JP2022175729A - measuring device - Google Patents

measuring device Download PDF

Info

Publication number
JP2022175729A
JP2022175729A JP2021082383A JP2021082383A JP2022175729A JP 2022175729 A JP2022175729 A JP 2022175729A JP 2021082383 A JP2021082383 A JP 2021082383A JP 2021082383 A JP2021082383 A JP 2021082383A JP 2022175729 A JP2022175729 A JP 2022175729A
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving element
emitting element
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021082383A
Other languages
Japanese (ja)
Inventor
信行 北島
Nobuyuki Kitajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamashin Filter Corp
Original Assignee
Yamashin Filter Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamashin Filter Corp filed Critical Yamashin Filter Corp
Priority to JP2021082383A priority Critical patent/JP2022175729A/en
Publication of JP2022175729A publication Critical patent/JP2022175729A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To certainly measure the degree of contamination even if positional deviation of a light emitting element or a light receiving element occurs.SOLUTION: A measuring device comprises: piping in which liquid passes, the piping at least partially formed of light transmissive material; a light irradiation unit having a first light emitting element that continuously irradiates the liquid with light and a first substrate that is provided with the first light emitting element; a light receiving unit having a first light receiving element that continuously receives light and a second substrate that is provided with the first light receiving element; a housing that is provided with the first substrate and the second substrate; and a contamination degree measuring unit that measures the degree of contamination of the liquid based on an output signal from the light receiving unit. The housing is provided with holes, and the piping is inserted into the holes. The first light emitting element and the first light receiving element are arranged with the piping therebetween. An optical axis of the first light emitting element overlaps a light receiving area of the first light receiving element.SELECTED DRAWING: Figure 1

Description

本発明は、測定装置に関する。 The present invention relates to measuring devices.

特許文献1には、受光部で変換した電気信号を第1の倍率で増幅して生成した信号である粒子検出信号と、受光部で変換した電気信号を第1の倍率より小さい第2の倍率で増幅して生成した信号である気泡検出信号とに基づいて、液体の汚染度を測定するための信号を生成する測定装置が開示されている。 Patent Document 1 discloses a particle detection signal that is a signal generated by amplifying an electrical signal converted by a light receiving section by a first magnification, and a second magnification that is smaller than the first magnification of the electrical signal converted by the light receiving section. Disclosed is a measuring device that generates a signal for measuring the degree of contamination of a liquid based on a bubble detection signal, which is a signal generated by amplifying at .

特開2016-45033号公報JP 2016-45033 A

特許文献1に記載の発明では、1つの発光素子から照射された光を2つの受光素子で受光するため、2つの受光素子に光を均等に当てる必要がある。しかしながら、測定装置を建設機械に設けて高温下で動作させる場合には、発光素子や受光素子の取付基板等が熱変形することで、2つの受光素子に光が均等に当たらなくなり、汚染度が測定できなくなるおそれがある。 In the invention described in Patent Document 1, light emitted from one light-emitting element is received by two light-receiving elements, so it is necessary to apply light to the two light-receiving elements evenly. However, when the measuring device is installed in construction machinery and operated at high temperatures, the mounting substrate for the light emitting element and the light receiving element will be thermally deformed, and the light will not hit the two light receiving elements evenly, resulting in an increase in the degree of contamination. Measurement may not be possible.

本発明はこのような事情に鑑みてなされたもので、発光素子や受光素子の位置ずれが発生しても確実に汚染度を測定することができる測定装置を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a measuring apparatus capable of reliably measuring the degree of contamination even when a light emitting element or a light receiving element is misaligned.

上記課題を解決するために、本発明に係る測定装置は、例えば、内部を液体が通過する配管であって、少なくとも一部が光透過性の材料で形成された配管と、光を連続して照射する第1発光素子と、前記第1発光素子が設けられた第1基板と、を有する光照射部と、光を連続して受光する第1受光素子と、前記第1受光素子が設けられた第2基板と、を有する受光部と、前記第1基板及び前記第2基板が設けられている筐体と、前記受光部からの出力信号に基づいて、前記液体の汚染度を測定する汚染度測定部と、を備え、前記筐体には孔が設けられており、当該孔には前記配管が挿入されており、前記第1発光素子と前記第1受光素子とは、前記配管を挟んで配置されており、前記第1発光素子の光軸は、前記第1受光素子の受光領域と重なることを特徴とする。 In order to solve the above problems, the measuring device according to the present invention includes, for example, a pipe through which a liquid passes, at least a part of which is formed of a light-transmitting material, and a pipe that continuously transmits light. A light irradiation unit having a first light emitting element for irradiation and a first substrate provided with the first light emitting element, a first light receiving element for continuously receiving light, and the first light receiving element are provided. a light-receiving unit including a second substrate; a housing provided with the first substrate and the second substrate; a degree measuring unit, wherein a hole is provided in the housing, the pipe is inserted into the hole, and the first light emitting element and the first light receiving element are arranged with the pipe interposed therebetween. and the optical axis of the first light emitting element overlaps with the light receiving area of the first light receiving element.

本発明に係る測定装置によれば、内部を液体が通過する配管であって、少なくとも一部が光透過性の材料で形成された配管が筐体に設けられた孔に挿入されており、第1発光素子が設けられた第1基板と第1受光素子が設けられた第2基板が筐体に設けられている。第1発光素子と第1受光素子とは配管を挟んで配置されており、第1発光素子の光軸は第1受光素子の受光領域と重なる。これにより、発光素子や受光素子の位置ずれが発生しても確実に汚染度を測定することができる。 According to the measuring device of the present invention, the pipe through which the liquid passes and at least a part of which is made of a light-transmitting material is inserted into the hole provided in the housing, and the A housing is provided with a first substrate provided with one light-emitting element and a second substrate provided with a first light-receiving element. The first light-emitting element and the first light-receiving element are arranged across the pipe, and the optical axis of the first light-emitting element overlaps the light-receiving region of the first light-receiving element. As a result, the degree of contamination can be reliably measured even if the positions of the light-emitting element and the light-receiving element are misaligned.

前記光照射部は、少なくとも、光を連続して照射する第2発光素子を有し、前記受光部は、少なくとも、光を連続して受光する第2受光素子を有し、前記第2発光素子と前記第2受光素子とは、前記配管を挟んで配置されており、前記第2発光素子の光軸は、前記第2受光素子の受光領域と重なってもよい。これにより、汚染度の測定精度を向上させることができる。この場合は、発光素子及び受光素子の数が3個以上の場合を含む。 The light emitting section has at least a second light emitting element that continuously emits light, the light receiving section has at least a second light receiving element that continuously receives light, and the second light emitting element and the second light-receiving element may be arranged across the pipe, and the optical axis of the second light-emitting element may overlap the light-receiving region of the second light-receiving element. Thereby, the measurement accuracy of the degree of contamination can be improved. This case includes the case where the number of light-emitting elements and light-receiving elements is three or more.

前記第2発光素子は、前記第1発光素子に隣接して設けられており、前記第2受光素子は、前記第1受光素子に隣接して設けられており、前記汚染度測定部は、前記第1受光素子からの出力信号と前記第2受光素子からの出力信号との差分に基づいて前記液体の汚染度を測定してもよい。これにより、気泡の影響を除去して汚染度を測定することができる。 The second light-emitting element is provided adjacent to the first light-emitting element, the second light-receiving element is provided adjacent to the first light-receiving element, and the contamination degree measuring unit includes the The degree of contamination of the liquid may be measured based on the difference between the output signal from the first light receiving element and the output signal from the second light receiving element. This makes it possible to measure the degree of contamination while removing the effects of air bubbles.

