JP2022172250A - 受信方法 - Google Patents
受信方法 Download PDFInfo
- Publication number
- JP2022172250A JP2022172250A JP2022137924A JP2022137924A JP2022172250A JP 2022172250 A JP2022172250 A JP 2022172250A JP 2022137924 A JP2022137924 A JP 2022137924A JP 2022137924 A JP2022137924 A JP 2022137924A JP 2022172250 A JP2022172250 A JP 2022172250A
- Authority
- JP
- Japan
- Prior art keywords
- data symbol
- time
- symbol group
- transmission
- modulated signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 508
- 238000004891 communication Methods 0.000 claims abstract description 37
- 238000013507 mapping Methods 0.000 claims description 54
- 108010076504 Protein Sorting Signals Proteins 0.000 claims 12
- 230000005540 biological transmission Effects 0.000 abstract description 828
- 230000008859 change Effects 0.000 description 287
- 239000000969 carrier Substances 0.000 description 201
- 238000012937 correction Methods 0.000 description 153
- 238000012545 processing Methods 0.000 description 99
- 230000008707 rearrangement Effects 0.000 description 64
- 238000003780 insertion Methods 0.000 description 43
- 230000037431 insertion Effects 0.000 description 43
- 230000006870 function Effects 0.000 description 30
- 230000000694 effects Effects 0.000 description 29
- 230000008901 benefit Effects 0.000 description 25
- 230000010287 polarization Effects 0.000 description 22
- 238000001514 detection method Methods 0.000 description 20
- 238000012966 insertion method Methods 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 16
- 230000007423 decrease Effects 0.000 description 13
- 238000013461 design Methods 0.000 description 12
- 230000010363 phase shift Effects 0.000 description 12
- 230000009467 reduction Effects 0.000 description 12
- 230000005684 electric field Effects 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 8
- 238000013139 quantization Methods 0.000 description 8
- 230000003321 amplification Effects 0.000 description 5
- 230000001174 ascending effect Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 239000000284 extract Substances 0.000 description 3
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0697—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0078—Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
- H04L1/0079—Formats for control data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
- H04L1/1671—Details of the supervisory signal the supervisory signal being transmitted together with control information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2626—Arrangements specific to the transmitter only
- H04L27/2627—Modulators
- H04L27/2634—Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2689—Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
- H04L27/2692—Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J2011/0003—Combination with other multiplexing techniques
- H04J2011/0016—Combination with other multiplexing techniques with FDM/FDMA and TDM/TDMA
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
DVB-T2規格などのデジタル放送では、複数のデータストリームを時分割により多重化したフレームが構成され、フレーム単位でデータが送信される。
マルチアンテナを用いた通信方法として例えばMIMO(Multiple-Input Multiple-Output)と呼ばれる通信方法がある。
MIMOに代表されるマルチアンテナ通信では、1以上の系列の送信データを変調し、各変調信号を異なるアンテナから同一周波数(共通の周波数)を用い、同時に送信することで、データの受信品質を高めたり、および/または、(単位時間あたりの)データの通信速度を高めたりすることができる。
送信装置は、信号生成部、及び、無線処理部を有している。信号生成部は、データを通信路符号化し、MIMOプリコーディング処理を行い、同一周波数(共通の周波数)を用い、同時に送信することの可能な2つの送信信号z1(t)及びz2(t)を生成する。無線処理部は、必要に応じて個々の送信信号を周波数方向に多重化し、つまり、マルチキャリア化(例えば、OFDM(Orthogonal Frequency Division Multiplexing)方式))し、また、受信装置が伝送路歪みや、周波数オフセット、位相ひずみ等の推定を行うためのパイロット信号を挿入する。(ただし、パイロット信号は、他のひずみ等を推定してもよいし、また、パイロット信号を、受信装置は、信号検出のために用いてもよい。なお、パイロット信号の受信装置での使用形態はこれに限ったものではない。)送信アンテナは、2つのアンテナ(TX1及びTX2)を用いてz1(t)及びz2(t)を送信する。
(実施の形態1)
図1は本実施の形態における(例えば、放送局の)送信装置の構成の一例である。
第2プリアンブル生成部105は、第2プリアンブル用送信データ104、制御信号109を入力とし、制御信号109に含まれる第2プリアンブル用の誤り訂正の情報、変調方式の情報等の情報に基づき、誤り訂正符号化、変調方式に基づくマッピングを行い、第2プリアンブルの(直交)ベースバンド信号106を出力する。
なお、信号処理部では、例えば、プリコーディング、位相変更を用いたMIMO伝送方式(位相変更を施さないMIMO伝送方式であってもよい)(ここでは、MIMO方式と名付ける)、時空間ブロック符号(周波数-空間ブロック符号)を用いたMISO(Multiple-Input Single-Output)伝送方式(ここでは、MISO方式と名付ける)、一つのストリームの変調信号を一つのアンテナから送信するSISO(Single-Input Single-Output)(または、SIMO(Single-Input Multiple-Output))伝送方式を用いるものとする(ただし、SISO方式、SIMO方式において、一つのストリームの変調信号を複数のアンテナから送信する場合もある。)。信号処理部112の動作については、後で詳しく説明する。
パイロット挿入部114_2は、信号処理後の変調信号2(113_2)、制御信号109を入力とし、制御信号109に含まれるパイロットシンボルの挿入方法に関する情報に基づき、信号処理後の変調信号2(113_2)にパイロットシンボルを挿入し、パイロットシンボル挿入後の変調信号115_2を出力する。
IFFT部116_2は、パイロットシンボル挿入後の変調信号115_2、制御信号109を入力とし、制御信号109に含まれるIFFTの方法の情報に基づき、IFFTを施し、IFFT後の信号117_2を出力する。
PAPR削減部118_2は、IFFT後の信号117_2、制御信号109を入力とし、制御信号109に含まれるPAPR削減に関する情報に基づき、IFFT後の信号117_2にPAPR削減のための処理を施し、PAPR削減後の信号119_2を出力する。
ガードインターバル挿入部120_2は、PAPR削減後の信号119_2、制御信号109を入力とし、制御信号109に含まれるガードインターバルの挿入方法に関する情報に基づき、PAPR削減後の信号119_2にガードインターバルを挿入し、ガードインターバル挿入後の信号121_2を出力する。
無線処理部124_2は、第1プリアンブルを付加した後の信号123_2を入力とし、周波数変換、増幅等の処理が施され、送信信号125_2を出力する。そして、送信信号125_2は、アンテナ126_2から電波として出力される。
図2から図6は、上述で説明した送信装置が送信する変調信号のフレーム構成の例である。以下では、各フレーム構成の特長について説明する。
図2の201は第1のプリアンブル、202は第2のプリアンブル、203はデータシンボル群#1、204はデータシンボル群#2、205はデータシンボル群#3を示している。
映像・オーディオストリームごとにデータシンボル群を割り当ててもよい。例えば、第1の映像・オーディオストリームを送信するためのシンボルがデータシンボル群#1(203)、第2の映像・オーディオストリームを送信するためのシンボルがデータシンボル群#2(204)、第3の映像・オーディオストリームを送信するためのシンボルがデータシンボル群#3(205)となる。この点については、図2に限ったものではなく、図3,図4、図5、図6でも同様である。この点については、図2に限ったものではなく、図3,図4、図5、図6でも同様である。
なお、図2において、データシンボル群には、パイロットシンボルや制御情報を伝送するためのシンボルが、挿入されていてもよい。また、データシンボル群は、MIMO(伝送)方法およびMISO(伝送)方法に基づくシンボル群であることもある(当然であるが、データシンボル群は、SISO(SIMO)方式のシンボル群であってもよい。)。この場合、同一時刻、同一(共通)周波数では、複数のストリーム(後で説明するs1,s2)が送信されることになる。(この場合、同一時刻、同一(共通)周波数では、複数の変調信号を複数の(異なる)アンテナから送信することになる。)そして、この点については、図2に限ったものではなく、図3,図4、図5、図6でも同様である。
(ただし、これに従わず、データシンボル群#1で伝送する映像・オーディオは、データシンボル#2で伝送する映像・オーディオと異なるものであってもよい。)
また、データシンボル群#1を送信するための送信方法とデータシンボル群#2を送信するための送信方法を同一とし、データシンボル群#3を送信するための伝送方法とデータシンボル群#1を送信するための送信方法(データシンボル群#2を送信するための送信方法)を異なるようにすることが容易となる。
(後で説明するが、データシンボル群にはパイロットシンボルが挿入されているものとする。このとき、パイロットシンボルの挿入方法は、送信方法により異なる。(送信する変調信号の数が異なることがあるので)よって、送信方法ごとに、データシンボル群をまとめると、パイロットシンボル挿入による、伝送効率の低下を防ぐことができる可能性がある。)
次に、図4について説明する。図4は、第3のフレーム構成の例を示している。図4において、縦軸は周波数、横軸は時間であるものとする。そして、OFDM方式等のマルチキャリアを用いた伝送方式を用いているものとするため、縦軸周波数において、複数のキャリアが存在するものとする。なお、図4において、図2と同様に動作するものについては、同一番号を付しており、図2と同様に動作するものとする。
(ただし、これに従わず、データシンボル群#1で伝送する映像・オーディオは、データシンボル#2で伝送する映像・オーディオと異なるものであってもよい。)
また、データシンボル群#1を送信するための送信方法とデータシンボル群#2を送信するための送信方法を同一とし、データシンボル群#3を送信するための伝送方法とデータシンボル群#1を送信するための送信方法(データシンボル群#2を送信するための送信方法)を異なるようにすることが容易となる。
(後で説明するが、データシンボル群にはパイロットシンボルが挿入されているものとする。このとき、パイロットシンボルの挿入方法は、送信方法により異なる。(送信する変調信号の数が異なることがあるので)よって、送信方法ごとに、データシンボル群をまとめると、パイロットシンボル挿入による、伝送効率の低下を防ぐことができる可能性がある。)
次に、図6について説明する。図6は、第5のフレーム構成の例を示している。図6において、縦軸は周波数、横軸は時間であるものとする。そして、OFDM方式等のマルチキャリアを用いた伝送方式を用いているものとするため、縦軸周波数において、複数のキャリアが存在するものとする。なお、図6において、図2、図4と同様に動作するものについては、同一番号を付しており、図2、図4と同様に動作するものとする。
このようにした場合、例えば、データシンボル群#1で伝送する映像・オーディオとデータシンボル群#2で伝送する映像・オーディオは、映像・オーディオの符号化の圧縮率が異なるが、同一の「映像・オーディオ」としてもよい。このようにすると、受信装置は、「データシンボル群#1を復調するか、データシンボル群#2を復調するか」を選択するという簡単な方法で、所望の「映像・オーディオ」を高い品質で得ることができ、かつ、このとき、プリアンブルを共通化できるため、制御情報の伝送効率を高くすることができるという利点がある。
(ただし、これに従わず、データシンボル群#1で伝送する映像・オーディオは、データシンボル#2で伝送する映像・オーディオと異なるものであってもよい。)
また、データシンボル群#1を送信するための送信方法とデータシンボル群#2を送信するための送信方法を同一とし、データシンボル群#3を送信するための伝送方法とデータシンボル群#1を送信するための送信方法(データシンボル群#2を送信するための送信方法)を異なるようにすることが容易となる。
(後で説明するが、データシンボル群にはパイロットシンボルが挿入されているものとする。このとき、パイロットシンボルの挿入方法は、送信方法により異なる。(送信する変調信号の数が異なることがあるので)よって、送信方法ごとに、データシンボル群をまとめると、パイロットシンボル挿入による、伝送効率の低下を防ぐことができる可能性がある。
そして、図6のようにパイロットシンボル601を挿入することで、受信装置は各データシンボル群を検波、復調するためのチャネル推定を高精度に行うことができる。また、データシンボルの送信方法が切り替わった際、受信装置は、送信方法に適した受信信号のゲインを調整しなければならないが、パイロットシンボル601により、容易にゲイン調整を行うことができる、という利点を得ることができる。)
なお、図4、図5、図6において、例えば、データシンボル群#1で伝送する映像・オーディオとデータシンボル群#2で伝送する映像・オーディオは、映像・オーディオの符号化の圧縮率が異なるが、同一の「映像・オーディオ」としてもよい。このようにすると、受信装置は、「データシンボル群#1を復調するか、データシンボル群#2を復調するか」を選択するという簡単な方法で、所望の「映像・オーディオ」を高い品質で得ることができ、かつ、このとき、プリアンブルを共通化できるため、制御情報の伝送効率を高くすることができるという利点がある。(ただし、これに従わず、データシンボル群#1で伝送する映像・オーディオは、データシンボル#2で伝送する映像・オーディオと異なるものであってもよい。)
図4、図5、図6において、周波数分割したデータシンボル群の後に時分割したデータシンボル群を配置する例を示しているが、これに限ったののではなく、時分割したデータシンボル群の後に周波数分割したデータシンボル群を配置してもよい。このとき、図5の例では、時分割したデータシンボル群と周波数分割したデータシンボル群の間に第1プリアンブル、第2プリアンブルが挿入されることになる。(ただし、それ以外のシンボルが挿入されてもよい。)そして、図6の例では、時分割したデータシンボル群と周波数分割したデータシンボル群の間にパイロットシンボルが挿入されることになる。(ただし、それ以外のシンボルが挿入されてもよい。)
本実施の形態における特長的な点について説明する。
例えば、「フレーム構成に関する情報」として、v0,v1,v2の3ビットを割り当てたとき、送信装置が図2のフレーム構成で変調信号を送信する場合、(v0,v1,v2)を(0,0,0)とし、「フレーム構成に関する情報」を送信装置は送信する。
送信装置が図4のフレーム構成で変調信号を送信する場合、(v0,v1,v2)を(0,1,0)とし、「フレーム構成に関する情報」を送信装置は送信する。
送信装置が図5のフレーム構成で変調信号を送信する場合、(v0,v1,v2)を(0,1,1)とし、「フレーム構成に関する情報」を送信装置は送信する。
そして、受信装置は、「フレーム構成に関する情報」により、送信装置が送信した変調信号のフレーム構成の概要を知ることができる。
上で説明したように、データシンボル群は、SISO(またはSIMO)方式、MISO方式、MIMO方式のいずれかのシンボルとなる。以下では、特に、MISO方式、MIMO方式について説明する。
図1の信号処理部112が、時空間ブロック符号(Space-Time Block Codes)を用いた伝送方法を行う場合の構成について、図7を用いて説明する。
マッピング部702は、データ信号(誤り訂正符号化後のデータ)701、制御信号706を入力とし、制御信号706に含まれる変調方式に関連する情報に基づき、マッピングを行い、マッピング後の信号703を出力する。例えば、マッピング後の信号703は、s0,s1,s2,s3,・・・,s(2i),s(2i+1),・・・の順に並んでいるものとする。(iは、0以上の整数とする。)
MISO(Multiple Input Multiple Output)処理部704は、マッピング後の信号703、制御信号706を入力とし、制御信号706がMISO方式で送信することを指示している場合、MISO処理後の信号705Aおよび705Bを出力する。例えば、MISO処理後の信号705Aはs0,s1,s2,s3,・・・,s(2i),s(2i+1),・・・となり、MISO処理後の信号705Bは-s1*,s0*,-s3*,s2*・・・,-s(2i+1)*,s(2i)*,・・・となる。なお、「*」は複素共役を意味する。(例えば、s0*はs0の複素共役となる。)
このとき、MISO処理後の信号705Aおよび705Bが、それぞれ図1の信号処理後の変調信号1(113_1)および信号処理後の変調信号2(113_2)に相当する。なお、時空間ブロック符号の方法は上述の説明に限ったものではない。
図8は、図7とは異なる時空間ブロック符号(Space-Time Block Codes)を用いた伝送方法を行う場合の構成である。
MISO(Multiple Input Multiple Output)処理部704は、マッピング後の信号703、制御信号706を入力とし、制御信号706がMISO方式で送信することを指示している場合、MISO処理後の信号705Aおよび705Bを出力する。例えば、MISO処理後の信号705Aはs0,-s1*,s2,-s3*,・・・,s(2i),-s(2i+1)*,・・・となり、MISO処理後の信号705Bはs1,s0*,s3,s2*・・・,s(2i+1),s(2i)*,・・・となる。なお、「*」は複素共役を意味する。(例えば、s0*はs0の複素共役となる。)
このとき、MISO処理後の信号705Aおよび705Bが、それぞれ図1の信号処理後の変調信号1(113_1)および信号処理後の変調信号2(113_2)に相当する。なお、時空間ブロック符号の方法は上述の説明に限ったものではない。
次に、MIMO方式の一例として、プリコーディング、位相変更、パワー変更を適用したMIMO方式について説明する。(ただし、複数のストリームを複数のアンテナから送信する方法はこれに限ったものではなく、他の方式であっても、本実施の形態は実施することが可能である。)
図1の信号処理部112が、MIMO方式を用いた伝送方法を行う場合の構成について、図9から図17を用いて説明する。
マッピング部1104は、符号化後のデータ1103、制御信号1112を入力とする。そして、制御信号1112が、伝送方式として、二つのストリームを送信することを指定したものとする。加えて、制御信号1112が二つのストリームの各変調方式として、変調方式αと変調方式βを指定したものとする。なお、変調方式αはxビットのデータを変調する変調方式、変調方式βはyビットのデータを変調する変調方式とする。(例えば16QAM(16 Quadrature Amplitude Modulation)の場合、4ビットのデータを変調する変調方式であり、64QAM(64 Quadrature Amplitude Modulation)の場合、6ビットのデータを変調する変調方式である。)
すると、マッピング部1104は、x+yビットのデータのうちのxビットのデータに対し、変調方式αで変調し、ベースバンド信号s1(t)(1105A)を生成、出力し、また、残りのyビットのデータのデータに対し、変調方式βで変調し、ベースバンド信号s2(t)(1105B)を出力する。(なお、図9では、マッピング部を一つとしているが、これとは別の構成として、s1(t)を生成するためのマッピング部とs2(t)を生成するためのマッピング部が別々に存在していてもよい。このとき、符号化後のデータ1103は、s1(t)を生成するためのマッピング部とs2(t)を生成するためのマッピング部に振り分けられることになる。)
なお、s1(t)およびs2(t)は複素数で表現され(ただし、複素数、実数、いずれであってもよい)、また、tは時間である。なお、OFDM(Orthogonal Frequency Division Multiplexing)等のマルチキャリアを用いた伝送方式を用いている場合、s1およびs2は、s1(f)およびs2(f)のように周波数fの関数、または、s1(t,f)およびs2(t,f)のように時間t、周波数fの関数と考えることもできる。
したがって、ベースバンド信号、プリコーディング行列、位相変更等をシンボル番号iの関数として説明を進めている場合もあるが、この場合、時間tの関数、周波数fの関数、時間tおよび周波数fの関数と考えればよい。つまり、シンボル、ベースバンド信号を、時間軸方向で生成し、配置してもよいし、周波数軸方向で生成し、配置してもよい。また、シンボル、ベースバンド信号を、時間軸方向および周波数軸方向で生成し、配置してもよい。
同様に、パワー変更部1106B(パワー調整部1106B)は、ベースバンド信号s2(t)(1105B)、および、制御信号512を入力とし、実数P2を設定し、P2×s2(t)をパワー変更後の信号1107Bとして出力する。(なお、P2を実数としているが、複素数であってもよい。)
重み付け合成部1108は、パワー変更後の信号1107A、パワー変更後の信号1107B、および、制御信号1112を入力とし、制御信号1112に基づき、プリコーディング行列F(またはF(i))を設定する。スロット番号(シンボル番号)をiとすると、重み付け合成部1108は、以下の演算を行う。
パワー変更部1110Aは、重み付け合成後の信号1109A(u1(i))、および、制御信号512を入力とし、制御信号1112に基づき、実数Q1を設定し、Q1×u1(t)をパワー変更後の信号1111A(z1(i))として出力する。(なお、Q1を実数としているが、複素数であってもよい。)
同様に、パワー変更部1110Bは、重み付け合成後の信号1109B(u2(i))、および、制御信号1112を入力とし、制御信号512に基づき、実数Q2を設定し、Q2×u2(t)をパワー変更後の信号1111B(z2(i))として出力する。(なお、Q2を実数としているが、複素数であってもよい。)
したがって、以下の式が成立する。
位相変更部1161は、式(1)におけるu2(i)を重み付け合成後の信1109Bおよび制御信号1112を入力とし、制御信号1112に基づき、式(1)におけるu2(i)を重み付け合成後の信号1109Bの位相を変更する。したがって、式(1)におけるu2(i)を重み付け合成後の信号1109Bの位相を変更後の信号は、ejθ(i)×u2(i)とあらわされ、ejθ(i)×u2(i)が位相変更後の信号1162として、位相変更部1161は、出力する(jは虚数単位)。なお、変更する位相の値は、θ(i)のようにiの関数であることが特徴的な部分となる。
図9から図11において、パワー変更部の一部(または、すべて)が存在する場合を例に説明したが、パワー変更部の一部がない場合も考えられる。
図12において、特徴的な点は、位相変更部1151が挿入されている点である。
位相変更部1151は、ベースバンド信号s2(i)(1105B)および制御信号1112を入力とし、制御信号1112に基づき、ベースバンド信号s2(i)(1105B)の位相を変更する。このとき、位相変更の値をejλ(i)とする(jは虚数単位)。なお、変更する位相の値は、λ(i)のようにiの関数であることが特徴的な部分となる。
図13は、図12と同様の処理を実現することができる別の構成となる。なお、図13において、図9から図12と同様に動作するものについては、同一符号を付しており、説明は省略する。そして、図12と図13の異なる点は、図12において、パワー変更部1110Bと位相変更部1161の順番が入れ替えたものが図13となる。(パワー変更を行う、位相変更を行うという機能自身はかわらない。)
すると、式(1)から式(12)と同様に考えると、図13の出力信号となるz1(i)、z2(i)は、次式のようにあらわされる。
次に、図9から図13とは異なる二つのストリームを送信する場合の伝送方法について、図14を用いて説明する。なお、図14において、図9から図13と同様に動作するものについては、同一符号を付しており、説明は省略する。
位相変更部1151は、ベースバンド信号s2(i)(1105B)および制御信号1112を入力とし、制御信号1112に基づき、ベースバンド信号s2(i)(1105B)の位相を変更する。このとき、位相変更の値をejλ(i)とする(jは虚数単位)。なお、変更する位相の値は、λ(i)のようにiの関数であることが特徴的な部分となる。
図15は、図14と同様の処理を実現することができる別の構成となる。なお、図15において、図9から図14と同様に動作するものについては、同一符号を付しており、説明は省略する。そして、図14と図15の異なる点は、図14において、パワー変更部1110Bと位相変更部1161の順番が入れ替えたものが図15となる。(パワー変更を行う、位相変更を行うという機能自身はかわらない。)
すると、式(1)から式(16)と同様に考えると、図15の出力信号となるz1(i)、z2(i)は、次式のようにあらわされる。
次に、図9から図15とは異なる二つのストリームを送信する場合の伝送方法について、図16を用いて説明する。なお、図16において、図9から図15と同様に動作するものについては、同一符号を付しており、説明は省略する。
位相変更部1151は、ベースバンド信号s2(i)(1105B)および制御信号1112を入力とし、制御信号1112に基づき、ベースバンド信号s2(i)(1105B)の位相を変更する。このとき、位相変更の値をejλ(i)とする(jは虚数単位)。なお、変更する位相の値は、λ(i)のようにiの関数であることが特徴的な部分となる。
すると、式(1)から式(18)と同様に考えると、図16の出力信号となるz1(i)、z2(i)は、次式のようにあらわされる。
図17は、図16と同様の処理を実現することができる別の構成となる。なお、図17において、図9から図16と同様に動作するものについては、同一符号を付しており、説明は省略する。そして、図16と図17の異なる点は、図14において、パワー変更部1110Bと位相変更部1161の順番が入れ替え、かつ、パワー変更部1110Aと位相変更部1191の順番が入れ替えたものが図17となる。(パワー変更を行う、位相変更を行うという機能自身はかわらない。)
