JP2007278858A - Fog particle sensor and fog sensor - Google Patents

Fog particle sensor and fog sensor Download PDF

Info

Publication number
JP2007278858A
JP2007278858A JP2006105860A JP2006105860A JP2007278858A JP 2007278858 A JP2007278858 A JP 2007278858A JP 2006105860 A JP2006105860 A JP 2006105860A JP 2006105860 A JP2006105860 A JP 2006105860A JP 2007278858 A JP2007278858 A JP 2007278858A
Authority
JP
Japan
Prior art keywords
light
fog
polarization
particles
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006105860A
Other languages
Japanese (ja)
Inventor
Satoshi Okumura
聡 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinei KK
Original Assignee
Shinei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinei KK filed Critical Shinei KK
Priority to JP2006105860A priority Critical patent/JP2007278858A/en
Publication of JP2007278858A publication Critical patent/JP2007278858A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fog particle sensor and a fog sensor that can perform detection, even if fog particle concentration is low, and perform detection at an early stage of fog rising. <P>SOLUTION: A shade housing 1 is provided therein with a light-emitting part 10 having a semiconductor laser 6 generating linear polarized light in a direction rectangular to a paper surface and having a lens 7 for turning incident light into parallel light; first and second light-receiving parts 20 and 30 disposed in a direction at 60 degrees from an incident light axis; an air suction part 4 for taking in sample air; and a suction fan 5 for supplying sample air to a detection area 2. The receiving part 20 comprises a lens 8 for light condensing, and a photodiode 9 for measuring the intensity I of scattered light. The receiving part 30 comprises a lens 13 for light condensing, a polarizing filter 11 for transmitting only the polarized light that is orthogonal to the incident light, and a photodiode 12 for measuring the intensity IS of scattered light transmitted by the polarizing filter 11. Based on the intensity I and the degree of polarization found from the IS, it is decided whether suspended particles are fog particles. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、霧粒子センサ及び霧センサに関し、より詳細には、大気中の霧粒子を検知する霧粒子センサ及びこれを用いた霧センサに関する。   The present invention relates to a mist particle sensor and a mist sensor, and more particularly to a mist particle sensor that detects mist particles in the atmosphere and a mist sensor using the mist particle sensor.

従来より、霧を検知する手段としては、例えば、赤外線レーザー遮断方式の計測器がある。この計測器は、発光部と受光部とを対向して配置し、発光部から受光部に向けて赤外線レーザーを照射して、霧によって遮断されるパルスの個数のカウントを行う。そして、そのカウント数によって霧を検知するものである(特許文献1)。また、赤外線を発射する発光部と、霧によって乱反射した赤外線の反射光を受光する受光部とを設け、受光した反射光のパルス数をカウントして、そのカウント数によって霧を検知する装置がある(特許文献2)。   Conventionally, as means for detecting fog, for example, there is an infrared laser blocking type measuring instrument. In this measuring instrument, a light emitting unit and a light receiving unit are arranged to face each other, an infrared laser is irradiated from the light emitting unit to the light receiving unit, and the number of pulses blocked by fog is counted. And fog is detected by the count number (patent document 1). In addition, there is a device that includes a light emitting unit that emits infrared rays and a light receiving unit that receives infrared reflected light irregularly reflected by fog, counts the number of pulses of the received reflected light, and detects the fog based on the counted number (Patent Document 2).

しかしながら、上記の従来の装置では、霧粒子の濃度がかなり高くならなければ検知できないという欠点があり、また装置が大型になるうえ、非常に高価であるために、多くの地点に設置するには多大な費用を要するという問題点がある。
特開平7−325162号公報(請求項1) 特開2003−121357号公報(請求項1)
However, the above-mentioned conventional apparatus has a drawback that it cannot be detected unless the concentration of fog particles is considerably high, and the apparatus is large and very expensive. There is a problem that a great deal of cost is required.
JP-A-7-325162 (Claim 1) JP 2003-121357 A (Claim 1)