前記汚染度測定部は、前記第1受光素子からの出力信号に基づいて粒径が第1範囲に含まれる粒子を検出し、前記第2受光素子からの出力信号に基づいて粒径が前記第1範囲と異なる第2範囲に含まれる粒子を検出してもよい。これにより、粒子の直径毎に汚染度を測定することができる。 The contamination degree measuring unit detects particles having a particle size within a first range based on the output signal from the first light receiving element, and detects particles having a particle size within the first range based on the output signal from the second light receiving element. Particles contained in a second range different from the first range may be detected. This makes it possible to measure the degree of contamination for each particle diameter.

前記第1発光素子の光軸と、前記第1受光素子の光軸とのずれが50μm以下であってもよい。これにより、発光素子や受光素子の位置ずれが発生したときに受光素子に入射する光の強度を強くすることができる。 A shift between the optical axis of the first light emitting element and the optical axis of the first light receiving element may be 50 μm or less. This makes it possible to increase the intensity of light incident on the light receiving element when the light emitting element or the light receiving element is misaligned.

本発明によれば、発光素子や受光素子の位置ずれが発生しても確実に汚染度を測定することができる。 According to the present invention, the degree of contamination can be reliably measured even if the positions of the light-emitting element and the light-receiving element are misaligned.

測定装置1の概略を示す断面図である。1 is a cross-sectional view showing an outline of a measuring device 1; FIG. 測定装置1の電気的な構成の概略を示すブロック図である。2 is a block diagram showing an outline of the electrical configuration of the measuring device 1; FIG. 測定装置2の概略を示す断面図である。2 is a cross-sectional view showing the outline of the measuring device 2. FIG. 測定装置2の電気的な構成の概略を示すブロック図である。2 is a block diagram showing an outline of an electrical configuration of the measuring device 2; FIG. 測定装置3の概略を示す断面図である。3 is a cross-sectional view showing the outline of the measuring device 3. FIG. 測定装置3の電気的な構成の概略を示すブロック図である。3 is a block diagram showing an outline of an electrical configuration of the measuring device 3; FIG. 従来の測定装置100の概略を示す図である。It is a figure which shows the outline of the conventional measuring apparatus 100. FIG.

以下、本発明の実施形態を、図面を参照して詳細に説明する。本発明の測定装置は、建設機械、油圧機器等の、液体を用いて所望の動作を行う装置の所望の位置に設けられ、液体の汚染度を測定するものである。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The measuring device of the present invention is provided at a desired position of a device that performs a desired operation using liquid, such as construction machinery and hydraulic equipment, and measures the degree of contamination of the liquid.

<第1の実施の形態>
図1は、測定装置1の概略を示す断面図である。なお、図1では、断面を示すハッチングを一部省略する。測定装置1は、主として、光照射部10と、受光部20と、筐体30と、配管39とを有する。
<First Embodiment>
FIG. 1 is a cross-sectional view showing the outline of the measuring device 1. As shown in FIG. In addition, in FIG. 1, the hatching which shows a cross section is partially abbreviate|omitted. The measuring device 1 mainly has a light irradiation section 10 , a light receiving section 20 , a housing 30 and a pipe 39 .

光照射部10は、主として、発光素子11と、発光素子11が設けられた基板15とを有する。発光素子11は、例えば、LEDであり、配管39内に光を照射する。 The light irradiation section 10 mainly has a light emitting element 11 and a substrate 15 provided with the light emitting element 11 . The light emitting element 11 is, for example, an LED, and irradiates the inside of the pipe 39 with light.

受光部20は、主として、受光素子21と、受光素子21が設けられた基板25とを有する。受光素子21は、例えばフォトダイオード(PD)であり、光の照射による透過光を検出する。 The light receiving section 20 mainly has a light receiving element 21 and a substrate 25 on which the light receiving element 21 is provided. The light-receiving element 21 is, for example, a photodiode (PD), and detects transmitted light due to light irradiation.

発光素子11と受光素子21とは、配管39を挟んで配置されている。また、発光素子11の光軸ax1は、受光素子21の受光領域と重なる。なお、受光領域とは、入射した光を検出可能な領域であり、受光素子21は、受光領域に入射した光を電気信号に変換する。例えば、受光素子21がフォトダイオードである場合には、環状電極に囲まれた内側の領域が受光領域である。 The light emitting element 11 and the light receiving element 21 are arranged with a pipe 39 interposed therebetween. Also, the optical axis ax1 of the light emitting element 11 overlaps the light receiving area of the light receiving element 21 . The light-receiving region is a region in which incident light can be detected, and the light-receiving element 21 converts the light incident on the light-receiving region into an electrical signal. For example, when the light receiving element 21 is a photodiode, the inner area surrounded by the annular electrode is the light receiving area.

なお、図1では、発光素子11の光軸ax1は受光素子21の光軸ax2と一致しているが、光軸ax1と光軸ax2とは一致していなくてもよい。 In FIG. 1, the optical axis ax1 of the light emitting element 11 is aligned with the optical axis ax2 of the light receiving element 21, but the optical axis ax1 and the optical axis ax2 may not be aligned.

配管39は、少なくとも一部が光透過性の材料で形成されており、測定対象である油、水等の液体が内部を通過する。配管39の光透過性材料で形成された部分に対し、一方から発光素子11が光を照射し、反対側で受光素子21が光を受光する。 At least a part of the pipe 39 is made of a light-transmitting material, and the liquid to be measured, such as oil or water, passes through the pipe 39 . The light emitting element 11 irradiates the portion of the pipe 39 made of the light transmissive material with light from one side, and the light receiving element 21 receives the light from the other side.

なお、配管39は全体が光透過性の材料で形成されたものであってもよいし、一部に光を導入及び導出するための窓が形成されたものであってもよい。図1では、配管39は、全体が光透過性の材料で形成されている。 The pipe 39 may be entirely made of a light-transmissive material, or partially formed with a window for introducing and leading light. In FIG. 1, the pipe 39 is entirely made of a light transmissive material.

配管39は、筐体30の内部に設けられている。筐体30は、主として、第1筐体31と、第2筐体32と、第3筐体33とを有する。 The pipe 39 is provided inside the housing 30 . The housing 30 mainly has a first housing 31 , a second housing 32 and a third housing 33 .

第1筐体31は、両端にそれぞれ設けられた穴31aと、2つの穴31aを連通する孔31bと、が設けられている。穴31aの中心軸と孔31bの中心軸は略一致する。 The first housing 31 is provided with holes 31a provided at both ends thereof, and a hole 31b connecting the two holes 31a. The central axis of the hole 31a and the central axis of the hole 31b are substantially aligned.

孔31bには配管39が挿入されており、穴31aにはそれぞれ第2筐体32が挿入されている。また、穴31aには、第2筐体32の外側に第3筐体33の一部が挿入されている。穴31aには雌ねじ部31cが形成されており、第2筐体32及び第3筐体33の外周面に形成された雄ねじ部32a、33aが螺合することにより、第2筐体32及び第3筐体33が穴31aに設けられる。 A pipe 39 is inserted into the hole 31b, and a second housing 32 is inserted into each of the holes 31a. A portion of the third housing 33 is inserted outside the second housing 32 into the hole 31a. A female threaded portion 31c is formed in the hole 31a, and the male threaded portions 32a and 33a formed on the outer peripheral surfaces of the second housing 32 and the third housing 33 are screwed together so that the second housing 32 and the third housing 33 are screwed together. 3 housing 33 is provided in the hole 31a.

第2筐体32及び第3筐体33には、それぞれ孔32b、33bが設けられている。孔32b、33bは、配管39の中空部と連通しており、液体の流路となる。 Holes 32b and 33b are provided in the second housing 32 and the third housing 33, respectively. The holes 32b and 33b communicate with the hollow portion of the pipe 39 and serve as flow paths for the liquid.

なお、本実施の形態では、第2筐体32と第3筐体33とは別部材であるが、第2筐体32と第3筐体33とは一つの部材であってもよい。 In this embodiment, the second housing 32 and the third housing 33 are separate members, but the second housing 32 and the third housing 33 may be one member.