すると、式(1)から式(20)と同様に考えると、図17の出力信号となるz1(i)、z2(i)は、次式のようにあらわされる。
上述において、重み付け合成(プリコーディング)のための行列Fを示しているが、以下で記載するようなプリコーディング行列F(またはF(i))を用いても、本明細書の各実施の形態を実施することができる。
または、
または、
または、
また、これら以外のプリコーディング行列を用いても、本明細書の各実施の形態を実施することが可能である。
図18において、図18(A)はz1(i)の配置方法を示しており、図18(B)はz2(i)の配置方法を示している。図18(A)、図18(B)において、縦軸は時間、横軸は周波数である。
z1(0)をキャリア0、時刻1に配置し、
z1(1)をキャリア1、時刻1に配置し、
z1(2)をキャリア2、時刻1に配置し、
・・・
z1(10)をキャリア0、時刻2に配置し、
z1(11)をキャリア1、時刻2に配置し、
z1(12)をキャリア2、時刻2に配置し、
・・・
とする。
z2(0)をキャリア0、時刻1に配置し、
z2(1)をキャリア1、時刻1に配置し、
z2(2)をキャリア2、時刻1に配置し、
・・・
z2(10)をキャリア0、時刻2に配置し、
z2(11)をキャリア1、時刻2に配置し、
z2(12)をキャリア2、時刻2に配置し、
・・・
とする。
図19において、図19(A)はz1(i)の配置方法を示しており、図19(B)はz2(i)の配置方法を示している。図19(A)、図19(B)において、縦軸は時間、横軸は周波数である。
z1(0)をキャリア0、時刻1に配置し、
z1(1)をキャリア1、時刻2に配置し、
z1(2)をキャリア2、時刻1に配置し、
・・・
z1(10)をキャリア2、時刻2に配置し、
z1(11)をキャリア7、時刻1に配置し、
z1(12)をキャリア8、時刻2に配置し、
・・・
とする。
z2(0)をキャリア0、時刻1に配置し、
z2(1)をキャリア1、時刻2に配置し、
z2(2)をキャリア2、時刻1に配置し、
・・・
z2(10)をキャリア2、時刻2に配置し、
z2(11)をキャリア7、時刻1に配置し、
z2(12)をキャリア8、時刻2に配置し、
・・・
とする。
図20において、図20(A)はz1(i)の配置方法を示しており、図20(B)はz2(i)の配置方法を示している。図20(A)、図20(B)において、縦軸は時間、横軸は周波数である。
z1(0)をキャリア0、時刻1に配置し、
z1(1)をキャリア2、時刻1に配置し、
z1(2)をキャリア4、時刻1に配置し、
・・・
z1(10)をキャリア0、時刻2に配置し、
z1(11)をキャリア2、時刻2に配置し、
z1(12)をキャリア4、時刻2に配置し、
・・・
とする。
z2(0)をキャリア0、時刻1に配置し、
z2(1)をキャリア2、時刻1に配置し、
z2(2)をキャリア4、時刻1に配置し、
・・・
z2(10)をキャリア0、時刻2に配置し、
z2(11)をキャリア2、時刻2に配置し、
z2(12)をキャリア4、時刻2に配置し、
・・・
とする。
図21において、図21(A)はz1(i)の配置方法を示しており、図21(B)はz2(i)の配置方法を示している。図21(A)、図21(B)において、縦軸は時間、横軸は周波数である。
z1(0)をキャリア0、時刻1に配置し、
z1(1)をキャリア1、時刻1に配置し、
z1(2)をキャリア0、時刻2に配置し、
・・・
z1(10)をキャリア2、時刻2に配置し、
z1(11)をキャリア3、時刻2に配置し、
z1(12)をキャリア2、時刻3に配置し、
・・・
とする。
z2(0)をキャリア0、時刻1に配置し、
z2(1)をキャリア1、時刻1に配置し、
z2(2)をキャリア0、時刻2に配置し、
・・・
z2(10)をキャリア2、時刻2に配置し、
z2(11)をキャリア3、時刻2に配置し、
z2(12)をキャリア2、時刻3に配置し、
・・・
とする。
図22において、図22(A)はz1(i)の配置方法を示しており、図22(B)はz2(i)の配置方法を示している。図22(A)、図22(B)において、縦軸は時間、横軸は周波数である。
z1(0)をキャリア0、時刻1に配置し、
z1(1)をキャリア0、時刻2に配置し、
z1(2)をキャリア0、時刻3に配置し、
・・・
z1(10)をキャリア2、時刻3に配置し、
z1(11)をキャリア2、時刻4に配置し、
z1(12)をキャリア3、時刻1に配置し、
・・・
とする。
z2(0)をキャリア0、時刻1に配置し、
z2(1)をキャリア0、時刻2に配置し、
z2(2)をキャリア0、時刻3に配置し、
・・・
z2(10)をキャリア2、時刻3に配置し、
z2(11)をキャリア2、時刻4に配置し、
z2(12)をキャリア3、時刻1に配置し、
・・・
とする。
送信装置は、図18から図22、または、それ以外のシンボル配置方法の、いずれの方法でシンボルを配置してもよい。(あくまでも、図18から図22は、シンボル配置の例である。)
図23は、図1の送信装置が送信した変調信号を受信する受信装置(端末)の構成例である。
第2プリアンブル復調部2313は、信号処理後の信号2304_X、2304_Y、および、第1プリアンブル制御情報2312を入力とし、第1プリアンブル制御情報2312に基づき、信号処理を行い、復調(誤り訂正復号を含む)を行い、第2プリアンブル制御情報2314を出力する。
変調信号z1のチャネル変動推定部2305_1は、信号処理後の信号2304_X、制御信号2316を入力とし、送信装置が変調信号z1を送信したアンテナと受信アンテナ2301_X間のチャネル変動を信号処理後の信号2304_Xに含まれるパイロットシンボル等を用いて推定し、チャネル推定信号2306_1を出力する。
変調信号z1のチャネル変動推定部2307_1は、信号処理後の信号2304_Y、制御信号2316を入力とし、送信装置が変調信号z1を送信したアンテナと受信アンテナ2301_Y間のチャネル変動を信号処理後の信号2304_Yに含まれるパイロットシンボル等を用いて推定し、チャネル推定信号2308_1を出力する。
信号処理部2309は、信号2306_1、2306_2、2308_1、2308_2、2304_X、2304_Y、および、制御信号2316を入力とし、制御信号2316に含まれている、伝送方式・変調方式・誤り訂正符号化方式・誤り訂正符号化の符号化率・誤り訂正符号のブロックサイズ等の情報に基づき、復調、復号の処理を行い、受信データ2310を出力する。このとき、上述で説明した伝送方法に基づき他、検波(復調)・復号が行われることになる。
以上のように、送信装置が、図2から図6のフレーム構成のいずれかのフレーム構成を選択できるようにすることで、柔軟な映像情報、柔軟な、放送サービスを、受信装置(視聴者)に提供することができるという利点がある。また、図2から図6の各フレーム構成では、上述のようにそれぞれ利点が存在する。したがって、送信装置が図2から図6のフレーム構成を単独で用いてもよく、そのとき、上述の説明で記載したような効果を得ることができる。
(実施の形態2)
実施の形態1では、送信装置が図2から図6のフレーム構成のいずれかを選択する(または、図2から図6のフレームをいずれかを使用する)場合について説明を行った。本実施の形態では、実施の形態1で説明を行った送信装置において、実施の形態1で説明した、第1プリアンブルおよび第2プリアンブルの構成方法の例について説明する。
例えば、「フレーム構成に関する情報」として、v0,v1,v2の3ビットを割り当てたとき、送信装置が図2のフレーム構成で変調信号を送信する場合、(v0,v1,v2)を(0,0,0)とし、「フレーム構成に関する情報」を送信装置は送信する。
送信装置が図4のフレーム構成で変調信号を送信する場合、(v0,v1,v2)を(0,1,0)とし、「フレーム構成に関する情報」を送信装置は送信する。
送信装置が図5のフレーム構成で変調信号を送信する場合、(v0,v1,v2)を(0,1,1)とし、「フレーム構成に関する情報」を送信装置は送信する。
受信装置は、「フレーム構成に関する情報」により、送信装置が送信した変調信号のフレーム構成の概要を知ることができる。
さらに、送信装置(図1)は、各データシンボル群の送信方法に関する制御情報、各データシンボル群の変調方式(または、変調方式のセット)に関する制御情報、各データシンボル群で使用する誤り訂正符号の符号長(ブロック長)、および、符号化率に関する制御情報を送信するさらに、各フレーム構成におけるデータシンボル群の構成方法に関する情報についても送信する。以下では、これらの制御情報の構成方法についての例を説明する。
このとき、データシンボル群#(j=K)の送信方法をシングルストリーム送信(SISO(SIMO)送信)とする場合、a(K,0)=0、a(K,1)=0と設定し、a(K,0)、a(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の送信方法をMIMO方式#1とする場合、a(K,0)=0、a(K,1)=1と設定し、a(K,0)、a(K,1)を送信装置は送信するものとする。
なお、MIMO方式#1とMIMO方式#2は異なる方式であり、上記のMIMO方式のいずれかの方式であるものとする。また、ここでは、MIMO方式#1とMIMO方式#2を扱っているが、送信装置が選択できるMIMO方式は1種類であってもより、2種類以上であってもよい。
送信装置(図1)が、図2、または、図3のフレーム構成を選択した場合、つまり、(v0,v1,v2)を(0,0,0)または(0,0,1)と設定し、送信したものとする。このとき、データシンボル群jの変調方式に関する制御情報をb(j,0)、b(j,1)とする。
b(K,0)=0、b(K,1)=0のとき、送信装置はデータシンボルの変調方式をQPSKと設定する。
b(K,0)=0、b(K,1)=1のとき、送信装置はデータシンボルの変調方式を64QAMと設定する。
b(K,0)=1、b(K,1)=1のとき、送信装置はデータシンボルの変調方式を256QAMと設定する。
b(K,0)=0、b(K,1)=0のとき、送信装置はデータシンボルの変調方式をストリーム1をQPSK、ストリーム2を16QAMと設定する。
b(K,0)=0、b(K,1)=1のとき、送信装置はデータシンボルの変調方式をストリーム1を16QAM、ストリーム2を64QAMと設定する。
b(K,0)=1、b(K,1)=1のとき、送信装置はデータシンボルの変調方式をストリーム1を64QAM、ストリーム2を64QAMと設定する。
図2、および、図3では、データシンボル群#1、データシンボル群#2、データシンボル群#3が存在するので、b(1,0)、b(1,1)、b(2,0)、b(2,1)、b(3,0)、b(3,1)を送信装置は送信することになる。
このとき、データシンボル群#(j=K)の誤り訂正符号化方法を、誤り訂正符号をA、符号長をαとする場合、c(K,0)=0、c(K,1)=0と設定し、c(K,0)、c(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の誤り訂正符号化方法を、誤り訂正符号をA、符号長をβとする場合、c(K,0)=1、c(K,1)=0と設定し、c(K,0)、c(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の誤り訂正符号化方法を、誤り訂正符号をB、符号長をαとする場合、c(K,0)=0、c(K,1)=1と設定し、c(K,0)、c(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の誤り訂正符号化方法を、誤り訂正符号をB、符号長をβとする場合、c(K,0)=1、c(K,1)=1と設定し、c(K,0)、c(K,1)を送信装置は送信するものとする。
図2、および、図3では、データシンボル群#1、データシンボル群#2、データシンボル群#3が存在するので、c(1,0)、c(1,1)、c(2,0)、c(2,1)、c(3,0)、c(3,1)を送信装置は送信することになる。
このとき、データシンボル群#(j=K)の誤り訂正符号の符号化率を1/2とする場合、d(K,0)=0、d(K,1)=0と設定し、d(K,0)、d(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の誤り訂正符号の符号化率を2/3とする場合、d(K,0)=1、d(K,1)=0と設定し、d(K,0)、d(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の誤り訂正符号の符号化率を3/4とする場合、d(K,0)=0、d(K,1)=1と設定し、d(K,0)、d(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の誤り訂正符号の符号化率を4/5とする場合、d(K,0)=1、d(K,1)=1と設定しd(K,0)、d(K,1)を、送信装置は送信するものとする。
図2、および、図3では、データシンボル群#1、データシンボル群#2、データシンボル群#3が存在するので、d(1,0)、d(1,1)、d(2,0)、d(2,1)、d(3,0)、d(3,1)を送信装置は送信することになる。
このとき、データシンボル群#(j=K)のフレームにおけるシンボル数を256シンボルとする場合、e(K,0)=0、e(K,1)=0と設定し、e(K,0)、e(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)のフレームにおけるシンボル数を1024シンボルとする場合、e(K,0)=0、e(K,1)=1と設定し、e(K,0)、e(K,1)を送信装置は送信するものとする。
なお、シンボル数設定は4つに限ったものではなく、1種類以上のシンボル数の設定を送信装置が設定可能であればよい。
送信装置(図1)が、図4、または、図5、または、図6のフレーム構成を選択した場合、つまり、(v0,v1,v2)を(0,1,0)または(0,1,1)または(1,0,0)と設定し、送信したものとする。このとき、データシンボル群#jの送信方法に関する制御情報をa(j,0)、a(j,1)とする。
データシンボル群#(j=K)の送信方法を時空間ブロック符号(Space Time Block codes)(または、周波数-空間ブロック符号(Space Frequency Block codes))(MISO送信)とする場合、a(K,0)=1、a(K,1)=0と設定し、a(K,0)、a(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の送信方法をMIMO方式#2とする場合、a(K,0)=1、a(K,1)=1と設定し、a(K,0)、a(K,1)を送信装置は送信するものとする。
図4、および、図5、および、図6では、データシンボル群#1、データシンボル群#2、データシンボル群#3が存在するので、a(1,0)、a(1,1)、a(2,0)、a(2,1)、a(3,0)、a(3,1)を送信装置は送信することになる。
このとき、以下のような定義を行う。送信方法がシングルストリーム送信(SISO(SIMO)送信)の場合、例えば、データシンボル#(j=K)において、a(K,0)=0、a(K,1)=0と設定した場合、
b(K,0)=0、b(K,1)=0のとき、送信装置はデータシンボルの変調方式をQPSKと設定する。
b(K,0)=0、b(K,1)=1のとき、送信装置はデータシンボルの変調方式を64QAMと設定する。
b(K,0)=1、b(K,1)=1のとき、送信装置はデータシンボルの変調方式を256QAMと設定する。
b(K,0)=0、b(K,1)=0のとき、送信装置はデータシンボルの変調方式をストリーム1をQPSK、ストリーム2を16QAMと設定する。
b(K,0)=0、b(K,1)=1のとき、送信装置はデータシンボルの変調方式をストリーム1を16QAM、ストリーム2を64QAMと設定する。
b(K,0)=1、b(K,1)=1のとき、送信装置はデータシンボルの変調方式をストリーム1を64QAM、ストリーム2を64QAMと設定する。
図4、および、図5、および、図6では、データシンボル群#1、データシンボル群#2、データシンボル群#3が存在するので、b(1,0)、b(1,1)、b(2,0)、b(2,1)、b(3,0)、b(3,1)を送信装置は送信することになる。
このとき、データシンボル群#(j=K)の誤り訂正符号化方法を、誤り訂正符号をA、符号長をαとする場合、c(K,0)=0、c(K,1)=0と設定し、c(K,0)、c(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の誤り訂正符号化方法を、誤り訂正符号をA、符号長をβとする場合、c(K,0)=1、c(K,1)=0と設定し、c(K,0)、c(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の誤り訂正符号化方法を、誤り訂正符号をB、符号長をαとする場合、c(K,0)=0、c(K,1)=1と設定し、c(K,0)、c(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の誤り訂正符号化方法を、誤り訂正符号をB、符号長をβとする場合、c(K,0)=1、c(K,1)=1と設定し、c(K,0)、c(K,1)を送信装置は送信するものとする。
図4、および、図5、および、図6では、データシンボル群#1、データシンボル群#2、データシンボル群#3が存在するので、c(1,0)、c(1,1)、c(2,0)、c(2,1)、c(3,0)、c(3,1)を送信装置は送信することになる。
このとき、データシンボル群#(j=K)の誤り訂正符号の符号化率を1/2とする場合、d(K,0)=0、d(K,1)=0と設定し、d(K,0)、d(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の誤り訂正符号の符号化率を3/4とする場合、d(K,0)=0、d(K,1)=1と設定し、d(K,0)、d(K,1)を送信装置は送信するものとする。
なお、誤り訂正符号の符号化率設定は4つに限ったものではなく、2種類以上の誤り訂正符号の符号化率を送信装置が設定可能であればよい。
送信装置(図1)が、図4、または、図5、または、図6のフレーム構成を選択した場合、つまり、(v0,v1,v2)を(0,1,0)または(0,1,1)または(1,0,0)と設定し、送信したものとする。
この時間間隔を256OFDMシンボルとする場合、f(0)=1、f(1)=0と設定し、f(0)、f(1)を送信装置は送信するものとする。
この時間間隔を512OFDMシンボルとする場合、f(0)=0、f(1)=1と設定し、f(0)、f(1)を送信装置は送信するものとする。
なお、時間間隔の設定は4つに限ったものではなく、2種類以上の時間間隔の設定を送信装置が設定可能であればよい。
送信装置(図1)が、図4、または、図5、または、図6のフレーム構成を選択した場合、つまり、(v0,v1,v2)を(0,1,0)または(0,1,1)または(1,0,0)と設定し、送信したものとする。
データシンボル群#(j=K)のフレームにおけるシンボル数を512シンボルとする場合、e(K,0)=1、e(K,1)=0と設定し、e(K,0)、e(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)のフレームにおけるシンボル数を2048シンボルとする場合、e(K,0)=1、e(K,1)=1と設定し、e(K,0)、e(K,1)を送信装置は送信するものとする。
図4、および、図5、および、図6では、データシンボル群#3が上記に該当するので、e(3,0)、e(3,1)を送信装置は送信することになる。
送信装置(図1)が、図4、または、図5、または、図6のフレーム構成を選択した場合、つまり、(v0,v1,v2)を(0,1,0)または(0,1,1)または(1,0,0)と設定し、送信したものとする。
このとき、キャリア数に関する情報をg(0)、g(1)とする。例えば、キャリアの総数を512キャリアとする。
2つのデータシンボル群のうち、第1のデータシンボル群のキャリア数を448キャリア、第2のシンボル群のキャリア数を64キャリアとする場合、g(0)=1、g(1)=0と設定し、g(0)、g(1)を送信装置は送信するものとする。
2つのデータシンボル群のうち、第1のデータシンボル群のキャリア数を256キャリア、第2のシンボル群のキャリア数を256キャリアとする場合、g(0)=1、g(1)=1と設定し、g(0)、g(1)を送信装置は送信するものとする。
ある時間間隔において、複数のデータシンボル群が混在している場合の例として、図4から図6では2つのデータシンボル群が混在している場合について説明したが、3つ以上のデータシンボル群が混在していてもよい。この点について、図24、図25、図26を用いて説明する。
図24において、2401はデータシンボル群#1、2402はデータシンボル群#2、2403はデータシンボル群#4を示しており、データシンボル群#1、データシンボル群#2、データシンボル群#4は、ある時間間隔に存在している。
図25において、2501はデータシンボル群#1、2502はデータシンボル群#2、2503はデータシンボル群#5を示しており、データシンボル群#1、データシンボル群#2、データシンボル群#4は、ある時間間隔に存在している。
図26において、2601はデータシンボル群#1、2602はデータシンボル群#2、2603はデータシンボル群#4を示しており、データシンボル群#1、データシンボル群#2、データシンボル群#4は、ある時間間隔に存在している。
図24、図25、図26において、周波数分割したデータシンボル群の後に時分割したデータシンボル群を配置する例を示しているが、これに限ったののではなく、時分割したデータシンボル群の後に周波数分割したデータシンボル群を配置してもよい。このとき、図25の例では、時分割したデータシンボル群と周波数分割したデータシンボル群の間に第1プリアンブル、第2プリアンブルが挿入されることになる。(ただし、それ以外のシンボルが挿入されてもよい。)そして、図26の例では、時分割したデータシンボル群と周波数分割したデータシンボル群の間にパイロットシンボルが挿入されることになる。(ただし、それ以外のシンボルが挿入されてもよい。)
なお、送信装置(図1)は、フレーム構成に関する情報を第1プリアンブルまたは第2プリアンブルに受信装置(端末)に伝えるための「フレーム構成に関する情報」を送信するとき、例えば、「フレーム構成に関する情報」として、v0,v1,v2の3ビットを割り当てたとき、送信装置が図24のフレーム構成で変調信号を送信する場合、(v0,v1,v2)を(1,0,1)とし、「フレーム構成に関する情報」を送信装置は送信する。
送信装置が図26のフレーム構成で変調信号を送信する場合、(v0,v1,v2)を(1,1,1)とし、「フレーム構成に関する情報」を送信装置は送信する。
なお、図24、図25、図26において、データシンボル群は、MIMO(伝送)方法およびMISO(伝送)方法に基づくシンボル群であることもある(当然であるが、データシンボル群は、SISO(SIMO)方式のシンボル群であってもよい。)。この場合、同一時刻、同一(共通)周波数では、複数のストリーム(後で説明するs1,s2)が送信されることになる。(この場合、同一時刻、同一(共通)周波数では、複数の変調信号を複数の(異なる)アンテナから送信することになる。)
そして、送信装置(図1)が、図24、または、図25、または、図26のフレーム構成を選択した場合、つまり、(v0,v1,v2)を(1,0,1)または(1,1,0)または(1,1,1)と設定し、送信したものとする。
このとき、キャリア数に関する情報をg(0)、g(1)とする。例えば、キャリアの総数を512キャリアとする。
2つのデータシンボル群のうち、第1のデータシンボル群のキャリア数を384キャリア、第2のシンボル群のキャリア数を64キャリア、第3のシンボル群のキャリア数を64キャリアとする場合、g(0)=1、g(1)=0と設定し、g(0)、g(1)を送信装置は送信するものとする。
2つのデータシンボル群のうち、第1のデータシンボル群のキャリア数を480ャリア、第2のシンボル群のキャリア数を16キャリア、第3のシンボル群のキャリア数を16キャリアとする場合、g(0)=1、g(1)=1と設定し、g(0)、g(1)を送信装置は送信するものとする。
また、図4、図5、図6、図24、図25、図26のように、「第1の時間間隔において、複数のデータシンボル群が混在している場合」と「第2の時間間隔において、一つのデータシンボル群しか存在していない場合」とが混在するフレームにおいて、「第1の時間間隔において、複数のデータシンボル群が混在している場合」のキャリア間隔(FFT(Fast Fourier Transform)サイズ、または、フーリエ変換のサイズ)と「第2の時間間隔において、一つのデータシンボル群しか存在していない場合」のキャリア間隔(FFT(Fast Fourier Transform)サイズ、または、フーリエ変換のサイズ)とを送信装置が別々に設定できるようにすると、データの伝送効率が向上するという効果を得ることができる。これは、「第1の時間間隔において、複数のデータシンボル群が混在している場合」におけるデータ伝送効率の点で適切なキャリア間隔と「第2の時間間隔において、一つのデータシンボル群しか存在していない場合」におけるデータ伝送効率の点で適切なキャリア間隔が異なるからである。
このとき、キャリア間隔を0.25kHzとする場合、ha(0)=0、ha(1)=0と設定し、ha(0)、ha(1)を送信装置は送信するものとする。
キャリア間隔を0.5kHzとする場合、ha(0)=1、ha(1)=0と設定し、ha(0)、ha(1)を送信装置は送信するものとする。
キャリア間隔を2kHzとする場合、ha(0)=1、ha(1)=1と設定し、ha(0)、ha(1)を送信装置は送信するものとする。
なお、キャリア間隔の設定は4つに限ったものではなく、2種類以上のキャリア間隔の設定を送信装置が設定可能であればよい。
このとき、キャリア間隔を0.25kHzとする場合、hb(0)=0、hb(1)=0と設定し、hb(0)、hb(1)を送信装置は送信するものとする。
キャリア間隔を0.5kHzとする場合、hb(0)=1、hb(1)=0と設定し、hb(0)、hb(1)を送信装置は送信するものとする。
キャリア間隔を2kHzとする場合、hb(0)=1、hb(1)=1と設定し、hb(0)、hb(1)を送信装置は送信するものとする。
なお、キャリア間隔の設定は4つに限ったものではなく、2種類以上のキャリア間隔の設定を送信装置が設定可能であればよい。
なお、「第1の時間間隔において、複数のデータシンボル群が混在している場合」に関するキャリア間隔に関する制御情報をha(0)、ha(1)、および、「第2の時間間隔において、一つのデータシンボル群しか存在していない場合」に関するキャリア間隔に関する制御情報をhb(0)、hb(1)は、図4、図5、図6、図24、図25、図26において、第1プリアンブルまたは第2プリアンブルのいずれかで送信される方法が考えられる。
以上のように、制御情報として、本実施の形態で説明した情報を送信することで、データの受信品質の向上とデータの伝送効率の向上を行うことができ、受信装置を的確に動作させることができるという効果を得ることができる。
また、上述のような伝送方法の切り替えに伴い、データシンボル群に挿入するパイロットシンボルの挿入方法を切り替えることにもなり、データの伝送効率の向上の点からも利点がある(SISO(SIMO)伝送方式とMIMO(MISO)伝送方式が混在しないため)。(SISO(SIMO)伝送方式とMIMO(MISO)伝送方式が混在した場合、パイロットシンボルの挿入する頻度が過剰になり、データの伝送効率が低下する可能性がある。)なお、データシンボル群に挿入するパイロットシンボルの構成については、以下のとおりである。
変調信号#1の場合:
変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202を図42のように挿入する。変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202いずれもPSKのシンボルである。
変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202を図42のように挿入する。変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202いずれもPSKのシンボルである。
例2)
変調信号#1の場合:
変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202を図42のように挿入する。変調信号#1用の第1パイロットシンボル4201はPSKのシンボルであり、変調信号#1用の第2パイロットシンボル4202は、ヌルシンボル(同相成分Iは0(ゼロ)、直交成分Qは0(ゼロ))であるものとする(したがって、変調信号#1用の第2パイロットシンボル4202はパイロットシンボルと呼ばなくてもよい。)。
変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202を図42のように挿入する。変調信号#2用の第2パイロットシンボル4201はPSKのシンボルであり、変調信号#2用の第1パイロットシンボル4202は、ヌルシンボル(同相成分Iは0(ゼロ)、直交成分Qは0(ゼロ))であるものとする(したがって、変調信号#2用の第1パイロットシンボル4202はパイロットシンボルと呼ばなくてもよい。)。
また、上述のような伝送方法の切り替えに伴い、データシンボル群に挿入するパイロットシンボルの挿入方法を切り替えることにもなり、データの伝送効率の向上の点からも利点がある(SISO(SIMO)伝送方式とMIMO(MISO)伝送方式が混在しないため)。(SISO(SIMO)伝送方式とMIMO(MISO)伝送方式が混在した場合、パイロットシンボルの挿入する頻度が過剰になり、データの伝送効率が低下する可能性がある。)なお、データシンボル群に挿入するパイロットシンボルの構成については、以下のとおりである。
