5の位置に向かって流路を流れている場合を例に、汚染度測定部41が粒子の量を測定する原理について説明する。 The operation output is input to the contamination level measuring section 41 . Then, the contamination level measurement unit 41 measures the amount of particles contained in the liquid flowing through the pipe 39 based on the differential output of the light receiving element 21 . Hereinafter, the principle of measuring the amount of particles by the contamination degree measuring unit 41 will be described, taking as an example the case where the particles D are flowing in the flow path toward the position of x1→x5.

発光素子11a、11bの出力が同じであるため、粒子D等の不純物粒子が無いとき、受光素子21に入る光量が同量となり、差動出力は0となる。粒子Dが位置x1の位置にある場合には、受光素子21に入る光量は同量なので差動出力は0となる。 Since the outputs of the light-emitting elements 11a and 11b are the same, the amount of light entering the light-receiving element 21 is the same when there is no impurity particle such as the particle D, and the differential output is zero. When the particle D is at the position x1, the amount of light entering the light receiving element 21 is the same, so the differential output is zero.

粒子Dがx2の位置にある場合には、受光素子21aの受光量は粒子Dにより遮られて受光素子21bの受光量よりも少なくなり、差動出力は負の値を持つ。粒子Dがx3の位置にくると、受光素子21に入る光量が再び同一となり、差動出力は0となる。粒子Dがx4の位置にくると、粒子Dがx2の位置にある場合とは逆に、受光素子21bの受光量が不純物に遮られ、差動出力は正の値を持つことになる。そして、粒子Dが光路を通過しx5の位置までくると、受光素子21の光量が同一となり差動出力は0となる。 When the particle D is at the position x2, the amount of light received by the light receiving element 21a is blocked by the particle D and becomes smaller than the amount of light received by the light receiving element 21b, and the differential output has a negative value. When the particle D reaches the position x3, the amount of light entering the light receiving element 21 becomes the same again, and the differential output becomes zero. When the particle D comes to the position x4, the amount of light received by the light receiving element 21b is blocked by impurities, and the differential output has a positive value, contrary to the case where the particle D is at the position x2. Then, when the particle D passes through the optical path and reaches the position x5, the light intensity of the light receiving element 21 becomes the same and the differential output becomes zero.

このように、2つの受光素子21への光路を粒子Dが片方ずつ遮ることにより、差動出力信号は正負の値を持つ波形を出力し、粒子Dの量に比例して波形数が増加する。その結果、汚染度測定部41は、液体に含まれる粒子の量、すなわち汚染度を測定する。 In this way, the particles D block one optical path to each of the two light receiving elements 21, so that the differential output signal outputs waveforms having positive and negative values, and the number of waveforms increases in proportion to the amount of the particles D. . As a result, the contamination level measurement unit 41 measures the amount of particles contained in the liquid, that is, the contamination level.

また、汚染度測定部41は、2つの受光素子21からの差動出力信号から気泡の影響を除去する。差動出力信号において、気泡は粒子より大きい信号として出力される。以下、汚染度測定部41が気泡の影響を除去する処理について説明する。 In addition, the contamination level measurement unit 41 removes the effects of air bubbles from the differential output signals from the two light receiving elements 21 . Bubbles are output as a larger signal than particles in the differential output signal. The process of removing the effects of air bubbles by the contamination degree measuring unit 41 will be described below.

汚染度測定部41は、加減算器28から出力された差動出力信号を取得し、この差動出力信号を第1の倍率で増幅し、全波整流して、粒子検出信号を生成する。また、汚染度測定部41は、差動出力信号を第2の倍率で増幅し、全波整流して、気泡検出信号を生成する。 The contamination degree measurement unit 41 acquires the differential output signal output from the adder/subtractor 28, amplifies the differential output signal by a first magnification, and performs full-wave rectification to generate a particle detection signal. Further, the contamination degree measurement unit 41 amplifies the differential output signal by a second magnification, performs full-wave rectification, and generates an air bubble detection signal.

気泡を検出したときには、粒子を検出したときに比べて、差動出力信号の波高値が大きな値となる。第2の倍率を第1の倍率より低くすることで、気泡検出信号では、粒子の検出結果は波形として現れず、気泡の検出結果のみが波形として現れる。 When bubbles are detected, the crest value of the differential output signal becomes larger than when particles are detected. By setting the second magnification lower than the first magnification, in the bubble detection signal, the particle detection result does not appear as a waveform, and only the bubble detection result appears as a waveform.

