JP2005283152A - Pollen sensor - Google Patents

Pollen sensor Download PDF

Info

Publication number
JP2005283152A
JP2005283152A JP2004093140A JP2004093140A JP2005283152A JP 2005283152 A JP2005283152 A JP 2005283152A JP 2004093140 A JP2004093140 A JP 2004093140A JP 2004093140 A JP2004093140 A JP 2004093140A JP 2005283152 A JP2005283152 A JP 2005283152A
Authority
JP
Japan
Prior art keywords
scattered light
intensity
pollen
light
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004093140A
Other languages
Japanese (ja)
Other versions
JP3850418B2 (en
Inventor
Satoshi Okumura
聡 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinei KK
Original Assignee
Shinei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinei KK filed Critical Shinei KK
Priority to JP2004093140A priority Critical patent/JP3850418B2/en
Publication of JP2005283152A publication Critical patent/JP2005283152A/en
Application granted granted Critical
Publication of JP3850418B2 publication Critical patent/JP3850418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pollen sensor that can count the number of pollen particles in real time at a location to be measured without requiring any special experience, and can precisely identify pollen particles and dust. <P>SOLUTION: The pollen sensor comprises an emission means for applying irradiation light in a prescribed polarization direction into air containing floating particles; a first light reception means for measuring intensity I in scattered light, by detecting scattered light by the floating particles; a second light reception means for measuring intensity Is in orthogonal scattered light, by detecting scattered light in the polarization direction orthogonally crossing the polarization direction of irradiation light in scattered light by the floating particles; and an identification means for identifying pollen particles and dust, on the basis of the intensity I in the scattered light and the intensity Is in the orthogonal scattered light. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、花粉センサに関し、さらに詳しくは、花粉症の原因となる空気中に浮遊する花粉粒子の検出に用いられる花粉センサに関する。   The present invention relates to a pollen sensor, and more particularly to a pollen sensor used for detecting pollen particles floating in the air that causes hay fever.

従来より、大気中に浮遊する花粉粒子の計数は、ワセリン等の粘着剤を塗布したスライドガラスを大気中に24時間放置し、自然落下してくる花粉粒子を粘着剤で捕集し、染色処理した後、熟練者が顕微鏡を用いて目視で計数する顕微鏡法によって行われてきた。   Conventionally, pollen particles floating in the atmosphere are counted by leaving the slide glass coated with an adhesive such as petrolatum in the atmosphere for 24 hours, collecting the pollen particles that fall naturally with the adhesive, and dyeing it. After that, it has been performed by a microscopic method in which a skilled person visually counts using a microscope.

しかしながら、上記顕微鏡法では、染色という手間のかかる前処理に多くの時間を要するうえに、目視計数を行う者には高度の熟練が要求される。また、スライドガラスを一定時間大気中に放置しなければならないため、リアルタイムで花粉粒子を検出することができないという問題点がある。さらに、測定すべき場所で測定結果を得ることができないという問題点がある。   However, the above-described microscopy requires a lot of time for the time-consuming pretreatment of staining, and a high level of skill is required for those who perform visual counting. Moreover, since the slide glass must be left in the atmosphere for a certain period of time, there is a problem that pollen particles cannot be detected in real time. Furthermore, there is a problem that a measurement result cannot be obtained at a place to be measured.

そこで、偏光を用いた花粉検出器が開示されている(例えば、特許文献1参照)。この花粉検出器を使用すれば、顕微鏡法のような手間と熟練は必要なく、リアルタイムで測定すべき場所で測定結果を得ることができる。しかし、花粉粒子と土埃(屋外大気中では浮遊粒子の大部分を占める)との区別が不充分となり、土埃を花粉粒子であると判定する誤計数があるという問題点がある。
特許第3113720号公報
Therefore, a pollen detector using polarized light is disclosed (for example, see Patent Document 1). If this pollen detector is used, the measurement result can be obtained at a place to be measured in real time without the labor and skill of microscopy. However, there is a problem that pollen particles and dust (which occupies most of the floating particles in the outdoor air) are insufficiently distinguished, and there is an erroneous count that determines that the dust is pollen particles.
Japanese Patent No. 3113720

本発明はこのような問題点を解決するものであり、本発明の目的は、特別な熟練を要することなく、測定すべき場所でリアルタイムで花粉粒子の計数を行うことができ、しかも、花粉粒子と土埃とを高い精度で識別を行うことができる花粉センサを提供することである。   The present invention solves such problems, and the object of the present invention is to perform pollen particle counting in real time at a place to be measured without requiring any special skill. It is an object of the present invention to provide a pollen sensor capable of discriminating between dust and dust with high accuracy.

本発明は、花粉粒子と土埃とにおいて、粒子径の大きさと粒子の異方性とが異なることに基づいて完成されたものである。 The present invention has been completed based on the fact that pollen particles and dust differ in particle size and particle anisotropy.

ここで、照射光(電磁波)に浮遊粒子が照射されると、浮遊粒子は電界の振動方向に分極し、電気双極子が形成される。この分極方向は粒子の異方性に大きく影響される。等方質的な粒子の分極方向は、照射された照射光の偏光方向(以下、照射偏向方向という)に等しくなるため、散乱される散乱光の偏光方向は照射偏光方向に等しくなる。   Here, when irradiation particles (electromagnetic waves) are irradiated with floating particles, the floating particles are polarized in the direction of vibration of the electric field, and an electric dipole is formed. This polarization direction is greatly influenced by the anisotropy of the particles. Since the polarization direction of the isotropic particle is equal to the polarization direction of the irradiated irradiation light (hereinafter referred to as the irradiation deflection direction), the polarization direction of the scattered scattered light is equal to the irradiation polarization direction.