変調信号#1の場合:
変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202を図42のように挿入する。変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202いずれもPSKのシンボルである。
変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202を図42のように挿入する。変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202いずれもPSKのシンボルである。
例2)
変調信号#1の場合:
変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202を図42のように挿入する。変調信号#1用の第1パイロットシンボル4201はPSKのシンボルであり、変調信号#1用の第2パイロットシンボル4202は、ヌルシンボル(同相成分Iは0(ゼロ)、直交成分Qは0(ゼロ))であるものとする(したがって、変調信号#1用の第2パイロットシンボル4202はパイロットシンボルと呼ばなくてもよい。)。
変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202を図42のように挿入する。変調信号#2用の第2パイロットシンボル4201はPSKのシンボルであり、変調信号#2用の第1パイロットシンボル4202は、ヌルシンボル(同相成分Iは0(ゼロ)、直交成分Qは0(ゼロ))であるものとする(したがって、変調信号#2用の第1パイロットシンボル4202はパイロットシンボルと呼ばなくてもよい。)。
このとき、「データシンボル群#1(401_1、401_2)の送信方法、および、データシンボル群#2(402)の送信方法は、MIMO伝送またはMISO伝送」、または、「データシンボル群#1(401_1、401_2)の送信方法、および、データシンボル群#2(402)の送信方法は、SISO伝送(SIMO伝送)」のいずれかが選択できるものとし、「データシンボル群#3(403)の送信方法は、MIMO伝送またはMISO伝送」、または、「データシンボル群#3(403)の送信方法は、SISO伝送(SIMO伝送)」のいずれかが選択できるものとしてもよい。
また、上述のような伝送方法の切り替えに伴い、データシンボル群に挿入するパイロットシンボルの挿入方法を切り替えることにもなり、データの伝送効率の向上の点からも利点がある(SISO(SIMO)伝送方式とMIMO(MISO)伝送方式が混在しないため)。(SISO(SIMO)伝送方式とMIMO(MISO)伝送方式が混在した場合、パイロットシンボルの挿入する頻度が過剰になり、データの伝送効率が低下する可能性がある。)なお、データシンボル群に挿入するパイロットシンボルの構成については、以下のとおりである。
変調信号#1の場合:
変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202を図42のように挿入する。変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202いずれもPSKのシンボルである。
変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202を図42のように挿入する。変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202いずれもPSKのシンボルである。
例2)
変調信号#1の場合:
変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202を図42のように挿入する。変調信号#1用の第1パイロットシンボル4201はPSKのシンボルであり、変調信号#1用の第2パイロットシンボル4202は、ヌルシンボル(同相成分Iは0(ゼロ)、直交成分Qは0(ゼロ))であるものとする(したがって、変調信号#1用の第2パイロットシンボル4202はパイロットシンボルと呼ばなくてもよい。)。
変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202を図42のように挿入する。変調信号#2用の第2パイロットシンボル4201はPSKのシンボルであり、変調信号#2用の第1パイロットシンボル4202は、ヌルシンボル(同相成分Iは0(ゼロ)、直交成分Qは0(ゼロ))であるものとする(したがって、変調信号#2用の第1パイロットシンボル4202はパイロットシンボルと呼ばなくてもよい。)。
このとき、「データシンボル群#1(2501)の送信方法、データシンボル群#2(2502)の送信方法、データシンボル群#4(2503)の送信方法は、MIMO伝送またはMISO伝送」、または、「データシンボル群#1(2501)の送信方法、データシンボル群#2(2502)の送信方法、データシンボル群#4(2503)の送信方法は、SISO伝送(SIMO伝送)」のいずれかが選択できるものとし、「データシンボル群#3(403)の送信方法は、MIMO伝送またはMISO伝送」、または、「データシンボル群#3(403)の送信方法は、SISO伝送(SIMO伝送)」のいずれかが選択できるものとしてもよい。
また、上述のような伝送方法の切り替えに伴い、データシンボル群に挿入するパイロットシンボルの挿入方法を切り替えることにもなり、データの伝送効率の向上の点からも利点がある(SISO(SIMO)伝送方式とMIMO(MISO)伝送方式が混在しないため)。(SISO(SIMO)伝送方式とMIMO(MISO)伝送方式が混在した場合、パイロットシンボルの挿入する頻度が過剰になり、データの伝送効率が低下する可能性がある。)なお、データシンボル群に挿入するパイロットシンボルの構成については、以下のとおりである。
変調信号#1の場合:
変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202を図42のように挿入する。変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202いずれもPSKのシンボルである。
変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202を図42のように挿入する。変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202いずれもPSKのシンボルである。
例2)
変調信号#1の場合:
変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202を図42のように挿入する。変調信号#1用の第1パイロットシンボル4201はPSKのシンボルであり、変調信号#1用の第2パイロットシンボル4202は、ヌルシンボル(同相成分Iは0(ゼロ)、直交成分Qは0(ゼロ))であるものとする(したがって、変調信号#1用の第2パイロットシンボル4202はパイロットシンボルと呼ばなくてもよい。)。
変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202を図42のように挿入する。変調信号#2用の第2パイロットシンボル4201はPSKのシンボルであり、変調信号#2用の第1パイロットシンボル4202は、ヌルシンボル(同相成分Iは0(ゼロ)、直交成分Qは0(ゼロ))であるものとする(したがって、変調信号#2用の第1パイロットシンボル4202はパイロットシンボルと呼ばなくてもよい。)。
(実施の形態3)
実施の形態1、実施の形態2において、複数のアンテナを用いて複数のストリームを送信する、プリコーディング、位相変更を用いたMIMO伝送方式(位相変更を施さないMIMO伝送方式であってもよい)、時空間ブロック符号(Space Time Block codes)(または、周波数-空間ブロック符号(Space Frequency Block codes))を用いたMISO(Multiple-Input Single-Output)伝送方式について説明したが、これらの伝送方式で送信装置が変調信号を送信することを考慮したときのプリアンブルの送信方法の一例を説明する。
「アンテナ126_1が水平偏波用のアンテナ、アンテナ126_2が垂直偏波用のアンテナ」
または
「アンテナ126_1が垂直偏波用のアンテナ、アンテナ126_2が水平偏波用のアンテナ」
または
「アンテナ126_1が右旋円偏波用のアンテナ、アンテナ126_2が左旋円偏波用のアンテナ」
または
「アンテナ126_1が左旋円偏波用のアンテナ、アンテナ126_2が右旋円偏波用のアンテナ」
があり、このようなアンテナ構成方法を、第1のアンテナ構成方法と呼ぶことにする。
「アンテナ126_1が水平偏波用のアンテナ、アンテナ126_2が水平偏波用のアンテナ」
および
「アンテナ126_1が垂直偏波用のアンテナ、アンテナ126_2が垂直偏波用のアンテナ」
「アンテナ126_1が左旋円偏波用のアンテナ、アンテナ126_2が左旋円偏波用のアンテナ」
および
「アンテナ126_1が右旋円偏波用のアンテナ、アンテナ126_2が右旋円偏波用のアンテナ」
が含まれることになる。
または、
第2のアンテナ構成方法(例えば、「アンテナ126_1が水平偏波用のアンテナ、アンテナ126_2が水平偏波用のアンテナ」または「アンテナ126_1が垂直偏波用のアンテナ、アンテナ126_2が垂直偏波用のアンテナ」)
の設定が可能であり、例えば、放送システムにおいて、送信装置の設置場所(設置地域)により、第1のアンテナの構成方法、または、第2のアンテナ構成方法のいずれかのアンテナ構成方法が採用されているものとする。
実施の形態2と同様に、送信装置は、第1プリアンブルを用いて、アンテナ構成方法に関する制御情報を送信するものとする。このとき、アンテナ構成方法に関する情報をm(0)、m(1)とする。
送信装置が具備する2つの送信アンテナにおいて、第1の送信アンテナが水平偏波用のアンテナ(つまり、水平偏波の第1の変調信号を送信する)、第2の送信アンテナが垂直偏波用のアンテナ(つまり、垂直偏波の第2の変調信号を送信する)の場合、m(0)=0、m(1)=1と設定し、m(0)、m(1)を送信装置は送信するものとする。
そして、送信装置は、図2から図6、図24から図26のフレーム構成方法において、m(0)、m(1)を、例えば、第1プリアンブルで送信するものとする。これにより、受信装置は、第1のプリアンブルを受信し、復調・復号することで、送信装置が送信した変調信号(例えば、第2プリアンブルやデータシンボル群)が、どのような偏波を用いて送信されたか、を簡単に知ることができ、これにより、受信装置が受信の際に使用するアンテナ(偏波の使用も含む)を的確に設定することができ、よって、高い受信利得(高い受信電界強度)を得ることができるという効果を得ることができる(利得を得る効果が小さい受信のための信号処理を行う必要がなくなるという利点もある)。これにより、データの受信品質が向上するという利点を得ることができる。
送信装置が水平偏波でのみ変調信号を送信し、受信装置が水平偏波用受信アンテナと垂直偏波用受信アンテを具備している場合を考える。このとき、送信装置が送信した変調信号は、受信装置の水平偏波用の受信アンテナで受信することができるが、受信装置の垂直偏波用の受信アンテナでは、送信装置が送信した変調信号の受信電界強度は非常に小さい。
以上の点から、送信装置が「アンテナ構成方法に関する制御情報」を送信し、受信装置が、的確に制御する必要性がある。
<送信装置が2つ以上の水平偏波用のアンテナを具備している場合>
この場合、シングルストリームを送信する(SISO伝送方式、または、SIMO伝送方式)際、送信装置は、一つ以上の水平偏波用のアンテナにより、変調信号を送信することになる。この場合を考慮すると、上述で説明した、アンテナ構成方法に関する制御情報を含む第1プリアンブルを、送信装置は、一つ以上の水平偏波用のアンテナにより送信すると、受信装置は、高い利得で、アンテナ構成方法に関する制御情報を含む第1プリアンブルを受信することができ、これにより、高いデータの受信品質を得ることができる。
<送信装置が2つ以上の垂直偏波用のアンテナを具備している場合>
この場合、シングルストリームを送信する(SISO伝送方式、または、SIMO伝送方式)際、送信装置は、一つ以上の垂直偏波用のアンテナにより、変調信号を送信することになる。この場合を考慮すると、上述で説明した、アンテナ構成方法に関する制御情報を含む第1プリアンブルを、送信装置は、一つ以上の垂直偏波用のアンテナにより送信すると、受信装置は、高い利得で、アンテナ構成方法に関する制御情報を含む第1プリアンブルを受信することができ、これにより、高いデータの受信品質を得ることができる。
次に、送信装置が水平偏波用のアンテナと垂直偏波のアンテナを具備している場合について説明する。
第1の方法:
水平偏波用のアンテナと垂直偏波のアンテナにより、変調信号を送信する、
第2の方法:
水平偏波用のアンテナにより、変調信号を送信する、
第3の方法:
垂直偏波のアンテナにより、変調信号を送信する、
が考えられる。
したがって、シングルストリームを送信する(SISO伝送方式、または、SIMO伝送方式)際、第1の方法で変調信号を送信する場合、アンテナ構成方法に関する制御情報を含む第1プリアンブルは、水平偏波用のアンテナと垂直偏波のアンテナから送信されることになる。
第2の方法で変調信号を送信する場合、アンテナ構成方法に関する制御情報を含む第1プリアンブルは、水平偏波用のアンテナから送信されることになる。
第3の方法で変調信号を送信する場合、アンテナ構成方法に関する制御情報を含む第1プリアンブルは、垂直偏波用のアンテナから送信されることになる。
そして、アンテナ構成方法に関する制御情報を受信装置は得ることで、MIMO伝送方式、MISO伝送方式をどのようなアンテナ構成で送信装置が送信したか、を受信装置は知ることができる。
なお、上述の説明では、第1プリアンブルにアンテナ構成方法に関する制御情報を含む場合を例に説明しているが、第1プリアンブルにアンテナ構成方法に関する制御情報が含まれていない場合についても、同様の効果を得ることができる。
(実施の形態4)
上述の実施の形態において、図1の送信装置が送信する変調信号におけるフレーム構成の例について説明したが、本実施の形態では、さらに、図1の送信装置が送信する変調信号におけるフレーム構成について説明する。
そして、3007はデータシンボル群#7、3008はデータシンボル群#8、3009はデータシンボル群#9を示しており。時刻t3から時刻t4において、データシンボル群#7(3007)、データシンボル群#8(3008)、データシンボル群#9(3009)が存在しており、各時刻において、複数のデータシンボル群が存在している。
なお、データシンボル群は、MIMO(伝送)方法およびMISO(伝送)方法に基づくシンボル群であることもある(当然であるが、データシンボル群は、SISO(SIMO)方式のシンボル群であってもよい。)。この場合、同一時刻、同一(共通)周波数では、複数のストリーム(後で説明するs1,s2)が送信されることになる。(この場合、同一時刻、同一(共通)周波数では、複数の変調信号を複数の(異なる)アンテナから送信することになる。)そして、この点については、図30に限ったものではなく、図31,図32、図33、図34、図35、図36、図37、図38でも同様である。
図31は、図1の送信装置が送信する変調信号におけるフレーム構成の一例であり、図2、図30と同様に動作するものについては、同一番号を付し、説明は省略する。図31において、縦軸は周波数、横軸は時間であるものとする。そして、OFDM方式等のマルチキャリアを用いた伝送方式を用いているものとするため、縦軸周波数において、複数のキャリアが存在しているものとする。
図31において特徴的な点は、周波数分割を行い、データシンボル群が複数存在する時間区間が2か所以上存在し、かつ、時間分割を行い、複数のデータシンボルが存在している点である。これにより、データの受信品質の異なるシンボル群を同一時間に存在させることができ、かつ、データ区間を適切に定めることにより、データの伝送速度を柔軟に設定することができ、また、時間分割を行い、データ区間を適切に定めることにより、データの伝送速度を柔軟に設定することができるという効果を有する。
図31と異なる点は、データシンボル群#7(3201)の前に第1プリアンブル501と第2プリアンブル502を配置している点である。このとき、周波数分割されたデータシンボル群#1から#6に関連する制御情報(例えば、各データシンボル群の必要とするキャリア数および時間間隔、各データシンボル群の変調方式、各データシンボル群の送信方法、各データシンボル群で使用する誤り訂正符号の方式など)は、図32における第1プリアンブル(201)、および/または、第2プリアンブル(202)で伝送されることになる。なお、制御情報については、実施の形態2で一例を説明している。(なお、この点については別途説明する。)
そして、時間分割されたデータシンボル群#7、#8に関する制御情報(例えば、各データシンボル群の必要とするシンボル数(または時間間隔)、各データシンボル群の変調方式、各データシンボル群の送信方法、各データシンボル群で使用する誤り訂正符号の方式など)は、図32における第1プリアンブル(501)、および/または、第2プリアンブル(502)で伝送されることになる。なお制御情報については、実施の形態2で一例を説明している。(なお、この点については別途説明する。)
このように制御情報を伝送すると、第1プリアンブル201、第2プリアンブル202に、時分割のデータシンボル群のための専用の制御情報を含める必要がなくなり、また、第1プリアンブル501、第2プリアンブル502に、周波数分割のデータシンボル群の専用の制御情報を含める必要がなくなり、制御情報のデータ伝送効率、受信装置の制御情報に制御の簡単化を実現することができる。
図30、図31と異なる点は、データシンボル群#7(3201)の前にパイロットシンボル601を配置している点である。このとき、パイロットシンボル601を配置したときの利点は、実施の形態1で説明したとおりである。
図34では、データシンボル群を周波数分割方式を用いてフレームに配置している。そして、図34が、図30から図33と異なる点は、各データシンボル群の時間間隔の設定に柔軟性がある点である。
図34において特徴的な点は、周波数分割を行い、データシンボル群の時間間隔を柔軟に設定している点であり、これにより、データの受信品質の異なるシンボル群を同一時間に存在させることができ、かつ、データ区間を適切に定めることにより、データの伝送速度を柔軟に設定することができるという効果を有する。
これにより、データの受信品質の異なるシンボル群を同一時間に存在させることができ、かつ、データ区間、周波数区間を適切に定めることにより、データの伝送速度を柔軟に設定することができるという効果を有する。
このとき、周波数分割されたデータシンボル群#1から#8に関連する制御情報(例えば、各データシンボル群の必要とするキャリア数および時間間隔、各データシンボル群の変調方式、各データシンボル群の送信方法、各データシンボル群で使用する誤り訂正符号の方式など)は、図36における第1プリアンブル(201)、および/または、第2プリアンブル(202)で伝送されることになる。なお、制御情報については、実施の形態2で一例を説明している。(なお、この点については別途説明する。)
そして、周波数分割されたデータシンボル群#9から#13に関連する制御情報(例えば、各データシンボル群の必要とするキャリア数および時間間隔、各データシンボル群の変調方式、各データシンボル群の送信方法、各データシンボル群で使用する誤り訂正符号の方式など)は、図36における第1プリアンブル(501)、および/または、第2プリアンブル(502)で伝送されることになる。なお、制御情報については、実施の形態2で一例を説明している。(なお、この点については別途説明する。)
また、時間分割されたデータシンボル群#14、#15に関する制御情報(例えば、各データシンボル群の必要とするシンボル数(または時間間隔)、各データシンボル群の変調方式、各データシンボル群の送信方法、各データシンボル群で使用する誤り訂正符号の方式など)は、図36における第1プリアンブル(3601)、および/または、第2プリアンブル(3602)で伝送されることになる。なお制御情報については、実施の形態2で一例を説明している。(なお、この点については別途説明する。)
このように制御情報を伝送すると、第1プリアンブル201、第2プリアンブル202、第1プリアンブル501、第2プリアンブル502に、時分割のデータシンボル群のための専用の制御情報を含める必要がなくなり、また、第1プリアンブル3601、第2プリアンブル3602に、周波数分割のデータシンボル群の専用の制御情報を含める必要がなくなり、制御情報のデータ伝送効率、受信装置の制御情報に制御の簡単化を実現することができる。
これにより、データの受信品質の異なるシンボル群を同一時間に存在させることができ、かつ、データ区間、周波数区間を適切に定めることにより、データの伝送速度を柔軟に設定することができるという効果を有する。また、パイロットシンボルを挿入したときの効果については、実施の形態1で説明したとおりである。
そして、図38のように、「第1プリアンブル、および、第2プリアンブル」、または、「パイロットシンボル」3801、3802を挿入し、状況により、「第1プリアンブル、および、第2プリアンブル」、または、「パイロットシンボル」を切り替えて使用することになる。例えば、送信方法に基づいて、上記切り替えを行ってもよい。
本実施の形態において、送信装置が送信する変調信号のフレーム構成の例を図30から図38に示した。これらの図の説明の際、「時分割(時間分割)を行っている」と記載しているが、2つのデータシンボル群を接続する場合、継ぎ目の部分では、周波数分割になっている部分が存在することがある。この点について、図39を用いて説明する。
また、「時分割(時間分割)を行っている」に関して、本実施の形態に限ったものではなく、他の実施の形態の場合についても同一の解釈となるものとする。
そして、図1の送信装置が送信した変調信号を受信する受信装置(例えば、図23)は、実施の形態1、実施の形態2等で説明した制御情報を受け、その情報にもとづいて、データシンボル群を復調・復号し、情報を得ることになる。よって、制御情報として、本明細書で説明した情報を送信することで、データの受信品質の向上とデータの伝送効率の向上を行うことができ、受信装置を的確に動作させることができるという効果を得ることができる。
このとき、「データシンボル群#1から#6の送信方法は、MIMO伝送またはMISO伝送」、または、「データシンボル群#1から#6の送信方法は、SISO伝送(SIMO伝送)」のいずれかが選択できるものとし、「データシンボル群#7、#8の送信方法は、MIMO伝送またはMISO伝送」、または、「データシンボル群#7、#8の送信方法は、SISO伝送(SIMO伝送)」のいずれかが選択できるものとしてもよい。
また、上述のような伝送方法の切り替えに伴い、データシンボル群に挿入するパイロットシンボルの挿入方法を切り替えることにもなり、データの伝送効率の向上の点からも利点がある(SISO(SIMO)伝送方式とMIMO(MISO)伝送方式が混在しないため)。(SISO(SIMO)伝送方式とMIMO(MISO)伝送方式が混在した場合、パイロットシンボルの挿入する頻度が過剰になり、データの伝送効率が低下する可能性がある。)なお、データシンボル群に挿入するパイロットシンボルの構成については、以下のとおりである。
変調信号#1の場合:
変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202を図42のように挿入する。変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202いずれもPSKのシンボルである。
変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202を図42のように挿入する。変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202いずれもPSKのシンボルである。
例2)
変調信号#1の場合:
変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202を図42のように挿入する。変調信号#1用の第1パイロットシンボル4201はPSKのシンボルであり、変調信号#1用の第2パイロットシンボル4202は、ヌルシンボル(同相成分Iは0(ゼロ)、直交成分Qは0(ゼロ))であるものとする(したがって、変調信号#1用の第2パイロットシンボル4202はパイロットシンボルと呼ばなくてもよい。)。
変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202を図42のように挿入する。変調信号#2用の第2パイロットシンボル4201はPSKのシンボルであり、変調信号#2用の第1パイロットシンボル4202は、ヌルシンボル(同相成分Iは0(ゼロ)、直交成分Qは0(ゼロ))であるものとする(したがって、変調信号#2用の第1パイロットシンボル4202はパイロットシンボルと呼ばなくてもよい。)。
また、上述のような伝送方法の切り替えに伴い、データシンボル群に挿入するパイロットシンボルの挿入方法を切り替えることにもなり、データの伝送効率の向上の点からも利点がある(SISO(SIMO)伝送方式とMIMO(MISO)伝送方式が混在しないため)。(SISO(SIMO)伝送方式とMIMO(MISO)伝送方式が混在した場合、パイロットシンボルの挿入する頻度が過剰になり、データの伝送効率が低下する可能性がある。)なお、データシンボル群に挿入するパイロットシンボルの構成については、以下のとおりである。
変調信号#1の場合:
変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202を図42のように挿入する。変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202いずれもPSKのシンボルである。
変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202を図42のように挿入する。変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202いずれもPSKのシンボルである。
例2)
変調信号#1の場合:
変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202を図42のように挿入する。変調信号#1用の第1パイロットシンボル4201はPSKのシンボルであり、変調信号#1用の第2パイロットシンボル4202は、ヌルシンボル(同相成分Iは0(ゼロ)、直交成分Qは0(ゼロ))であるものとする(したがって、変調信号#1用の第2パイロットシンボル4202はパイロットシンボルと呼ばなくてもよい。)。
変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202を図42のように挿入する。変調信号#2用の第2パイロットシンボル4201はPSKのシンボルであり、変調信号#2用の第1パイロットシンボル4202は、ヌルシンボル(同相成分Iは0(ゼロ)、直交成分Qは0(ゼロ))であるものとする(したがって、変調信号#2用の第1パイロットシンボル4202はパイロットシンボルと呼ばなくてもよい。)。
このとき、「データシンボル群#1から#6の送信方法は、MIMO伝送またはMISO伝送」、または、「データシンボル群#1から#6の送信方法は、SISO伝送(SIMO伝送)」のいずれかが選択できるものとし、「データシンボル群#7、#8の送信方法は、MIMO伝送またはMISO伝送」、または、「データシンボル群#7、#8の送信方法は、SISO伝送(SIMO伝送)」のいずれかが選択できるものとしてもよい。
また、上述のような伝送方法の切り替えに伴い、データシンボル群に挿入するパイロットシンボルの挿入方法を切り替えることにもなり、データの伝送効率の向上の点からも利点がある(SISO(SIMO)伝送方式とMIMO(MISO)伝送方式が混在しないため)。(SISO(SIMO)伝送方式とMIMO(MISO)伝送方式が混在した場合、パイロットシンボルの挿入する頻度が過剰になり、データの伝送効率が低下する可能性がある。)なお、データシンボル群に挿入するパイロットシンボルの構成については、以下のとおりである。
変調信号#1の場合:
変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202を図42のように挿入する。変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202いずれもPSKのシンボルである。
変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202を図42のように挿入する。変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202いずれもPSKのシンボルである。
例2)
変調信号#1の場合:
変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202を図42のように挿入する。変調信号#1用の第1パイロットシンボル4201はPSKのシンボルであり、変調信号#1用の第2パイロットシンボル4202は、ヌルシンボル(同相成分Iは0(ゼロ)、直交成分Qは0(ゼロ))であるものとする(したがって、変調信号#1用の第2パイロットシンボル4202はパイロットシンボルと呼ばなくてもよい。)。
変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202を図42のように挿入する。変調信号#2用の第2パイロットシンボル4201はPSKのシンボルであり、変調信号#2用の第1パイロットシンボル4202は、ヌルシンボル(同相成分Iは0(ゼロ)、直交成分Qは0(ゼロ))であるものとする(したがって、変調信号#2用の第1パイロットシンボル4202はパイロットシンボルと呼ばなくてもよい。)。