汚染度測定部41は、気泡検出信号に基づいて気泡抑制信号を生成する。気泡抑制信号は、Low、Highの2値からなる信号である。気泡検出信号の値が閾値以上でない場合には、気泡抑制信号をLowとし、気泡検出信号の値が閾値以上の場合には、気泡抑制信号をHighとする。 The contamination level measurement unit 41 generates an air bubble suppression signal based on the air bubble detection signal. The bubble suppression signal is a signal having two values of Low and High. When the value of the bubble detection signal is not equal to or greater than the threshold, the bubble suppression signal is set to Low, and when the value of the bubble detection signal is equal to or greater than the threshold, the bubble suppression signal is set to High.

気泡抑制信号がLowの場合には、汚染度測定部41は、粒子検出信号を積分して汚染度測定信号を得る。気泡抑制信号がHighの場合には、汚染度測定部41は、気泡抑制信号がHighとなる直前の粒子検出信号を積分して汚染度測定信号を得る。 When the bubble suppression signal is Low, the contamination level measurement unit 41 integrates the particle detection signal to obtain a contamination level measurement signal. When the bubble suppression signal is High, the contamination level measurement unit 41 obtains the pollution level measurement signal by integrating the particle detection signal immediately before the bubble suppression signal becomes High.

そして、汚染度測定部41は、汚染度測定信号に基づいて液体の汚染度を判定する。例えば、汚染度測定部41は、汚染度測定信号の値に基づいて、NAS等級法、ISO清浄度等の評価方法を用いて汚染度を判定する。そして、汚染度測定部41は、判定した汚染度を出力部43に出力する。出力部43は、汚染度を表示部45に出力する。 Then, the contamination level measurement unit 41 determines the contamination level of the liquid based on the contamination level measurement signal. For example, the contamination level measurement unit 41 determines the contamination level based on the value of the contamination level measurement signal using an evaluation method such as the NAS grading method or the ISO cleanliness level. Then, the contamination level measurement unit 41 outputs the determined contamination level to the output unit 43 . The output unit 43 outputs the contamination degree to the display unit 45 .

汚染度測定部41には、出力部43が接続される。出力部43には、ディスプレイ、処理装置、記憶装置、通信機械、建設機械等が接続されている。測定結果は、ディスプレスに表示されたり、記憶装置に記憶されたり、通信機械を介して建設機械に出力され、建設機械で表示されたりするようになっている。本実施の形態では、出力部43には表示部45が接続されている。なお、出力部43は、ネットワーク(有線、無線を問わない)を介して測定結果を外部の出力装置等に出力するようにしてもよい。 An output unit 43 is connected to the contamination level measurement unit 41 . A display, a processing device, a storage device, a communication device, a construction machine, and the like are connected to the output unit 43 . The measurement results are displayed on a display, stored in a storage device, or output to a construction machine via a communication machine and displayed on the construction machine. In this embodiment, a display unit 45 is connected to the output unit 43 . Note that the output unit 43 may output the measurement result to an external output device or the like via a network (whether wired or wireless).

図1の説明に戻る。測定装置1は建設機械等に設けられており、機械の作動時には、測定装置1は100度以上の環境下で用いられる。高温環境下では、基板15、25が熱変形し、これにより光軸ax1、ax2と略直交する方向(図1の紙面左右方向)に発光素子11や受光素子21が移動する。 Returning to the description of FIG. The measuring device 1 is installed in a construction machine or the like, and the measuring device 1 is used in an environment of 100 degrees or more during operation of the machine. In a high-temperature environment, the substrates 15 and 25 are thermally deformed, which causes the light-emitting element 11 and the light-receiving element 21 to move in a direction substantially perpendicular to the optical axes ax1 and ax2 (horizontal direction in FIG. 1).

しかしながら、発光素子11と受光素子21とが1:1で対応しているため、発光素子11や受光素子21の位置のずれが生じても、発光素子11の正面近傍から照射される強い光が受光素子21に入射する。 However, since the light-emitting element 11 and the light-receiving element 21 correspond 1:1, even if the light-emitting element 11 and the light-receiving element 21 are misaligned, strong light emitted from near the front of the light-emitting element 11 will not be emitted. Incident into the light receiving element 21 .

本実施の形態によれば、熱変形により光軸ax1と光軸ax2とのずれが生じても、発光素子11の正面近傍から照射される強い光が受光素子21に入射するため、測定装置1が確実に汚染度を測定することができる。 According to the present embodiment, even if the optical axis ax1 and the optical axis ax2 are misaligned due to thermal deformation, the strong light irradiated from near the front of the light emitting element 11 is incident on the light receiving element 21. Therefore, the measurement apparatus 1 can reliably measure the degree of contamination.