本発明は、上記従来技術の問題点を解決するために為されたものであり、本発明の目的は、霧粒子の濃度が低くてもこれを検知することができ、霧発生時の早い段階からの霧発生の検知を可能とする霧粒子センサ及び霧センサを提供することである。また、小型かつ安価で、多くの地点に設置することが可能な霧粒子センサ及び霧センサを提供することである。   The present invention has been made in order to solve the above-described problems of the prior art, and the object of the present invention is to detect even when the concentration of fog particles is low, and at an early stage when fog occurs. It is providing the fog particle sensor and fog sensor which enable detection of fog generation from. Another object of the present invention is to provide a fog sensor and fog sensor that are small and inexpensive and can be installed at many points.

本発明の霧粒子センサは、大気中に含まれる浮遊粒子の1個づつについて、霧粒子であるか否かの判断を行う霧粒子センサであって、検出域を有する遮光ハウジングと、該遮光ハウジングの該検出域にサンプルエアーを供給するサンプルエアー供給手段と、前記検出域に直線偏光を入射光として照射する発光部と、サンプルエアー中の浮遊粒子による直線偏光の散乱光の強度Iを測定する第1の受光部と、前記散乱光のうち入射光の偏光方向に直交する偏光方向の散乱光の強度ISを測定する第2の受光部とを備え、第1及び第2の受光部で検出された散乱光の強度から求めた偏光度に基づいて、浮遊粒子が霧粒子であるか否かの判断を行うことを特徴とする。 The fog particle sensor of the present invention is a fog particle sensor that determines whether or not each suspended particle contained in the atmosphere is a fog particle, and includes a light shielding housing having a detection area, and the light shielding housing. A sample air supply means for supplying sample air to the detection area, a light emitting unit for irradiating the detection area with linearly polarized light as incident light, and an intensity I of scattered light of linearly polarized light by suspended particles in the sample air a first light receiving portion, and a second light receiving unit for measuring the intensity I S of the polarization direction of the scattered light perpendicular to the polarization direction of the incident light out of the scattered light, the first and second light receiving portions Based on the degree of polarization obtained from the intensity of the detected scattered light, it is determined whether or not the suspended particles are fog particles.

また、前記偏光度に加えて、前期第1の受光部で検出された散乱光の強度Iに基づいて、浮遊粒子が霧粒子であるか否かの判断を行うように構成することが可能である。   In addition to the degree of polarization, it is possible to determine whether or not the suspended particles are fog particles based on the intensity I of the scattered light detected by the first light receiving unit in the previous period. is there.

ここで、前記偏光度は、
(I−IS)/(I+IS)、
(I−IS)/I、及び
S/I
の何れかにより求めることができる。
Here, the degree of polarization is
(I−I S ) / (I + I S ),
(I-I S ) / I and I S / I
It can obtain | require by either of these.

前記偏光度を(I−IS)/(I+IS)から求める場合、偏光度が0.6以上の浮遊粒子を霧粒子であると判断することが好ましい。 When determining the degree of polarization from (I−I S ) / (I + I S ), it is preferable to determine that floating particles having a degree of polarization of 0.6 or more are fog particles.

本発明の霧センサは、上記の何れかに記載の霧粒子センサを備えた霧センサであって、前記サンプルエアーに連続的に供給されるサンプルエアー中の浮遊粒子について霧粒子であるか否かの判断を順次行い、全浮遊粒子に対する霧粒子の比率が80%以上の場合に、霧が発生していると判断することを特徴とする。   The mist sensor of the present invention is a mist sensor including any of the mist particle sensors described above, and whether or not suspended particles in the sample air continuously supplied to the sample air are mist particles. Are judged sequentially, and it is judged that fog is generated when the ratio of fog particles to all floating particles is 80% or more.