第1筐体31は、凹部31d、31eを有する。凹部31dには基板15が設けられ、凹部31eには基板25が設けられている。凹部31dの底面には孔31gが設けられており、孔31gに発光素子11が設けられている。また、凹部31eの底面には孔31fが設けられており、発光素子11から照射された光は、配管39及び孔31fを通って受光素子21に入射する。 The first housing 31 has recesses 31d and 31e. A substrate 15 is provided in the recess 31d, and a substrate 25 is provided in the recess 31e. A hole 31g is provided in the bottom surface of the recess 31d, and the light emitting element 11 is provided in the hole 31g. A hole 31f is provided in the bottom surface of the concave portion 31e, and the light emitted from the light emitting element 11 enters the light receiving element 21 through the pipe 39 and the hole 31f.

図2は、測定装置1の電気的な構成の概略を示すブロック図である。測定装置1は、汚染度測定部41と、出力部43と、表示部45と、を有する。また、光照射部10は、駆動回路17を有し、受光部20はアンプ27を有する。 FIG. 2 is a block diagram showing an outline of the electrical configuration of the measuring device 1. As shown in FIG. The measuring device 1 has a contamination degree measuring unit 41 , an output unit 43 and a display unit 45 . Further, the light irradiation section 10 has a driving circuit 17 and the light receiving section 20 has an amplifier 27 .

発光素子11は、駆動回路17により駆動される。この駆動回路17は、発光素子11の発光量を一定とする定電流回路等を含む。駆動回路17は、発光素子11から連続して光を照射させる。そして、受光素子21は、発光素子11から照射されて液体を通った光を連続して受光する。なお、駆動回路17は、受光素子21の受光量をフィードバックするAPC回路を含んでもよい。 The light-emitting element 11 is driven by a driving circuit 17 . The drive circuit 17 includes a constant current circuit or the like that keeps the amount of light emitted by the light emitting element 11 constant. The drive circuit 17 causes the light emitting element 11 to emit light continuously. The light receiving element 21 continuously receives the light emitted from the light emitting element 11 and passed through the liquid. The drive circuit 17 may include an APC circuit that feeds back the amount of light received by the light receiving element 21 .

受光素子21の出力信号は、アンプ27により増幅された後に汚染度測定部41に入力される。汚染度測定部41は、受光素子21からの出力信号に基づいて、液体の汚染度を測定する。液体に粒子が含まれていると、粒子により光が遮られた分だけ受光素子21に光が入射しない。汚染度測定部41は、受光素子21からの出力信号が遮られた回数及び時間に基づいて、液体に含まれる粒子の量、すなわち汚染度を測定する。汚染度測定部41の処理は公知の方法を用いることができるため、説明を省略する。 The output signal of the light receiving element 21 is amplified by the amplifier 27 and then input to the contamination degree measuring section 41 . The contamination level measurement unit 41 measures the contamination level of the liquid based on the output signal from the light receiving element 21 . If the liquid contains particles, the amount of light blocked by the particles does not enter the light receiving element 21 . The contamination level measurement unit 41 measures the amount of particles contained in the liquid, that is, the contamination level, based on the number of times and the time that the output signal from the light receiving element 21 is interrupted. Since a known method can be used for the processing of the contamination degree measuring unit 41, the description thereof is omitted.

汚染度測定部41には、出力部43が接続される。出力部43には、ディスプレイ、処理装置、記憶装置、通信機械、建設機械等が接続されている。測定結果は、ディスプレイに表示されたり、記憶装置に記憶されたり、通信機械を介して建設機械に出力され、建設機械で表示されたりするようになっている。本実施の形態では、出力部43には表示部45が接続されている。なお、出力部43は、ネットワーク(有線、無線を問わない)を介して測定結果を外部の出力装置等に出力するようにしてもよい。 An output unit 43 is connected to the contamination level measurement unit 41 . A display, a processing device, a storage device, a communication device, a construction machine, and the like are connected to the output unit 43 . The measurement results are displayed on a display, stored in a storage device, or output to a construction machine via a communication machine and displayed on the construction machine. In this embodiment, a display unit 45 is connected to the output unit 43 . Note that the output unit 43 may output the measurement result to an external output device or the like via a network (whether wired or wireless).

図1の説明に戻る。測定装置1は建設機械等に設けられており、機械の作動時には、測定装置1は100度以上の環境下で用いられる。高温環境下では、基板15、25が熱変形し、これにより光軸ax1、ax2と略直交する方向(図1の紙面左右方向)に発光素子11や受光素子21が移動する。 Returning to the description of FIG. The measuring device 1 is installed in a construction machine or the like, and the measuring device 1 is used in an environment of 100 degrees or more during operation of the machine. In a high-temperature environment, the substrates 15 and 25 are thermally deformed, which causes the light-emitting element 11 and the light-receiving element 21 to move in a direction substantially perpendicular to the optical axes ax1 and ax2 (horizontal direction in FIG. 1).

しかしながら、発光素子11と受光素子21とが1:1で対応しているため、発光素子11や受光素子21の位置のずれが生じても、発光素子11の正面近傍から照射される強い光が受光素子21に入射する。 However, since the light-emitting element 11 and the light-receiving element 21 correspond 1:1, even if the light-emitting element 11 and the light-receiving element 21 are misaligned, strong light emitted from near the front of the light-emitting element 11 will not be emitted. Incident into the light receiving element 21 .

本実施の形態によれば、熱変形により光軸ax1と光軸ax2とのずれが生じても、発光素子11の正面近傍から照射される強い光が受光素子21に入射するため、測定装置1が確実に汚染度を測定することができる。 According to the present embodiment, even if the optical axis ax1 and the optical axis ax2 are misaligned due to thermal deformation, the strong light irradiated from near the front of the light emitting element 11 is incident on the light receiving element 21. Therefore, the measurement apparatus 1 can reliably measure the degree of contamination.

なお、本実施の形態では、光軸ax1が受光素子21の受光領域と重なるように、光照射部10及び受光部20を筐体30に設けたが、受光素子21に入射する光の強度を強くするためには、光軸ax1と受光素子21の光軸とのずれが50μm以下であることが望ましい。 In the present embodiment, the light irradiation unit 10 and the light receiving unit 20 are provided in the housing 30 so that the optical axis ax1 overlaps the light receiving area of the light receiving element 21. However, the intensity of the light incident on the light receiving element 21 is In order to increase the strength, it is desirable that the deviation between the optical axis ax1 and the optical axis of the light receiving element 21 is 50 μm or less.

<第2の実施の形態>
本発明の第1の実施の形態は、1組の発光素子と受光素子を有したが、発光素子及び受光素子の数はこれに限られない。本発明の第2の実施の形態は、2組の発光素子と受光素子を有する形態である。以下、第2の実施の形態にかかる測定装置2について説明する。なお、第1の実施の形態と同一の部分については、同一の符号を付し、説明を省略する。
<Second Embodiment>
Although the first embodiment of the present invention has one set of light-emitting elements and light-receiving elements, the number of light-emitting elements and light-receiving elements is not limited to this. A second embodiment of the present invention has two sets of light emitting elements and light receiving elements. A measuring device 2 according to the second embodiment will be described below. The same reference numerals are assigned to the same parts as in the first embodiment, and the description thereof is omitted.

図3は、測定装置2の概略を示す断面図である。なお、図3では、断面を示すハッチングを一部省略する。測定装置2は、主として、光照射部10Aと、受光部20Aと、筐体30Aと、配管39とを有する。 FIG. 3 is a cross-sectional view showing the outline of the measuring device 2. As shown in FIG. In addition, in FIG. 3, the hatching which shows a cross section is partially abbreviate|omitted. The measuring device 2 mainly includes a light irradiation section 10A, a light receiving section 20A, a housing 30A, and a pipe 39. As shown in FIG.