例えば、図3に示す従来の測定装置100のように、1つの発光素子11から照射された光を2つの受光素子21で受光する場合には、2つの受光素子21の中間に発光素子11の光軸ax1を配置させる。そして、発光素子11の正面近傍から照射される強い光は2つの受光素子21に入射せず、発光素子11から斜めに照射される光が受光素子21に入射する。 For example, when light emitted from one light emitting element 11 is received by two light receiving elements 21 as in the conventional measuring apparatus 100 shown in FIG. Arrange the optical axis ax1. The strong light emitted from near the front of the light emitting element 11 does not enter the two light receiving elements 21 , and the light emitted obliquely from the light emitting element 11 enters the light receiving element 21 .

したがって、熱変形により発光素子11や受光素子21の位置がずれると、2つの受光素子21のうちの1つの受光素子21に光が入射しなくなる。例えば、図7の点線に示すように、2つの受光素子21が紙面左側にずれると、紙面右側の受光素子21には光が入射するが、紙面左側の受光素子21に光が入射しなくなる。その結果、測定装置100で汚染度が測定できなくなるおそれがある。 Therefore, if the positions of the light emitting element 11 and the light receiving element 21 are displaced due to thermal deformation, light will not enter one of the two light receiving elements 21 . For example, as shown by the dotted line in FIG. 7, when the two light receiving elements 21 shift to the left side of the paper, light enters the light receiving element 21 on the right side of the paper, but does not enter the light receiving element 21 on the left side of the paper. As a result, the measuring device 100 may not be able to measure the degree of contamination.

それに対し、本実施の形態では、1つの発光素子11から照射された光を1つの受光素子21で受光するため、発光素子11から照射された光が確実に受光素子21に入射する。したがって、熱変形により汚染度が測定できない事態を防ぐことができる。 On the other hand, in the present embodiment, the light emitted from one light emitting element 11 is received by one light receiving element 21, so that the light emitted from the light emitting element 11 is reliably incident on the light receiving element 21. Therefore, it is possible to prevent a situation in which the degree of contamination cannot be measured due to thermal deformation.

また、本実施の形態によれば、2組の発光素子11と受光素子21を有するため、気泡の影響を除去して汚染度を測定することができる。その結果、汚染度を精度よく測定することができる。 Moreover, according to the present embodiment, since there are two sets of the light emitting element 11 and the light receiving element 21, it is possible to measure the degree of contamination while removing the effects of air bubbles. As a result, the degree of contamination can be measured with high accuracy.

以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。例えば、上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、実施形態の構成に他の構成の追加、削除、置換等をすることが可能である。また、本発明において、「略」とは、厳密に同一である場合のみでなく、同一性を失わない程度の誤差や変形を含む概念である。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and design changes and the like are also included within the scope of the gist of the present invention. . For example, the above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. Also, part of the configuration of the embodiment can be replaced with the configuration of another embodiment, and it is possible to add, delete, or replace the configuration of the embodiment with another configuration. In addition, in the present invention, the term "substantially" is not limited to the case of being exactly the same, but is a concept that includes errors and deformations to the extent that the identity is not lost.

1 :測定装置
10 :光照射部
11、11a、11b:発光素子
15 :基板
17 :駆動回路
20 :受光部
21、21a、21b:受光素子
25 :基板
27、27a、27b:アンプ
28 :加減算器
30 :筐体
31 :第1筐体
31a :穴
31b :孔
31c :雌ねじ部
31d、31e:凹部
31f、31g:孔
32 :第2筐体
33 :第3筐体
32a、33a:雄ねじ部
32b、33b:孔
39 :配管
41 :汚染度測定部
43 :出力部
45 :表示部
100 :測定装置
Reference Signs List 1: measuring device 10: light irradiation units 11, 11a, 11b: light emitting element 15: substrate 17: drive circuit 20: light receiving units 21, 21a, 21b: light receiving element 25: substrates 27, 27a, 27b: amplifier 28: adder/subtractor 30: housing 31: first housing 31a: hole 31b: hole 31c: female threaded portion 31d, 31e: concave portion 31f, 31g: hole 32: second housing 33: third housing 32a, 33a: male threaded portion 32b, 33b: Hole 39: Piping 41: Contamination measuring unit 43: Output unit 45: Display unit 100: Measuring device

Claims (2)