このとき、「データシンボル群#1から#8の送信方法は、MIMO伝送またはMISO伝送」、または、「データシンボル群#1から#8の送信方法は、SISO伝送(SIMO伝送)」のいずれかが選択できるものとし、「データシンボル群#9から#13の送信方法は、MIMO伝送またはMISO伝送」、または、「データシンボル群#9から#13の送信方法は、SISO伝送(SIMO伝送)」のいずれかが選択できるものとし、
「データシンボル群#14、#15の送信方法は、MIMO伝送またはMISO伝送」、または、「データシンボル群#14、#15の送信方法は、SISO伝送(SIMO伝送)」のいずれかが選択できるものとしてもよい。
また、上述のような伝送方法の切り替えに伴い、データシンボル群に挿入するパイロットシンボルの挿入方法を切り替えることにもなり、データの伝送効率の向上の点からも利点がある(SISO(SIMO)伝送方式とMIMO(MISO)伝送方式が混在しないため)。(SISO(SIMO)伝送方式とMIMO(MISO)伝送方式が混在した場合、パイロットシンボルの挿入する頻度が過剰になり、データの伝送効率が低下する可能性がある。)なお、データシンボル群に挿入するパイロットシンボルの構成については、以下のとおりである。
変調信号#1の場合:
変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202を図42のように挿入する。変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202いずれもPSKのシンボルである。
変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202を図42のように挿入する。変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202いずれもPSKのシンボルである。
例2)
変調信号#1の場合:
変調信号#1用の第1パイロットシンボル4201および変調信号#1用の第2パイロットシンボル4202を図42のように挿入する。変調信号#1用の第1パイロットシンボル4201はPSKのシンボルであり、変調信号#1用の第2パイロットシンボル4202は、ヌルシンボル(同相成分Iは0(ゼロ)、直交成分Qは0(ゼロ))であるものとする(したがって、変調信号#1用の第2パイロットシンボル4202はパイロットシンボルと呼ばなくてもよい。)。
変調信号#2用の第1パイロットシンボル4201および変調信号#2用の第2パイロットシンボル4202を図42のように挿入する。変調信号#2用の第2パイロットシンボル4201はPSKのシンボルであり、変調信号#2用の第1パイロットシンボル4202は、ヌルシンボル(同相成分Iは0(ゼロ)、直交成分Qは0(ゼロ))であるものとする(したがって、変調信号#2用の第1パイロットシンボル4202はパイロットシンボルと呼ばなくてもよい。)。
(実施の形態5)
実施の形態4では、図1の送信装置が送信する変調信号のフレームとして、図30から図38について説明した。図30から図38において、データシンボル群が周波数分割されている場合と時分割(時間分割)されている場合で構成されている。このとき、各データシンボル群が使用する周波数資源(キャリア)と時間資源について、受信装置に的確に伝送する必要がある。
<周波数分割が行われているとき>
周波数分割が行われているときの各データシンボル群が使用する周波数資源と時間資源に関する制御情報の生成方法についての例を説明する。
4302は、データシンボル群#2のシンボルであり、データシンボル群#2(4302)は、キャリア6からキャリア9を使用し、時刻1から時刻5を用い、送信される。
4304は、データシンボル群#4のシンボルであり、データシンボル群#4(4304)は、キャリア6からキャリア9を使用し、時刻6から時刻12を用い、送信される。
<第1の例>
このとき、各データシンボル群が使用する周波数および時間に関する制御情報の例を説明する。
データシンボル群#jの使用するキャリア数に関する制御情報情報をn(j,0)、n(j,1)、n(j,2)、n(j,3)、
データシンボル群#jの使用する時刻の初期の位置に関する制御情報情報をo(j,0)、o(j,1)、o(j,2)、o(j,3)、
データシンボル群#jの使用する時刻数に関する制御情報情報をp(j,0)、p(j,1)、p(j,2)、p(j,3)、
とする。
データシンボル群#(j=K)の使用するキャリアの初期の位置を「キャリア2」とする場合、m(K,0)=1、m(K,1)=0、m(K,2)=0、m(K,3)=0と設定し、m(K,0)、m(K,1)、m(K,2)、m(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用するキャリアの初期の位置を「キャリア4」とする場合、m(K,0)=1、m(K,1)=1、m(K,2)=0、m(K,3)=0と設定し、m(K,0)、m(K,1)、m(K,2)、m(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用するキャリアの初期の位置を「キャリア6」とする場合、m(K,0)=1、m(K,1)=0、m(K,2)=1、m(K,3)=0と設定し、m(K,0)、m(K,1)、m(K,2)、m(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用するキャリアの初期の位置を「キャリア8」とする場合、m(K,0)=1、m(K,1)=1、m(K,2)=1、m(K,3)=0と設定し、m(K,0)、m(K,1)、m(K,2)、m(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用するキャリアの初期の位置を「キャリア10」とする場合、m(K,0)=1、m(K,1)=0、m(K,2)=0、m(K,3)=1と設定し、m(K,0)、m(K,1)、m(K,2)、m(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用するキャリアの初期の位置を「キャリア12」とする場合、m(K,0)=1、m(K,1)=1、m(K,2)=0、m(K,3)=1と設定し、m(K,0)、m(K,1)、m(K,2)、m(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用するキャリアの初期の位置を「キャリア14」とする場合、m(K,0)=1、m(K,1)=0、m(K,2)=1、m(K,3)=1と設定し、m(K,0)、m(K,1)、m(K,2)、m(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用するキャリアの初期の位置を「キャリア16」とする場合、m(K,0)=1、m(K,1)=1、m(K,2)=1、m(K,3)=1と設定し、m(K,0)、m(K,1)、m(K,2)、m(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用するキャリア数を2キャリアとする場合、n(K,0)=1、n(K,1)=0、n(K,2)=0、n(K,3)=0と設定し、n(K,0)、n(K,1)、n(K,2)、n(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用するキャリア数を4キャリアとする場合、n(K,0)=1、n(K,1)=1、n(K,2)=0、n(K,3)=0と設定し、n(K,0)、n(K,1)、n(K,2)、n(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用するキャリア数を6キャリアとする場合、n(K,0)=1、n(K,1)=0、n(K,2)=1、n(K,3)=0と設定し、n(K,0)、n(K,1)、n(K,2)、n(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用するキャリア数を8キャリアとする場合、n(K,0)=1、n(K,1)=1、n(K,2)=1、n(K,3)=0と設定し、n(K,0)、n(K,1)、n(K,2)、n(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)使用するキャリア数を10キャリアとする場合、n(K,0)=1、n(K,1)=0、n(K,2)=0、n(K,3)=1と設定し、n(K,0)、n(K,1)、n(K,2)、n(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用するキャリア数を12キャリアとする場合、n(K,0)=1、n(K,1)=1、n(K,2)=0、n(K,3)=1と設定し、n(K,0)、n(K,1)、n(K,2)、n(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用するキャリア数を14キャリアとする場合、n(K,0)=1、n(K,1)=0、n(K,2)=1、n(K,3)=1と設定し、n(K,0)、n(K,1)、n(K,2)、n(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用するキャリア数を16キャリアとする場合、n(K,0)=1、n(K,1)=1、n(K,2)=1、n(K,3)=1と設定し、n(K,0)、n(K,1)、n(K,2)、n(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻の初期の位置を「時刻2」とする場合、o(K,0)=1、o(K,1)=0、o(K,2)=0、o(K,3)=0と設定し、o(K,0)、o(K,1)、o(K,2)、o(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻の初期の位置を「時刻4」とする場合、o(K,0)=1、o(K,1)=1、o(K,2)=0、o(K,3)=0と設定し、o(K,0)、o(K,1)、o(K,2)、o(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻の初期の位置を「時刻6」とする場合、o(K,0)=1、o(K,1)=0、o(K,2)=1、o(K,3)=0と設定し、o(K,0)、o(K,1)、o(K,2)、o(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻の初期の位置を「時刻8」とする場合、o(K,0)=1、o(K,1)=1、o(K,2)=1、o(K,3)=0と設定し、o(K,0)、o(K,1)、o(K,2)、o(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻の初期の位置を「時刻10」とする場合、o(K,0)=1、o(K,1)=0、o(K,2)=0、o(K,3)=1と設定し、o(K,0)、o(K,1)、o(K,2)、o(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻の初期の位置を「時刻12」とする場合、o(K,0)=1、o(K,1)=1、o(K,2)=0、o(K,3)=1と設定し、o(K,0)、o(K,1)、o(K,2)、o(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻の初期の位置を「時刻14」とする場合、o(K,0)=1、o(K,1)=0、o(K,2)=1、o(K,3)=1と設定し、o(K,0)、o(K,1)、o(K,2)、o(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻の初期の位置を「時刻16」とする場合、o(K,0)=1、o(K,1)=1、o(K,2)=1、o(K,3)=1と設定し、o(K,0)、o(K,1)、o(K,2)、o(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻数を2とする場合、p(K,0)=1、p(K,1)=0、p(K,2)=0、p(K,3)=0と設定し、p(K,0)、p(K,1)、p(K,2)、p(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻数を4とする場合、p(K,0)=1、p(K,1)=1、p(K,2)=0、p(K,3)=0と設定し、p(K,0)、p(K,1)、p(K,2)、p(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻数を6とする場合、p(K,0)=1、p(K,1)=0、p(K,2)=1、p(K,3)=0と設定し、p(K,0)、p(K,1)、p(K,2)、p(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻数を8とする場合、p(K,0)=1、p(K,1)=1、p(K,2)=1、p(K,3)=0と設定し、p(K,0)、p(K,1)、p(K,2)、p(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)使用する時刻数を10とする場合、p(K,0)=1、p(K,1)=0、p(K,2)=0、p(K,3)=1と設定し、p(K,0)、p(K,1)、p(K,2)、p(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻数を12とする場合、p(K,0)=1、p(K,1)=1、p(K,2)=0、p(K,3)=1と設定し、p(K,0)、p(K,1)、p(K,2)、p(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻数を14とする場合、p(K,0)=1、p(K,1)=0、p(K,2)=1、p(K,3)=1と設定し、p(K,0)、p(K,1)、p(K,2)、p(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻数を16とする場合、p(K,0)=1、p(K,1)=1、p(K,2)=1、p(K,3)=1と設定し、p(K,0)、p(K,1)、p(K,2)、p(K,3)を送信装置は送信するものとする。
データシンボル群#3(4303)は、キャリア10からキャリア14を使用し、時刻1から時刻16を用い、送信される。
よって、キャリアの初期の位置はキャリア10となる。したがって、m(3,0)=1、m(3,1)=0、m(3,2)=0、m(3,3)=1として、送信装置はm(3,0)、m(3,1)、m(3,2)、m(3,3)を送信する。
時刻の初期の位置は時刻1となる。したがって、o(3,0)=0、o(3,1)=0、o(3,2)=0、o(3,3)=0として、送信装置はo(3,0)、o(3,1)、o(3,2)、o(3,3)を送信する。
<第2の例>
図44に、図1の送信装置が送信する変調信号のフレーム構成において、データシンボル群を周波数分割したときの一例を示している。図44において、図43と共通するものについては、同一番号を付しており、また、縦軸は周波数、横軸は時間とする。なお、実施の形態1から実施の形態4と同様にデータシンボル群は、SISO方式(SIMO方式)、MIMO方式、MISO方式いずれの方式のシンボルであってもよい。
4302は、データシンボル群#2のシンボルであり、データシンボル群#2(4302)は、キャリア9からキャリア12を使用し(4(4の倍数)キャリア使用)、時刻1から時刻4(時刻数4であり、4の倍数)を用い、送信される。
4304は、データシンボル群#4のシンボルであり、データシンボル群#4(4304)は、キャリア9からキャリア12を使用し(4(4の倍数)キャリア使用)、時刻5から時刻12(時刻数8であり、4の倍数)を用い、送信される。
このような規則にしたがって、各データシンボル群をフレームに割り当てると、上述で説明した
・「データシンボル群#jの使用するキャリアの初期の位置に関する制御情報情報」のビット数
・「データシンボル群#jの使用するキャリア数に関する制御情報情報」のビット数
・「データシンボル群#jの使用する時刻の初期の位置に関する制御情報情報」のビット数
・「データシンボル群#jの使用する時刻数に関する制御情報情報」のビット数
を削減することができ、データ(情報)の伝送効率を向上させることができる。
データシンボル群#jの使用するキャリアの初期の位置に関する制御情報情報をm(j,0)、m(j,1)
データシンボル群#jの使用するキャリア数に関する制御情報情報をn(j,0)、n(j,1)、
データシンボル群#jの使用する時刻の初期の位置に関する制御情報情報をo(j,0)、o(j,1)、
データシンボル群#jの使用する時刻数に関する制御情報情報をp(j,0)、p(j,1)、
とする。
データシンボル群#(j=K)の使用するキャリアの初期の位置を「キャリア5」とする場合、m(K,0)=1、m(K,1)=0と設定し、m(K,0)、m(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用するキャリアの初期の位置を「キャリア13」とする場合、m(K,0)=1、m(K,1)=1と設定し、m(K,0)、m(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用するキャリア数を8キャリアとする場合、n(K,0)=1、n(K,1)=0と設定し、n(K,0)、n(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用するキャリア数を16キャリアとする場合、n(K,0)=1、n(K,1)=1と設定し、n(K,0)、n(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻の初期の位置を「時刻5」とする場合、o(K,0)=1、o(K,1)=0と設定し、o(K,0)、o(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻の初期の位置を「時刻13」とする場合、o(K,0)=1、o(K,1)=1と設定し、o(K,0)、o(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻数を8とする場合、p(K,0)=1、p(K,1)=0と設定し、p(K,0)、p(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻数を16とする場合、p(K,0)=1、p(K,1)=1と設定し、p(K,0)、p(K,1)を送信装置は送信するものとする。
4304は、データシンボル群#4のシンボルであり、データシンボル群#4(4304)は、キャリア9からキャリア12を使用し(4(4の倍数)キャリア使用)、時刻5から時刻12(時刻数8であり、4の倍数)を用い、送信される。
よって、キャリアの初期の位置はキャリア9となる。したがって、m(3,0)=0、m(3,1)=1として、送信装置はm(3,0)、m(3,1)を送信する。
時刻の初期の位置は時刻5となる。したがって、o(3,0)=1、o(3,1)=0として、送信装置はo(3,0)、o(3,1)を送信する。
また、使用する時刻数は8となる。したがって、p(3,0)=1、p(3,1)=0として、送信装置はp(3,0)、p(3,1)を送信する。
図1の送信装置が送信する変調信号のフレーム構成が図44のとき、第2の例とは異なる制御情報の伝送方法について説明する。
図44では、各データシンボル群は、例えば、4×Aの数のキャリア(Aは1以上の整数)を有し(4の倍数(ただし、0(ゼロ)を除く)の数のキャリアを使用する)、かつ、4×Bの数の時刻(Bは1以上の自然数)を有する(4の倍数(ただし、0(セロ)を除く)の数の時刻を使用する)ものとする。ただし、各データシンボル群が使用するキャリアの数は4の倍数に限ったものではなく、0(ゼロ)を除くCの倍数(Cは2以上の整数)であればよい。また、各データシンボル群が使用する時刻の数は4の倍数に限ったものではなく、0(ゼロ)を除くDの倍数(Dは2以上の整数)であればよい。
図45において、キャリア1からキャリア4、時刻1から時刻4で構成するエリア4400をエリア#0と名付ける。
キャリア9からキャリア12、時刻1から時刻4で構成するエリア4402をエリア#2と名付ける。
キャリア13からキャリア16、時刻1から時刻4で構成するエリア4403をエリア#3と名付ける。
キャリア5からキャリア8、時刻5から時刻8で構成するエリア4405をエリア#5と名付ける。
キャリア9からキャリア12、時刻5から時刻8で構成するエリア4406をエリア#6と名付ける。
キャリア1からキャリア4、時刻9から時刻12で構成するエリア4408をエリア#8と名付ける。
キャリア5からキャリア8、時刻9から時刻12で構成するエリア4409をエリア#9と名付ける。
キャリア13からキャリア16、時刻9から時刻12で構成するエリア4411をエリア#11と名付ける。
キャリア1からキャリア4、時刻13から時刻16で構成するエリア4412をエリア#12と名付ける。
キャリア9からキャリア12、時刻13から時刻16で構成するエリア4414をエリア#14と名付ける。
キャリア13からキャリア16、時刻13から時刻16で構成するエリア4415をエリア#15と名付ける。
図44のデータシンボル群#1は、図45のようにエリア分解したとき、エリア#0(4400)、エリア#1(4401)、エリア#4(4404)、エリア#5(4405)、エリア#8(4408)、エリア#9(4409)、エリア#12(4412)、エリア#13(4413)を使用してデータ(情報)を伝送している。したがって、データシンボル群#1として、
「エリア#0(4400)、エリア#1(4401)、エリア#4(4404)、エリア#5(4405)、エリア#8(4408)、エリア#9(4409)、エリア#12(4412)、エリア#13(4413)を使用している」
という制御情報を、図1の送信装置は送信する。このとき、制御情報には、エリアの情報(エリア#0(4400)、エリア#1(4401)、エリア#4(4404)、エリア#5(4405)、エリア#8(4408)、エリア#9(4409)、エリア#12(4412)、エリア#13(4413))が含まれていることになる。
「エリア#2(4402)を使用している」
という制御情報を、図1の送信装置は送信する。このとき、制御情報には、エリアの情報(エリア#2(4402))が含まれていることになる。
図44のデータシンボル群#3として、
「エリア#3(4403)、エリア#7(4407)、エリア#11(4411)、エリア#15(4415)を使用している」
という制御情報を、図1の送信装置は送信する。このとき、制御情報には、エリアの情報(エリア#3(4403)、エリア#7(4407)、エリア#11(4411)、エリア#15(4415))が含まれていることになる。
「エリア#6(4406)、エリア#10(4410)を使用している」
という制御情報を、図1の送信装置は送信する。このとき、制御情報には、エリアの情報(エリア#6(4406)、エリア#10(4410))が含まれていることになる。
図44のデータシンボル群#5として、
「エリア#14(4414)を使用している」
という制御情報を、図1の送信装置は送信する。このとき、制御情報には、エリアの情報(エリア#14(4414))が含まれていることになる。
一方、<第1の例>では、時間、周波数リソースをデータシンボル群に対し、より柔軟に割り当てることができるという利点がある。
<時(時間)分割が行われているとき>
時(時間)分割が行われているときの各データシンボル群が使用する周波数資源と時間資源に関する制御情報の生成について例を説明する。
時(時間)分割が行われているときも、周波数分割が行われているときと同様に制御情報を伝送する。したがって、上述で説明した<第1の例>を実施する。
<第5の例>
時(時間)分割が行われているときも、周波数分割が行われているときと同様に制御情報を伝送する。したがって、上述で説明した<第2の例>を実施する。
時(時間)分割が行われているときも、周波数分割が行われているときと同様に制御情報を伝送する。したがって、上述で説明した<第3の例>を実施する。
<第7の例>
実施の形態2で説明したe(X,Y)を制御情報として伝送する。つまり、データシンボル群#jのフレームにおけるシンボル数に関する情報をe(j,0)、e(j,1)とする。
データシンボル群#(j=K)のフレームにおけるシンボル数を256シンボルとする場合、e(K,0)=0、e(K,1)=0と設定し、e(K,0)、e(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)のフレームにおけるシンボル数を512シンボルとする場合、e(K,0)=1、e(K,1)=0と設定し、e(K,0)、e(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)のフレームにおけるシンボル数を2048シンボルとする場合、e(K,0)=1、e(K,1)=1と設定し、e(K,0)、e(K,1)を送信装置は送信するものとする。
<第8の例>
送信装置は、各データシンボルが必要となる時刻の数の情報を受信装置に送信し、受信装置はこの情報を得ることで、各データシンボルが使用する周波数・時間リソースを知ることができる。
データシンボル群#(j=K)の使用する時刻数を1とする場合、q(K,0)=0、q(K,1)=0、q(K,2)=0、q(K,3)=0と設定し、q(K,0)、q(K,1)、q(K,2)、q(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻数を3とする場合、q(K,0)=0、q(K,1)=1、q(K,2)=0、q(K,3)=0と設定し、q(K,0)、q(K,1)、q(K,2)、q(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻数を5とする場合、q(K,0)=0、q(K,1)=0、q(K,2)=1、q(K,3)=0と設定し、q(K,0)、q(K,1)、q(K,2)、q(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻数を7とする場合、q(K,0)=0、q(K,1)=1、q(K,2)=1、q(K,3)=0と設定し、q(K,0)、q(K,1)、q(K,2)、q(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻数を9とする場合、q(K,0)=0、q(K,1)=0、q(K,2)=0、q(K,3)=1と設定し、q(K,0)、q(K,1)、q(K,2)、q(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻数を11とする場合、q(K,0)=0、q(K,1)=1、q(K,2)=0、q(K,3)=1と設定し、q(K,0)、q(K,1)、q(K,2)、q(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻数を13とする場合、q(K,0)=0、q(K,1)=0、q(K,2)=1、q(K,3)=1と設定し、q(K,0)、q(K,1)、q(K,2)、q(K,3)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻数を15とする場合、q(K,0)=0、q(K,1)=1、q(K,2)=1、q(K,3)=1と設定し、q(K,0)、q(K,1)、q(K,2)、q(K,3)を送信装置は送信するものとする。
図46に、図1の送信装置が送信する変調信号のフレームにおいて、データシンボル群を時(時間)分割したときの一例を示している。図46において、縦軸は周波数、横軸は時間とする。なお、実施の形態1から実施の形態4と同様にデータシンボル群は、SISO方式(SIMO方式)、MIMO方式、MISO方式いずれの方式のシンボルであってもよい。
4302は、データシンボル群#2のシンボルであり、データシンボル群#2(4302)は、キャリア1からキャリア16(データシンボルとして割り当てすることができるキャリアすべてを使用する。(パイロットシンボルを配置するためのキャリアや制御情報を伝送するキャリアがあった場合は除外する。))を使用し、時刻5から時刻12を用い、送信される。
データシンボル群#1、データシンボル#3についても同様に制御情報を生成すればよく、図1の送信装置は、q(1,0)、q(1,1)、q(1,2)、q(1,3)、および、q(2,0)、q(2,1)、q(2,2)、q(2,3)、および、q(3,0)、q(3,1)、q(3,2)、q(3,3)を送信する。
<第9の例>
<第8の例>と異なり、各データシンボル群は、例えば、4×Bの数の時刻(Bは1以上の自然数)を有する(4の倍数(ただし、0(セロ)を除く)の数の時刻を使用する)ものとする。ただし、各データシンボル群が使用する時刻の数は4の倍数に限ったものではなく、0(ゼロ)を除くDの倍数(Dは2以上の整数)であればよい。
4302は、データシンボル群#2のシンボルであり、データシンボル群#2(4302)は、キャリア1からキャリア16(データシンボルとして割り当てすることができるキャリアすべてを使用する。(パイロットシンボルを配置するためのキャリアや制御情報を伝送するキャリアがあった場合は除外する。))を使用し、時刻5から時刻12を用い(時刻数8であり、4の倍数)、送信される。
・「データシンボル群#jのフレームにおける使用する時刻の数に関する情報」のビット数
を削減することができ、データ(情報)の伝送効率を向上させることができる。
データシンボル群#jのフレームにおける使用する時刻の数に関する情報をq(j,0)、q(j,1)とする。
データシンボル群#(j=K)の使用する時刻数を4とする場合、q(K,0)=0、q(K,1)=0と設定し、q(K,0)、q(K,1)を送信装置は送信するものとする。
データシンボル群#(j=K)の使用する時刻数を12とする場合、q(K,0)=0、q(K,1)=1と設定し、q(K,0)、q(K,1)を送信装置は送信するものとする。