光照射部10Aは、主として、2つの発光素子11と、基板15とを有する。2つの発光素子11は隣接して設けられている。受光部20Aは、主として、2つの受光素子21と、基板25とを有する。2つの受光素子21は隣接して設けられている。発光素子11の光軸ax1は、それぞれ、受光素子21の受光領域と重なる。図3では、発光素子11の光軸ax1は、それぞれ、受光素子21の光軸ax2と一致しているが、光軸ax1と光軸ax2とは一致していなくてもよい。 10 A of light irradiation parts mainly have the two light emitting elements 11 and the board|substrate 15. As shown in FIG. The two light emitting elements 11 are provided adjacent to each other. The light receiving section 20A mainly has two light receiving elements 21 and a substrate 25 . The two light receiving elements 21 are provided adjacently. The optical axis ax1 of the light emitting element 11 overlaps with the light receiving area of the light receiving element 21, respectively. In FIG. 3, the optical axis ax1 of the light emitting element 11 is aligned with the optical axis ax2 of the light receiving element 21, but the optical axis ax1 and the optical axis ax2 may not be aligned.

以下、上流側の発光素子11及び受光素子21を発光素子11a及び受光素子21aとし、下流側の発光素子11及び受光素子21を発光素子11b及び受光素子21bとする。 Hereinafter, the light emitting element 11 and the light receiving element 21 on the upstream side are referred to as a light emitting element 11a and a light receiving element 21a, and the light emitting element 11 and the light receiving element 21 on the downstream side are referred to as a light emitting element 11b and a light receiving element 21b.

筐体30Aは、主として、第1筐体31Aと、第2筐体32と、第3筐体33とを有する。第1筐体31Aは、凹部31d、31eと、凹部31dの底面に設けられた孔31hと、凹部31eの底面に設けられた孔31iと、を有する。孔31hには2つの発光素子11が挿入されている。発光素子11から照射された光は、配管39及び孔31iを通って受光素子21に入射する。 The housing 30A mainly has a first housing 31A, a second housing 32, and a third housing 33. As shown in FIG. The first housing 31A has recesses 31d and 31e, a hole 31h provided in the bottom surface of the recess 31d, and a hole 31i provided in the bottom surface of the recess 31e. Two light emitting elements 11 are inserted in the hole 31h. Light emitted from the light emitting element 11 enters the light receiving element 21 through the pipe 39 and the hole 31i.

図4は、測定装置2の電気的な構成の概略を示すブロック図である。測定装置2は、汚染度測定部41Aと、出力部43と、表示部45と、を有する。また、光照射部10Aは、駆動回路17を有し、受光部20Aはアンプ27及び加減算器28を有する。 FIG. 4 is a block diagram showing an outline of the electrical configuration of the measuring device 2. As shown in FIG. The measuring device 2 has a contamination degree measuring section 41A, an output section 43, and a display section 45. As shown in FIG. Further, the light irradiation section 10A has a driving circuit 17, and the light receiving section 20A has an amplifier 27 and an adder/subtractor 28. As shown in FIG.

駆動回路17は、2つの発光素子11を駆動し、2つの発光素子11の出力を同じにする。2つの受光素子21は、それぞれ、発光素子11から照射されて液体を通った光を連続して受光する。2つの受光素子21の出力信号は、それぞれ、アンプ27により増幅される。受光素子21aの信号を増幅するアンプ27をアンプ27aとし、受光素子21bの信号を増幅するアンプ27をアンプ27bとする。 The drive circuit 17 drives the two light emitting elements 11 to make the outputs of the two light emitting elements 11 the same. Each of the two light receiving elements 21 continuously receives the light emitted from the light emitting element 11 and passed through the liquid. Output signals from the two light receiving elements 21 are amplified by amplifiers 27, respectively. The amplifier 27 that amplifies the signal of the light receiving element 21a is referred to as an amplifier 27a, and the amplifier 27 that amplifies the signal of the light receiving element 21b is referred to as an amplifier 27b.

受光素子21aの出力信号はアンプ27aにより増幅された後に加減算器28に入力され、受光素子21bの出力信号はアンプ27bにより増幅された後に加減算器28に入力される。そして、加減算器28からは受光素子21(21a、21b)の差動出力が得られる。受光素子21からの出力信号は連続した信号であるため、受光素子21の差動出力も連続した信号である。 The output signal of the light receiving element 21a is input to the adder/subtractor 28 after being amplified by the amplifier 27a, and the output signal of the light receiving element 21b is input to the adder/subtractor 28 after being amplified by the amplifier 27b. An adder/subtractor 28 provides a differential output of the light receiving element 21 (21a, 21b). Since the output signal from the light receiving element 21 is a continuous signal, the differential output of the light receiving element 21 is also a continuous signal.

差動出力は、汚染度測定部41Aに入力される。そして、汚染度測定部41Aは、受光素子21の差動出力を基に、配管39内を流れる液体に含まれる粒子の量を測定する。以下、粒子Dがx1→x5の位置に向かって流路を流れている場合を例に、汚染度測定部41Aが粒子の量を測定する原理について説明する。 The differential output is input to the contamination level measuring section 41A. Then, the contamination level measurement unit 41A measures the amount of particles contained in the liquid flowing through the pipe 39 based on the differential output of the light receiving element 21 . Hereinafter, the principle of measuring the amount of particles by the contamination level measuring unit 41A will be described, taking as an example the case where the particles D are flowing in the flow path toward the position of x1→x5.

発光素子11a、11bの出力が同じであるため、粒子D等の不純物粒子が無いとき、受光素子21に入る光量が同量となり、差動出力は0となる。粒子Dが位置x1の位置にある場合には、受光素子21に入る光量は同量なので差動出力は0となる。 Since the outputs of the light-emitting elements 11a and 11b are the same, the amount of light entering the light-receiving element 21 is the same when there is no impurity particle such as the particle D, and the differential output is zero. When the particle D is at the position x1, the amount of light entering the light receiving element 21 is the same, so the differential output is zero.

粒子Dがx2の位置にある場合には、受光素子21aの受光量は粒子Dにより遮られて受光素子21bの受光量よりも少なくなり、差動出力は負の値を持つ。粒子Dがx3の位置にくると、受光素子21に入る光量が再び同一となり、差動出力は0となる。粒子Dがx4の位置にくると、粒子Dがx2の位置にある場合とは逆に、受光素子21bの受光量が不純物に遮られ、差動出力は正の値を持つことになる。そして、粒子Dが光路を通過しx5の位置までくると、受光素子21の光量が同一となり差動出力は0となる。 When the particle D is at the position x2, the amount of light received by the light receiving element 21a is blocked by the particle D and becomes smaller than the amount of light received by the light receiving element 21b, and the differential output has a negative value. When the particle D reaches the position x3, the amount of light entering the light receiving element 21 becomes the same again, and the differential output becomes zero. When the particle D comes to the position x4, the amount of light received by the light receiving element 21b is blocked by impurities, and the differential output has a positive value, contrary to the case where the particle D is at the position x2. When the particle D passes through the optical path and reaches the position x5, the light intensity of the light receiving element 21 becomes the same and the differential output becomes zero.

このように、2つの受光素子21への光路を粒子Dが片方ずつ遮ることにより、差動出力信号は正負の値を持つ波形を出力し、粒子Dの量に比例して波形数が増加する。その結果、汚染度測定部41Aは、液体に含まれる粒子の量、すなわち汚染度を測定する。 In this way, the particles D block one optical path to each of the two light receiving elements 21, so that the differential output signal outputs waveforms having positive and negative values, and the number of waveforms increases in proportion to the amount of the particles D. . As a result, the contamination level measurement unit 41A measures the amount of particles contained in the liquid, that is, the contamination level.

また、汚染度測定部41Aは、2つの受光素子21からの差動出力信号から気泡の影響を除去する。差動出力信号において、気泡は粒子より大きい信号として出力される。以下、汚染度測定部41Aが気泡の影響を除去する処理について説明する。 Further, the contamination level measuring section 41A removes the effects of air bubbles from the differential output signals from the two light receiving elements 21 . Bubbles are output as a larger signal than particles in the differential output signal. The process of removing the effects of air bubbles by the contamination degree measuring unit 41A will be described below.