本発明の霧粒子センサ及び霧センサは、浮遊粒子の一つ一つについて霧粒子であるか否かの判断を行うので、霧粒子の濃度が低くても判断が可能であり、霧発生時の早い段階からの検知が可能である。また、小型かつ安価で、多くの地点に設置することが可能である。   Since the mist particle sensor and mist sensor of the present invention determine whether or not each suspended particle is a mist particle, it is possible to determine even if the mist particle concentration is low. Detection from an early stage is possible. Moreover, it is small and inexpensive and can be installed at many points.

図1は、本発明の一実施形態に係る霧センサの内部を示している。本実施形態の霧センサは、霧粒子センサとしても機能する。同図に示すように、本実施形態の霧センサは遮光ハウジング1を有し、遮光ハウジング1内には、入射光を検出域2に照射する発光部10と、入射光軸に対して60度の方向に配置された第1の受光部20と、同じく入射光軸に対して60度の方向に配置された第2の受光部30と、サンプルエアーを取り込むための空気吸引口4と、サンプルエアーを検出域2に供給するための吸引ファン5とを備えている。   FIG. 1 shows the inside of a fog sensor according to an embodiment of the present invention. The fog sensor of this embodiment also functions as a fog particle sensor. As shown in the figure, the fog sensor of the present embodiment has a light shielding housing 1, and within the light shielding housing 1, a light emitting unit 10 that irradiates the detection area 2 with incident light and 60 degrees with respect to the incident optical axis. The first light receiving unit 20 disposed in the direction of the second light receiving unit 30, the second light receiving unit 30 also disposed in the direction of 60 degrees with respect to the incident optical axis, the air suction port 4 for taking sample air, and the sample A suction fan 5 for supplying air to the detection area 2 is provided.

発光部10は、図1の紙面に対して直角方向の直線偏光の光を発する半導体レーザー6と、半導体レーザー6からの入射光を平行光にするためのレンズ7とによって構成されている。   The light emitting unit 10 includes a semiconductor laser 6 that emits linearly polarized light in a direction perpendicular to the paper surface of FIG. 1 and a lens 7 that converts incident light from the semiconductor laser 6 into parallel light.

また、第1の受光部20は、検出域2の浮遊粒子からの散乱光を集光するためのレンズ8と、散乱光の強度Iを測定するためのフォトダイオード9とによって構成されている。   The first light receiving unit 20 includes a lens 8 for collecting scattered light from suspended particles in the detection area 2 and a photodiode 9 for measuring the intensity I of the scattered light.

更に、第2の受光部30は、検出域2の浮遊粒子からの散乱光を集光するためのレンズ13と、散乱光のうち入射光に直交する偏光方向の散乱光のみを透過させる偏光フィルタ11と、偏光フィルタ11を透過した散乱光の強度ISを測定するためのフォトダイオード12とによって構成されている。 Further, the second light receiving unit 30 collects the scattered light from the suspended particles in the detection area 2 and a polarizing filter that transmits only the scattered light in the polarization direction orthogonal to the incident light out of the scattered light. 11 and a photodiode 12 for measuring the intensity I S of scattered light transmitted through the polarizing filter 11.

検出域2には、吸引ファン5の吸引により、遮光ハウジングの下部の空気吸引口4からサンプルエアーが供給され、従って、サンプルエアーは遮光ハウジングの下から上に向かって常時流れている。サンプルエアーの供給量は、それに含まれる複数の浮遊粒子が同時に検出域2に送られることがないように調節されている。   Sample air is supplied to the detection area 2 from the air suction port 4 at the lower part of the light shielding housing by the suction of the suction fan 5, and therefore the sample air always flows from the bottom to the top of the light shielding housing. The supply amount of the sample air is adjusted so that a plurality of suspended particles contained in the sample air are not sent to the detection area 2 at the same time.