例えば、図46のデータシンボル群#2のとき、時刻5から時刻12を用い、送信される、つまり、時刻の数は8となる。したがって、q(2,0)=1、q(2,1)=0と設定し、q(2,0)、q(2,1)を送信装置は送信するものとする。
図23の受信装置は、q(1,0)、q(1,1)、および、q(2,0)、q(2,1)、および、q(3,0)、q(3,1)を受信し、データシンボル群が使用している周波数・時間リソースを知ることになる。このとき、送信装置と受信装置は、例えば、「データシンボル群#1を時間的に最初に配置し、その後、データシンボル群#2、データシンボル群#3、データシンボル群#4、データシンボル群#5、・・・」と並んでいることを共有しているものとすれば、各データシンボル群が使用する時刻の数を知ることで、各データシンボル群が使用している周波数・時間リソースを知ることができる。(各データシンボル群が配置される最初の時刻の情報を、送信装置が送信する必要はなくなる。これにより、データの伝送効率が向上する。)
<第10の例>
<第8の例>と異なり、各データシンボル群は、例えば、4×Bの数の時刻(Bは1以上の自然数)を有する(4の倍数(ただし、0(セロ)を除く)の数の時刻を使用する)ものとする(<第9の例>のときと同様とする。)。ただし、各データシンボル群が使用する時刻の数は4の倍数に限ったものではなく、0(ゼロ)を除くDの倍数(Dは2以上の整数)であればよい。
図47において、時刻1から時刻4で構成するエリア4700をエリア#0と名付ける。
時刻9から時刻12で構成するエリア4702をエリア#2と名付ける。
時刻13から時刻16で構成するエリア4703をエリア#3と名付ける。
このとき、図1の送信装置は、受信装置に、各データシンボル群が使用している周波数、時間リソースの情報を伝達するために、以下の例のように、図1の送信装置は、制御情報を送信する。
「エリア#0(4700)を使用している」
という制御情報を、図1の送信装置は送信する。このとき、制御情報には、エリアの情報(エリア#0(4700))が含まれていることになる。
「エリア#1(4701)、エリア#2(4702)を使用している」
という制御情報を、図1の送信装置は送信する。このとき、制御情報には、エリアの情報(エリア#1(4701)、エリア#2(4702))が含まれていることになる。
図46のデータシンボル群#3として、
「エリア#3(4703)を使用している」
という制御情報を、図1の送信装置は送信する。このとき、制御情報には、エリアの情報(エリア#3(4703))が含まれていることになる。
一方で、<第7の例>から<第10の例>とした場合、構成の異なる「周波数分割の際の時間・周波数リソースの使用に関する制御情報と時(時間)分割の際の時間・周波数リソースの使用に関する制御情報」を、第1プリアンブル、および/または、第2プリアンブルを用いて、送信装置は送信することになる。
一方、<第4の例><第7の例><第8の例>では、時間、周波数リソースをデータシンボル群に対し、より柔軟に割り当てることができるという利点がある。
(実施の形態6)
実施の形態1から実施の形態5において、図1の送信装置が送信する変調信号のフレーム構成の例について、いくつか説明した。本実施の形態では、実施の形態1から実施の形態5で説明したフレーム構成とは異なるフレーム構成について説明する。
図49において、縦軸は周波数、横軸は時間とする。4901、4902、4903はデータシンボル群#Xであり(図48の場合、Xは1あるいは2となる。)、4904、4905は、制御情報シンボル(例えば、TMCC(Transmission Multiplexing Configuration Control))であるものとする。
例えば、図49において、X=1とする。すると、図49のように、データシンボル群#1のある特定のキャリア(サブキャリア)(周波数)に制御情報シンボルを配置するということになる。
なお、図48のように周波数分割を行ってデータシンボル群を配置している周波数・時間エリアに制御情報シンボルを配置する際、例えば、キャリア#1からキャリア#100が存在している場合、キャリア#5、キャリア#25、キャリア#40、キャリア#55、キャリア#70、キャリア#85というように、特定のキャリアに制御情報シンボルを配置してもよいし、データシンボル群の配置に応じて、制御情報シンボルを配置してもよい。
図5のフレーム構成の場合、受信装置が、データシンボル群#1、データシンボル群#2を復調・復号し、情報を得るために、第1プリアンブル201、第2プリアンブル202を得る必要があり、このため、受信装置は、第1プリアンブル201、第2プリアンブル202を受信するための周波数帯域の変調信号を得る必要がある。
図48のようにフレームを構成した場合、図49に示したように、データシンボル群#2に制御情報シンボル(例えば、TMCC(Transmission Multiplexing Configuration Control))が周波数方向に挿入されているため、受信装置は、データシンボル群#2のみの周波数帯域の変調信号を得ることで、データシンボル群#2を復調・復号可能となる。したがって、柔軟な端末設計が可能となる。
図49において、縦軸は周波数、横軸は時間とする。4901、4902、4903はデータシンボル群#Xであり(図50の場合、Xは1あるいは2あるいは4となる。)、4904、4905は、制御情報シンボル(例えば、TMCC(Transmission Multiplexing Configuration Control))であるものとする。
例えば、図49において、X=1とする。すると、図49のように、データシンボル群#1のある特定のキャリア(サブキャリア)(周波数)に制御情報シンボルを配置するということになる。
図49において、X=4とする。すると、図49のように、データシンボル群#4のある特定のキャリア(サブキャリア)(周波数)に制御情報シンボルを配置するということになる。
図25のフレーム構成の場合、受信装置が、データシンボル群#1、データシンボル群#2、データシンボル群#4を復調・復号し、情報を得るために、第1プリアンブル201、第2プリアンブル202を得る必要があり、このため、受信装置は、第1プリアンブル201、第2プリアンブル202を受信するための周波数帯域の変調信号を得る必要がある。
図50のようにフレームを構成した場合、図49に示したように、データシンボル群#2に制御情報シンボル(例えば、TMCC(Transmission Multiplexing Configuration Control))が周波数方向に挿入されているため、受信装置は、データシンボル群#2のみの周波数帯域の変調信号を得ることで、データシンボル群#2を復調・復号可能となる。したがって、柔軟な端末設計が可能となる。
図49において、縦軸は周波数、横軸は時間とする。4901、4902、4903はデータシンボル群#Xであり(図51の場合、Xは1あるいは2となる。)、4904、4905は、制御情報シンボル(例えば、TMCC(Transmission Multiplexing Configuration Control))であるものとする。
例えば、図49において、X=1とする。すると、図49のように、データシンボル群#1のある特定のキャリア(サブキャリア)(周波数)に制御情報シンボルを配置するということになる。
なお、図51のように周波数分割を行ってデータシンボル群を配置している周波数・時間エリアに制御情報シンボルを配置する際、例えば、キャリア#1からキャリア#100が存在している場合、キャリア#5、キャリア#25、キャリア#40、キャリア#55、キャリア#70、キャリア#85というように、特定のキャリアに制御情報シンボルを配置してもよいし、データシンボル群の配置に応じて、制御情報シンボルを配置してもよい。
図28のフレーム構成の場合、受信装置が、データシンボル群#1、データシンボル群#2を復調・復号し、情報を得るために、第1プリアンブル201、第2プリアンブル202を得る必要があり、このため、受信装置は、第1プリアンブル201、第2プリアンブル202を受信するための周波数帯域の変調信号を得る必要がある。
図51のようにフレームを構成した場合、図49に示したように、データシンボル群#2に制御情報シンボル(例えば、TMCC(Transmission Multiplexing Configuration Control))が周波数方向に挿入されているため、受信装置は、データシンボル群#2のみの周波数帯域の変調信号を得ることで、データシンボル群#2を復調・復号可能となる。したがって、柔軟な端末設計が可能となる。
図53は、図52における時刻t1から時刻t3における制御情報シンボルの配置の一例を示している。データシンボル群5301、5302、5303は、図52の場合、データシンボル群#1(3001)、データシンボル群#2(3002)、データシンボル群#3(3003)、データシンボル群#4(3004)、データシンボル群#5(3005)、データシンボル群#6(3006)のいずれかを含んでいることになる。
図32のフレーム構成の場合、受信装置が、データシンボル群#1(3001)、データシンボル群#2(3002)、データシンボル群#3(3003)、データシンボル群#4(3004)、データシンボル群#5(3005)、データシンボル群#6(3006)を復調・復号し、情報を得るために、第1プリアンブル201、第2プリアンブル202を得る必要があり、このため、受信装置は、第1プリアンブル201、第2プリアンブル202を受信するための周波数帯域の変調信号を得る必要がある。
図52のようにフレームを構成した場合、図53に示したように、データシンボル群に制御情報シンボル(例えば、TMCC(Transmission Multiplexing Configuration Control))が周波数方向に挿入されているため、受信装置は、データシンボル群#2周辺の周波数帯域の変調信号を得ることで、データシンボル群#2を復調・復号可能となる。したがって、柔軟な端末設計が可能となる。
図36のフレーム構成の場合、受信装置が、データシンボル群#1(3401)、データシンボル群#2(3402)、データシンボル群#3(3403)、データシンボル群#4(3404)、データシンボル群#5(3405)、データシンボル群#6(3406)、データシンボル群#7(3407)、データシンボル群#8(3408)、データシンボル群#9(3509)、データシンボル群#10(3510)、データシンボル群#11(3511)、データシンボル群#12(3512)、データシンボル群#13(3513)を復調・復号し、情報を得るために、第1プリアンブル201、第2プリアンブル202、第1プリアンブル501、第2プリアンブル502を得る必要があり、このため、受信装置は、第1プリアンブル201、第2プリアンブル202、第1プリアンブル501、第2プリアンブル502を受信するための周波数帯域の変調信号を得る必要がある。
図54のようにフレームを構成した場合、図53に示したように、データシンボル群に制御情報シンボル(例えば、TMCC(Transmission Multiplexing Configuration Control))が周波数方向に挿入されているため、受信装置は、データシンボル群#2周辺の周波数帯域の変調信号を得ることで、データシンボル群#2を復調・復号可能となる。したがって、柔軟な端末設計が可能となる。
(実施の形態7)
実施の形態1から実施の形態6(特に、実施の形態1)において、変調信号に対し、位相変更を行う場合について説明した。本実施の形態では、特に、周波数分割を行ったデータシンボル群に対する位相変更方法について説明する。
第1のケース:
図55を用いて、第1のケースを説明する。図55において、縦軸は時間、横軸は周波数とする。図55(A)は、実施の形態1における変調信号z1(t)(z1(i))のフレーム構成を示しており、図55(B)は、実施の形態1における変調信号z2(t)(z2(i))のフレーム構成を示しており、同一時刻、同一周波数(キャリア番号が同一)の変調信号z1(t)(z1(i))のシンボルと変調信号z2(t)(z2(i))のシンボルは異なるアンテナから送信されることになる。
図55(A)の領域5501のデータシンボル群#1のシンボルにおいて、例えば、「#0 $0」と記載されているシンボルがある。このとき、「#0」は、データシンボル群#1の「0番目のシンボル」であることを意味している。そして、「$0」は、「位相変更$0」の位相変更を行うことを意味している。
したがって、「#X $Y」と記載されているシンボルがある(Xは0以上の整数、Yは0以上6以下の整数)。このとき、「#X」は、データシンボル群#1の「X番目のシンボル」であることを意味している。そして、「$Y」は、「位相変更$Y」の位相変更を行うことを意味している。
また、「%1 $1」と記載されているシンボルがある。このとき、「%1」は、データシンボル群#2の「1番目のシンボル」であることを意味している。そして、「$1」は、「位相変更$1」の位相変更を行うことを意味している。
図55(B)の領域5503のデータシンボル群#1のシンボルにおいて、例えば、「#0 $0」と記載されているシンボルがある。このとき、「#0」は、データシンボル群#1の「0番目のシンボル」であることを意味している。そして、「$0」は、「位相変更$0」の位相変更を行うことを意味している。
したがって、「#X $Y」と記載されているシンボルがある(Xは0以上の整数、Yは0以上6以下の整数)。このとき、「#X」は、データシンボル群#1の「X番目のシンボル」であることを意味している。そして、「$Y」は、「位相変更$Y」の位相変更を行うことを意味している。
また、「%1 $1」と記載されているシンボルがある。このとき、「%1」は、データシンボル群#2の「1番目のシンボル」であることを意味している。そして、「$1」は、「位相変更$1」の位相変更を行うことを意味している。
このとき、変調信号z1のデータシンボルにおいて、周期7の位相変更を行うことになる。例えば、「位相変更$0として(2×0×π)/14ラジアンの位相変更を行い」、「位相変更$1として(2×1×π)/14ラジアンの位相変更を行い」、「位相変更$2として(2×2×π)/14ラジアンの位相変更を行い」、「位相変更$3として(2×3×π)/14ラジアンの位相変更を行い」、「位相変更$4として(2×4×π)/14ラジアンの位相変更を行い」、「位相変更$5として(2×5×π)/14ラジアンの位相変更を行い」、「位相変更$6として(2×6×π)/14ラジアンの位相変更を行う」ものとする(ただし、位相変更の値は、これらに限ったものではない)。
第1のケースの特徴は、「データシンボル群#1とデータシンボル群#2と合わせて、周期7の位相変更を行っている」点である。(つまり、属しているデータシンボル群にかかわらず、フレーム全体のデータシンボルで、周期7の位相変更を行うことになる。)
第2のケース:
図56を用いて、第2のケースを説明する。図56において、縦軸は時間、横軸は周波数とする。図56(B)は、実施の形態1における変調信号z1(t)(z1(i))のフレーム構成を示しており、図56(B)は、実施の形態1における変調信号z2(t)(z2(i))のフレーム構成を示しており、同一時刻、同一周波数(キャリア番号が同一)の変調信号z1(t)(z1(i))のシンボルと変調信号z2(t)(z2(i))のシンボルは異なるアンテナから送信されることになる。
また、「#1 $1」と記載されているシンボルがある。このとき、「#1」は、データシンボル群#1の「1番目のシンボル」であることを意味している。そして、「$1」は、「位相変更$1」の位相変更を行うことを意味している。
図56(A)の領域5502のデータシンボル群#2のシンボルにおいて、例えば、「%0 ♭0」と記載されているシンボルがある。このとき、「%0」は、データシンボル群#2の「0番目のシンボル」であることを意味している。そして、「♭0」は、「位相変更♭0」の位相変更を行うことを意味している。
したがって、「%X ♭Y」と記載されているシンボルがある(Xは0以上の整数、Yは0以上4以下の整数)。このとき、「%X」は、データシンボル群#2の「X番目のシンボル」であることを意味している。そして、「♭Y」は、「位相変更♭Y」の位相変更を行うことを意味している。
また、「#1 $1」と記載されているシンボルがある。このとき、「#1」は、データシンボル群#1の「1番目のシンボル」であることを意味している。そして、「$1」は、「位相変更$1」の位相変更を行うことを意味している。
図56(B)の領域5504のデータシンボル群#2のシンボルにおいて、例えば、「%0 ♭0」と記載されているシンボルがある。このとき、「%0」は、データシンボル群#2の「0番目のシンボル」であることを意味している。そして、「♭0」は、「位相変更♭0」の位相変更を行うことを意味している。
したがって、「%X ♭Y」と記載されているシンボルがある(Xは0以上の整数、Yは0以上4以下の整数)。このとき、「%X」は、データシンボル群#2の「X番目のシンボル」であることを意味している。そして、「♭Y」は、「位相変更♭Y」の位相変更を行うことを意味している。
(なお、前にも説明したように、変調信号z1のデータシンボル群#1は位相変更を行い、変調信号z2のデータシンボル群#1は行わない、としてもよい。また、変調信号z1のデータシンボル群#1は位相変更を行わず、変調信号z2のデータシンボル群#1は位相変更を行うとしてもよい。)
そして、変調信号z1のデータシンボル群#2において、周期5の位相変更を行うことになる。例えば、「位相変更♭0として(2×0×π)/10ラジアンの位相変更を行い」、「位相変更♭1として(2×1×π)/10ラジアンの位相変更を行い」、「位相変更♭2として(2×2×π)/10ラジアンの位相変更を行い」、「位相変更♭3として(2×3×π)/10ラジアンの位相変更を行い」、「位相変更♭4として(2×4×π)/10ラジアンの位相変更を行う」ものとする(ただし、位相変更の値は、これらに限ったものではない)。
(なお、前にも説明したように、変調信号z1のデータシンボル群#2は位相変更を行い、変調信号z2のデータシンボル群#2は行わない、としてもよい。また、変調信号z1のデータシンボル群#2は位相変更を行わず、変調信号z2のデータシンボル群#2は位相変更を行うとしてもよい。)
第2のケースの特徴は、「データシンボル群#1において、周期7の位相変更を行っており、また、データシンボル群#2において、周期5の位相変更を行っている」点である。(つまり、各データシンボル群で固有の位相変更を行うことになる。ただし、異なるデータシンボルで、同一の位相変更を施してもよい。)
第3のケース:
図57は、第3のケースのときの送信局と端末の関係を示している。端末#3(5703)は、送信局#1(5701)が送信する変調信号#1と送信局#2(5702)が送信する変調信号#2を受信することが可能であるものとする。例えば、周波数帯域Aにおいて、変調信号#1と変調信号#2において、同一のデータを伝送しているものとする。つまり、データ系列に対し、ある変調方式でマッピングされたベースバンド信号をs1(t,f)とする(ただし、tは時間、fは周波数とする。)と、送信局#1、送信局#2ともにs1(t,f)に基づく変調信号を送信するものとする。
図58は、送信局#1、送信局#2の構成の一例であり、前に説明したように周波数帯域Aのように、送信局#1、送信局#2ともにs1(t,f)に基づく変調信号を送信する場合を考える。
マッピング部5804は、データ5803、送信方法の関する信号5813を入力とし、送信方法に関する信号5813に含まれる変調方式に関する情報に基づき、マッピングを行い、ベースバンド信号5805(s1(t,f))を出力する。(なお、誤り訂正符号化部5802とマッピング部5804の間で、データインタリーブ(データの順番の並び替え)を行ってもよい。)
制御情報シンボル生成部5807は、制御情報5806、送信方法に関する情報5813を入力とし、送信方法に関する信号5813に含まれる送信方法に関する情報に基づき、制御情報シンボルを生成し、制御情報シンボルのベースバンド信号5808を出力する。
送信方法指示部5812は、送信方法指示情報5811を入力とし、送信方法に関する信号5813を生成、出力する。
図59は、図58は送信局が送信する変調信号(送信信号)のフレーム構成の一例を示している。図59において、縦軸は時間、横軸は周波数とする。図59において、「P」と記載されているシンボルは、パイロットシンボルであり、第3のケースの特徴として、パイロットシンボルに位相変更を施すものとする。また、「C」と記載されているシンボルは、制御情報シンボルであり、第3のケースの特徴として、制御情報シンボルに位相変更を施すものとする。なお、図59は、制御情報シンボルを時間軸方向に配置するときの例である。
図59の領域5901のデータシンボル群#1のシンボルにおいて、例えば、「#0 $1」と記載されているシンボルがある。このとき、「#0」は、データシンボル群#1の「0番目のシンボル」であることを意味している。そして、「$1」は、「位相変更$1」の位相変更を行うことを意味している。
したがって、「#X $Y」と記載されているシンボルがある(Xは0以上の整数、Yは0以上6以下の整数)。このとき、「#X」は、データシンボル群#1の「X番目のシンボル」であることを意味している。そして、「$Y」は、「位相変更$Y」の位相変更を行うことを意味している。
また、「%1 $4」と記載されているシンボルがある。このとき、「%1」は、データシンボル群#2の「1番目のシンボル」であることを意味している。そして、「$4」は、「位相変更$4」の位相変更を行うことを意味している。
また、図59において、例えば、「C $0」と記載されているシンボルがある。このとき、「C」は制御情報シンボルであることを意味しており、「$0」は、「位相変更$0」の位相変更を行うことを意味している。
また、図59において、例えば、「P $0」と記載されているシンボルがある。このとき、「P」はパイロットシンボルであることを意味しており、「$0」は、「位相変更$0」の位相変更を行うことを意味している。
このとき、変調信号のデータシンボルにおいて、周期7の位相変更を行うことになる。例えば、「位相変更$0として(2×0×π)/7ラジアンの位相変更を行い」、「位相変更$1として(2×1×π)/7ラジアンの位相変更を行い」、「位相変更$2として(2×2×π)/7ラジアンの位相変更を行い」、「位相変更$3として(2×3×π)/7ラジアンの位相変更を行い」、「位相変更$4として(2×4×π)/7ラジアンの位相変更を行い」、「位相変更$5として(2×5×π)/7ラジアンの位相変更を行い」、「位相変更$6として(2×6×π)/7ラジアンの位相変更を行う」ものとする(ただし、位相変更の値は、これらに限ったものではない)。
なお、図57の送信局#1(5701)が送信する変調信号#1と送信局#2(5702)が送信する変調信号#2において、変調信号#1および変調信号#2両者に対し、位相変更を施してもよい(ただし、変調信号#1、変調信号#2に対し、異なる位相変更を施してよい(位相変更値が異なっていてもよいし、変調信号#1の位相変更の周期と変調信号#2の位相変更の周期が異なっていてもよい。)。また、変調信号#1は位相変更を行い、変調信号#2は行わない、としてもよい。そして、変調信号#1は位相変更を行わず、変調信号#2は位相変更を行うとしてもよい。)
図60は、図58は送信局が送信する変調信号(送信信号)のフレーム構成の一例を示している。図60において、縦軸は時間、横軸は周波数とする。図60において、「P」と記載されているシンボルは、パイロットシンボルであり、第3のケースの特徴として、パイロットシンボルに位相変更を施すものとする。また、「C」と記載されているシンボルは、制御情報シンボルであり、第3のケースの特徴として、制御情報シンボルに位相変更を施すものとする。なお、図60は、制御情報シンボルを周波数軸方向に配置するときの例である。
図60の領域6001のデータシンボル群#1のシンボルにおいて、例えば、「#0 $0」と記載されているシンボルがある。このとき、「#0」は、データシンボル群#1の「0番目のシンボル」であることを意味している。そして、「$0」は、「位相変更$0」の位相変更を行うことを意味している。
したがって、「#X $Y」と記載されているシンボルがある(Xは0以上の整数、Yは0以上6以下の整数)。このとき、「#X」は、データシンボル群#1の「X番目のシンボル」であることを意味している。そして、「$Y」は、「位相変更$Y」の位相変更を行うことを意味している。
また、「%1 $3」と記載されているシンボルがある。このとき、「%1」は、データシンボル群#2の「1番目のシンボル」であることを意味している。そして、「$3」は、「位相変更$3」の位相変更を行うことを意味している。
また、図60において、例えば、「C $3」と記載されているシンボルがある。このとき、「C」は制御情報シンボルであることを意味しており、「$3」は、「位相変更$3」の位相変更を行うことを意味している。
また、図59において、例えば、「P $3」と記載されているシンボルがある。このとき、「P」はパイロットシンボルであることを意味しており、「$3」は、「位相変更$3」の位相変更を行うことを意味している。
このとき、変調信号のデータシンボルにおいて、周期7の位相変更を行うことになる。例えば、「位相変更$0として(2×0×π)/7ラジアンの位相変更を行い」、「位相変更$1として(2×1×π)/7ラジアンの位相変更を行い」、「位相変更$2として(2×2×π)/7ラジアンの位相変更を行い」、「位相変更$3として(2×3×π)/7ラジアンの位相変更を行い」、「位相変更$4として(2×4×π)/7ラジアンの位相変更を行い」、「位相変更$5として(2×5×π)/7ラジアンの位相変更を行い」、「位相変更$6として(2×6×π)/7ラジアンの位相変更を行う」ものとする(ただし、位相変更の値は、これらに限ったものではない)。
図59および図60において、一例として、位相変更の周期は7としているが、これに限ったものではなく、別の値の周期であってもよい。また、位相変更の周期は、周波数軸方向で形成してもよいし、時間方向で形成してもよい。
なお、図57の送信局#1、#2の構成は、図58に限ったものではない。別の構成の例を、図61を用いて説明する。
図61において、図58と同様に動作するものについては、同一番号を付しており、説明を省略する。図61の特徴は、データ5803、制御情報5806、送信方法指示情報5811を他の装置が送信し、図61の受信部6102で、復調・復号し、データ5803、制御情報5806、送信方法指示情報5811を得る点である。したがって、他の装置が送信した変調信号を受信し、受信部6102は、受信信号6101を入力とし、復調、復号を行い、データ5803、制御情報5806、送信方法指示情報5811を出力する。
例えば、図1の送信装置(送信局)は、上述で説明した第1のケース、第2のケース、第3のケースのいずれかを選択して、実施することになる。(当然であるが、図1の送信装置は、第3のケースを選択した場合、図58、図61で説明したような動作を行うことになる。)
以上のように、送信装置は、各送信方法で、適切な位相変更方法を実施することで、各データシンボル群において、ダイバーシチ効果を良好に得ることができるため、受信装置は、良好なデータの受信品質を得ることができるという効果を得ることができる。
(実施の形態A)
図63は、横軸時間、縦軸周波数におけるフレーム構成の一例を示しており、図2、図34と同様に動作するものについては、同一符号を付している。
TDMの場合、各データシンボル群#TDXは、FECブロック(誤り訂正符号のブロック長(誤り訂正符号の符号長))の整数倍のデータが収まるようなシンボル数(またはスロット数)となる。
そして、例えば、データシンボル群#TD1は、「時間$1、キャリア1」からデータシンボルの配置を開始し、以降、「時間$1、キャリア2」、「時間$1、キャリア3」、「時間$1、キャリア4」、・・・、「時間$1、キャリア63」、「時間$1、キャリア64」、「時間$2、キャリア1」、「時間$2、キャリア2」「時間$2、キャリア3」、「時間$2、キャリア4」、・・・、「時間$2、キャリア63」、「時間$2、キャリア64」、「時間$3、キャリア1」、・・・のようにデータシンボルを配置していくものとする。
そして、データシンボル群#TD4、データシンボル群TD#5についても、同様の規則で、データシンボルを配置することになるが、最後のデータシンボル群であるデータシンボル群#TD5の最後のシンボルが、時間$10000、キャリア32に配置されたものとする。
例えば、「0」または「1」を発生する、疑似ランダム系列を用いて、ダミーシンボルの同相成分Iを生成し、ダミーシンボルの直交成分Qを0としてもよい。この場合、疑似ランダム系列の初期化タイミングはダミーシンボルの先頭とし、
同相成分I = 2(1/2 - 疑似ランダム系列)
として、同相成分Iを+1または-1のいずれかの値に変換してもよい。
直交成分Q = 2(1/2 - 疑似ランダム系列)
として、直交成分Qを+1または-1のいずれかの値に変換してもよい。
ダミーシンボルの生成方法は上述に限ったものではない。そして、ここでのダミーシンボルに関する説明は、以降で記載するダミーシンボルに対しても適用可能である。
以上のような規則にしたがい、時間分割が行われた時間区間(図63における時間t1から時間t2)に対し、ダミーシンボルを配置することになる。
図63の時間t2から時間t3は、時間-周波数分割多重を行っているフレーム構成の一例である。
例えば、時間$10001では、データシンボル群#TFD1(3401)とデータシンボル#TFD2(3402)が周波数分割多重されており、
キャリア11では、データシンボル群#TFD2(3402)、データシンボル群#TFD3(3403)、データシンボル群#TFD6(3406)が時間分割多重されており、
このように、時間t2から時間t3では、周波数分割されている部分と時間分割多重が行われている部分が存在しており、そのため、ここでは、「時間-周波数分割多重」と名付けている。