一方、異方性を有する粒子や、照射光の波長に比べてその粒子径が大きな粒子では、分極方向は粒子に特有の分極テンソルによって決定される。土埃は花粉粒子に比べて異方性が大きいため、照射偏光方向の照射光が土埃によって散乱されると、照射偏光方向に直交する偏光方向の散乱光が強く含まれることになる。   On the other hand, in the case of particles having anisotropy or particles having a particle diameter larger than the wavelength of irradiation light, the polarization direction is determined by a polarization tensor peculiar to the particles. Since the dust has a larger anisotropy than the pollen particles, when the irradiation light in the irradiation polarization direction is scattered by the dust, the scattered light in the polarization direction orthogonal to the irradiation polarization direction is strongly included.

すなわち、花粉粒子の異方性が土埃の異方性と異なっているため、花粉粒子による散乱光の強度Iと直交散乱光の強度Isとの関係が、土埃による散乱光の強度Iと直交散乱光の強度Isとの関係と異なっている。   That is, since the anisotropy of the pollen particles is different from the anisotropy of the dust, the relationship between the intensity I of the scattered light by the pollen particles and the intensity Is of the orthogonal scattered light is as follows. It is different from the relationship with the light intensity Is.

しかしながら、一般に、粒子径の大きさが変化すると、散乱光の強度Iと直交散乱光の強度Isとの関係も変化する。   However, generally, when the particle size changes, the relationship between the intensity I of scattered light and the intensity Is of orthogonal scattered light also changes.

そこで、粒子径の大きさが大きいほど、散乱光の強度Iが大きくなるので、散乱光の強度Iの測定によって粒子径の大きさを知ることができる。   Therefore, since the intensity I of the scattered light increases as the particle diameter increases, the size of the particle diameter can be determined by measuring the intensity I of the scattered light.

したがって、散乱光の強度Iによる粒子径の大きさと、散乱光の強度Iと直交散乱光の強度Isとの関係による粒子の異方性とを測定することにより、花粉粒子と土埃との識別を行うことが可能となる。   Therefore, it is possible to distinguish pollen particles from dust by measuring the size of the particle diameter based on the scattered light intensity I and the anisotropy of the particle based on the relationship between the scattered light intensity I and the orthogonal scattered light intensity Is. Can be done.

ここで、本発明に係る散乱光の強度Iと直交散乱光の強度Isとを用いて説明する。なお、図4において、実線の矢印は光の偏光方向を、破線の矢印は偏光素子の偏光軸の方向をそれぞれ表している。   Here, the intensity I of scattered light and the intensity Is of orthogonal scattered light according to the present invention will be described. In FIG. 4, solid arrows indicate the polarization direction of light, and broken arrows indicate the direction of the polarization axis of the polarizing element.

発光手段は半導体レーザ51とレンズ52とを有している。半導体レーザ51から出射した光は所定の偏光方向に偏光しており、この光はレンズ52によって所定位置に集光され、所定位置を通過する浮遊粒子60に照射される。   The light emitting means has a semiconductor laser 51 and a lens 52. The light emitted from the semiconductor laser 51 is polarized in a predetermined polarization direction, and this light is condensed at a predetermined position by the lens 52 and irradiated to the suspended particles 60 passing through the predetermined position.

第1受光手段はレンズ53とフォトダイオード54とを有し、浮遊粒子60による散乱光はレンズ53を介してフォトダイオード54に達する。したがって、フォトダイオード54より、散乱光の強度Iを得ることができる。   The first light receiving means has a lens 53 and a photodiode 54, and the scattered light from the suspended particles 60 reaches the photodiode 54 via the lens 53. Therefore, the intensity I of scattered light can be obtained from the photodiode 54.

一方、第2受光手段はレンズ55と偏光フィルタ56とフォトダイオード57とを有し、浮遊粒子60による散乱光は、レンズ55及び偏光フィルタ56を介してフォトダイオード57に達する。なお、偏光フィルタ56の偏光軸は所定の偏光方向と直交する偏光方向に設定されている。したがって、フォトダイオード57より、直交散乱光の強度Isを得ることができる。   On the other hand, the second light receiving means includes a lens 55, a polarizing filter 56, and a photodiode 57, and scattered light from the suspended particles 60 reaches the photodiode 57 through the lens 55 and the polarizing filter 56. The polarization axis of the polarizing filter 56 is set to a polarization direction orthogonal to a predetermined polarization direction. Therefore, the intensity Is of orthogonal scattered light can be obtained from the photodiode 57.

すなわち、散乱光の強度Iの測定によって粒子径の大きさを知り、かつ、散乱光の強度Iと直交散乱光の強度Isとの関係の測定によって粒子の異方性を知ることにより、花粉粒子と土埃との識別を行うことが可能となる。   That is, pollen particles are obtained by knowing the size of the particle diameter by measuring the intensity I of the scattered light and knowing the anisotropy of the particles by measuring the relationship between the intensity I of the scattered light and the intensity Is of the orthogonal scattered light. And dust can be identified.

さらに、得られた散乱光の強度Iと直交散乱光の強度Isとによって、偏光度Dを得ることができる。このような花粉粒子と土埃との偏光度Dを比較すると、花粉粒子の偏光度Dは土埃の偏光度Dと著しく異なるため、花粉粒子と土埃との識別をより高い精度で行うことが可能となる。   Furthermore, the degree of polarization D can be obtained from the intensity I of the obtained scattered light and the intensity Is of the orthogonal scattered light. Comparing the degree of polarization D between the pollen particles and the dust, the degree of polarization D of the pollen particles is significantly different from the degree of polarization D of the dust. Therefore, it is possible to identify the pollen particles and the dust with higher accuracy. Become.