図2は、本実施形態の霧粒子センサの原理を示している。本実施形態の霧センサにおいては、発光部10の半導体レーザー6から発せられた入射光は矢印18で示す方向に偏光しており、光軸19に沿ってレンズ7に達する。レンズ7によって入射光は平行光となり、検出域2(図1)に入射する。検出域2にはサンプルエアーが流れており、サンプルエアーに浮遊粒子21が含まれている。その浮遊粒子21が検出域2を通過すると、入射光が散乱を受けることになる。この散乱光は、入射光とは異なり全方向の偏光を含んでいる。この散乱光のうち、光軸29の方向に向かった光はレンズ8によって集光され、フォトダイオード9に達する。フォトダイオード9からは、散乱光に比例した電流が出力される。   FIG. 2 shows the principle of the fog particle sensor of this embodiment. In the fog sensor of the present embodiment, incident light emitted from the semiconductor laser 6 of the light emitting unit 10 is polarized in the direction indicated by the arrow 18 and reaches the lens 7 along the optical axis 19. Incident light becomes parallel light by the lens 7 and enters the detection area 2 (FIG. 1). Sample air flows in the detection area 2, and the suspended air 21 is contained in the sample air. When the suspended particles 21 pass through the detection area 2, incident light is scattered. Unlike the incident light, the scattered light includes polarized light in all directions. Of this scattered light, the light directed toward the optical axis 29 is collected by the lens 8 and reaches the photodiode 9. A current proportional to the scattered light is output from the photodiode 9.

一方、浮遊粒子21により散乱を受けた散乱光のうち、光軸39の方向に向かった光はレンズ13によって集光され、偏光フィルタ11に達する。偏光フィルタ11は、散乱光のうち、矢印28に示す方向に偏光する光、即ち、入射光の偏光方向に対して直角方向の偏光成分を有する散乱光のみを透過させる。この透過光はフォトダイオード12に達し、フォトダイオード12からは、散乱光のうち入射偏光方向に対して直角方向の偏光成分に比例した電流が出力されることとなる。   On the other hand, of the scattered light scattered by the suspended particles 21, the light directed toward the optical axis 39 is collected by the lens 13 and reaches the polarizing filter 11. The polarizing filter 11 transmits only the light that is polarized in the direction indicated by the arrow 28 out of the scattered light, that is, the scattered light having a polarization component perpendicular to the polarization direction of the incident light. This transmitted light reaches the photodiode 12, and a current proportional to the polarization component perpendicular to the incident polarization direction of the scattered light is output from the photodiode 12.

図3はフォトダイオード9及びフォトダイオード12からの電流を処理する回路の一例を示すブロック図である。フォトダイオード9から出力された電流と、フォトダイオード12から出力された電流は、それぞれ電流電圧変換回路18及び14に入力され、それぞれ電圧に変換される。更に、変換された各電圧は増幅回路15及び16に入力され、増幅回路15からは散乱光の強度Iを表す電圧が出力されるとともに、この電圧は同時に演算回路17に入力される。また、増幅回路16からは散乱光のうち入射光に直交する偏光成分の強度ISを表す電圧が出力され、この電圧は演算回路17も入力される。そして、演算回路17では、増幅回路15からの出力と増幅回路16からの出力とに基づいて、偏光度=(I−IS)/(I+IS)の式により偏光度が演算される。そして、この偏光度に基づいて、又は偏光度と散乱光強度Iとに基づいて、後述するように浮遊粒子が霧粒子であるか否かの判断を行うことにより、霧粒子センサとして機能する。また、本実施形態のセンサが多数の浮遊粒子について霧粒子であるか否かの判断を行えば、霧センサとして機能することになる。 FIG. 3 is a block diagram illustrating an example of a circuit that processes current from the photodiode 9 and the photodiode 12. The current output from the photodiode 9 and the current output from the photodiode 12 are respectively input to the current-voltage conversion circuits 18 and 14 and converted into voltages. Further, each converted voltage is input to the amplifier circuits 15 and 16, and a voltage representing the intensity I of the scattered light is output from the amplifier circuit 15, and this voltage is simultaneously input to the arithmetic circuit 17. Further, the amplifier circuit 16 outputs a voltage representing the intensity I S of the polarization component orthogonal to the incident light in the scattered light, and this voltage is also input to the arithmetic circuit 17. Then, the arithmetic circuit 17 calculates the degree of polarization based on the output from the amplifier circuit 15 and the output from the amplifier circuit 16 according to the equation: polarization degree = (I−I S ) / (I + I S ). Then, based on this degree of polarization, or based on the degree of polarization and scattered light intensity I, it functions as a fog particle sensor by determining whether or not the suspended particles are fog particles, as will be described later. Moreover, if the sensor of this embodiment judges whether it is a fog particle about many floating particles, it will function as a fog sensor.

図4は、図1乃至図3に係る実施形態の霧センサを用いて快晴の日に測定した場合の散乱光強度と偏光度との関係を示す図である。横軸は第1の受光部で検出された粒子の大きさが反映される散乱光の強度I、縦軸は粒子の表面状態が反映される偏光度である。快晴の日の浮遊粒子は、1≦I≦3の領域で、かつ−0.4≦偏光度≦0.4の領域に多く分布しており、浮遊粒子の殆どが土埃であることを示している。   FIG. 4 is a diagram illustrating the relationship between the scattered light intensity and the degree of polarization when measured on a clear day using the fog sensor of the embodiment according to FIGS. 1 to 3. The horizontal axis represents the intensity I of scattered light that reflects the size of the particles detected by the first light receiving unit, and the vertical axis represents the degree of polarization that reflects the surface state of the particles. The fine particles of fine particles are distributed in the region of 1 ≦ I ≦ 3 and in the region of −0.4 ≦ polarization degree ≦ 0.4, indicating that most of the suspended particles are dust. Yes.

図5は、図4と同じ霧センサを用いて霧の発生時に測定した場合の散乱光強度と偏光度との関係を示す図であり、横軸と縦軸は図4と同じである。霧の発生時の浮遊粒子は、1≦I≦3の領域で、かつ0.6≦偏光度≦1の領域に多く分布している。また、霧発生時の湿度が非常に高いため、図4のような土埃の粒子は殆ど検出されないことがわかる。実施形態の霧センサを使用すれば、図4及び図5から明らかなように、偏光度0.6本以上の浮遊粒子を霧粒子であると判断することができる。また、図4及び図5の比較から、全浮遊粒子に対する霧粒子の比率が80%以上の場合に、霧が発生していると判断することができる。   FIG. 5 is a diagram showing the relationship between the scattered light intensity and the degree of polarization measured when the fog is generated using the same fog sensor as in FIG. 4, and the horizontal axis and the vertical axis are the same as those in FIG. A large amount of suspended particles at the time of fog generation are distributed in the region of 1 ≦ I ≦ 3 and 0.6 ≦ polarization degree ≦ 1. Further, it can be seen that since the humidity at the time of generation of fog is very high, dust particles as shown in FIG. 4 are hardly detected. If the fog sensor of the embodiment is used, it is possible to determine that suspended particles having a polarization degree of 0.6 or more are fog particles, as is apparent from FIGS. 4 and 5. Moreover, it can be judged from the comparison of FIG.4 and FIG.5 that the fog has generate | occur | produced when the ratio of the fog particle with respect to all the floating particles is 80% or more.

なお、上記実施形態では、第1の受光部20及び第2の受光部30は何れも入射光軸から60度の方向に設定したが、2つの受光部の光軸は入射光軸から必ず同じ角度に設置する必要はなく、また、設置方向は何れの方向であってもよいが、0度から90度の間が好ましい。   In the above embodiment, the first light receiving unit 20 and the second light receiving unit 30 are both set at a direction of 60 degrees from the incident optical axis, but the optical axes of the two light receiving units are always the same from the incident optical axis. It is not necessary to install at an angle, and the installation direction may be any direction, but it is preferably between 0 and 90 degrees.

また、発光部からの入射光の直線偏光の方向は、必ずしも紙面に対して直角方向である必要はないが、例えば紙面に平行な直線偏光を入射光として使用した場合は、第2の受光部30の偏光フィルタ11は、入射偏光方向と直角の偏光成分のみを透過するように、即ち紙面に対して直角方向に設定することが必要である。   The direction of the linearly polarized light of the incident light from the light emitting unit is not necessarily perpendicular to the paper surface. For example, when the linearly polarized light parallel to the paper surface is used as the incident light, the second light receiving unit The thirty polarizing filters 11 need to be set so as to transmit only a polarization component perpendicular to the incident polarization direction, that is, in a direction perpendicular to the paper surface.

また、上記実施形態では、発光部10の光源に半導体レーザーを使用したが、必ずしも半導体レーザーである必要はなく、LEDやタングステンランプを用いることもできる。半導体レーザーは直線偏光の光が発せられるが、LEDやタングステンランプの光はランダム偏光であるため、それらを使用する場合は、偏光フィルタを透過させて直線偏光の光のみを使用する必要がある。   Moreover, in the said embodiment, although the semiconductor laser was used for the light source of the light emission part 10, it does not necessarily need to be a semiconductor laser and LED and a tungsten lamp can also be used. The semiconductor laser emits linearly polarized light, but the light from the LED or tungsten lamp is randomly polarized. Therefore, when using them, it is necessary to transmit only the linearly polarized light through the polarizing filter.

本発明に係る霧粒子センサ及び霧センサを用いれば、霧発生時の早い段階から高い精度で霧粒子の検知が可能なので、例えば気象観測用機器の分野で利用可能である。   If the mist particle sensor and the mist sensor according to the present invention are used, the mist particles can be detected with high accuracy from an early stage when the mist is generated, so that the mist particle sensor and the mist sensor can be used, for example, in the field of weather observation equipment.

本発明の一実施形態に係る霧粒子センサの配置図である。It is a layout view of a fog particle sensor according to an embodiment of the present invention. 図1の霧センサの原理を示す図である。It is a figure which shows the principle of the fog sensor of FIG. 図1の霧センサに使用される処理方法の一例を示すブロック回路図である。It is a block circuit diagram which shows an example of the processing method used for the fog sensor of FIG. 図1の霧センサを用いて快晴の日に測定した場合の散乱光強度と偏光度との関係を示す図である。It is a figure which shows the relationship between the scattered light intensity | strength at the time of measuring on a clear day using the fog sensor of FIG. 図1の霧センサを用いて霧の日に測定した場合の散乱光強度と偏光度との関係を示す図である。It is a figure which shows the relationship between the scattered light intensity | strength at the time of measuring on the day of fog using the fog sensor of FIG.

符号の説明Explanation of symbols

1 遮光ハウジング
2 検出域
4 空気吸引口
5 吸引ファン
6 半導体レーザー
7,8,13 レンズ
9,12 フォトダイオード
10 発光部
11 偏光フィルタ
13 レンズ
18,14 電流電圧変換回路
15,16 増幅回路
17 演算回路
19,29,39 光軸
20 第1の受光部
21 浮遊粒子
30 第2の受光部
DESCRIPTION OF SYMBOLS 1 Light-shielding housing 2 Detection area 4 Air suction port 5 Suction fan 6 Semiconductor laser 7, 8, 13 Lens 9, 12 Photodiode 10 Light emission part 11 Polarization filter 13 Lens 18, 14 Current voltage conversion circuit 15, 16 Amplification circuit 17 Calculation circuit 19, 29, 39 Optical axis 20 First light receiving part 21 Floating particle 30 Second light receiving part

Claims (7)

大気中に含まれる浮遊粒子の1個づつについて、霧粒子であるか否かの判断を行う霧粒子センサであって、
検出域を有する遮光ハウジングと、
該遮光ハウジングの該検出域にサンプルエアーを供給するサンプルエアー供給手段と、
前記検出域に直線偏光を入射光として照射する発光部と、
サンプルエアー中の浮遊粒子による直線偏光の散乱光の強度Iを測定する第1の受光部と、
前記散乱光のうち入射光の偏光方向に直交する偏光方向の散乱光の強度ISを測定する第2の受光部とを備え、
第1及び第2の受光部で検出された散乱光の強度から求めた偏光度に基づいて、浮遊粒子が霧粒子であるか否かの判断を行う霧粒子センサ。
A fog particle sensor that determines whether or not each suspended particle contained in the atmosphere is a fog particle,
A light shielding housing having a detection area;
Sample air supply means for supplying sample air to the detection area of the light shielding housing;
A light emitting unit that irradiates the detection area with linearly polarized light as incident light; and
A first light-receiving unit that measures the intensity I of linearly polarized scattered light from suspended particles in the sample air;
A second light receiving unit that measures the intensity I S of the scattered light in the polarization direction orthogonal to the polarization direction of the incident light among the scattered light,
A fog particle sensor that determines whether or not suspended particles are fog particles based on the degree of polarization obtained from the intensity of scattered light detected by the first and second light receiving units.
前記偏光度に加えて、前期第1の受光部で検出された散乱光の強度Iに基づいて、浮遊粒子が霧粒子であるか否かの判断を行う請求項1記載の霧粒子センサ。   2. The fog particle sensor according to claim 1, wherein a determination is made as to whether or not the suspended particles are fog particles based on the intensity I of scattered light detected by the first light receiving unit in addition to the degree of polarization. 前記偏光度は、(I−IS)/(I+IS)により求められる請求項1又は2記載の霧粒子センサ。 The fog particle sensor according to claim 1, wherein the degree of polarization is obtained by (I−I S ) / (I + I S ). 前記偏光度は、(I−IS)/Iにより求められる請求項1又は2記載の霧粒子センサ。 The degree of polarization, (I-I S) / fog particle sensor according to claim 1 or 2, wherein is obtained by I. 前記偏光度は、IS/Iにより求められる請求項1又は2記載の霧粒子センサ。 The fog particle sensor according to claim 1, wherein the degree of polarization is obtained by I S / I. 前記偏光度が0.6以上の浮遊粒子を霧粒子であると判断する請求項3記載の霧粒子センサ。   The fog particle sensor according to claim 3, wherein the suspended particles having a polarization degree of 0.6 or more are determined to be fog particles. 請求項1乃至6の何れかに記載の霧粒子センサを備えた霧センサであって、前記サンプルエアーに連続的に供給されるサンプルエアー中の浮遊粒子について霧粒子であるか否かの判断を順次行い、全浮遊粒子に対する霧粒子の比率が80%以上の場合に、霧が発生していると判断する霧センサ。
It is a mist sensor provided with the mist particle sensor in any one of Claims 1 thru | or 6, Comprising: The judgment whether it is a mist particle about the floating particle | grains in the sample air continuously supplied to the said sample air. A mist sensor that sequentially performs and determines that mist is generated when the ratio of mist particles to all suspended particles is 80% or more.
JP2006105860A 2006-04-07 2006-04-07 Fog particle sensor and fog sensor Pending JP2007278858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006105860A JP2007278858A (en) 2006-04-07 2006-04-07 Fog particle sensor and fog sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006105860A JP2007278858A (en) 2006-04-07 2006-04-07 Fog particle sensor and fog sensor

Publications (1)

Publication Number Publication Date
JP2007278858A true JP2007278858A (en) 2007-10-25

Family

ID=38680447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006105860A Pending JP2007278858A (en) 2006-04-07 2006-04-07 Fog particle sensor and fog sensor

Country Status (1)

Country Link
JP (1) JP2007278858A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090188393A1 (en) * 2008-01-29 2009-07-30 Mitsubishi Heavy Industries, Ltd. Flue gas desulfurization apparatus
CN103558187A (en) * 2013-11-02 2014-02-05 中国工程物理研究院流体物理研究所 Measurement device and measurement method for concentration of water mist
JP2014219264A (en) * 2013-05-08 2014-11-20 神栄テクノロジー株式会社 Particle measuring device
WO2018160545A1 (en) * 2017-02-28 2018-09-07 Wartsila North America, Inc. Maritime fog safety system and method
KR102580758B1 (en) * 2022-03-29 2023-09-20 (주)이륜코리아 visible light maximization collecting apparatus using the mist inside laser beam scattering phenomenon

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563449A (en) * 1979-06-21 1981-01-14 Sharp Corp Program retrieving device
JPS62197747A (en) * 1986-02-25 1987-09-01 Mitsubishi Electric Corp Steam leakage detector
JPH0285744A (en) * 1988-09-21 1990-03-27 Japan Radio Co Ltd Raining/snowing discriminating sensor
JPH06331543A (en) * 1993-05-24 1994-12-02 Fuji Electric Co Ltd Floating-particle-concentration measuring apparatus
JPH07311312A (en) * 1994-03-25 1995-11-28 Omron Corp Optical sensor device
JP2005283152A (en) * 2004-03-26 2005-10-13 Shinei Kk Pollen sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563449A (en) * 1979-06-21 1981-01-14 Sharp Corp Program retrieving device
JPS62197747A (en) * 1986-02-25 1987-09-01 Mitsubishi Electric Corp Steam leakage detector
JPH0285744A (en) * 1988-09-21 1990-03-27 Japan Radio Co Ltd Raining/snowing discriminating sensor
JPH06331543A (en) * 1993-05-24 1994-12-02 Fuji Electric Co Ltd Floating-particle-concentration measuring apparatus
JPH07311312A (en) * 1994-03-25 1995-11-28 Omron Corp Optical sensor device
JP2005283152A (en) * 2004-03-26 2005-10-13 Shinei Kk Pollen sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090188393A1 (en) * 2008-01-29 2009-07-30 Mitsubishi Heavy Industries, Ltd. Flue gas desulfurization apparatus
US8292992B2 (en) * 2008-01-29 2012-10-23 Mitsubishi Heavy Industries, Ltd. Flue gas desulfurization apparatus
JP2014219264A (en) * 2013-05-08 2014-11-20 神栄テクノロジー株式会社 Particle measuring device
CN103558187A (en) * 2013-11-02 2014-02-05 中国工程物理研究院流体物理研究所 Measurement device and measurement method for concentration of water mist
WO2018160545A1 (en) * 2017-02-28 2018-09-07 Wartsila North America, Inc. Maritime fog safety system and method
KR102580758B1 (en) * 2022-03-29 2023-09-20 (주)이륜코리아 visible light maximization collecting apparatus using the mist inside laser beam scattering phenomenon

Similar Documents

Publication Publication Date Title
US7292338B2 (en) Particle detection apparatus and particle detection method used therefor
CN102192898B (en) Smoke detector
US9857287B2 (en) Particulate sensor device
JP2786187B2 (en) Particle size detector
EP1408321B1 (en) Pollen sensor and method
JP2010520997A (en) Method and system for detecting particles
CN1898551A (en) Method for evaluating a scattered light signal and a scattered light detector for realizing the method
KR20150062675A (en) portable apparatus for determining air quality
WO2017060105A1 (en) Particle sensor for particle detection
KR20190076438A (en) Dust sensor
JP2007278858A (en) Fog particle sensor and fog sensor
KR102017257B1 (en) Small-sized optical fine dust sensor capable of counting by particle size
CN111788469A (en) Particulate matter sensor
CN112334755A (en) Particle detection device
KR200363865Y1 (en) A particle sensor which distinguishes the size and kind of the particles.
US9243994B1 (en) Measurement device
KR20180102740A (en) Optical ultrafine dust measuring sensor which removes the influence of disturbance light
WO2017060164A1 (en) Optical sensor for particle detection
JP2008234416A (en) Smoke detector
JPH09269293A (en) Particulate detector
JP2006010353A (en) Fine particle measuring instrument
RU2426982C2 (en) Method of dust detection on electronic hardware pcbs
KR20160109120A (en) Transmission-Type Optical Dust Detecting Device
JP2007047029A (en) Dust sensor and air cleaner
WO2017183597A1 (en) Microbody detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090306

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419