データシンボル群#TFD2(3402)の時間$10001から時間$11000に存在しており、iは10001以上11000以下であり、これを満たす時間iにおいて、キャリア11からキャリア64において、データシンボルが存在している。
データシンボル群#TFD4(3404)の時間$11001から時間$12000に存在しており、iは11001以上12000以下であり、これを満たす時間iにおいて、キャリア36からキャリア64において、データシンボルが存在している。
データシンボル群#TFD6(3406)の時間$13001から時間$14000に存在しており、iは13001以上14000以下であり、これを満たす時間iにおいて、キャリア11からキャリア30において、データシンボルが存在している。
データシンボル群#TFD8(3408)の時間$13001から時間$14000に存在しており、iは13001以上14000以下であり、これを満たす時間iにおいて、キャリア51からキャリア64において、データシンボルが存在している。
データシンボル群において、このデータシンボルが存在している時間区間すべてにおいて、占有しているキャリア番号が同一であるという特徴を持っている。
データシンボル群#TFDXにおいて、シンボル数(または、スロット数)をUとする。Uは1以上の整数とする。
そして、U-V≠0のとき、U-Vシンボル(または、U-Vスロット)のダミーシンボル(または、ダミースロット)を付加する。したがって、データシンボル群#TFDXは、Vシンボル(または、Vスロット)のデータシンボルとU-Vシンボル(または、U-Vスロット)のダミーシンボルで構成されることになる。(ダミーシンボルの各シンボルでは、同相成分Iになんらかの値をもち、直交成分Qについてもなんらかの値を持つことになる。)
時間-周波数分割多重されているデータシンボル群すべては、「Vシンボル(または、Vスロット)のデータシンボルとU-Vシンボル(または、U-Vスロット)のダミーシンボルで構成される」を満たすことになる。
図64に、例えば、図63のデータシンボル群#TFD1(3401)において、ダミーシンボル(または、ダミースロット)を挿入したときの様子の一例を示している。
例えば、データシンボル群#TFD1(3401)では、図64に示すように、時間$10001のキャリア1にデータシンボルを配置し、その後、時間$10001のキャリア2、時間$10001のキャリア3、・・・、時間$10001のキャリア9、時間$10001のキャリア10にデータシンボルを配置する。そして、時間$10002にうつり、時間$10002のキャリア1、時間$10002のキャリア2、・・・、にデータシンボルを配置する。
しかし、時間$13995のキャリア7、キャリア8、キャリア9、キャリア10、および、時間$13996のキャリア1からキャリア10、時間$13997のキャリア1からキャリア10、時間$13998のキャリア1からキャリア10、時間$13999のキャリア1からキャリア10、時間$14000のキャリア1からキャリア10にデータシンボル群#TFD1(3401)としてのシンボルが存在する。したがって、時間$13995のキャリア7、キャリア8、キャリア9、キャリア10、および、時間$13996のキャリア1からキャリア10、時間$13997のキャリア1からキャリア10、時間$13998のキャリア1からキャリア10、時間$13999のキャリア1からキャリア10、時間$14000のキャリア1からキャリア10にダミーシンボルを配置する。
なお、図63の例では、時間軸に対し、「プリアンブル」、「時間分割したシンボル」、「時間-周波数分割したシンボル」の順に配置するフレーム構成について説明したが、これに限ったものではなく、例えば、「プリアンブル」、「時間ー周波数分割したシンボル」、「時間分割したシンボル」の順に配置するフレーム構成であってもよく、また、図63に示したシンボル以外のシンボルが含まれていてもよい。
図65は、横軸時間、縦軸周波数におけるフレーム構成の一例を示しており、図2、図34と同様に動作するものについては、同一符号を付している。
FDMの場合、各データシンボル群#FDXは、FECブロック(誤り訂正符号のブロック長(誤り訂正符号の符号長))の整数倍のデータが収まるようなシンボル数(またはスロット数)となる。
そして、例えば、データシンボル群#FD1は、キャリア1からキャリア15では、時間$1から時間$10000にデータシンボルが存在していることになる。
データシンボル群#FD2は、キャリア16からキャリア29では、時間$1から時間$10000にデータシンボルが存在し、キャリア30では、時間$1から時間$6000にデータシンボルが存在している。
データシンボル群#FD4は、キャリア45では、時間$7001から時間$10000にデータシンボルが存在し、キャリア46からキャリア63では、時間$1から時間10000にデータシンボルが存在し、キャリア64では、時間$1から時間$6000にデータシンボルが存在している。
すると、キャリア64の時間$6001からダミーシンボルの配置を開始する。したがって、キャリア64の時間$6001から時間$10000にダミーシンボルを配置することになる。なお、ダミーシンボルの各シンボルでは、同相成分Iになんらかの値をもち、直交成分Qについてもなんらかの値を持つことになる。
上述の説明で、データシンボルの割り当てについては、周波数インデックスの小さいところから優先に割り当てるように説明したが、データシンボルの配置については、時間インデックスの小さいところから優先的に配置していく。この点について説明する。
例えば、データシンボル群#FD1(6501)では、図65に示すように、時間$1のキャリア1にデータシンボルを配置し、その後、時間$1のキャリア2、時間$1のキャリア3、・・・、時間$1のキャリア14、時間$1のキャリア15にデータシンボルを配置する。そして、時間$2にうつり、時間$2のキャリア1、時間$2のキャリア2、時間$2のキャリア3、・・・、時間$2のキャリア14、時間$2のキャリア15にデータシンボルを配置する。
データシンボル群#FD2(6502)では、図65に示すように、時間$1のキャリア16にデータシンボルを配置し、その後、時間$1のキャリア17、時間$1のキャリア18、・・・、時間$1のキャリア29、時間$1のキャリア30にデータシンボルを配置する。そして、時間$2にうつり、時間$2のキャリア17、時間$2のキャリア18、時間$2のキャリア19、・・・、時間$2のキャリア29、時間$2のキャリア30にデータシンボルを配置する。以降、時間$3についても同様にデータシンボルを配置し、時間$6000まで、同様にデータシンボルの配置が行われる。
なお、ここで説明した配置とは、「発生させたデータシンボルを順に配置する方法」を意味している、または、「発生させたデータシンボルに対し、並び替えを行い、並び替え後のデータシンボルを順に配置する方法」を意味している。
図65における、データシンボル群#TFDX(3401から3408)については、図64と同様に動作することになるので、説明を省略する。
なお、図65の例では、時間軸に対し、「プリアンブル」、「周波数分割したシンボル」、「時間ー周波数分割したシンボル」の順に配置するフレーム構成について説明したが、これに限ったものではなく、例えば、「プリアンブル」、「時間ー周波数分割したシンボル」、「周波数分割したシンボル」の順に配置するフレーム構成であってもよい。
そして、例えば、図65において、「周波数分割したシンボル」と「時間―周波数分割したシンボル」の間に「プリアンブル」を挿入してもよく、また、「周波数分割したシンボル」と「時間―周波数分割したシンボル」の間に別のシンボルが挿入されてもよい。
時間t1からt2までの区間では、時間分割したシンボル6601を送信する。なお、時間分割したシンボルの構成の例については、図63で示したとおりであり、時間分割したシンボル6601は、例えば、データシンボル群#TD1(6301)、データシンボル群#TD2(6302)、データシンボル群#TD3(6303)、データシンボル群#TD4(6304)、データシンボル群#TD5(6305)、ダミーシンボル6306で構成されているものとする。
(実施の形態B)
(フレーム構成)
図67を参照して本実施の形態における伝送フレーム構成の一例を説明する。図67において、横軸は時間、縦軸は周波数を表す。図2と同様に機能するものについては、同一符号を付している。図67は、伝送フレーム内に多重フレーム#MF1(6701)から多重フレーム#MF10(6710)までの10個の多重フレームが含まれる例を示している。各々の多重フレームは、伝送フレーム内で互いに重ならない領域を占める。図67の例では、多重フレーム#MF1(6701)は時刻$1から時刻$60までかつキャリア1からキャリア2000までの領域、多重フレーム#MF2(6702)は時刻$61から時刻$100までかつキャリア1からキャリア2000までの領域、多重フレーム#MF3(6703)は時刻$101から時刻$160までかつキャリア1からキャリア2000までの領域、多重フレーム#MF4(6704)は時刻$161から時刻$360までかつキャリア1からキャリア600までの領域、多重フレーム#MF5(6705)は時刻$161から時刻$260までかつキャリア601からキャリア1000までの領域、多重フレーム#MF6(6706)は時刻$261から時刻$360までかつキャリア601からキャリア1000までの領域、多重フレーム#MF7(6707)は時刻$161から時刻$360までかつキャリア1001からキャリア1600までの領域、多重フレーム#MF8(6708)は時刻$161から時刻$400までかつキャリア1601からキャリア2000までの領域、多重フレーム#MF9(6709)は時刻$361から時刻$400までかつキャリア1からキャリア800までの領域、多重フレーム#MF10(6710)は時刻$361から時刻$400までかつキャリア801からキャリア1600までの領域を占める。
(多重フレームの指示)
多重フレームの構成は、例えば、以下のように指示される。図68に多重フレームの構成を表す指示子の一例を示す。多重フレームの数をnumMuxFramesとする。まず、numMuxFramesが指示される。次いで、各々の多重フレームの情報がnumMuxFrames回繰り返して指示される。各々の多重フレームの情報は、多重フレームの領域を示す情報と多重フレームの種類を示す情報muxFrameTypeを含む。多重フレームの領域を示す情報は、例えば、多重フレームが開始する時刻startTime、多重フレームが開始するキャリアstartCarrier、多重フレームが終了する時刻endTime、多重フレームが終了するキャリアendCarrierを含む。多重フレームの情報は、上記以外の多重フレームに関する情報etcを含んでもよい。
(多重フレームの種類)
多重フレームの種類を示すmuxFrameTypeフィールドは、例えば、時分割多重(Time Division Multiplexing:TDM)や周波数分割多重(Frequency Division Multiplexing:FDM)などといった、その多重フレームの構成や用途を指示するためのフィールドである。多重フレームの種類を示すmuxFrameTypeフィールドの値は、将来の拡張を許容するために、TDMやFDM以外の構成や用途も指示できるように予備の値を設けておいてもよい。
(最終のキャリアの指示)
伝送フレームにはパイロットシンボルなどのデータ伝送に用いないシンボルが多重されるため、データシンボルの伝送に用いることができるキャリアの数は時刻によって異なる場合がある。図68ではキャリア2000が最終端のキャリアである例を示したが、例えば、時刻$1ではキャリア2000が最終端のキャリアであっても、時刻$2ではキャリア1998が最終端のキャリアであったり、時刻$3ではキャリア2003が最終端のキャリアであったりする。そのため、最終端付近のキャリアを含む多重フレームの領域を示す場合に課題が生じる。
以上のように、1つの多重フレームに効率よく複数のデータシンボル群を多重することによって、ダミーシンボル群のシンボル数を減少させ、伝送効率を向上することができる。
図70の例では、データシンボル群#DS6(7001)からデータシンボル群#DS8(7003)までの3つのデータシンボル群を周波数分割多重している。多重フレーム#MF3(6703)にデータシンボル群#DS6(7001)、データシンボル群#DS7(7002)、データシンボル群#DS8(7003)を順次多重して、さらに余りのシンボルが発生する場合は、ダミーシンボル群(7004)を挿入する。
以上のように、1つの多重フレームに効率よく複数のデータシンボル群を多重することによって、ダミーシンボル群のシンボル数を減少させ、伝送効率を向上することができる。
(データシンボル群の指示)
データシンボル群に関する情報は、例えば、以下のように指示される。図71にデータシンボル群に関する指示子の一例を示す。データシンボル群の数をnumDataSymbolGroupsとする。まず、numDataSymbolGroupsが指示される。次いで、各々のデータシンボル群に関する情報がnumDataSymbolGroups回繰り返して指示される。各々のデータシンボル群に関する情報は、データシンボル群が配置される多重フレームの番号muxFrameIndexとデータシンボル群が配置される領域を示す情報を含む。データシンボル群が配置される領域を示す情報は、例えば、データシンボル群の領域が終了する時刻endTimeOffset、データシンボル群の領域が終了するキャリアendCarrierOffsetを含む。データシンボル群が配置される領域を示す情報は、例えば、データシンボル群の領域が開始する時刻startTimeOffset、データシンボル群の領域が開始するキャリアstartCarrierOffsetをさらに含んでもよい。データシンボル群の領域が開始する時刻startTimeOffset、開始するキャリアstartCarrierOffset、終了する時刻endTimeOffset、終了するキャリアendCarrierOffsetは伝送フレームに対する時刻位置およびキャリア位置で指示されてもよく、多重フレーム中の相対的な時刻位置および相対的なキャリア位置で指示されてもよい。データシンボル群に関する情報は、上記以外のデータシンボルに関する情報etc.を含んでもよい。
(階層構造について)
本実施の形態では、多重フレームの構成とデータシンボル群の配置を階層化することによって、柔軟に伝送フレームを構成することができる。さらには、多重フレームの構成に関する指示とデータシンボル群に関する指示を簡潔にし、それらの指示に必要な情報量を削減し、伝送効率を向上することができる。
また、多重フレーム内に複数のデータシンボル群を多重することで、ダミーシンボルを減らして伝送効率を向上することができる。
(補足1)
上記実施の形態に従って、本発明に係る放送(または通信)システムについて説明してきたが、本発明はこれに限られるものではない。
当然であるが、本明細書において説明した実施の形態、その他の内容を複数組み合わせて、実施してもよい。
また、本明細書において、複素平面がある場合、例えば、偏角のような、位相の単位は、「ラジアン(radian)」としている。
本明細書で説明した発明は、OFDM方式などのマルチキャリア伝送方法に対して適用することができ、また、シングルキャリアの伝送方式に適用することもできる。(例えば、マルチキャリア方式の場合、シンボルを周波数軸にも配置するが、シングルキャリアの場合は、シンボルを時間方向にのみ配置することになる。)また、ベースバンド信号に対し、拡散符号を用いてスペクトル拡散通信方式を適用することもできる。
本明細書において、端末の受信装置とアンテナが別々となっている構成であってもよい。例えば、アンテナで受信した信号、または、アンテナで受信した信号に対し、周波数変換を施した信号を、ケーブルを通して、入力するインターフェースを受信装置が具備し、受信装置はその後の処理を行うことになる。また、受信装置が得たデータ・情報は、その後、映像や音に変換され、ディスプレイ(モニタ)に表示されたり、スピーカから音が出力されたりする。さらに、受信装置が得たデータ・情報は、映像や音に関する信号処理が施され(信号処理を施さなくてもよい)、受信装置が具備するRCA端子(映像端子、音用端子)、USB(Universal Serial Bus)、USB2、USB3、HDMI(High-Definition Multimedia Interface)、HDMI2、デジタル用端子等から出力されてもよい。また、受信装置が得たデータ・情報は、無線通信方式(Wi-Fi(登録商標)(IEEE802.11a、IEEE802.11b、IEEE802.11g、IEEE802.11n、IEEE802.11ac、IEEE802.11adなど)、WiGiG、Bluetooth(登録商標)など)、有線の通信方式(光通信、電力線通信など)を用いて、変調され、これらの情報を他の機器に伝送してもよい。このとき、端末は、情報を伝送するための送信装置を具備していることになる。(このとき、端末は、受信装置が得たデータ・情報を含むデータを送信してもよいし、受信装置が得たデータ・情報から、変形したデータを生成し、送信してもよい。)
本明細書において、送信装置を具備しているのは、例えば、放送局、基地局、アクセスポイント、端末、携帯電話(mobile phone)等の通信・放送機器であることが考えられ、このとき、受信装置を具備しているのは、テレビ、ラジオ、端末、パーソナルコンピュータ、携帯電話、アクセスポイント、基地局等の通信機器であることが考えられる。また、本発明における送信装置、受信装置は、通信機能を有している機器であって、その機器が、テレビ、ラジオ、パーソナルコンピュータ、携帯電話等のアプリケーションを実行するための装置に何らかのインターフェースを解して接続できるような形態であることも考えられる。
本明細書のフレーム構成において、第1プリアンブルに他のシンボル(例えば、パイロットシンボルやヌルシンボル(シンボルの同相成分が0(ゼロ、直交成分が0(ゼロ)))等)が挿入されていてもよい。同様に、第2プリアンブルにパイロットシンボルやヌルシンボル(シンボルの同相成分が0(ゼロ、直交成分が0(ゼロ)))等のシンボルが挿入されていてもよい。また、プリアンブルを第1のプリアンブルと第2プリアンブルで構成しているが、プリアンブルの構成については、これに限ったものではなく、第1のプリアンブル(第1のプリアンブル群)のみで構成されていてもよいし、2つ以上のプリアンブル(プリアンブル群)で構成されていてもよい。なお、プリアンブルの構成については、他の実施の形態のフレーム構成を示しているときについても同様である。
図39において、3901はデータシンボル群#1のシンボルを示しており、3902はデータシンボル群#2のシンボルを示している。図39の時刻t0のように、データシンボル群#1のシンボルがキャリア4で終了したとする。このとき、時刻t0のキャリア5からデータシンボル群#2のシンボルを配置したとする。すると、時刻t0の部分だけ、例外的に周波数分割になっている。しかし、時刻t0より前ではデータシンボル群#1のシンボルしか存在せず、時刻t0より後ではデータシンボル群#2のシンボルしか存在しない。この点で、時分割(時間分割)されている。
なお、本発明は各実施の形態に限定されず、種々変更して実施することが可能である。例えば、各実施の形態では、通信装置として行う場合について説明しているが、これに限られるものではなく、この通信方法をソフトウェアとして行うことも可能である。
なお、例えば、上記通信方法を実行するプログラムを予めROM(Read Only Memory)に格納しておき、そのプログラムをCPU(Central Processor Unit)によって動作させるようにしても良い。
そして、上記の各実施の形態などの各構成は、典型的には集積回路であるLSI(Large Scale Integration)として実現されてもよい。これらは、個別に1チップ化されてもよいし、各実施の形態の全ての構成または一部の構成を含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC(Integrated Circuit)、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限られるものではなく、専用回路または汎用プロセッサで実現しても良い。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用しても良い。
本発明は、複数のアンテナからそれぞれ異なる変調信号を送信する無線システムに広く適用できる。また、複数の送信箇所を持つ有線通信システム(例えば、PLC(Power Line Communication)システム、光通信システム、DSL(Digital Subscriber Line:デジタル加入者線)システム)において、MIMO伝送を行う場合についても適用することができる。
また、s1(t)=s2(t)(s1(i)=s2(i))が成立してもよい。このとき、1つのストリームの変調信号が、複数のアンテナから送信されることになる。
(実施の形態C)
本実施の形態では、本明細書で説明した時間-周波数軸におけるフレーム構成(例えば、図2、図3、図4、図5、図6、図24、図25、図26、図27、図28、図29、図30、図31、図32、図33、図34、図35、図36、図37、図38、図48、図29、図50、図51、図52、図53、図54、図63、図65など(フレーム構成は、これに限ったものではない))の変調信号を基地局(または、アクセスポイント(AP)など)が送信する際、各データシンボル群の端末への割り当てについて説明する。
<1>まず、各端末は、基地局(AP)に対し、データシンボル群の送信を要求する。
例えば、基地局(AP)と端末が、図72のような状態であるとき、端末#1(7200-01)は、基地局(AP)7200-00に、データシンボル群の送信の要求を行う。同様に、端末#2(7200-02)は、基地局(AP)7200-00に、データシンボル群の送信の要求を行う。・・・同様に、端末#n(7200-n)は、基地局7200-00に、データシンボル群の送信の要求を行う。
例えば、図54のフレーム構成の変調信号を基地局(AP)7200-00が送信するものとする。基地局(AP)7200-00は、端末#1(7200-01)、端末#2(7200-02)、端末#3(7200-03)、端末#4(7200-04)、端末#5(7200-05)、端末#6(7200-06)、端末#7(7200-07)、端末#8(7200-08)からデータの送信の要求があったとする。
なお、各データシンボル群の送信方法は、SISO方式(例えば、一つ変調信号を送信する、または、一つの変調信号を複数のアンテナを用いて送信する(ただし、各アンテナから送信する変調信号は、同一であってもよいし、異なっていてもよい)方式)、MISO方式(時空間ブロック符号、または、時間-周波数ブロック符号を用いた方式)、MIMO方式(複数の変調信号を、例えば、複数のアンテナを用いて送信する方式)など、いずれの送信方法であってもよい。(なお、詳細については、本明細書で、例を記載している。)
また、各データシンボル群では、映像情報、オーディオ情報、文字情報など、どのような情報を伝送してもよく、また、制御用のデータを伝送してもよい。つまり、各データシンボル群で伝送するデータは、どのようなデータであってもよい。
例えば、上述のようにデータシンボル群の割り当てを行った場合、端末#1(7200-01)は、基地局(AP)7200-00が送信した変調信号を受信し、第1プリアンブル3601、および/または、第2プリアンブル3602に含まれる「データシンボル群と端末の関係の情報」を得、端末#1(7200-01)あてのデータシンボル群、つまり、データシンボル群#8(3408)を抽出し、データシンボル群#8(3408)を復調(および、誤り訂正復号)を行い、データを得ることになる。
受信部7400-07は、アンテナ7400-05で受信した受信信号7400-06を入力とし、周波数変換、例えばOFDMのための信号処理、デマッピング(復調)、誤り訂正復号等の処理を施し、受信データ7400-08を出力する。
送信部7400-02は、送信データ(ここでは、例えば、プリアンブルなどで送信する制御情報を含む)7400-01、受信データ7400-08を入力とし、送信データ7400-01に対し、誤り訂正符号化、設定した変調方式によるマッピング、例えばOFDMのための信号処理、周波数変換、増幅などの処理を施し、変調信号7400-03を生成、出力し、変調信号7400-03は、アンテナ7400-04から電波として出力され、一つ以上の端末が、変調信号7400-03を受信することになる。
そして、図74において、送信用のアンテナ7400-04を1つとしているが、これに限ったものではなく、送信用に複数のアンテナを基地局(AP)は具備していてもよい。このとき、複数の変調信号を複数の送信アンテナを用いて送信することになり、送信部7400-02は、複数の変調信号を生成することになる。
受信部7500-07は、アンテナ7500-05で受信した受信信号7500-06を入力とし、周波数変換、例えばOFDMのための信号処理、デマッピング(復調)、誤り訂正復号等の処理を施し、受信データ7500-08を出力する。
送信部7500-02は、送信データ(ここでは、例えば、プリアンブルなどで送信する制御情報を含む)7500-01、受信データ7500-08を入力とし、送信データ7500-01に対し、誤り訂正符号化、設定した変調方式によるマッピング、例えばOFDMのための信号処理、周波数変換、増幅などの処理を施し、変調信号7500-03を生成、出力し、変調信号7500-03は、アンテナ7500-04から電波として出力され、基地局(AP)が、変調信号7500-03を受信することになる。
同様に、図75において、受信用のアンテナ7500-05を1つとしているが、これに限ったものではなく、受信用に複数のアンテナを端末は具備していてもよい。このとき、複数の変調信号を複数のアンテナを用いて受信することになり、受信部7500-07は、複数の変調信号に対して、信号処理を行い、受信データを得ることになる。
送信方法指示情報5811は、各データシンボル群の端末への割り当ての情報を含んでいるものとする(例えば、「データシンボル群#1は端末#8に伝送するためのデータシンボル群」という情報)。
フレーム構成部7600-01は、各データシンボルのベースバンド信号5805、制御情報シンボルのベースバンド信号5808、パイロットシンボルのベースバンド信号5810、送信方法に関する情報5813を入力とし、送信方法に関する情報5813に含まれるフレーム構成の情報に基づき、例えば図54(ただし、以前に説明したように、フレーム構成は図54に限ったものではない。)のフレーム構成にしたがった変調信号7600-02を生成、出力する。
図77は、図76の基地局(AP)のデータシンボル群生成部7600-00の構成の一例を示している。
データシンボル群#m生成部7700-02-mは、データ#m(7700-01-m)、および、送信方法に関する情報7700-00(5813)を入力とし、送信方法に関する情報7700-00に含まれる各データシンボル群の端末への割り当ての情報、各データシンボル群の送信方法に関する情報、各データシンボル群の変調方式の情報、各データシンボル群の誤り訂正符号化方法(符号長、符号化率)の情報に基づいて、誤り訂正符号化、変調、当の処理を行い、データシンボル群#mのベースバンド信号7700-03-mを出力する。(なお、mは1以上の整数、または、mは2以上の整数とする。)
図78は、本実施の形態における端末の受信部の構成の一例である。なお、図78において、図23と同様に動作するものについては、同一番号を付している。
第1プリアンブル検出、復調部2311は、信号処理後の信号2304_Xを入力とし、例えば、図54(他のフレーム構成であってもよい)の第1プリアンブルを検出し、復調を行い、第1プリアンブル制御情報2312を出力する。
制御信号生成部2315は、第1プリアンブル制御情報2312、第2プリアンブル制御情報2314を入力とし、制御信号2316を出力する。なお、制御信号2316は、各データシンボル群の端末の割り当ての情報を含んでいるものとする。
以上のように、基地局(AP)が送信する変調信号において、各データシンボル群に対し、あて先となる端末を好適に設定することで、基地局(AP)のデータ伝送効率を向上させることができるという効果を得ることができる。
なお、他の実施の形態で説明したように、図54のフレーム構成において、時間t1から時間t3において、図53に示したように、特定のキャリアに特定のシンボル(5304、5305)を配置していることになる。このとき、特定のキャリアの特定のシンボル(5304、5305)が、データシンボル群であってもよい。(例えば、特定のキャリアのシンボルがデータシンボル群#100であってもよい。)
(実施の形態D)
本実施の形態では、図64を用いて説明した「データシンボル群におけるダミーシンボル(または、ダミースロット)挿入方法」に関する補足の説明を行う。
図79は、本実施の形態における基地局(AP)が送信する変調信号のフレームj構成の一例を示しており、縦軸を周波数、横軸を時間とする。
そして、フレームにおいて、周波数方向には、キャリア1からキャリア64が存在し、キャリアごとにシンボルが存在していることになる。
そして、時間t1から時間t2の間で、データシンボル群#FD1(#TFD1)(7900-01)、データシンボル群#FD2(#TFD2)(7900-02)、データシンボル群#FD3(#TFD3)(7900-03)、データシンボル群#FD4(#TFD4)(7900-04)を基地局(AP)は送信しているものとする。
時間t3から時間t4の間で、データシンボル群#FD5(#TFD5)(7900-05)、データシンボル群#FD6(#TFD6)(7900-06)、データシンボル群#FD7(#TFD7)(7900-07)、データシンボル群#FD8(#TFD8)(7900-08)、データシンボル群#FD9(#TFD9)(7900-09)を基地局(AP)は送信しているものとする。