また、偏光度Dと散乱光の強度Iとからなるマトリックスを使用して、所定領域内にあるものを花粉粒子として識別を行うと、花粉粒子と土埃との識別を特に高い精度で行うことが可能となる。   In addition, when a matrix composed of the degree of polarization D and the intensity I of scattered light is used to identify those in a predetermined region as pollen particles, it is possible to identify pollen particles and dust with particularly high accuracy. It becomes possible.

すなわち、本発明の花粉センサは、浮遊粒子を含有する空気中に所定の偏向方向の照射光を照射する発光手段と、前記浮遊粒子による散乱光を検出し、散乱光の強度Iを測定する第1受光手段と、前記浮遊粒子による散乱光のうちの照射光の偏光方向に直交する偏光方向の散乱光を検出し、直交散乱光の強度Isを測定する第2受光手段と、前記散乱光の強度Iと前記直交散乱光の強度Isとに基づいて、花粉粒子と土埃との識別を行う識別手段とを備えたことを特徴とする。   That is, the pollen sensor of the present invention includes a light emitting means for irradiating the air containing floating particles with irradiation light in a predetermined deflection direction, and detecting scattered light from the floating particles and measuring the intensity I of the scattered light. A first light receiving means, a second light receiving means for detecting the scattered light in the polarization direction orthogonal to the polarization direction of the irradiation light of the scattered light by the suspended particles, and measuring the intensity Is of the orthogonal scattered light; and An identification means for identifying pollen particles and dust based on the intensity I and the intensity Is of the orthogonal scattered light is provided.

また、本発明の花粉センサは、前記識別手段は、前記散乱光の強度Iと前記直交散乱光の強度Isとが用いられる下記偏光度D1、D2、D3のいずれか一つと、散乱光の強度Iとに基づいて、識別を行うことが好ましい。   In the pollen sensor of the present invention, the identification means uses any one of the following degrees of polarization D1, D2, and D3 in which the intensity I of the scattered light and the intensity Is of the orthogonal scattered light are used, and the intensity of the scattered light. Identification is preferably performed based on I.

偏光度D1=(I−Is)/(I+Is)
偏光度D2=(I−Is)/I
偏光度D3=Is/I
さらに、本発明の花粉センサは、前記識別手段は、偏光度D1、D2、D3のいずれか一つと、前記散乱光の強度Iとが、予め定められている偏光度D1、D2、D3のいずれか一つと、前記散乱光の強度Iとからなるマトリックス内にあるものを花粉粒子として識別を行うことが好ましい。
Polarization degree D1 = (I−Is) / (I + Is)
Degree of polarization D2 = (I−Is) / I
Polarization degree D3 = Is / I
Furthermore, in the pollen sensor according to the present invention, the identification means includes any one of the polarization degrees D1, D2, and D3 and the intensity I of the scattered light, which is determined in advance. It is preferable to identify as a pollen particle what is in the matrix composed of the one and the intensity I of the scattered light.

本発明の花粉センサを用いれば、従来のように染色等の前処理が不要となるので、多くの時間を要することもなく、しかも、顕微鏡の観察も必要ないので、熟練を要することもなく誰でも容易に花粉粒子の測定を行うことができる。また、測定すべき場所でしかもリアルタイムで花粉粒子と土埃との識別ができ、花粉粒子を計数することができるので、花粉情報をいち早く得ることが可能となる。特に、散乱光の強度Iと直交散乱光の強度Isとに基づいて識別を行うので、花粉粒子と土埃との識別を高い精度で行うことが可能となる。   If the pollen sensor of the present invention is used, pretreatment such as dyeing is not required as in the prior art, so it does not take much time, and it is not necessary to observe with a microscope. However, pollen particles can be easily measured. Further, pollen particles and dust can be discriminated in real time at a place to be measured, and pollen particles can be counted, so that pollen information can be obtained quickly. In particular, since identification is performed based on the intensity I of scattered light and the intensity Is of orthogonal scattered light, it becomes possible to identify pollen particles and dust with high accuracy.

以下、本発明の実施形態を図面に従って詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施形態の花粉センサの側面図(一部、断面図とする)を示している。実施形態の花粉センサ20は、遮光ハウジング19内に発光手段1と、第1受光手段2と、第2受光手段3とを備え、さらに識別手段(図示せず)を備えている。   FIG. 1: has shown the side view (a part is made into sectional drawing) of the pollen sensor of one Embodiment of this invention. The pollen sensor 20 of the embodiment includes the light emitting means 1, the first light receiving means 2, and the second light receiving means 3 in the light shielding housing 19, and further includes an identification means (not shown).

発光手段1、第1受光手段2及び第2受光手段3は、同一の垂直面に配置されている。さらに、発光手段1は、検出域Fに向かって、照射光を水平に照射する。また、第1受光手段2は、検出域Fの中心から上方に向かって60°の角度で配置されており、一方、第2受光手段3は、検出域Fの中心から下方に向かって60°の角度で配置されている。   The light emitting means 1, the first light receiving means 2, and the second light receiving means 3 are arranged on the same vertical plane. Further, the light emitting means 1 irradiates the irradiation light horizontally toward the detection area F. The first light receiving means 2 is arranged at an angle of 60 ° upward from the center of the detection area F, while the second light receiving means 3 is 60 ° downward from the center of the detection area F. Are arranged at an angle of

遮光ハウジング19は、検出域Fの下方に空気吸引口4を備えるとともに、検出域Fの上方に吸引ファン5を備えている。したがって、サンプルエアーは、一定の流速で、空気吸引口4から遮光ハウジング19内に入り、検出域Fを通って、吸引ファン5から遮光ハウジング19外に排出される。   The light shielding housing 19 includes the air suction port 4 below the detection area F and the suction fan 5 above the detection area F. Accordingly, the sample air enters the light shielding housing 19 from the air suction port 4 at a constant flow rate, passes through the detection area F, and is discharged from the suction fan 5 to the outside of the light shielding housing 19.