汚染度測定部41Aは、加減算器28から出力された差動出力信号を取得し、この差動出力信号を第1の倍率で増幅し、全波整流して、粒子検出信号を生成する。また、汚染度測定部41Aは、差動出力信号を第2の倍率で増幅し、全波整流して、気泡検出信号を生成する。 The contamination level measurement unit 41A acquires the differential output signal output from the adder/subtractor 28, amplifies the differential output signal by a first magnification, and performs full-wave rectification to generate a particle detection signal. Further, the contamination level measurement unit 41A amplifies the differential output signal by a second factor, performs full-wave rectification, and generates an air bubble detection signal.

気泡を検出したときには、粒子を検出したときに比べて、差動出力信号の波高値が大きな値となる。第2の倍率を第1の倍率より低くすることで、気泡検出信号では、粒子の検出結果は波形として現れず、気泡の検出結果のみが波形として現れる。 When bubbles are detected, the crest value of the differential output signal becomes larger than when particles are detected. By setting the second magnification lower than the first magnification, in the bubble detection signal, the particle detection result does not appear as a waveform, and only the bubble detection result appears as a waveform.

汚染度測定部41Aは、気泡検出信号に基づいて気泡抑制信号を生成する。気泡抑制信号は、Low、Highの2値からなる信号である。気泡検出信号の値が閾値以上でない場合には、気泡抑制信号をLowとし、気泡検出信号の値が閾値以上の場合には、気泡抑制信号をHighとする。 The contamination level measurement unit 41A generates an air bubble suppression signal based on the air bubble detection signal. The bubble suppression signal is a signal having two values of Low and High. When the value of the bubble detection signal is not equal to or greater than the threshold, the bubble suppression signal is set to Low, and when the value of the bubble detection signal is equal to or greater than the threshold, the bubble suppression signal is set to High.

気泡抑制信号がLowの場合には、汚染度測定部41Aは、粒子検出信号を積分して汚染度測定信号を得る。気泡抑制信号がHighの場合には、汚染度測定部41Aは、気泡抑制信号がHighとなる直前の粒子検出信号を積分して汚染度測定信号を得る。 When the bubble suppression signal is Low, the contamination level measurement unit 41A integrates the particle detection signal to obtain a contamination level measurement signal. When the bubble suppression signal is High, the contamination degree measurement unit 41A integrates the particle detection signal immediately before the bubble suppression signal becomes High to obtain the contamination degree measurement signal.

そして、汚染度測定部41Aは、汚染度測定信号に基づいて液体の汚染度を判定する。例えば、汚染度測定部41Aは、汚染度測定信号の値に基づいて、NAS等級法、ISO清浄度等の評価方法を用いて汚染度を判定する。そして、汚染度測定部41Aは、判定した汚染度を出力部43に出力する。出力部43は、汚染度を表示部45に出力する。 Then, the contamination level measurement unit 41A determines the contamination level of the liquid based on the contamination level measurement signal. For example, the contamination level measurement unit 41A determines the contamination level based on the value of the contamination level measurement signal using an evaluation method such as the NAS grading method or the ISO cleanliness level. Then, the contamination level measurement unit 41A outputs the determined contamination level to the output unit 43 . The output unit 43 outputs the contamination degree to the display unit 45 .

図3の説明に戻る。測定装置2は、測定装置1と同様、100度以上の環境下で用いられるため、基板15、25が熱変形し、光軸ax2が移動し、発光素子11や受光素子21の位置がずれてしまう。 Returning to the description of FIG. Since the measuring device 2 is used in an environment of 100° C. or more like the measuring device 1, the substrates 15 and 25 are thermally deformed, the optical axis ax2 moves, and the positions of the light emitting element 11 and the light receiving element 21 shift. put away.

本実施の形態では、発光素子11と受光素子21とが1:1で対応しているため、発光素子11や受光素子21の位置のずれが生じても、発光素子11の正面近傍から照射される強い光が受光素子21に入射する。 In the present embodiment, since the light emitting element 11 and the light receiving element 21 are in a 1:1 correspondence, even if the positions of the light emitting element 11 and the light receiving element 21 are misaligned, light is emitted from near the front of the light emitting element 11. strong light is incident on the light receiving element 21 .

本実施の形態によれば、熱変形により発光素子11や受光素子21の位置のずれが生じても、発光素子11から照射された光が確実に受光素子21に入射するため、測定装置1が確実に汚染度を測定することができる。 According to the present embodiment, even if the positions of the light emitting element 11 and the light receiving element 21 are displaced due to thermal deformation, the light emitted from the light emitting element 11 is reliably incident on the light receiving element 21. Contamination degree can be measured reliably.

例えば、図7に示す従来の測定装置100のように、1つの発光素子11から照射された光を2つの受光素子21で受光する場合には、2つの受光素子21の中間に発光素子11の光軸ax1を配置させる。そして、発光素子11の正面近傍から照射される強い光は2つの受光素子21に入射せず、発光素子11から斜めに照射される光が受光素子21に入射する。 For example, when light emitted from one light emitting element 11 is received by two light receiving elements 21 as in the conventional measuring apparatus 100 shown in FIG. Arrange the optical axis ax1. The strong light emitted from near the front of the light emitting element 11 does not enter the two light receiving elements 21 , and the light emitted obliquely from the light emitting element 11 enters the light receiving element 21 .

したがって、熱変形により発光素子11や受光素子21の位置がずれると、2つの受光素子21のうちの1つの受光素子21に光が入射しなくなる。例えば、図7の点線に示すように、2つの受光素子21が紙面左側にずれると、紙面右側の受光素子21には光が入射するが、紙面左側の受光素子21に光が入射しなくなる。その結果、測定装置100で汚染度が測定できなくなるおそれがある。 Therefore, if the positions of the light emitting element 11 and the light receiving element 21 are displaced due to thermal deformation, light will not enter one of the two light receiving elements 21 . For example, as shown by the dotted line in FIG. 7, when the two light receiving elements 21 shift to the left side of the paper, light enters the light receiving element 21 on the right side of the paper, but does not enter the light receiving element 21 on the left side of the paper. As a result, the measuring device 100 may not be able to measure the degree of contamination.

それに対し、本実施の形態では、1つの発光素子11から照射された光を1つの受光素子21で受光するため、発光素子11から照射された光が確実に受光素子21に入射する。したがって、熱変形により汚染度が測定できない事態を防ぐことができる。 On the other hand, in the present embodiment, the light emitted from one light emitting element 11 is received by one light receiving element 21, so that the light emitted from the light emitting element 11 is reliably incident on the light receiving element 21. Therefore, it is possible to prevent a situation in which the degree of contamination cannot be measured due to thermal deformation.

また、本実施の形態によれば、2組の発光素子11と受光素子21を有するため、気泡の影響を除去して汚染度を測定することができる。その結果、汚染度を精度よく測定することができる。 Moreover, according to the present embodiment, since there are two sets of the light emitting element 11 and the light receiving element 21, it is possible to measure the degree of contamination while removing the effects of air bubbles. As a result, the degree of contamination can be measured with high accuracy.

なお、本実施の形態では、2つの発光素子11が隣接して設けられており、2つの受光素子21が隣接して設けられているが、2つの発光素子11及び2つの受光素子21は隣接していなくてもよい。ただし、2つの受光素子21の出力の差分から気泡の影響を除去して汚染度を測定するためには、2つの発光素子11及び2つの受光素子21が隣接していることが望ましい。 In this embodiment, the two light emitting elements 11 are provided adjacently and the two light receiving elements 21 are provided adjacently. You don't have to. However, in order to measure the degree of contamination by removing the effects of air bubbles from the difference between the outputs of the two light receiving elements 21, it is desirable that the two light emitting elements 11 and the two light receiving elements 21 are adjacent to each other.

<第3の実施の形態>
本発明の第2の実施の形態は、2組の発光素子と受光素子を有したが、発光素子及び受光素子の数はこれに限られない。本発明の第3の実施の形態は、3組の発光素子と受光素子を有する形態である。以下、第3の実施の形態にかかる測定装置3について説明する。なお、第1の実施の形態又は第2の実施の形態と同一の部分については、同一の符号を付し、説明を省略する。
<Third Embodiment>
Although the second embodiment of the present invention has two sets of light-emitting elements and light-receiving elements, the number of light-emitting elements and light-receiving elements is not limited to this. The third embodiment of the present invention has three sets of light-emitting elements and light-receiving elements. A measuring device 3 according to the third embodiment will be described below. The same parts as those in the first embodiment or the second embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.

図5は、測定装置3の概略を示す断面図である。なお、図5では、断面を示すハッチングを一部省略する。測定装置3は、主として、光照射部10Bと、受光部20Bと、筐体30Bと、配管39とを有する。 FIG. 5 is a cross-sectional view showing the outline of the measuring device 3. As shown in FIG. In addition, in FIG. 5, the hatching which shows a cross section is partially abbreviate|omitted. The measuring device 3 mainly has a light irradiation section 10B, a light receiving section 20B, a housing 30B, and a pipe 39. As shown in FIG.

光照射部10Bは、主として、3つの発光素子11と、基板15とを有する。受光部20Bは、主として、3つの受光素子21と、基板25とを有する。発光素子11の光軸ax1は、それぞれ、受光素子21と重なる。図5では、発光素子11の光軸ax1は、それぞれ、受光素子21の光軸ax2と一致している。 The light irradiation section 10B mainly has three light emitting elements 11 and a substrate 15 . The light receiving section 20B mainly has three light receiving elements 21 and a substrate 25 . The optical axes ax1 of the light emitting elements 11 respectively overlap the light receiving elements 21 . In FIG. 5, the optical axis ax1 of the light emitting element 11 is aligned with the optical axis ax2 of the light receiving element 21 respectively.

以下、最も上流側の発光素子11及び受光素子21を発光素子11a及び受光素子21aとし、中央の発光素子11及び受光素子21を発光素子11b及び受光素子21bとし、最も下流側の発光素子11及び受光素子21を発光素子11c及び受光素子21cとする。 Hereinafter, the most upstream light emitting element 11 and light receiving element 21 are referred to as light emitting element 11a and light receiving element 21a, the central light emitting element 11 and light receiving element 21 are referred to as light emitting element 11b and light receiving element 21b, and the most downstream light emitting element 11 and light receiving element 21 are referred to as light emitting element 11b and light receiving element 21b. The light receiving element 21 is assumed to be a light emitting element 11c and a light receiving element 21c.

筐体30Bは、主として、第1筐体31Bと、第2筐体32と、第3筐体33とを有する。第1筐体31Bは、凹部31d、31eと、凹部31dの底面に設けられた孔31jと、凹部31eの底面に設けられた孔31kと、を有する。孔31jには2つの発光素子11が挿入されている。発光素子11から照射された光は、配管39及び孔31kを通って受光素子21に入射する。 The housing 30B mainly has a first housing 31B, a second housing 32, and a third housing 33. As shown in FIG. The first housing 31B has recesses 31d and 31e, a hole 31j provided in the bottom surface of the recess 31d, and a hole 31k provided in the bottom surface of the recess 31e. Two light emitting elements 11 are inserted in the hole 31j. Light emitted from the light emitting element 11 enters the light receiving element 21 through the pipe 39 and the hole 31k.

図6は、測定装置3の電気的な構成の概略を示すブロック図である。測定装置3は、汚染度測定部41Bと、出力部43と、表示部45と、を有する。また、光照射部10Bは、駆動回路17を有し、受光部20Bはアンプ27及び加減算器28を有する。 FIG. 6 is a block diagram showing an outline of the electrical configuration of the measuring device 3. As shown in FIG. The measuring device 3 has a contamination level measuring section 41B, an output section 43, and a display section 45. As shown in FIG. Further, the light irradiation section 10B has a driving circuit 17, and the light receiving section 20B has an amplifier 27 and an adder/subtractor 28. FIG.

駆動回路17は、3つの発光素子11を駆動する。3つの受光素子21は、それぞれ、発光素子11から照射されて液体を通った光を連続して受光する。2つの受光素子21の出力信号は、それぞれ、アンプ27により増幅される。受光素子21aの信号を増幅するアンプ27をアンプ27aとし、受光素子21bの信号を増幅するアンプ27をアンプ27bとし、受光素子21cの信号を増幅するアンプ27をアンプ27cとする。 A drive circuit 17 drives the three light emitting elements 11 . Each of the three light receiving elements 21 continuously receives the light emitted from the light emitting element 11 and passed through the liquid. Output signals from the two light receiving elements 21 are amplified by amplifiers 27, respectively. The amplifier 27 that amplifies the signal of the light receiving element 21a is referred to as an amplifier 27a, the amplifier 27 that amplifies the signal of the light receiving element 21b is referred to as an amplifier 27b, and the amplifier 27 that amplifies the signal of the light receiving element 21c is referred to as an amplifier 27c.

受光素子21aの出力信号はアンプ27aにより増幅された後に加減算器28に入力され、受光素子21bの出力信号はアンプ27bにより増幅された後に加減算器28に入力され、受光素子21cの出力信号はアンプ27cにより増幅された後に加減算器28に入力される。そして、加減算器28からは受光素子21a、21bの差動出力、受光素子21a、21cの差動出力及び受光素子21b、21cの差動出力が得られる。受光素子21及び受光素子13からの出力信号は連続した信号であるため、受光素子21の差動出力も連続した信号である。 The output signal of the light receiving element 21a is input to the adder/subtractor 28 after being amplified by the amplifier 27a, the output signal of the light receiving element 21b is input to the adder/subtractor 28 after being amplified by the amplifier 27b, and the output signal of the light receiving element 21c is input to the amplifier. After being amplified by 27c, it is input to the adder/subtractor 28. FIG. The adder/subtractor 28 provides a differential output from the light receiving elements 21a and 21b, a differential output from the light receiving elements 21a and 21c, and a differential output from the light receiving elements 21b and 21c. Since the output signals from the light receiving element 21 and the light receiving element 13 are continuous signals, the differential output of the light receiving element 21 is also a continuous signal.

差動出力は、汚染度測定部41Bに入力される。そして、汚染度測定部41Bは、受光素子21の差動出力を基に、配管39内を流れる液体に含まれる粒子の量を測定する。まず、汚染度測定部41Bは、汚染度測定部41Aと同様に、2つの受光素子21(例えば、受光素子21a、21b)からの差動出力信号に基づいて、気泡の影響を除去して粒子の量を測定する。 The differential output is input to the contamination degree measuring section 41B. Based on the differential output of the light receiving element 21, the contamination level measurement unit 41B measures the amount of particles contained in the liquid flowing through the pipe 39. FIG. First, similarly to the contamination degree measurement unit 41A, the contamination degree measurement unit 41B removes the effects of air bubbles based on the differential output signals from the two light receiving elements 21 (for example, the light receiving elements 21a and 21b), and detects the particles. measure the amount of

また、汚染度測定部41Bは、2つの受光素子(受光素子21a、21b)からの差動出力信号に基づいて粒径が第1範囲に含まれる粒子を検出し、2つの受光素子(受光素子21a、21c)からの差動出力信号に基づいて粒径が第2範囲に含まれる粒子を検出する。第2範囲は、第1範囲と異なる範囲である。また、粒径が第1範囲に含まれる粒子の検出に用いられる2つの受光素子と、粒径が第2範囲に含まれる粒子の検出に用いられる2つの受光素子とは、少なくとも1つが異なる。 Further, the contamination level measurement unit 41B detects particles whose particle diameters are within the first range based on the differential output signals from the two light receiving elements (light receiving elements 21a and 21b). 21a, 21c) to detect particles whose particle size falls within the second range. The second range is a range different from the first range. At least one of the two light receiving elements used to detect particles whose particle diameters fall within the first range is different from the two light receiving elements used to detect particles whose particle diameters fall within the second range.

例えば、汚染度測定部41Bは、受光素子21a、21bからの差動出力信号に基づいて直径5~15μmの粒子の量を測定し、受光素子21a、21cからの差動出力信号に基づいて直径15~25μmの粒子の量を測定する。 For example, the contamination level measurement unit 41B measures the amount of particles with a diameter of 5 to 15 μm based on the differential output signals from the light receiving elements 21a and 21b, and measures the diameter of particles based on the differential output signals from the light receiving elements 21a and 21c. Measure the amount of particles between 15 and 25 μm.

本実施の形態では、2つの受光素子21からの差動出力信号に基づいて、粒径が第1範囲に含まれる粒子及び粒径が第2範囲に含まれる粒子の量を測定するため、汚染度測定部41Bは、気泡の影響を除去してそれぞれの範囲の粒径の粒子の量を測定する。 In the present embodiment, based on the differential output signals from the two light-receiving elements 21, the amount of particles whose particle sizes are included in the first range and the amount of particles whose particle sizes are included in the second range are measured. The degree measuring unit 41B removes the effect of air bubbles and measures the amount of particles having a particle size within each range.

図5の説明に戻る。測定装置3は建設機械等に設けられており、機械の作動時には、測定装置2は100度以上の環境下で用いられる。この環境下では、基板15、25が熱変形する。基板25が熱変形することで光軸ax2が移動し、光軸ax1と光軸ax2とがずれてしまう。 Returning to the description of FIG. The measuring device 3 is provided in a construction machine or the like, and the measuring device 2 is used in an environment of 100 degrees or more during operation of the machine. Under this environment, the substrates 15 and 25 are thermally deformed. The thermal deformation of the substrate 25 causes the optical axis ax2 to move, and the optical axis ax1 and the optical axis ax2 are deviated from each other.

本実施の形態では、3組の発光素子11と受光素子21を有し、それぞれ発光素子11と受光素子21とが1:1で対応している。したがって、光軸ax1と光軸ax2とのずれが生じても、発光素子11の光軸ax1が受光素子21と重なる。そのため、発光素子11から照射された光は確実に受光素子21に入射する。 In this embodiment, three sets of light-emitting elements 11 and light-receiving elements 21 are provided, and the light-emitting elements 11 and the light-receiving elements 21 correspond to each other at 1:1. Therefore, the optical axis ax1 of the light-emitting element 11 overlaps the light-receiving element 21 even if the optical axis ax1 and the optical axis ax2 are deviated from each other. Therefore, the light emitted from the light emitting element 11 is reliably incident on the light receiving element 21 .

本実施の形態によれば、熱変形が発生して、光軸ax1と光軸ax2とのずれが生じても、発光素子11から照射された光が確実に受光素子21に入射するため、測定装置1が確実に汚染度を測定することができる。 According to the present embodiment, even if the optical axis ax1 and the optical axis ax2 are deviated due to thermal deformation, the light emitted from the light-emitting element 11 is reliably incident on the light-receiving element 21; The device 1 can reliably measure the degree of contamination.

また、本実施の形態によれば、2組以上の発光素子11と受光素子21を有するため、気泡の影響を除去して汚染度を測定することができる。 Moreover, according to the present embodiment, since there are two or more sets of light-emitting elements 11 and light-receiving elements 21, it is possible to measure the degree of contamination while removing the effects of air bubbles.

また、本実施の形態によれば、2組以上の発光素子11と受光素子21を有するため、粒子の直径毎に汚染度を測定することができる。液体に含まれる粒子の大きさによって、その粒子の発生源や、粒子による油圧回路への影響の程度が異なる。したがって、粒子の大きさ毎に汚染度を測定することで、汚染の発生の主原因を特定したり、油圧装置の点検の必要性を判断したりすることができる。 Moreover, according to this embodiment, since there are two or more sets of the light emitting element 11 and the light receiving element 21, the degree of contamination can be measured for each particle diameter. Depending on the size of the particles contained in the liquid, the source of the particles and the degree of influence of the particles on the hydraulic circuit differ. Therefore, by measuring the degree of contamination for each particle size, it is possible to identify the main cause of the occurrence of contamination and determine the necessity of inspection of the hydraulic system.

なお、本実施の形態では、3組の発光素子11と受光素子21を有したが、発光素子11及び受光素子21の数はこれに限られず、4個以上であってもよい。 In this embodiment, three sets of light-emitting elements 11 and light-receiving elements 21 are provided, but the number of light-emitting elements 11 and light-receiving elements 21 is not limited to this, and may be four or more.

また、本実施の形態では、受光素子21a、21bからの差動出力信号に基づいて粒径が第1範囲に含まれる粒子を検出し、受光素子21a、21cからの差動出力信号に基づいて粒径が第2範囲に含まれる粒子を検出したが、差動出力信号を用いずに粒径が所定の範囲に含まれる粒子を検出してもよい。例えば、任意の1つの受光素子(例えば、受光素子21b)からの出力信号に基づいて粒径が第1範囲に含まれる粒子を検出し、粒径が第1範囲に含まれる粒子を検出に用いる受光素子とは異なる受光素子(例えば、受光素子21c)からの出力信号に基づいて粒径が第2範囲に含まれる粒子を検出してもよい。 Further, in the present embodiment, particles having a particle diameter within the first range are detected based on the differential output signals from the light receiving elements 21a and 21b, and based on the differential output signals from the light receiving elements 21a and 21c. Although particles having a particle size within the second range are detected, particles having a particle size within a predetermined range may be detected without using the differential output signal. For example, based on the output signal from any one light-receiving element (for example, the light-receiving element 21b), particles whose particle diameters fall within the first range are detected, and particles whose particle diameters fall within the first range are used for detection. Particles having a particle diameter within the second range may be detected based on an output signal from a light receiving element (for example, light receiving element 21c) different from the light receiving element.

また、本実施の形態では、差動出力信号に基づいて粒径が所定の範囲に含まれる粒子を検出するため、粒径が異なる2つの範囲にある粒子の量をそれぞれ測定するために測定装置が3つの受光素子21を備える必要があったが、粒径が異なる2つの範囲にある粒子の量を任意の異なる受光素子からの出力信号に基づいて測定する場合には、測定装置が2つの受光素子21を有すればよい。 In addition, in the present embodiment, in order to detect particles having a particle size within a predetermined range based on the differential output signal, a measuring device is used to measure the amounts of particles having two different particle size ranges. was required to have three light-receiving elements 21, but when measuring the amount of particles in two ranges of different particle diameters based on the output signals from different arbitrary light-receiving elements, the measuring device has two All that is necessary is to have the light receiving element 21 .

また、本実施の形態では、3つの発光素子11が隣接して設けられており、3つの受光素子21が隣接して設けられているが、3つの発光素子11及び3つの受光素子21は隣接していなくてもよい。ただし、気泡の影響が除去された汚染度を測定するためには、3つの発光素子11及び3つの受光素子21が隣接していることが望ましい。 Further, in the present embodiment, the three light emitting elements 11 are provided adjacently, and the three light receiving elements 21 are provided adjacently. You don't have to. However, in order to measure the degree of contamination without the effect of air bubbles, it is desirable that the three light emitting elements 11 and the three light receiving elements 21 are adjacent to each other.

以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。例えば、上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、実施形態の構成に他の構成の追加、削除、置換等をすることが可能である。また、本発明において、「略」とは、厳密に同一である場合のみでなく、同一性を失わない程度の誤差や変形を含む概念である。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and design changes and the like are also included within the scope of the gist of the present invention. . For example, the above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. Also, part of the configuration of the embodiment can be replaced with the configuration of another embodiment, and it is possible to add, delete, or replace the configuration of the embodiment with another configuration. In addition, in the present invention, the term "substantially" is not limited to the case of being exactly the same, but is a concept that includes errors and deformations to the extent that the identity is not lost.

1、2、3:測定装置
10、10A、10B:光照射部
11、11a、11b、11c:発光素子
15 :基板
17 :駆動回路
20、20A、20B:受光部
21、21a、21b、21c:受光素子
25 :基板
27、27a、27b、27c:アンプ
28 :加減算器
30、30A、30B:筐体
31、31A、31B:第1筐体
31a :穴
31b :孔
31c :雌ねじ部
31d :凹部
31e :凹部
31f、31g、31h、31i、31j、31k:孔
32 :第2筐体
32a :雄ねじ部
32b :孔
33 :第3筐体
33a :雄ねじ部
33b :孔
39 :配管
41、41A、41B:汚染度測定部
43 :出力部
45 :表示部
100 :測定装置
1, 2, 3: measuring devices 10, 10A, 10B: light irradiation units 11, 11a, 11b, 11c: light emitting element 15: substrate 17: drive circuits 20, 20A, 20B: light receiving units 21, 21a, 21b, 21c: Light receiving element 25: substrates 27, 27a, 27b, 27c: amplifier 28: adders/subtractors 30, 30A, 30B: housings 31, 31A, 31B: first housing 31a: hole 31b: hole 31c: female threaded portion 31d: recessed portion 31e : Recesses 31f, 31g, 31h, 31i, 31j, 31k: Hole 32: Second housing 32a: Male threaded portion 32b: Hole 33: Third housing 33a: Male threaded portion 33b: Hole 39: Piping 41, 41A, 41B: Contamination measuring unit 43: output unit 45: display unit 100: measuring device

Claims (5)

内部を液体が通過する配管であって、少なくとも一部が光透過性の材料で形成された配管と、
光を連続して照射する第1発光素子と、前記第1発光素子が設けられた第1基板と、を有する光照射部と、
光を連続して受光する第1受光素子と、前記第1受光素子が設けられた第2基板と、を有する受光部と、
前記第1基板及び前記第2基板が設けられている筐体と、
前記受光部からの出力信号に基づいて、前記液体の汚染度を測定する汚染度測定部と、
を備え、
前記筐体には孔が設けられており、当該孔には前記配管が挿入されており、
前記第1発光素子と前記第1受光素子とは、前記配管を挟んで配置されており、
前記第1発光素子の光軸は、前記第1受光素子の受光領域と重なる
ことを特徴とする測定装置。
a pipe through which a liquid passes, at least a part of which is made of a light-transmitting material;
a light irradiation unit having a first light emitting element that continuously emits light and a first substrate provided with the first light emitting element;
a light-receiving unit having a first light-receiving element that continuously receives light and a second substrate provided with the first light-receiving element;
a housing provided with the first substrate and the second substrate;
a contamination degree measuring unit that measures the degree of contamination of the liquid based on the output signal from the light receiving unit;
with
A hole is provided in the housing, and the pipe is inserted into the hole,
The first light emitting element and the first light receiving element are arranged across the pipe,
The measuring device, wherein the optical axis of the first light emitting element overlaps with the light receiving area of the first light receiving element.
前記光照射部は、少なくとも、光を連続して照射する第2発光素子を有し、
前記受光部は、少なくとも、光を連続して受光する第2受光素子を有し、
前記第2発光素子と前記第2受光素子とは、前記配管を挟んで配置されており、
前記第2発光素子の光軸は、前記第2受光素子の受光領域と重なる
ことを特徴とする請求項1に記載の測定装置。
The light irradiation unit has at least a second light emitting element that continuously emits light,
The light receiving unit has at least a second light receiving element that continuously receives light,
The second light-emitting element and the second light-receiving element are arranged with the pipe interposed therebetween,
The measuring device according to claim 1, wherein the optical axis of the second light emitting element overlaps the light receiving area of the second light receiving element.
前記第2発光素子は、前記第1発光素子に隣接して設けられており、
前記第2受光素子は、前記第1受光素子に隣接して設けられており、
前記汚染度測定部は、前記第1受光素子からの出力信号と前記第2受光素子からの出力信号との差分に基づいて前記液体の汚染度を測定する
ことを特徴とする請求項2に記載の測定装置。
The second light emitting element is provided adjacent to the first light emitting element,
The second light receiving element is provided adjacent to the first light receiving element,
3. The contamination degree measurement unit according to claim 2, wherein the contamination degree measurement unit measures the degree of contamination of the liquid based on a difference between an output signal from the first light receiving element and an output signal from the second light receiving element. measuring device.
前記汚染度測定部は、前記第1受光素子からの出力信号に基づいて粒径が第1範囲に含まれる粒子を検出し、前記第2受光素子からの出力信号に基づいて粒径が前記第1範囲と異なる第2範囲に含まれる粒子を検出する
ことを特徴とする請求項2又は3に記載の測定装置。
The contamination degree measuring unit detects particles having a particle size within a first range based on the output signal from the first light receiving element, and detects particles having a particle size within the first range based on the output signal from the second light receiving element. 4. A measuring device according to claim 2 or 3, characterized in that particles contained in a second range different from the first range are detected.
前記第1発光素子の光軸と、前記第1受光素子の光軸とのずれが50μm以下である
ことを特徴とする請求項1から4のいずれか一項に記載の測定装置。
5. The measuring device according to any one of claims 1 to 4, wherein a deviation between the optical axis of the first light emitting element and the optical axis of the first light receiving element is 50 [mu]m or less.
JP2021082383A 2021-05-14 2021-05-14 measuring device Pending JP2022175729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021082383A JP2022175729A (en) 2021-05-14 2021-05-14 measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021082383A JP2022175729A (en) 2021-05-14 2021-05-14 measuring device

Publications (1)

Publication Number Publication Date
JP2022175729A true JP2022175729A (en) 2022-11-25

Family

ID=84145083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021082383A Pending JP2022175729A (en) 2021-05-14 2021-05-14 measuring device

Country Status (1)

Country Link
JP (1) JP2022175729A (en)

Similar Documents

Publication Publication Date Title
JP6660063B2 (en) Apparatus for monitoring the processing performance of laser systems using high power fiber optic cables
US9518892B1 (en) Apparatus for identifying optical array polarity and measuring optical signal and power or loss
US20060043077A1 (en) CO2 laser machining head with integrated monitoring device
US8760651B2 (en) Smoke detector
JP2015172519A (en) Sheet inspection device
TW202025324A (en) Method and apparatus for measuring process kit ‎centering
CN107144507A (en) One kind can self-alignment double light path dust concentration tester
JP2017072448A (en) Valve sheet leak inspection device and valve sheet leak inspection method
JP2022175729A (en) measuring device
EP4119279A1 (en) Failure detection device and laser machining system
KR20040093458A (en) Device for examining end part
JP2022175753A (en) measuring device
US10801945B2 (en) Inline particle sensor
EP3796487A1 (en) Laser device and laser processing device using same
JP2009174974A (en) 3-d sensor
CN207280907U (en) One kind can self-alignment double light path dust concentration tester
US9460502B2 (en) Defect inspection apparatus using images obtained by optical path adjusted
CN107328462B (en) A kind of dual-polarization state optical fiber vibration sensing tim e- domain detection system
KR102139276B1 (en) Integrated hybrid leak detecting device for liquid metal and leak detecting system for liquid metal having the same
KR20190019746A (en) Method for calibrating light-scattering type particle sensor
CN207263306U (en) A kind of color optical fiber automatic checkout system
CN101661064A (en) Detection method and characteristic dimension measuring instrument
JP2009162495A (en) 3d sensor
JPH074909A (en) Laser sensor apparatus
JP2022139897A (en) Arc fault detection device