時間t5から時間t6の間で、データシンボル群#TD10(#TFD10)(7900-10)、データシンボル群#TD11(#TD11)(7900-11)を基地局(AP)は送信しているものとする。
同様に、データシンボル群#FD2(#TFD2)(7900-02)は、周波数軸方向では、キャリア16からキャリア31を使用し、時間方向では時間$1から$10000を使用したデータシンボル群であるものとする。(キャリア方向に複数シンボル存在し、時間方向にも複数シンボルが存在している。)
データシンボル群#FD3(#TFD3)(7900-03)は、周波数軸方向では、キャリア32からキャリア46を使用し、時間方向では時間$1から$10000を使用したデータシンボル群であるものとする。(キャリア方向に複数シンボル存在し、時間方向にも複数シンボルが存在している。)
データシンボル群#FD4(#TFD4)(7900-04)は、周波数軸方向では、キャリア47からキャリア64を使用し、時間方向では時間$1から$10000を使用したデータシンボル群であるものとする。(キャリア方向に複数シンボル存在し、時間方向にも複数シンボルが存在している。)
このように、図79のフレームにおいて、データシンボル群#FD1(#TFD1)(7900-01)、データシンボル群#FD2(#TFD2)(7900-02)、データシンボル群#FD3(#TFD3)(7900-03)、データシンボル群#FD4(#TFD4)(7900-04)は、周波数分割多重されているものとする。
同様に、データシンボル群#FD6(#TFD6)(7900-06)は、周波数軸方向では、キャリア16からキャリア29を使用し、時間方向では時間♭1から♭8000を使用したデータシンボル群であるものとする。(キャリア方向に複数シンボル存在し、時間方向にも複数シンボルが存在している。)
データシンボル群#FD7(#TFD7)(7900-07)は、周波数軸方向では、キャリア30からキャリア38を使用し、時間方向では時間♭1から♭8000を使用したデータシンボル群であるものとする。(キャリア方向に複数シンボル存在し、時間方向にも複数シンボルが存在している。)
データシンボル群#FD8(#TFD8)(7900-08)は、周波数軸方向では、キャリア39からキャリア52を使用し、時間方向では時間♭1から♭8000を使用したデータシンボル群であるものとする。(キャリア方向に複数シンボル存在し、時間方向にも複数シンボルが存在している。)
データシンボル群#FD9(#TFD9)(7900-09)は、周波数軸方法では、キャリア53からキャリア64を使用し、時間方向では時間♭1から♭8000を使用したデータシンボル群であるものとする。(キャリア方向に複数シンボル存在し、時間方向にも複数シンボルが存在している。)
このように、図79のフレームにおいて、データシンボル群#FD5(#TFD5)(7900-05)、データシンボル群#FD6(#TFD6)(7900-06)、データシンボル群#FD7(#TFD7)(7900-07)、データシンボル群#FD8(#TFD8)(7900-08)、データシンボル群#FD9(#TFD9)(7900-09)は、周波数分割多重されているものとする。
同様に、データシンボル群#TD11(#TD11)(7900-11)は、周波数軸方向では、キャリア1からキャリア64を使用し、時間方向では時間*51から*81を使用したデータシンボル群であるものとする。(キャリア方向に複数シンボル存在し、時間方向にも複数シンボルが存在している。)
なお、図79では、データシンボル群#TD10(#TFD10)(7900-10)、データシンボル群#TD11(#TD11)(7900-11)は時間分割多重されている場合を示しているが、例えば、データシンボル群#TD11(#TD11)(7900-11)が存在しないような構成であってもよい。また、別の例として、データシンボル群#TD10(#TFD10)(7900-10)とデータシンボル群#TD11(#TD11)(7900-11)との間に、第1プリアンブル、第2プリアンブルが存在するようなフレーム構成であってもよい。
・基地局(AP)は、データシンボル群#FD1(#TFD1)(7900-01)を用いて、端末#1にデータを伝送する。したがって、データシンボル群#FD1(#TFD1)(7900-01)は、端末#1にデータを伝送するためのデータシンボル群である。
・基地局(AP)は、データシンボル群#FD3(#TFD3)(7900-03)を用いて、端末#3にデータを伝送する。したがって、データシンボル群#FD3(#TFD3)(7900-03)は、端末#3にデータを伝送するためのデータシンボル群である。
となる。このように、時間t1から時間t2の時間に存在するデータシンボル群により、周波数分割多重接続(Frequency Division Multiple Access)を行うになる。(なお、OFDM方式を用いている場合、OFDMA(Orthogonal Frequency Division Multiple Access)を行うことになる。)
同様に、
・基地局(AP)は、データシンボル群#FD5(#TFD5)(7900-05)を用いて、端末#Aにデータを伝送する。したがって、データシンボル群#FD5(#TFD5)(7900-05)は、端末#Aにデータを伝送するためのデータシンボル群である。
・基地局(AP)は、データシンボル群#FD7(#TFD7)(7900-07)を用いて、端末#Cにデータを伝送する。したがって、データシンボル群#FD7(#TFD7)(7900-07)は、端末#Cにデータを伝送するためのデータシンボル群である。
・基地局(AP)は、データシンボル群#FD9(#TFD9)(7900-09)を用いて、端末#Eにデータを伝送する。したがって、データシンボル群#FD9(#TFD9)(7900-09)は、端末#Eにデータを伝送するためのデータシンボル群である。
となる。このように時間t3から時間t4の時間に存在するデータシンボル群により、周波数分割多重接続(Frequency Division Multiple Access)を行うになる。(なお、OFDM方式を用いている場合、OFDMA(Orthogonal Frequency Division Multiple Access)を行うことになる。)
また、基地局(AP)は、データシンボル群#TD10(#TFD10)(7900-10)を用いて、端末#αにデータを送信する。したがって、データシンボル群#TD10(#TFD10)(7900-10)は、端末αにデータを伝送するためのデータシンボル群である。
ところで、図54、図79などのフレーム(フレームは図54、図79に限ったものではなく、本明細書で説明したフレームにおいて、以下は適用可能である。)において、時間分割(または、時間分割多重)、周波数分割(または、周波数分割多重)、時間および周波数領域の分割(または、時間および周波数領域の分割多重)を行ったデータシンボル群について説明した。
例えば、データシンボル群を時間方向に分割する際、図80のような状態を考える。図80は、時間方向における分割の一例について示す図である。
図80において、横軸は時間、縦軸は周波数(キャリア)である。図80は、第1領域、第2領域、第3領域、第4領域をデータシンボル群として時間方向で分割した場合の例を示している。
例えば、周波数方向に分割する際、図81のような状態を考える。図81は、周波数方向における分割の一例について示す図である。
図81に示すように、キャリアc1では、第1領域と第2領域が存在する。また、キャリアc2、キャリアc3では、第2領域と第3領域が存在する。そして、第3領域と第4領域は、周波数方向における重なりが存在しない。これらのケースを含めて、「周波数方向での分割」と定義するものとする。例えば、図81のように、ある周波数(キャリア)で複数のデータシンボル群が存在するように周波数的に分割を行ってもよい。
また、データシンボル群を時間および周波数領域の分割(または、時間および周波数領域の分割多重)を行う際、時間方向での分割を図80のように行い、周波数方向での分割を図81のように行ってもよい。つまり、データシンボル群の時間-周波数平面における1つの領域は、異なる時間において異なる周波数幅を有し、かつ、異なる周波数において異なる時間幅を有していてもよい。
当然であるが、図79のデータシンボル群#FD1(#TFD1)(7900-01)、データシンボル群#FD2(#TFD2)(7900-02)、データシンボル群#FD3(#TFD3)(7900-03)、データシンボル群#FD4(#TFD4)(7900-04)のように周波数分割を行い、2つ以上のデータシンボル群が存在するキャリア(周波数)が存在しないように、周波数分割を行ってもよい。
図64に、例えば、図79のデータシンボル群#FD1(#TFD1)(7900-01)において、ダミーシンボル(または、ダミースロット)を挿入したときの様子の一例を示している。(以下の例と同様の例を図63と図64を用いて、以前に説明を行っている。)
例えば、データシンボル群#FD1(#TFD1)(7900-01)において、データシンボルを、時間インデックスの小さいところから優先に配置していく。そして、ある時間において、占有しているすべてのキャリアにデータシンボルの配置が完了したら、その次の時間にデータシンボルの配置を行うという規則を設ける。
しかし、時間$13995のキャリア7、キャリア8、キャリア9、キャリア10、および、時間$13996のキャリア1からキャリア10、時間$13997のキャリア1からキャリア10、時間$13998のキャリア1からキャリア10、時間$13999のキャリア1からキャリア10、時間$14000のキャリア1からキャリア10にデータシンボル群#TFD1(3401)としてのシンボルが存在する。したがって、時間$13995のキャリア7、キャリア8、キャリア9、キャリア10、および、時間$13996のキャリア1からキャリア10、時間$13997のキャリア1からキャリア10、時間$13998のキャリア1からキャリア10、時間$13999のキャリア1からキャリア10、時間$14000のキャリア1からキャリア10にダミーシンボルを配置する。
データシンボル群#TFD X、データシンボル群#FD Y、データシンボル群#TD Z(例えば、X、Y、Zは1以上の整数)において、シンボル数(または、スロット数)をUとする。Uは1以上の整数とする。
そして、U-V≠0のとき、U-Vシンボル(または、U-Vスロット)のダミーシンボル(または、ダミースロット)を付加する。したがって、データシンボル群#TFD X、または、データシンボル群#FD Y、または、データシンボル群#TD Zは、Vシンボル(または、Vスロット)のデータシンボルとU-Vシンボル(または、U-Vスロット)のダミーシンボルで構成されることになる。(ダミーシンボルの各シンボルでは、同相成分Iになんらかの値をもち、直交成分Qについてもなんらかの値を持つことになる。)
データシンボル群#TFD X、データシンボル群#FD Y、データシンボル群#TD Zは、「Vシンボル(または、Vスロット)のデータシンボルとU-Vシンボル(または、U-Vスロット)のダミーシンボルで構成される」を満たすことになる。
ダミーシンボル挿入方法を適用する基地局(AP)の構成の一例について説明する。
基地局(AP)の構成は、図1において、データ生成部102、フレーム構成部110を図82に置き換えた構成であるものとする。以下では、図82について説明を行う。
データシンボル群#1用誤り訂正符号化部8200-02-1は、(例えば、端末#1用の)データシンボル群#1用のデータ8200-01-1、および、制御信号8200-00(109)を入力とし、制御信号8200-00(109)に含まれる誤り訂正符号化方法(例えば、誤り訂正符号の情報、誤り訂正符号の符号長、誤り訂正符号の符号化率など)の情報に基づき、データシンボル群#1用のデータ8200-01-1に対し、誤り訂正符号化を行い、データシンボル群#1用の誤り訂正符号化後のデータ8200-03-1を出力する。
また、データシンボル群#N用の誤り訂正符号化部8200-02-N(Nは1以上の整数とする)は、(例えば、端末#N用の)データシンボル群#N用のデータ8200-01-N、および、制御信号8200-00(109)を入力とし、制御信号8200-00(109)に含まれる誤り訂正符号化方法(例えば、誤り訂正符号の情報、誤り訂正符号の符号長、誤り訂正符号の符号化率など)の情報に基づき、データシンボル群#Nのデータ8200-01-Nに対し、誤り訂正符号化を行い、データシンボル群#N用の誤り訂正符号化後のデータ8200-03-Nを出力する。
また、データシンボル群#N用インターリーバ8200-04-Nは、データシンボル群#N用の誤り訂正符号化後のデータ8200-3-N、および、制御信号8200-00(109)を入力とし、制御信号8200-00(109)に含まれる並び替え方法の情報に基づき、データシンボル群#N用の誤り訂正符号化後のデータ8200-03-Nに対し、並び替えを行い、データシンボル群#N用の並び替え後のデータ8200-05-Nを出力する。
また、データシンボル群#N用マッピング部8200-06-Nは、データシンボル群#N用の並び替え後のデータ8200-05-N、および、制御信号8200-00(109)を入力とし、制御信号8200-00(109)に含まれる変調方式の情報に基づき、データシンボル群#N用の並び替え後のデータ8200-05-Nに対し、マッピングを行い、データシンボル群#N用のマッピング後の信号8200-07-Nを出力する。
制御信号8200-00(109)が、SISO伝送であることを指定しているとき、フレーム構成部110は、(フレーム構成にしたがった)、例えば、ストリーム1の(直交)ベースバンド信号8201_1を出力する。
基地局(AP)の別の構成例について説明する。
基地局(AP)の別の構成は、図76において、データシンボル群生成部7600-00、フレーム構成部7600-01を図83に置き換えた構成であるものとする。
フレーム構成部7600-01は、データシンボル群#1用のマッピング後の信号8200-07-1、データシンボル群#2用のマッピング後の信号8200-07-2、・・・、データシンボル群#N用のマッピング後の信号8200-07-N、および、制御シンボルのベースバンド信号5808、パイロットシンボルのベースバンド信号5810、制御信号8200-00(5831)を入力とし、制御信号8200-00(5831)に含まれるフレーム構成の情報(例えば、図54、図79など(ただし、フレーム構成はこれに限ったものではない))に基づき、(フレーム構成にしたがった)変調信号7600-02を出力する。
図82、図83などにおいて、データシンボル群#1用のインターリーバ8200-04-1、データシンボル群#2用インターリーバ8200-04-2、・・・、データシンボル群#N用インターリーバ8200-04-Nの動作の例を図84を用いて説明する。
「FECブロック(誤り訂正符号のブロック長(誤り訂正符号の符号長))の整数倍のデータが収まるようなシンボル数(またはスロット数)、V(Vは1以上の整数とする)」を確保する。ただし、U-α+1≦V≦Uを満たすものとする。(αは、誤り訂正符号のブロック長(符号長)(単位:ビット)を送信するのに必要なシンボル数(またはスロット数)であるものとし、1以上の整数であるものとする。)
そして、U-V≠0のとき、U-Vシンボル(または、U-Vスロット)のダミーシンボル(または、ダミースロット)を付加する。したがって、データシンボル群#TFD X、または、データシンボル群#FD Y、または、データシンボル群#TD Zは、Vシンボル(または、Vスロット)のデータシンボルとU-Vシンボル(または、U-Vスロット)のダミーシンボルで構成されることになる。(ダミーシンボルの各シンボルでは、同相成分Iになんらかの値をもち、直交成分Qについてもなんらかの値を持つことになる。)
データシンボル群#TFD X、データシンボル群#FD Y、データシンボル群#TD Zは、「Vシンボル(または、Vスロット)のデータシンボルとU-Vシンボル(または、U-Vスロット)のダミーシンボルで構成される」を満たすことになる。
図84に、U-V≠0のときの、
ビット数C×V = A×C×αビット(Aは1以上の整数)ビットの「データシンボル用のデータ」とビット数C×(U-V)ビットの「ダミーシンボル用データ」の、図82、図83などにおいて、データシンボル群#1用のインターリーバ8200-04-1、データシンボル群#2用インターリーバ8200-04-2、・・・、データシンボル群#N用インターリーバ8200-04-Nの動作の例を示している。
図84(b)は、図84(a)で示したデータに対し、順番を並び替えたときのデータ(図84(b)のC×Uビットの並び替え後のデータ)となる。データの並び替えの方法は、どのような規則であってもよい。
なお、データシンボル群#1用インターリーバ8200-04-1のデータの並び替えの方法、データシンボル群#2用インターリーバ8200-04-2のデータの並び替えの方法、・・・、データシンボル群#N用インターリーバ8200-04-Nのデータの並び替えの方法は、同一であってもよいし、異なっていてもよい。
図85に、データシンボル群#1用のインターリーバ8200-05-1、データシンボル群#2用インターリーバ8200-05-2、・・・、データシンボル群#N用インターリーバ8200-05-Nの構成の一例を示している。なお、図82、図83と同様に動作するものについては、同一番号を付している。
インターリーバ8500-04は、誤り訂正符号化後のデータ8500-03(図82、図83などにおけるデータシンボル群#1用の誤り訂正符号化後のデータ8200-03-1、データシンボル群#2用の誤り訂正符号化後のデータ8200-03-2、・・・、データシンボル群#N用の誤り訂正符号化後のデータ8200-03-Nに相当)、ダミーデータ8500-02、制御信号8200-00を入力とし、制御信号8200-00に含まれるインターリーブの方法に関する情報に基づいて、誤り訂正符号化後のデータ8500-03、ダミーデータ8500-02に対して、並び替えを行い、並び替え後のデータ8500-05(図82、図83などにおけるデータシンボル群#1用の並び替え後のデータ8200-05-1、データシンボル群#2用の並び替え後のデータ8200-05-2、・・・、データシンボル群#N用の並び替え後のデータ8200-05-Nに相当)を出力する。
また、例えば、図54、図79など(ただし、フレーム構成はこれに限ったものではない。)のフレームにおける第1プリアンブル、および/または、第2プリアンブルは、「各データシンボル群の使用するキャリア・時間に関連する情報」、「各データシンボル群におけるダミーデータ(またはダミーシンボル)の挿入するビット数(または、シンボル数)に関連する情報」、「各データシンボル群の送信方法に関する情報」、「各データシンボル群の変調方式(または、変調方式セット)に関連する情報」、「各データシンボル群で使用するインターリーブ方法に関連する情報」、「各データシンボル群で使用する誤り訂正符号に関連する情報」などの情報を含んでいてもよい。これにより、受信装置は、各データシンボル群のデータシンボル群の復調が可能となる。
ダミーシンボル挿入方法を適用する基地局(AP)の構成の別の例を説明する。
図86において、図1、図82と同様に動作するものについては、同一番号を付しており、説明をすでに行っている部分については、説明を省略する。
データシンボル群#1用キャリア並び替え部8600-01-1は、データシンボル群#1用のマッピング後の信号8200-07-1、制御信号8200-00を入力とし、制御信号8200-00に含まれるキャリア並び替え方法の情報に基づき、データシンボル群#1用のマッピング後の信号8200-07-1に対し、キャリアの並び替えを行い、データシンボル群#1用のキャリア並び替え後の信号8600-02-1を出力する。なお、キャリアの並び替えについては、後で説明する。
また、データシンボル群#N用キャリア並び替え部8600-01-Nは、データシンボル群#Nのマッピング後の信号8200-07-N、制御信号8200-00を入力とし、制御信号8200-00に含まれるキャリア並び替え方法の情報に基づき、データシンボル群#Nのマッピング後の信号8200-07-Nに対し、キャリアの並び替えを行い、データシンボル群#N用のキャリア並び替え後の信号8600-02-Nを出力する。なお、キャリアの並び替えについては、後で説明する。
基地局(AP)の別の構成例について説明する。
基地局(AP)の別の構成は、図76において、データシンボル群生成部7600-00、フレーム構成部7600-01を図87に置き換えた構成であるものとする。
図87において、図58、図76、図82、図86と同様に動作するものについては、同一番号を付しており、同様に動作するものは、説明を省略する。(したがって、図87の説明は省略する。)
なお、図76、図87は、装置の一例の構成であり、これに限ったものではない。
図88において、図88(a)は、キャリア並び替え前のデータシンボル群のシンボル構成の例を示しており、横軸が時間、縦軸が周波数(キャリア)であるものとする。図88(a)に示すように、キャリア$1のシンボルを第1シンボル列と名づけ、キャリア$2のシンボルを第2シンボル列と名づけ、キャリア$3のシンボルを第3シンボル列と名づけ、キャリア$4のシンボルを第4シンボル列と名づけ、キャリア$5のシンボルを第5シンボル列と名づけ、キャリア$6のシンボルを第6シンボル列と名づけ、キャリア$7のシンボルを第7シンボル列と名づける。したがって、データシンボル群は、第1シンボル列から第7シンボル列で構成されているものとする。
図88(b)はキャリア並び替え後のデータシンボル群のシンボル構成の例を示している。
キャリア並び替え前にキャリア$2に配置されていた第2シンボル列は、キャリア並び替え後キャリア$6に配置される。
キャリア並び替え前にキャリア$3に配置されていた第3シンボル列は、キャリア並び替え後キャリア$5に配置される。
キャリア並び替え前にキャリア$4に配置されていた第4シンボル列は、キャリア並び替え後キャリア$2に配置される。
キャリア並び替え前にキャリア$6に配置されていた第6シンボル列は、キャリア並び替え後キャリア$1に配置される。
キャリア並び替え前にキャリア$7に配置されていた第7シンボル列は、キャリア並び替え後キャリア$3に配置される。
図1において、データ生成部102、フレーム構成部110を図86に置き換えた構成の基地局(AP)と同様に動作する構成として、図1において、データ生成部102、フレーム構成部110を図89に置き換えた構成であってもよい。
キャリア並び替え部8900-01-1は、ストリーム1の(直交)ベースバンド信号8201_1、制御信号8200-00を入力とし、制御信号8200-00に含まれるキャリア並び替えの情報に基づいて、キャリアの並び替えを行い(図88参照)キャリア並び替え後のベースバンド信号8900-02-1を出力する。
したがって、図1の信号処理部112は、ストリーム1の(直交)ベースバンド信号111_1の代わりにキャリア並び替え後のベースバンド信号8900-02-1を入力とし、ストリーム2の(直交)ベースバンド信号111_2の代わりにキャリア並び替え後のベースバンド信号8900-02-2を入力とする。
図90において、図58、図76、図82と同様に動作するものについては、同一番号を付しており、説明は省略する。
したがって、図76の無線部5816は、変調信号7600-02の代わりにキャリア並び替え後のベースバンド信号9000-02を入力とする。
(補足2)
実施の形態2において、データシンボル群を周波数分割多重しているときの(サブ)キャリア間隔の設定とデータシンボル群を時間分割多重している(または、データシンボル群を周波数分割していない)ときの(サブ)キャリア間隔の設定を別々に行うことを説明しているが、当然であるが、実施の形態C、実施の形態Dにおいて、適用することが可能である。
図92に、「異なる」ときの例を示している。ただし、第1プリアンブルを送信している時間のチャネル間隔と、第2プリアンブルを送信している時間のチャネル間隔は等しいものとする。(ただし、第1プリアンブルを送信している時間の周波数占有帯域と、第2プリアンブルを送信している時間の周波数占有帯域は同じであってもよいし、異なっていてもよい。)図92において、第1プリアンブルを送信している時間に存在する(サブ)キャリア数は64であり、第2プリアンブルを送信している時間に存在する(サブ)キャリア数は256である。
図93に、「異なる」ときの例を示している。ただし、第1プリアンブルを送信している時間のチャネル間隔と、データシンボル群#TFD10(#TFD10)(7900-10)を送信している時間のチャネル間隔は等しいものとする。(ただし、第1プリアンブルを送信している時間の周波数占有帯域と、データシンボル群#TFD10(#TFD10)(7900-10)を送信している時間の周波数占有帯域は同じであってもよいし、異なっていてもよい。)図93において、第1プリアンブルを送信している時間に存在する(サブ)キャリア数は64であり、データシンボル群#TFD10(#TFD10)(7900-10)を送信している時間に存在する(サブ)キャリア数は256である。
本明細書で説明した時間-周波数軸におけるフレーム構成(例えば、図2、図3、図4、図5、図6、図24、図25、図26、図27、図28、図29、図30、図31、図32、図33、図34、図35、図36、図37、図38図48、図29、図50、図51、図52、図53、図54、図63、図65、図79など(フレーム構成は、これに限ったものではない))の変調信号を基地局(または、アクセスポイント(AP)など)が送信する際場合を説明したが、本明細書で説明した時間-周波数軸におけるフレーム構成におけるデータシンボル群それぞれを異なる端末が送信するように実施してもよい。以下では、この点について説明を行う。
図94において、データシンボル群#FD1(#TFD1)(7900-01)は、端末#1が送信するデータシンボル群であるものとする。
データシンボル群#FD2(#TFD2)(7900-02)は、端末#2が送信するデータシンボル群であり、データシンボル群#FD3(#TFD3)(7900-03)は、端末#3が送信するデータシンボル群であり、データシンボル群#FD4(#TFD4)(7900-04)は、端末#4が送信するデータシンボル群であり、データシンボル群#FD5(#TFD5)(7900-05)は、端末#5が送信するデータシンボル群であり、データシンボル群#FD6(#TFD6)(7900-06)は、端末#6が送信するデータシンボル群であり、データシンボル群#FD7(#TFD7)(7900-07)は、端末#7が送信するデータシンボル群であり、データシンボル群#FD8(#TFD8)(7900-08)は、端末#8が送信するデータシンボル群であり、データシンボル群#FD9(#TFD9)(7900-09)は、端末#9が送信するデータシンボル群であり、データシンボル群#TD10(#TFD10)(7900-10)は、端末#10が送信するデータシンボル群であり、データシンボル群#TD11(#TFD11)(7900-11)は、端末#11が送信するデータシンボル群である。
このとき、端末#1は、図94のようにデータシンボル群#FD1(#TFD1)(7900-01)を送信し、端末#2は、図94のようにデータシンボル群#FD2(#TFD2)(7900-02)を送信し、端末#3は、図94のようにデータシンボル群#FD3(#TFD3)(7900-03)を送信し、端末#4は、図94のようにデータシンボル群#FD4(#TFD4)(7900-04)を送信する。
このとき、端末#5は、図94のようにデータシンボル群#FD5(#TFD5)(7900-05)を送信し、端末#6は、図94のようにデータシンボル群#FD6(#TFD6)(7900-06)を送信し、端末#7は、図94のようにデータシンボル群#FD7(#TFD7)(7900-07)を送信し、端末#8は、図94のようにデータシンボル群#FD8(#TFD8)(7900-08)を送信し、端末#9は、図94のようにデータシンボル群#FD9(#TFD9)(7900-09)を送信する。
このとき、端末#10は、図94のようにデータシンボル群#TD10(#TFD10)(7900-10)を送信し、端末#11は、図94のようにデータシンボル群#TD11(#TFD11)(7900-11)を送信する。
例えば、第3プリアンブル9600-01は、信号検出、時間・周波数同期のための(送受信機において既知の)PSKシンボルを含んでおり、第4プリアンブル9600-02は、受信装置がAGC(Automatic Gain Control)を実施するためのAGCシンボル、チャネル推定を行うためのパイロットシンボル(リファレンスシンボル)、基地局(AP)が端末を識別するための端末情報、データシンボル9600-03の変調方式、誤り訂正符号の情報を伝送するための制御情報シンボルなどを含んでいるものとする。
なお、図96において、第3プリアンブル9600-01、第4プリアンブル9600-02、データシンボルの時間-周波数軸における配置はこれに限ったのではなく、例えば、特定のキャリアに、第3プリアンブル、第4プリアンブルを配置してもよい。
(実施の形態E)
本実施の形態では、基地局(AP)が、実施の形態C、実施の形態Dで説明したように、図79のフレーム構成の変調信号を送信する場合の具体的な例について説明する。
図98において、9800-01はプリアンブルであり、9800-02はデータシンボル群#Aであり、プリアンブル9800-01、および、データシンボル群#A(9800-02)は、例えば、新たな端末#Aに伝送するためのシンボル(シンボル群)であるものとする。
図99において、横軸を時間、縦軸を周波数(キャリア)としたときの時間t3から時間t4におけるデータシンボル群の構成の一例を示している。図99において、9900-01はデータシンボルであり、このシンボルを用いて、基地局(AP)は、データを送信しているものとする。
図100において、10000-01はプリアンブルであり、10000-02はデータシンボル群#Bであり、プリアンブル10000-01、および、データシンボル群#B(10000-02)は、例えば、新たな端末#Bに伝送するためのシンボル(シンボル群)であるものとする。