発光手段1は、半導体レーザ6とレンズ7とによって構成されている。半導体レーザ6は所定の偏光方向の光を出射し、レンズ7は半導体レーザ6から出射された光を検出域Fに向かって平行光として照射する。
第1受光手段2は、レンズ8と、フォトダイオード9によって構成されている。レンズ8は、浮遊粒子による散乱光を集光し、フォトダイオード9は、第1電流を出力する。これにより、フォトダイオード9から散乱光の強度Iを測定する。
The light emitting means 1 is composed of a semiconductor laser 6 and a lens 7. The semiconductor laser 6 emits light having a predetermined polarization direction, and the lens 7 irradiates the light emitted from the semiconductor laser 6 toward the detection area F as parallel light.
The first light receiving means 2 includes a lens 8 and a photodiode 9. The lens 8 collects the scattered light caused by the suspended particles, and the photodiode 9 outputs a first current. Thereby, the intensity I of scattered light from the photodiode 9 is measured.

第2受光手段3は、レンズ10と、偏光フィルタ11と、フォトダイオード12とによって構成されている。レンズ10は、浮遊粒子による散乱光を集光し、偏光フィルタ11は、集光された散乱光のうちの照射偏光方向に直交する偏光方向の散乱光のみを透過させ、フォトダイオード12は、第2電流を出力する。これにより、フォトダイオード12から直交散乱光の強度Isを測定する。   The second light receiving means 3 includes a lens 10, a polarizing filter 11, and a photodiode 12. The lens 10 collects the scattered light caused by the suspended particles, the polarizing filter 11 transmits only the scattered light in the polarization direction orthogonal to the irradiation polarization direction of the collected scattered light, and the photodiode 12 2 currents are output. As a result, the intensity Is of the orthogonal scattered light from the photodiode 12 is measured.

上記検出域の大きさは、1cm3程度とすることが好ましい。 The size of the detection area is preferably about 1 cm 3 .

したがって、実施形態の花粉センサ20においては、半導体レーザ6から出射された光は、レンズ7により平行光として検出域Fに照射される。検出域Fには空気吸引口4よりサンプルエアーが供給されている。   Therefore, in the pollen sensor 20 of the embodiment, the light emitted from the semiconductor laser 6 is irradiated to the detection area F as parallel light by the lens 7. Sample air is supplied to the detection area F from the air suction port 4.

上記サンプルエアー中に浮遊粒子が含まれていない場合には、レンズ7からの照射光は直進し、第1受光手段2及び第2受光手段3には達することはない。一方、サンプルエアー中に浮遊粒子が含まれている場合、その浮遊粒子が検出域Fを通過すると、照射光が散乱され、散乱光は第1受光手段2及び第2受光手段3に達する。このとき、土埃は花粉粒子と比較すれば、直交散乱光の強度Isが強くなっている。その後、散乱光が達した第1受光手段2及び第2受光手段3は、上述したように第1電流及び第2電流が出力される。   If the sample air contains no suspended particles, the irradiation light from the lens 7 goes straight and does not reach the first light receiving means 2 and the second light receiving means 3. On the other hand, when the suspended air is contained in the sample air, when the suspended particle passes through the detection area F, the irradiation light is scattered and the scattered light reaches the first light receiving means 2 and the second light receiving means 3. At this time, the intensity Is of the orthogonal scattered light is higher than that of pollen particles. Thereafter, the first light receiving means 2 and the second light receiving means 3 that have reached the scattered light output the first current and the second current as described above.

図2は、第1電流及び第2電流の処理方法の一例を示すブロック図である。   FIG. 2 is a block diagram illustrating an example of a method for processing the first current and the second current.

フォトダイオード9から出力された第1電流とフォトダイオード12から出力された第2電流とは、それぞれ電流電圧変換回路13と電流電圧変換回路14とに入力され、第1電圧と第2電圧とに変換される。   The first current output from the photodiode 9 and the second current output from the photodiode 12 are input to the current-voltage conversion circuit 13 and the current-voltage conversion circuit 14, respectively, and are converted into the first voltage and the second voltage. Converted.

第1電圧と第2電圧とはそれぞれ増幅回路15と増幅回路16に入力され、散乱光の強度Iと直交散乱光の強度Isとを出力する。   The first voltage and the second voltage are input to the amplifier circuit 15 and the amplifier circuit 16, respectively, and output the intensity I of scattered light and the intensity Is of orthogonal scattered light.

さらに、散乱光の強度Iと直交散乱光の強度Isとは、識別手段17に入力される。   Further, the intensity I of the scattered light and the intensity Is of the orthogonal scattered light are input to the identification unit 17.

識別手段17において、制御部の中央処理装置(以下、CPUという)には、ROM及びRAM(ランダム・アクセス・メモリ)が接続されている。   In the identification means 17, a ROM and a RAM (Random Access Memory) are connected to a central processing unit (hereinafter referred to as CPU) of the control unit.

ROMは、偏光度D’のデータ、散乱光の強度Iと直交散乱光の強度Isとを用いて偏光度Dを演算により求めるプログラム、偏光度D’と散乱光の強度I’とからなるマトリックスのデータ等を記憶する。さらに、得られた偏光度Dと散乱光の強度Iとに基づいて、マトリックスを使用しながら花粉粒子と土埃との識別を行うプログラム等を記憶する。   The ROM is a matrix composed of data on the degree of polarization D ′, a program for calculating the degree of polarization D using the intensity I of scattered light and the intensity Is of orthogonal scattered light, and a degree of polarization D ′ and intensity I ′ of scattered light. The data etc. are memorized. Furthermore, based on the obtained degree of polarization D and scattered light intensity I, a program for discriminating between pollen particles and dust while using a matrix is stored.

上述したマトリックスのデータは、偏光度D’と散乱光の強度I’とからなるデータであり、例えば、偏光度D’を縦に「−1.0以上−0.9未満」「−0.9以上−0.8未満」・・「0.9以上1.0以下」の20段階に分類し、散乱光の強度I’を横に「0.0V以上0.5V未満」「0.5V以上1.0V未満」・・「7.5V以上8.0V以下」で16段階に分類したマトリックスのデータである。したがって、マトリックス中の320種類のマスとマトリックス外のものとして321種類に分類されている。   The matrix data described above is data composed of the polarization degree D ′ and the scattered light intensity I ′. For example, the polarization degree D ′ is “−1.0 or more and less than −0.9” or “−0. It is classified into 20 stages of “9 or more and less than −0.8”, “0.9 or more and 1.0 or less”, and the scattered light intensity I ′ is “0.0 V or more and less than 0.5 V” or “0.5 V” It is data of a matrix that is classified into 16 levels of “less than 1.0 V” and “7.5 V or more and 8.0 V or less”. Therefore, 320 types of cells in the matrix and 321 types are classified as those outside the matrix.

さらに、マトリックスのデータにおいて、320種類のマスのうちの所定のマスは、「花粉粒子である確率が90%以上であるマス」と、「花粉粒子である確率が70%以上であるマス」と、「花粉粒子でないマス」とに分類もされている(図3参照)。なお、所定のマスは、花粉センサ20で花粉粒子や土埃等を予め測定して、統計的処理を行い決定されたものである。   Further, in the matrix data, predetermined squares among the 320 kinds of squares are “a square having a probability of being pollen particles of 90% or more” and “a square having a probability of being pollen particles of 70% or more”. And “mass that is not pollen particles” (see FIG. 3). The predetermined mass is determined by measuring pollen particles and dust in advance with the pollen sensor 20 and performing statistical processing.

上記偏光度D’のデータは、例えば、偏光度D=(I−Is)/(I+Is)とするデータである。   The data of the degree of polarization D ′ is, for example, data indicating the degree of polarization D = (I−Is) / (I + Is).

また、RAMは、上述したプログラムで使用した変数の値を記憶する。例えば、CPUによる演算処理の結果を記憶する。   The RAM also stores variable values used in the above-described program. For example, the result of arithmetic processing by the CPU is stored.

そして、CPUは、所定のプログラムを呼び出して実行することにより演算処理を行い、この演算処理の結果に基づいて、電子データとして伝送を行うのである。   Then, the CPU performs arithmetic processing by calling and executing a predetermined program, and transmits as electronic data based on the result of the arithmetic processing.

したがって、CPUは、散乱光の強度Iと直交散乱光の強度Isとを受信した場合には、ROMに記憶されたプログラム等に基づいて、散乱光の強度Iと直交散乱光の強度Isとを用いて偏光度Dを演算により求める。なお、花粉センサ20は起動しており、上述したCPUにおいて用いられる変数は所定の値(例えば、0等)に初期化され、定常動作しているものとする。   Therefore, when the CPU receives the scattered light intensity I and the orthogonal scattered light intensity Is, the CPU calculates the scattered light intensity I and the orthogonal scattered light intensity Is based on the program stored in the ROM. The degree of polarization D is obtained by calculation. It is assumed that the pollen sensor 20 is activated, and the variables used in the CPU described above are initialized to a predetermined value (for example, 0) and are in steady operation.

次に、得られた偏光度Dと散乱光の強度Iとに基づいて、マトリックスを使用して、マトリックスのどのマスに該当するか判断する。   Next, based on the obtained degree of polarization D and the intensity I of scattered light, the matrix is used to determine which mass of the matrix corresponds.

例えば、偏光度Dを「0.4以上0.5未満」であり、散乱光の強度Iを「2.5V以上3.0V未満」であると判断した場合、偏光度Dを「0.4以上0.5未満」とし、散乱光の強度Iを「2.5V以上3.0V未満」とするマスに+1とするデータをRAMに記憶する。このとき、花粉粒子である確率が90%以上であるとする。   For example, when it is determined that the polarization degree D is “0.4 or more and less than 0.5” and the scattered light intensity I is “2.5 V or more and less than 3.0 V”, the polarization degree D is “0.4”. The data is stored in the RAM as +1 for the square in which the scattered light intensity I is “2.5 V or more and less than 3.0 V”. At this time, it is assumed that the probability of being pollen particles is 90% or more.

一方、偏光度Dを「0.0以上0.1未満」であり、散乱光の強度Iを「1.0V以上1.5V未満」であると判断した場合、偏光度Dを「0.0以上0.1未満」とし、散乱光の強度Iを「1.0V以上1.5V未満」とするマスに+1とするデータをRAMに記憶する。このとき、花粉粒子でないとする。   On the other hand, when it is determined that the polarization degree D is “0.0 or more and less than 0.1” and the intensity I of the scattered light is “1.0 V or more and less than 1.5 V”, the polarization degree D is “0.0”. In the RAM, data is set to +1 in a square in which the scattered light intensity I is “1.0 V or more and less than 1.5 V”. At this time, it is assumed that the particles are not pollen particles.

さらに、偏光度Dを「0.0以上0.1未満」であり、散乱光の強度Iを「9.0V」であると判断した場合、データをRAMに記憶しない。   Further, when it is determined that the degree of polarization D is “0.0 or more and less than 0.1” and the intensity I of scattered light is “9.0 V”, data is not stored in the RAM.

なお、偏光度D’のデータ、ROMに散乱光の強度Iと直交散乱光の強度Isとを用いて偏光度Dを演算により求めるプログラム、偏光度D’と散乱光の強度I’とからなるマトリックスのデータ、得られた偏光度Dと散乱光の強度Iとに基づいて、マトリックスを使用しながら花粉粒子と土埃との識別を行うプログラム等を複数の種類を記憶させておき、必要に応じて異なるものに設定することとしてもよい。このようにすると、任意の場所や時間で変更させることができる。   The degree of polarization D ′ data, a program for calculating the degree of polarization D by using the intensity I of scattered light and the intensity Is of orthogonal scattered light in the ROM, and the degree of polarization D ′ and the intensity I ′ of scattered light. Based on the matrix data, the degree of polarization D obtained and the intensity I of scattered light, a program for discriminating between pollen particles and dirt while using the matrix is stored in plural types as necessary. It may be set to a different one. If it does in this way, it can be changed in arbitrary places and time.

さらに、本発明の花粉センサは、バックアップ電源が不要なフラッシュメモリ等の書き換え可能な不揮発性のメモリが設けられ、当該メモリにデータが記憶されることとしてもよい。例えば、或る測定日に、一の花粉センサにおいてデータが記憶されており、当該測定日が終了し、上記一の花粉センサへの電力の供給が停止されても、データが記憶されることになるため、上記測定日の翌日に、上記記憶されたデータに基づく花粉情報を獲得することが可能になるからである。   Furthermore, the pollen sensor of the present invention may be provided with a rewritable nonvolatile memory such as a flash memory that does not require a backup power supply, and data may be stored in the memory. For example, data is stored in one pollen sensor on a certain measurement day, and the data is stored even when the measurement day ends and the supply of power to the one pollen sensor is stopped. Therefore, pollen information based on the stored data can be acquired on the day after the measurement date.

なお、本明細書では、制御部に含まれるCPUが1つであるとして説明しているが、本発明の花粉センサでは、制御部に含まれるCPUは1つである必要はない。また、上記制御部に含まれるROM及びRAMも、必ずしも1つである必要はない。   In this specification, it is described that the number of CPUs included in the control unit is one. However, in the pollen sensor of the present invention, the number of CPUs included in the control unit is not necessarily one. The number of ROMs and RAMs included in the control unit is not necessarily one.

次に、本実施形態の花粉センサを用いて、スギ花粉と関東ローム(JIS試験用粉体1.7種)とについて測定を行った結果をそれぞれ表1、2に示す。   Next, Tables 1 and 2 show the results of measuring cedar pollen and Kanto loam (1.7 kinds of powder for JIS test) using the pollen sensor of this embodiment, respectively.

Figure 2005283152
Figure 2005283152

Figure 2005283152
Figure 2005283152

表1から、「花粉粒子である確率が90%以上であるマス」の領域内に全浮遊粒子数の61%があり、「花粉粒子である確率が70%以上であるマス」の領域内に全浮遊粒子数の88%があり、スギ花粉を花粉として識別していることが実証できている。   From Table 1, there is 61% of the total number of suspended particles in the area of “mass where the probability of being pollen particles is 90% or more”, and in the area of “mass where the probability of being pollen particles is 70% or more”. There are 88% of the total suspended particles, and it has been demonstrated that cedar pollen is identified as pollen.

また、表2から、「花粉粒子である確率が90%以上であるマス」の領域内に全浮遊粒子数の1%があり、「花粉粒子である確率が70%以上であるマス」の領域内に全浮遊粒子数の3.3%があり、関東ロームを花粉として識別していないことが実証できている。   Also, from Table 2, there is 1% of the total number of suspended particles in the region of “mass where the probability of being pollen particles is 90% or more”, and the region of “mass where the probability of being pollen particles is 70% or more” It is 3.3% of the total number of airborne particles, and it is proved that Kanto Loam is not identified as pollen.

なお、スギ花粉以外の花粉としてヒノキ花粉についても同様に測定を行った結果、スギ花粉と同等の測定結果であった。さらに、関東ローム以外の土埃として、アリゾナテストダスト(ISO 12103−1、A3)についても同様に測定を行った結果、関東ロームと同等の測定結果であった。   In addition, as a result of measuring similarly about cypress pollen as pollen other than cedar pollen, it was a measurement result equivalent to cedar pollen. Further, Arizona test dust (ISO 12103-1, A3) was measured in the same manner as the dust other than Kanto Loam. As a result, it was the same measurement result as Kanto Loam.

一方、特許文献1のような花粉検出器を用いて、スギ花粉と関東ロームについて測定を行った。その結果、スギ花粉を「花粉粒子である」と判定したものは全浮遊粒子数の61%であり、関東ロームを「花粉粒子である」と判定したものは全粒子数の35%があり、花粉と土埃との区別が不充分であった。   On the other hand, cedar pollen and Kanto loam were measured using a pollen detector as in Patent Document 1. As a result, what determined cedar pollen as "pollen particles" was 61% of the total number of suspended particles, and what determined Kanto loam as "pollen particles" was 35% of the total number of particles, The distinction between pollen and dust was insufficient.

なお、花粉センサ20は、第1受光手段2は、検出域Fの中心から上方に向かって60°の角度で配置されており、一方、第2受光手段3は、検出域Fの中心から下方に向かって60°の角度で配置されているように設定したが、他の任意の角度に配置されてもよく、上下を反対に配置されてもよく、好ましくは検出域Fの中心から45〜90°の角度で配置される。   In the pollen sensor 20, the first light receiving means 2 is disposed at an angle of 60 ° upward from the center of the detection area F, while the second light receiving means 3 is downward from the center of the detection area F. However, it may be arranged at any other angle, may be arranged upside down, and is preferably 45 to 45 from the center of the detection area F. Arranged at an angle of 90 °.

さらに、花粉センサ20は、発光手段1、第1受光手段2及び第2受光手段3は、同一の垂直面に配置されているように設定したが、同一水平面に配置されてもよい。   Further, in the pollen sensor 20, the light emitting means 1, the first light receiving means 2, and the second light receiving means 3 are set to be arranged on the same vertical plane, but may be arranged on the same horizontal plane.

また、発光手段1の光源として半導体レーザ6を使用したが、必ずしも半導体レーザ6を使用する必要はなく、LED、タングステンランプ等を使用してもよい。しかしながら、半導体レーザは所定の偏光方向の光を出射するが、LED、タングステンランプ等はランダムな偏光方向の光を出射するため、それらを使用する場合は、偏光フィルタに透過させて所定の偏光方向の光に変える必要がある。   Further, although the semiconductor laser 6 is used as the light source of the light emitting means 1, the semiconductor laser 6 is not necessarily used, and an LED, a tungsten lamp, or the like may be used. However, semiconductor lasers emit light with a predetermined polarization direction, but LEDs, tungsten lamps, etc. emit light with a random polarization direction, so when using them, they are transmitted through a polarizing filter and have a predetermined polarization direction. It is necessary to change to light.

また、上述したマトリックスのデータは、偏光度D’を縦に「−1.0以上−0.9未満」「−0.9以上−0.8未満」・・「0.9以上1.0以下」の20段階に分類し、散乱光の強度I’を横に「0.0V以上0.5V未満」「0.5V以上1.0V未満」・・「7.5V以上8.0V以下」で16段階に分類したマトリックスのデータであるが、このように分類したもの以外のマトリックスのデータを用いてもよい。   Further, the matrix data described above indicate that the degree of polarization D ′ is “−1.0 or more and less than −0.9”, “−0.9 or more and less than −0.8”,. The intensity I ′ of the scattered light is “0.0 V or more and less than 0.5 V”, “0.5 V or more and less than 1.0 V”, and “7.5 V or more and 8.0 V or less”. However, matrix data other than those classified in this way may be used.

本発明の一実施形態に係る花粉センサの側面図である。It is a side view of the pollen sensor which concerns on one Embodiment of this invention. 図1の花粉センサに使用される処理方法の一例を示すブロック図である。It is a block diagram which shows an example of the processing method used for the pollen sensor of FIG. 図1の花粉センサに使用されるマトリックスの一例を示す図である。It is a figure which shows an example of the matrix used for the pollen sensor of FIG. 本発明の花粉センサの原理を示す図である。It is a figure which shows the principle of the pollen sensor of this invention.

符号の説明Explanation of symbols

1 発光手段
2 第1受光手段
3 第2受光手段
4 空気吸引口
5 吸引ファン
6、51 半導体レーザ
7、8、10、52、53、55 レンズ
9、12、54、57 フォトダイオード
11、56 偏光フィルタ
13、14 電流電圧変換回路
15、16 増幅回路
17 識別手段
19 遮光ハウジング
20 花粉センサ
60 浮遊粒子

DESCRIPTION OF SYMBOLS 1 Light-emitting means 2 1st light-receiving means 3 2nd light-receiving means 4 Air suction port 5 Suction fan 6, 51 Semiconductor laser 7, 8, 10, 52, 53, 55 Lens 9, 12, 54, 57 Photodiode 11, 56 Polarization Filters 13 and 14 Current / voltage conversion circuits 15 and 16 Amplifying circuit 17 Identification means 19 Shading housing 20 Pollen sensor 60 Airborne particles

Claims (3)

浮遊粒子を含有する空気中に所定の偏光方向の照射光を照射する発光手段と、
前記浮遊粒子による散乱光を検出し、散乱光の強度Iを測定する第1受光手段と、
前記浮遊粒子による散乱光のうちの照射光の偏光方向に直交する偏光方向の散乱光を検出し、直交散乱光の強度Isを測定する第2受光手段と、
前記散乱光の強度Iと前記直交散乱光の強度Isとに基づいて、花粉粒子と土埃との識別を行う識別手段とを備えたことを特徴とする花粉センサ。
A light emitting means for irradiating the air containing airborne particles with irradiation light in a predetermined polarization direction;
First light receiving means for detecting scattered light from the suspended particles and measuring the intensity I of the scattered light;
Second light receiving means for detecting scattered light in the polarization direction orthogonal to the polarization direction of the irradiation light among the scattered light caused by the suspended particles, and measuring the intensity Is of the orthogonal scattered light;
A pollen sensor comprising: an identification means for identifying pollen particles and dust based on the intensity I of the scattered light and the intensity Is of the orthogonal scattered light.
前記識別手段は、前記散乱光の強度Iと前記直交散乱光の強度Isとが用いられる下記偏光度D1、D2、D3のいずれか一つと、散乱光の強度Iとに基づいて、識別を行う請求項1に記載の花粉センサ。
偏光度D1=(I−Is)/(I+Is)
偏光度D2=(I−Is)/I
偏光度D3=Is/I
The discriminating means performs discrimination based on one of the following degrees of polarization D1, D2, and D3 in which the intensity I of the scattered light and the intensity Is of the orthogonal scattered light are used, and the intensity I of the scattered light. The pollen sensor according to claim 1.
Polarization degree D1 = (I−Is) / (I + Is)
Degree of polarization D2 = (I−Is) / I
Polarization degree D3 = Is / I
前記識別手段は、偏光度D1、D2、D3のいずれか一つと、前記散乱光の強度Iとが、予め定められている偏光度D1、D2、D3のいずれか一つと、前記散乱光の強度Iとからなるマトリックス内にあるものを花粉粒子として識別を行う請求項1又は2に記載の花粉センサ。
The discriminating means includes any one of the degree of polarization D1, D2, D3 and the intensity I of the scattered light, and one of the predetermined degrees of polarization D1, D2, D3, and the intensity of the scattered light. The pollen sensor according to claim 1 or 2, wherein a substance in a matrix composed of I is identified as pollen particles.
JP2004093140A 2004-03-26 2004-03-26 Pollen sensor Expired - Lifetime JP3850418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004093140A JP3850418B2 (en) 2004-03-26 2004-03-26 Pollen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004093140A JP3850418B2 (en) 2004-03-26 2004-03-26 Pollen sensor

Publications (2)

Publication Number Publication Date
JP2005283152A true JP2005283152A (en) 2005-10-13
JP3850418B2 JP3850418B2 (en) 2006-11-29

Family

ID=35181731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004093140A Expired - Lifetime JP3850418B2 (en) 2004-03-26 2004-03-26 Pollen sensor

Country Status (1)

Country Link
JP (1) JP3850418B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278858A (en) * 2006-04-07 2007-10-25 Shinei Kk Fog particle sensor and fog sensor
JP2008216133A (en) * 2007-03-06 2008-09-18 Weather Service Co Ltd Method, program and system for calculating pollen quantity
JP2016105043A (en) * 2014-12-01 2016-06-09 三菱電機株式会社 Suspended particle detector
JP2017142116A (en) * 2016-02-09 2017-08-17 東芝メモリ株式会社 Particle measurement device
EP3220124A1 (en) 2016-03-15 2017-09-20 Omron Corporation Particle sensor, and electronic device provided with same
WO2017183597A1 (en) * 2016-04-20 2017-10-26 三菱電機株式会社 Microbody detection device
WO2018046845A1 (en) * 2016-09-09 2018-03-15 Valeo Systemes Thermiques Device for detecting particulate matter in an airflow for a motor vehicle
FR3055966A1 (en) * 2016-09-09 2018-03-16 Valeo Systemes Thermiques DEVICE FOR DETECTING PARTICULATE MATTER IN AN AIR FLOW FOR A MOTOR VEHICLE
CN111316084A (en) * 2017-10-09 2020-06-19 皇家飞利浦有限公司 Particle or pollen sensor and sensing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6207722B2 (en) 2014-04-08 2017-10-04 三菱電機株式会社 Airborne particle detector
CN107560985A (en) * 2017-08-28 2018-01-09 南京中科乾安智能科技有限公司 The detection means and equipment of Blower-free laser particle thing

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278858A (en) * 2006-04-07 2007-10-25 Shinei Kk Fog particle sensor and fog sensor
JP2008216133A (en) * 2007-03-06 2008-09-18 Weather Service Co Ltd Method, program and system for calculating pollen quantity
JP2016105043A (en) * 2014-12-01 2016-06-09 三菱電機株式会社 Suspended particle detector
JP2017142116A (en) * 2016-02-09 2017-08-17 東芝メモリ株式会社 Particle measurement device
US10317330B2 (en) 2016-02-09 2019-06-11 Toshiba Memory Corporation Particle measuring apparatus
EP3220124A1 (en) 2016-03-15 2017-09-20 Omron Corporation Particle sensor, and electronic device provided with same
WO2017183597A1 (en) * 2016-04-20 2017-10-26 三菱電機株式会社 Microbody detection device
WO2018046845A1 (en) * 2016-09-09 2018-03-15 Valeo Systemes Thermiques Device for detecting particulate matter in an airflow for a motor vehicle
FR3055967A1 (en) * 2016-09-09 2018-03-16 Valeo Systemes Thermiques DEVICE FOR DETECTING PARTICULATE MATTER IN AN AIR FLOW FOR A MOTOR VEHICLE
FR3055966A1 (en) * 2016-09-09 2018-03-16 Valeo Systemes Thermiques DEVICE FOR DETECTING PARTICULATE MATTER IN AN AIR FLOW FOR A MOTOR VEHICLE
CN111316084A (en) * 2017-10-09 2020-06-19 皇家飞利浦有限公司 Particle or pollen sensor and sensing method
CN111316084B (en) * 2017-10-09 2023-09-15 皇家飞利浦有限公司 Particle or pollen sensor and sensing method

Also Published As

Publication number Publication date
JP3850418B2 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
DK2706515T3 (en) Apparatus and method for detecting light scattering signals
JP7026719B2 (en) Defect sampling for electron beam review based on defect attributes from optical inspection and optical review
JP5610167B2 (en) Two-dimensional optical imaging method and system for particle detection
JP3850418B2 (en) Pollen sensor
JP3720799B2 (en) Pollen sensor
KR20180005737A (en) Repetitive defect classification method and system
CN105092425B (en) Analytical equipment and bearing calibration
US20130051696A1 (en) Systems and methods for imaging of falling objects
US10551827B2 (en) Hybrid inspection system for efficient process window discovery
WO2014156797A1 (en) Detection device and detection method
US9683940B2 (en) Particle detecting and discriminating device and method
US9983115B2 (en) System and method for monitoring particles in a fluid using ratiometric cytometry
JP5450161B2 (en) Defect inspection apparatus and defect inspection method
KR20170128786A (en) Method and system for detecting and separation of biological particles using multi-wavelength fluorescence analysis
TWI807179B (en) Methods and systems for wafer inspection and related non-transitory computer-readable storage medium
Jeys et al. Advanced trigger development
US10408733B2 (en) Crystalline particle detection
WO2017060164A1 (en) Optical sensor for particle detection
KR20180024900A (en) Method and system for detecting of biological components based on semiconductor compounds
JP2007278858A (en) Fog particle sensor and fog sensor
JP2016070853A (en) Method and apparatus for measuring radiation using laser
JP2006010353A (en) Fine particle measuring instrument
JP2006258776A (en) Particle classifier
JP2015148444A (en) Method for evaluating scattering properties of simulation powder of pharmaceutical product, method for detecting fluorescent particles, and device for detecting fluorescent particles
JP2022516217A (en) Methods and equipment for detecting and / or measuring impurities in droplets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Ref document number: 3850418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250