内部を液体が通過する配管であって、少なくとも一部が光透過性の材料で形成された配管と、
前記配管を通過する前記液体に光を連続して照射する第1発光素子と、前記第1発光素子に隣接して設けられた第2発光素子と、前記第1発光素子及び前記第2発光素子が設けられた第1基板と、を有する光照射部と、
前記第1発光素子から連続して照射されて前記液体を通った光を連続して受光する第1受光素子と、前記第1受光素子に隣接して設けられており、前記第1発光素子から連続して照射されて前記液体を通った光を連続して受光する第2受光素子と、前記第1受光素子及び前記第2受光素子が設けられた第2基板と、を有する受光部と、
前記第1基板及び前記第2基板が設けられている筐体と、
前記受光部からの出力信号に基づいて、前記液体の汚染度を測定するための信号を生成する汚染度測定部と、
を備え、
前記筐体には孔が設けられており、当該孔には前記配管が挿入されており、
前記第1発光素子と前記第1受光素子とは、前記配管を挟んで配置されており、
前記第2発光素子と前記第2受光素子とは、前記配管を挟んで配置されており、
前記第1発光素子の光軸は、前記第1受光素子の光軸と略一致し、
前記第2発光素子の光軸は、前記第2受光素子の光軸と略一致する
ことを特徴とする測定装置。
a pipe through which a liquid passes, at least a part of which is made of a light-transmitting material;
a first light emitting element for continuously irradiating the liquid passing through the pipe with light; a second light emitting element provided adjacent to the first light emitting element; and the first light emitting element and the second light emitting element. A light irradiation unit having a first substrate provided with
a first light-receiving element for continuously receiving light emitted from the first light-emitting element and having passed through the liquid; a light-receiving unit having a second light-receiving element that continuously receives light that is continuously irradiated and that has passed through the liquid; and a second substrate on which the first light-receiving element and the second light-receiving element are provided;
a housing provided with the first substrate and the second substrate;
a contamination level measurement unit that generates a signal for measuring the contamination level of the liquid based on the output signal from the light receiving unit;
with
A hole is provided in the housing, and the pipe is inserted into the hole,
The first light emitting element and the first light receiving element are arranged across the pipe,
The second light-emitting element and the second light-receiving element are arranged with the pipe interposed therebetween,
the optical axis of the first light emitting element substantially coincides with the optical axis of the first light receiving element,
The measuring device, wherein the optical axis of the second light-emitting element substantially coincides with the optical axis of the second light-receiving element.
前記汚染度測定部は、前記第1受光素子からの出力信号と前記第2受光素子からの出力信号との差分に基づいて前記液体の汚染度を測定する
ことを特徴とする請求項1に記載の測定装置。
2. The contamination level measurement unit according to claim 1, wherein the contamination level measurement unit measures the contamination level of the liquid based on a difference between an output signal from the first light receiving element and an output signal from the second light receiving element. measuring device.
JP2021082426A 2021-05-14 2021-05-14 measuring device Pending JP2022175753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021082426A JP2022175753A (en) 2021-05-14 2021-05-14 measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021082426A JP2022175753A (en) 2021-05-14 2021-05-14 measuring device

Publications (1)

Publication Number Publication Date
JP2022175753A true JP2022175753A (en) 2022-11-25

Family

ID=84145088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021082426A Pending JP2022175753A (en) 2021-05-14 2021-05-14 measuring device

Country Status (1)

Country Link
JP (1) JP2022175753A (en)

Similar Documents

Publication Publication Date Title
JP6660063B2 (en) Apparatus for monitoring the processing performance of laser systems using high power fiber optic cables
WO2010148293A3 (en) Euv high throughput inspection system for defect detection on patterned euv masks, mask blanks, and wafers
CN107144507A (en) One kind can self-alignment double light path dust concentration tester
JP2022175753A (en) measuring device
JP2022175729A (en) measuring device
KR102597198B1 (en) Inline particle sensor
US11841278B2 (en) Temperature measurement sensor, temperature measurement system, and temperature measurement method
JP2007278858A (en) Fog particle sensor and fog sensor
JP2016045033A (en) measuring device
CN112352358A (en) Laser device and laser processing device using the same
US10203281B2 (en) Transmitted light intensity measurement unit
CN207280907U (en) One kind can self-alignment double light path dust concentration tester
CN114383641B (en) Optical sensing demodulation module and optical sensing system
KR20030085749A (en) A piping line of a semiconductor manufacturing machine having a check mean on a pollution state
KR20020006812A (en) Method and apparatus for detecting section of object
JPH074909A (en) Laser sensor apparatus
WO2023154209A1 (en) High precision and high throughput measurement of percentage light loss of optical devices
CN206557082U (en) Detection means applied to plant chimney stalk qualified discharge
WO2020039478A1 (en) Detector for chromatography
WO2020111430A1 (en) Optical measurement device, chemical substance supply device comprising optical measurement device, and process device using chemical substance comprising optical measurement device
CN118092080A (en) Comprehensive monitoring device and monitoring method for light spot position of vertical incidence light beam
JP3180338U (en) Photoelectric sensor
KR20090079046A (en) Wet process monitoring apparatus for detecting fault, and wet process monitoring method
KR20230010355A (en) Smart optical adaptor
JPH04287387A (en) Light output detector