そして、図98、図100を用いて説明したように、「空きシンボル(空きスロット)」を利用して、データシンボル群を、基地局(AP)が送信することで、基地局(AP)および端末から構成されるシステムにおいて、データの伝送効率が向上するという効果を得ることができる。このとき、図98、図100において、プリアンブルを送信しているが、このシンボルを追加することで、(新たな)端末は、データシンボル群が存在することを認識することができるという効果を得ることができる。また、基地局(AP)が、図98、図100のように、プリアンブルとデータシンボル群を送信することで、データシンボル同士の干渉を抑えることができる(同一時刻、同一周波数に複数のデータシンボルが存在するようなことを防ぐことができる)ことになる。
図79のデータシンボル群#TD10(#TFD10)(7900-10)、データシンボル群#11(#TFD11)(7900-11)において、実施の形態Dでは、ダミーシンボル(または、ダミースロット、ダミーデータ)を挿入する例を説明したが、ここでは、ダミーシンボル(または、ダミースロット、ダミーデータ)を挿入しない例について説明する。
したがって、データシンボル群を時間分割(または、2以上のデータシンボル群が存在する時間が内容にデータシンボル群を配置する)行った際は、新たな「プリアンブルとデータシンボル群」を送信するような構成を適用することになる。(ただし、新たな「プリアンブルとデータシンボル群」を送信するような構成としてもよい。)
以上のように、データシンボル群における「空きシンボル(空きスロット)」を用いて、(プリアンブル、および、)新たにデータシンボル群を送信することで、基地局(AP)および端末から構成されるシステムにおいて、データ伝送効率が向上するという効果を得ることができる。
図102は、図79とは異なる、基地局(AP)が送信する別のフレーム構成の一例であり、図2、図79と同様に動作するものについては、同一番号を付しており、説明は省略する。
図102の時間t3から時間t4に存在するデータシンボル群#FD5(#TFD5)(7900-05)、データシンボル群#FD6(#TFD6)(7900-06)、データシンボル群#FD7(#TFD7)(7900-07)、データシンボル群#FD8(#TFD8)(7900-08)、データシンボル群#FD9(#TFD9)(7900-09)において、実施の形態Dでは、ダミーシンボル(または、ダミースロット、ダミーデータ)を挿入する例を説明したが、本実施の形態では、ダミーシンボル(または、ダミースロット、ダミーデータ)を挿入しない例について説明する。
図99の9900-02は、空きシンボル(または、空きスロット)であり、このシンボルでは、基地局(AP)は、データを送信しておらず、空きシンボル(空きスロット)9900-02では、シンボルが存在していない、つまり、空きシンボル(空きスロット)9900-02が占める時間区間、および、周波数区間では、変調信号が存在していないものとする。
図103において、10300-01はデータシンボル群#Aであり、データシンボル群#B(10300-01)は、例えば、新たな端末#Bに伝送するためのシンボル(シンボル群)であるものとする。
図102のデータシンボル群#TD10(#TFD10)(7900-10)、データシンボル群#TD11(#TFD11)(7900-11)において、実施の形態Dでは、ダミーシンボル(または、ダミースロット、ダミーデータ)を挿入する例を説明したが、ここでは、ダミーシンボル(または、ダミースロット、ダミーデータ)を挿入しない例について説明する。
このとき、図104のように、時間t4から時間t5の間に第3のプリアンブル10400-01を挿入することになる。(なお、図104において、横軸は時間、縦軸は周波数であり、図79と同様に動作するものについては、同一番号を付しており、その説明は省略する。)そして、図105に示すように、図101に示した空きシンボル(空きスロット)10100-02を用いて、データシンボル群#C(10500-01)を送信することになる。(なお、図105において、横軸は時間、縦軸は周波数であり、図101と同様に動作するものについては、同一番号を付しており、その説明は省略する。)
図105において、データシンボル群#C(10500-01)は、例えば、新たな端末#Cに伝送するためのシンボル(シンボル群)であるものとする。
以上のように、データシンボル群における「空きシンボル(空きスロット)」を用いて、新たにデータシンボル群を送信することで、基地局(AP)および端末から構成されるシステムにおいて、データ伝送効率が向上するという効果を得ることができる。
(補足3)
実施の形態C、実施の形態Dなどでは、基地局(AP)が、データシンボル群に対し、ダミーシンボルを挿入する方法について説明しており、実施の形態Cでは、データシンボル群に対し、空きシンボル(空きスロット)を配置する方法について説明した。このとき、基地局(AP)は、データシンボル群に対し、ダミーシンボルを挿入する方法と、データシンボル群に対し、空きシンボル(空きスロット)を配置する方法を、フレームごとに切り替えて使用するようにしてもよい。
例えば、「FFTサイズ、または、フーリエ変換のサイズ」を変更することが、「OFDMの変調信号における使用しているサブキャリア数」が変更するということであってもよい。
また、基地局(AP)が送信する変調信号が使用する周波数帯域の一部を用いて、端末は変調方式を送信するTDD(Time Division Duplex)方式を適用してもよい。
分配部10600-02は、送信信号10600-01を入力とし、分配を行い、送信信号10600-03_1、10600-03_2、10600-03_3、10600-03_4を出力する。
乗算部10600-04_2は、送信信号10600-03_2、および、制御信号10600-00を入力とし、制御信号10600-00に含まれる乗算係数の情報に基づき、送信信号10600-03_2に乗算係数を乗算し、乗算後の信号10600-05_2を出力し、乗算後の信号10600-05_2は、電波としてアンテナ10600-06_2から出力される。
乗算部10600-04_3は、送信信号10600-03_3、および、制御信号10600-00を入力とし、制御信号10600-00に含まれる乗算係数の情報に基づき、送信信号10600-03_3に乗算係数を乗算し、乗算後の信号10600-05_3を出力し、乗算後の信号10600-05_3は、電波としてアンテナ10600-06_3から出力される。
乗算部10600-04_4は、送信信号10600-03_4、および、制御信号10600-00を入力とし、制御信号10600-00に含まれる乗算係数の情報に基づき、送信信号10600-03_4に乗算係数を乗算し、乗算後の信号10600-05_4を出力し、乗算後の信号10600-05_4は、電波としてアンテナ10600-06_4から出力される。
なお、「W1の絶対値、W2の絶対値、W3の絶対値、W4の絶対値が等しく」てもよい。このとき、位相変更が行われたことに相当する。(当然であるが、W1の絶対値、W2の絶対値、W3の絶対値、W4の絶対値は等しくなくてもよい。)
また、図106では、アンテナ部は、4本のアンテナ(および、4つの乗算部)で構成されている例で説明しているが、アンテナの本数は4に限ったものではなく、2本以上のアンテナで構成されていればよい。
乗算部10700-03_1は、アンテナ10700-01_1で受信した受信信号10700-02_1、制御信号10700-00を入力とし、制御信号10700-00に含まれる乗算係数の情報に基づき、受信信号10700-02_1に乗算係数を乗算し、乗算後の信号10700-04_1を出力する。
乗算部10700-03_2は、アンテナ10700-01_2で受信した受信信号10700-02_2、制御信号10700-00を入力とし、制御信号10700-00に含まれる乗算係数の情報に基づき、受信信号10700-02_2に乗算係数を乗算し、乗算後の信号10700-04_2を出力する。
乗算部10700-03_3は、アンテナ10700-01_3で受信した受信信号10700-02_3、制御信号10700-00を入力とし、制御信号10700-00に含まれる乗算係数の情報に基づき、受信信号10700-02_3に乗算係数を乗算し、乗算後の信号10700-04_3を出力する。
乗算部10700-03_4は、アンテナ10700-01_4で受信した受信信号10700-02_4、制御信号10700-00を入力とし、制御信号10700-00に含まれる乗算係数の情報に基づき、受信信号10700-02_4に乗算係数を乗算し、乗算後の信号10700-04_4を出力する。
合成部10700-05は、乗算後の信号10700-04_1、10700-04_2、10700-04_3、10700-04_4を合成し、合成後の信号10700-06を出力する。なお、合成後の信号10700-06は、Rx1(t)×D1+Rx2(t)×D2+Rx3(t)×D3+Rx4(t)×D4とあらわされる。
105 第2プリアンブル生成部
108 制御信号生成部
110 フレーム構成部
112 信号処理部
114 パイロット挿入部
116 IFFT部
118 PAPR削減部
120 ガードインターバル挿入部
122 第1プリアンブル挿入部
124 無線処理部
126 アンテナ
Claims (2)
- OFDM(orthogonal frequency-division multiplexing)信号を受信し、
前記OFDM信号は、プリアンブルおよび前記プリアンブルに後続する複数のサブフレームにパイロット信号が挿入され、パイロット信号が挿入された前記プリアンブルおよび前記複数のサブフレームにIFFTを適用して生成され、
前記プリアンブルは、制御情報を伝送し、
前記複数のサブフレームは、第1サブフレームおよび第2サブフレームを含み、前記第1サブフレームは、第1PLP(Physical Layer Pipe)の第1変調信号群および第2PLPの第2変調信号群を第1サブフレーム用の時間-周波数リソースにマッピングして構成され、前記第2サブフレームは、第3PLPの第3変調信号群を第2サブフレーム用の時間-周波数リソースにマッピングして構成され、
前記第1サブフレーム用の時間-周波数リソースは、第1OFDMシンボル用の第1リソース群および第2OFDMシンボル用の第2リソース群を含み、前記第1リソース群は、データ通信に用いられるODFMサブキャリアのそれぞれに対応して周波数方向に並んでおり、前記第2リソース群は、前記ODFMサブキャリアのそれぞれに対応して周波数方向に並んでおり、前記第1リソース群は前記第2リソース群と時間方向に隣接しており、
前記第1変調信号群は、第1信号列および前記第1信号列に後続する第2信号列を含み、
前記第1信号列は、前記第1リソース群における第1周波数範囲にマッピングされ、
前記第2信号列は、前記第2リソース群における前記第1周波数範囲にマッピングされ、
前記第2変調信号群は、第3信号列および前記第3信号列に後続する第4信号列を含み、
前記第3信号列は、前記第1リソース群における第2周波数範囲にマッピングされ、
前記第4信号列は、前記第2リソース群における前記第2周波数範囲にマッピングされ、
前記制御情報は、第1情報、第2情報および第3情報を含み、
前記第1情報は、前記第1サブフレーム先頭からの相対位置により、前記第1変調信号群に割り当てられた時間-周波数リソース群の先頭位置を示し、
前記第2情報は、前記第1サブフレーム先頭からの相対位置により、前記第2変調信号群に割り当てられた時間-周波数リソース群の先頭位置を示し、
前記第3情報は、前記第2サブフレーム先頭からの相対位置により、前記第3変調信号群に割り当てられた時間-周波数リソース群の先頭位置を示し、
各PLPの変調信号群に割り当てられた時間-周波数リソース群に基づいて、前記OFDM信号を復調して前記第1PLP、第2PLPまたは第3PLPの受信データを取得する
受信方法。 - 前記第1信号列の最後尾の変調信号は、前記第1リソース群の前記第1周波数範囲で最も周波数が高いリソースにマッピングされ、
前記第2信号列の先頭の変調信号は、前記第2リソース群の前記第1周波数範囲で最も周波数が低いリソースにマッピングされる
請求項1に記載の受信方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023152368A JP7562793B2 (ja) | 2015-06-19 | 2023-09-20 | 受信方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562182004P | 2015-06-19 | 2015-06-19 | |
US62/182,004 | 2015-06-19 | ||
JP2016102765A JP2017011689A (ja) | 2015-06-19 | 2016-05-23 | 送信方法、受信方法、送信装置、及び受信装置 |
JP2021114310A JP7136975B2 (ja) | 2015-06-19 | 2021-07-09 | 送信方法、受信方法、送信装置、及び受信装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021114310A Division JP7136975B2 (ja) | 2015-06-19 | 2021-07-09 | 送信方法、受信方法、送信装置、及び受信装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023152368A Division JP7562793B2 (ja) | 2015-06-19 | 2023-09-20 | 受信方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022172250A true JP2022172250A (ja) | 2022-11-15 |
JP7355904B2 JP7355904B2 (ja) | 2023-10-03 |
Family
ID=57545213
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022137924A Active JP7355904B2 (ja) | 2015-06-19 | 2022-08-31 | 受信方法 |
JP2023152368A Active JP7562793B2 (ja) | 2015-06-19 | 2023-09-20 | 受信方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023152368A Active JP7562793B2 (ja) | 2015-06-19 | 2023-09-20 | 受信方法 |
Country Status (7)
Country | Link |
---|---|
US (2) | US11876655B2 (ja) |
EP (1) | EP4340508A3 (ja) |
JP (2) | JP7355904B2 (ja) |
KR (1) | KR102647626B1 (ja) |
CN (1) | CN110535501B (ja) |
MX (1) | MX2020004152A (ja) |
WO (1) | WO2016203750A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020530239A (ja) | 2017-08-10 | 2020-10-15 | 華為技術有限公司Huawei Technologies Co.,Ltd. | 信号送信方法および信号送信装置、ならびに信号受信方法および信号受信装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011502405A (ja) * | 2007-10-31 | 2011-01-20 | クゥアルコム・インコーポレイテッド | ワイヤレスマルチキャリア通信システムにおける複数のデータストリームの多重化および送信 |
WO2012176458A1 (ja) * | 2011-06-24 | 2012-12-27 | パナソニック株式会社 | 送信装置、送信方法、受信装置および受信方法 |
US20130044725A1 (en) * | 2010-05-10 | 2013-02-21 | Lg Electronics Inc. | Method and apparatus for allocating resources for uplink control channel in wireless communication system |
JP2013059048A (ja) * | 2007-01-30 | 2013-03-28 | Qualcomm Inc | 品質及びレート情報に基づいてマルチメディアコンテンツのサイズを変更するための方法及びシステム |
JP2015092692A (ja) * | 2010-02-26 | 2015-05-14 | パナソニックIpマネジメント株式会社 | 送信方法、受信方法、送信装置、受信装置 |
JP2015522969A (ja) * | 2012-05-10 | 2015-08-06 | サムスン エレクトロニクス カンパニー リミテッド | デジタルビデオブロードキャスティングシステムにおけるデータストリームを送受信する方法及び装置 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006295510A (ja) * | 2005-04-08 | 2006-10-26 | Mitsubishi Electric Corp | Fecフレーム符号化装置、fec多重化装置、fec多重分離装置、および光通信装置 |
KR20080015983A (ko) | 2006-08-17 | 2008-02-21 | 삼성전자주식회사 | 광대역 무선접속 시스템에서 프레임 통신 장치 및 방법 |
EP1916782A1 (en) | 2006-10-26 | 2008-04-30 | Nortel Networks Limited | Frame structure for a multi-hop wireless system |
JP4850735B2 (ja) * | 2007-01-30 | 2012-01-11 | 京セラ株式会社 | 無線通信端末及びフレーム同期方法 |
KR20080082889A (ko) * | 2007-03-09 | 2008-09-12 | 삼성전자주식회사 | 통신 시스템에서 공통 제어 정보 송수신 방법 및 그 시스템 |
CN101364972B (zh) * | 2007-08-07 | 2011-08-17 | 鼎桥通信技术有限公司 | 一种无线帧传输方法、系统、基站及用户设备 |
JP4412505B2 (ja) * | 2007-08-08 | 2010-02-10 | 日本電気株式会社 | 無線通信システム |
KR101520667B1 (ko) * | 2007-09-10 | 2015-05-18 | 엘지전자 주식회사 | 다중 안테나 시스템에서의 파일럿 부반송파 할당 방법 |
US8326324B2 (en) * | 2008-01-08 | 2012-12-04 | Wi-Lan, Inc. | Systems and methods for location positioning within radio access systems |
ES2353578T3 (es) * | 2008-02-04 | 2011-03-03 | Lg Electronics Inc. | Aparato para transmitir y recibir una señal y procedimiento para transmitir y recibir una señal. |
KR101162805B1 (ko) * | 2008-02-21 | 2012-07-05 | 삼성전자주식회사 | 무선 디지털 방송 시스템에서 제어 정보 송/수신 장치 및방법 |
US8483161B2 (en) * | 2008-04-30 | 2013-07-09 | Lg Electronics Inc. | System information transmission method and subframe structure |
US8165096B2 (en) | 2008-05-19 | 2012-04-24 | Qualcomm Incorporated | Methods and systems of improved success rate for decoding downlink map and uplink map IES in mobile WIMAX mobile |
JP5286029B2 (ja) * | 2008-10-30 | 2013-09-11 | 京セラ株式会社 | データ送信装置およびデータ送信方法 |
KR101570351B1 (ko) * | 2009-01-07 | 2015-11-19 | 엘지전자 주식회사 | 신호 송신 방법 |
GB2471870A (en) * | 2009-07-15 | 2011-01-19 | Sony Corp | Recovering data from OFDM symbols at a receiver |
CA2819405C (en) | 2010-02-23 | 2017-06-27 | Lg Electronics Inc. | Broadcasting signal transmission device, broadcasting signal reception device, and method for transmitting/receiving broadcasting signal using same |
WO2012018164A1 (ko) * | 2010-08-06 | 2012-02-09 | 연세대학교 산학협력단 | 다중 안테나 시스템에서의 송수신 장치 및 채널 추정 방법 |
EP2645709B1 (en) * | 2010-11-23 | 2019-10-23 | LG Electronics Inc. | Broadcast signal transmitting apparatus and broadcast signal transceiving method in broadcast signal transmitting apparatus |
WO2012176459A1 (ja) * | 2011-06-24 | 2012-12-27 | パナソニック株式会社 | 送信装置、送信方法、受信装置および受信方法 |
WO2014175606A1 (en) | 2013-04-21 | 2014-10-30 | Lg Electronics Inc. | Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals |
KR101772462B1 (ko) * | 2013-08-09 | 2017-08-30 | 엘지전자 주식회사 | 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법 및 방송 신호 수신 방법 |
EP3050303B1 (en) | 2013-09-27 | 2019-04-17 | LG Electronics Inc. | Apparatus for transmitting broadcast signals and method thereof |
CN110034793B (zh) * | 2014-04-24 | 2022-05-27 | 松下电器(美国)知识产权公司 | 发送方法、发送机、接收方法及接收机 |
-
2016
- 2016-06-13 CN CN201910986986.7A patent/CN110535501B/zh active Active
- 2016-06-13 KR KR1020237040208A patent/KR102647626B1/ko active IP Right Grant
- 2016-06-13 WO PCT/JP2016/002836 patent/WO2016203750A1/ja active Application Filing
- 2016-06-13 EP EP23218988.6A patent/EP4340508A3/en active Pending
-
2017
- 2017-12-18 MX MX2020004152A patent/MX2020004152A/es unknown
-
2022
- 2022-08-31 JP JP2022137924A patent/JP7355904B2/ja active Active
- 2022-10-05 US US17/960,240 patent/US11876655B2/en active Active
-
2023
- 2023-09-20 JP JP2023152368A patent/JP7562793B2/ja active Active
- 2023-12-05 US US18/529,095 patent/US20240113927A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013059048A (ja) * | 2007-01-30 | 2013-03-28 | Qualcomm Inc | 品質及びレート情報に基づいてマルチメディアコンテンツのサイズを変更するための方法及びシステム |
JP2011502405A (ja) * | 2007-10-31 | 2011-01-20 | クゥアルコム・インコーポレイテッド | ワイヤレスマルチキャリア通信システムにおける複数のデータストリームの多重化および送信 |
JP2015092692A (ja) * | 2010-02-26 | 2015-05-14 | パナソニックIpマネジメント株式会社 | 送信方法、受信方法、送信装置、受信装置 |
US20130044725A1 (en) * | 2010-05-10 | 2013-02-21 | Lg Electronics Inc. | Method and apparatus for allocating resources for uplink control channel in wireless communication system |
JP2013526211A (ja) * | 2010-05-10 | 2013-06-20 | エルジー エレクトロニクス インコーポレイティド | 無線通信システムにおけるアップリンク制御チャネルのためのリソース割当方法及び装置 |
WO2012176458A1 (ja) * | 2011-06-24 | 2012-12-27 | パナソニック株式会社 | 送信装置、送信方法、受信装置および受信方法 |
JP2015522969A (ja) * | 2012-05-10 | 2015-08-06 | サムスン エレクトロニクス カンパニー リミテッド | デジタルビデオブロードキャスティングシステムにおけるデータストリームを送受信する方法及び装置 |
JP2015523765A (ja) * | 2012-05-10 | 2015-08-13 | サムスン エレクトロニクス カンパニー リミテッド | デジタルビデオブロードキャスティングシステムにおけるデータストリームを送受信する方法及び装置 |
Also Published As
Publication number | Publication date |
---|---|
EP4340508A3 (en) | 2024-10-09 |
CN110535501B (zh) | 2022-04-05 |
KR20230163586A (ko) | 2023-11-30 |
US11876655B2 (en) | 2024-01-16 |
KR102647626B1 (ko) | 2024-03-14 |
US20230031907A1 (en) | 2023-02-02 |
MX2020004152A (es) | 2020-08-13 |
JP7562793B2 (ja) | 2024-10-07 |
EP4340508A2 (en) | 2024-03-20 |
CN110535501A (zh) | 2019-12-03 |
US20240113927A1 (en) | 2024-04-04 |
WO2016203750A1 (ja) | 2016-12-22 |
JP2023166593A (ja) | 2023-11-21 |
JP7355904B2 (ja) | 2023-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7264860B2 (ja) | 送信装置 | |
JP7136975B2 (ja) | 送信方法、受信方法、送信装置、及び受信装置 | |
JP6818431B2 (ja) | 送信方法、受信方法、送信装置、及び受信装置 | |
JP7562793B2 (ja) | 受信方法 | |
JP7526315B2 (ja) | 送信方法、受信方法、送信装置、及び受信装置 | |
US20230050434A1 (en) | Transmitting method, receiving method, transmitting apparatus, and receiving apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220831 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230822 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230921 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7355904 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |