JP2022168485A - 校正装置及び校正方法 - Google Patents

校正装置及び校正方法 Download PDF

Info

Publication number
JP2022168485A
JP2022168485A JP2021073983A JP2021073983A JP2022168485A JP 2022168485 A JP2022168485 A JP 2022168485A JP 2021073983 A JP2021073983 A JP 2021073983A JP 2021073983 A JP2021073983 A JP 2021073983A JP 2022168485 A JP2022168485 A JP 2022168485A
Authority
JP
Japan
Prior art keywords
base substrate
light
light emitting
calibration device
emitting devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021073983A
Other languages
English (en)
Inventor
優斗 薄
Yuto Usuki
吉平 杉田
Kippei Sugita
充 土樋輪
Mitsuru Toiwa
崇 新沼
Takashi Niinuma
永典 酒井
Naganori Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2021073983A priority Critical patent/JP2022168485A/ja
Priority to US17/729,000 priority patent/US20220341844A1/en
Publication of JP2022168485A publication Critical patent/JP2022168485A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/68Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using high frequency electric fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation
    • G01N2201/1273Check triggered by sensing conditions, e.g. ambient changes

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】プラズマ処理装置内で生成されたプラズマを監視する発光分光分析装置を校正する技術を提供する。【解決手段】例示的実施形態に係る校正装置は、板状のベース基板と、ベース基板上に配置され、互いに異なる波長の光を発する複数の発光装置と、ベース基板上に配置された反射部材であって、複数の発光装置が発する光を、平面視においてベース基板の外側に向けて反射する反射部材と、ベース基板に配置され、複数の発光装置を制御する制御装置と、を備える。【選択図】図5

Description

本開示の例示的実施形態は、校正装置及び校正方法に関する。
特許文献1には、プラズマ処理装置が開示されている。このプラズマ処理装置では、発光分光分析装置によって、プラズマ処理装置内で生成されたプラズマ光の波長スペクトルの変化が監視される。
特開2020-65013号公報
本開示は、プラズマ処理装置内で生成されたプラズマを監視する発光分光分析装置を校正するための技術を提供する。
一つの例示的実施形態においては、プラズマ処理装置内で生成されたプラズマを監視する発光分光分析装置を校正する治具が提供される。治具は、板状のベース基板と、複数の光源と、反射部材と、制御装置と、を備える。複数の光源は、ベース基板上に配置されており、互いに異なる波長の光を発する。反射部材は、ベース基板上に配置されており、複数の光源が発する光を、平面視においてベース基板の外側に向けて反射する。制御装置は、ベース基板に配置されており、複数の光源を制御する。
一つの例示的実施形態に係る校正装置によれば、プラズマ処理装置内で生成されたプラズマを監視する発光分光分析装置を校正することができる。
処理システムを例示する図である。 アライナを例示する斜視図である。 プラズマ処理装置の一例を示す図である。 一例の校正装置を上面側から見た平面図である。 図4のV-V断面図である。 一例の校正装置を示すブロック図である。 一例の校正装置の加速度センサを説明するための模式図である。 一例の校正装置に加わる加速度を説明するためのグラフの例である。 処理システムを搬送される校正装置の搬送経路の例を示す図である。 一例の校正装置で利用される搬送レシピの例である。 校正装置の動作方法の一例を示すフローチャートである。 他の例に係る発光装置を説明するための図である。
以下、種々の例示的実施形態について説明する。
一つの例示的実施形態においては、プラズマ処理装置内で生成されたプラズマを監視する発光分光分析装置を校正する校正装置が提供される。校正装置は、板状のベース基板と、複数の光源と、反射部材と、制御装置と、を備える。複数の光源は、ベース基板上に配置されており、互いに異なる波長の光を発する。反射部材は、ベース基板上に配置されており、複数の光源が発する光を、平面視においてベース基板の外側に向けて反射する。制御装置は、ベース基板に配置されており、複数の光源を制御する。
上記実施形態の校正装置では、プラズマ処理装置内に設けられたステージ上に校正装置が配置された状態で、複数の光源から光が発せられるように、制御装置が複数の光源を制御する。複数の光源から発せられた光は、反射部材によって、平面視においてベース基板の外側に向かって反射する。プラズマ処理装置において、発光分光分析装置に光を入射させる窓がステージの側方に設けられている場合、反射部材によって反射された光源からの光は、発光分光分析装置に入射され易くなる。すなわち、発光分光分析装置に入射する光の強度は高くなる。複数の光源の光は校正のための基準とすることができるので、プラズマ処理装置内で生成されたプラズマを監視する発光分光分析装置を校正することができる。
一つの例示的実施形態において、複数の光源のそれぞれは、LED光源である。
一つの例示的実施形態において、ベース基板は、円盤状を呈しており、周縁の一部にノッチを含んでいる。処理システムに、ウエハの回転位置を制御するアライナが設けられている場合に、当該アライナによって校正装置の回転位置を制御できる。
一つの例示的実施形態において、複数の光源は、ベース基板の周縁に沿って周方向に配列されている。この構成では、プラズマ処理装置において、発光分光分析装置に光を入射させる窓がステージの側方に設けられている場合、複数の光源のいずれかを窓に近づけることができる。
一つの例示的実施形態において、ベース基板に配置された加速度センサをさらに備えてもよい。制御装置は、加速度センサの出力値に基づいて、プラズマ処理装置内における校正装置の搬送位置を認識し、校正装置が所定の位置に搬送されたと認識されたときに複数の光源を発光させてもよい。この構成では、搬送装置によって校正装置がステージ上に搬送されたタイミングで複数の光源を発光させることができる。
一つの例示的実施形態においては、プラズマ処理装置内で生成されたプラズマを監視する発光分光分析装置を校正する校正装置が提供される。校正装置は、板状のベース基板と、複数の光源と、制御装置とを備える。複数の光源は、ベース基板上に配置されており、互いに異なる波長の光を発する。制御装置は、複数の光源を制御する。光源の光軸は、平面視においてベース基板の外側に向いている。
上記実施形態の校正装置では、プラズマ処理装置内に設けられたステージ上に校正装置が配置された状態で、複数の光源から光が発せられるように、制御装置が複数の光源を制御する。複数の光源から発せられた光は、平面視においてベース基板の外側に向かって照射される。プラズマ処理装置において、発光分光分析装置に光を入射させる窓がステージの側方に設けられている場合、光源からの光は、発光分光分析装置に入射され易くなる。すなわち、発光分光分析装置に入射する光の強度は高くなる。複数の光源の光は校正のための基準とすることができるので、プラズマ処理装置内で生成されたプラズマを監視する発光分光分析装置を校正することができる。
一つの例示的実施形態においては、校正装置を用いて、プラズマ処理装置内で生成されるプラズマを監視する発光分光分析装置を校正する方法が提供される。校正装置は、上記いずれかの校正装置であってよい。該方法は、搬送装置によって校正装置を前記プラズマ処理装置内に搬送する工程を含む。また、該方法は、プラズマ処理装置内に搬送された校正装置の複数の光源を発光させる工程を含む、また、該方法は、複数の光源から発せられる光の強度データを発光分光分析装置によって測定する工程を含む。また、該方法は、強度データに基づいて発光分光分析装置を校正する工程を含む。
以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
一つの例示的実施形態に係る校正装置は、半導体製造装置S1としての機能を有する処理システム1によって搬送され得る。まず、被加工物を処理するための処理装置、及び、当該処理装置に被加工物を搬送するための搬送装置を有する処理システムについて説明する。図1は、処理システムを例示する図である。処理システム1は、台2a~2d、容器4a~4d、ローダモジュールLM、アライナAN、ロードロックモジュールLL1,LL2、プロセスモジュールPM1~PM6、トランスファーモジュールTF、及び、制御部MCを備えている。なお、台2a~2dの個数、容器4a~4dの個数、ロードロックモジュールLL1,LL2の個数、及び、プロセスモジュールPM1~PM6の個数は限定されるものではなく、一以上の任意の個数であり得る。
台2a~2dは、ローダモジュールLMの一縁に沿って配列されている。容器4a~4dはそれぞれ、台2a~2d上に搭載されている。容器4a~4dの各々は、例えば、FOUP(Front Opening Unified Pod)と称される容器である。容器4a~4dのそれぞれは、被加工物Wを収容するように構成され得る。被加工物Wは、ウエハのように略円盤形状を有する。
ローダモジュールLMは、大気圧状態の搬送空間をその内部に画成するチャンバ壁を有している。この搬送空間内には搬送装置TU1が設けられている。搬送装置TU1は、例えば、多関節ロボットであり、制御部MCによって制御される。搬送装置TU1は、容器4a~4dとアライナANとの間、アライナANとロードロックモジュールLL1~LL2の間、ロードロックモジュールLL1~LL2と容器4a~4dの間で被加工物Wを搬送するように構成されている。
アライナANは、ローダモジュールLMと接続されている。アライナANは、被加工物Wの位置の調整(位置の校正)を行うように構成されている。図2は、アライナを例示する斜視図である。アライナANは、支持台6T、駆動装置6D、及び、センサ6Sを有している。支持台6Tは、鉛直方向に延びる軸線中心に回転可能な台であり、その上に被加工物Wを支持するように構成されている。支持台6Tは、駆動装置6Dによって回転される。駆動装置6Dは、制御部MCによって制御される。駆動装置6Dからの動力により支持台6Tが回転すると、当該支持台6T上に載置された被加工物Wも回転するようになっている。
センサ6Sは、光学センサであり、被加工物Wが回転されている間、被加工物Wのエッジを検出する。センサ6Sは、エッジの検出結果から、基準角度位置に対する被加工物WのノッチWN(或いは、別のマーカー)の角度位置のずれ量、及び、基準位置に対する被加工物Wの中心位置のずれ量を検出する。センサ6Sは、ノッチWNの角度位置のずれ量及び被加工物Wの中心位置のずれ量を制御部MCに出力する。制御部MCは、ノッチWNの角度位置のずれ量に基づき、ノッチWNの角度位置を基準角度位置に補正するための支持台6Tの回転量を算出する。制御部MCは、この回転量の分だけ支持台6Tを回転させるよう、駆動装置6Dを制御する。これにより、ノッチWNの角度位置を基準角度位置に補正することができる。また、制御部MCは、ノッチWNの角度位置を任意の角度位置に補正してもよい。また、制御部MCは、アライナANから被加工物Wを受け取る際の搬送装置TU1のエンドエフェクタ(end effector)の位置を、被加工物Wの中心位置のずれ量に基づき、制御する。これにより、搬送装置TU1のエンドエフェクタ上の所定位置に被加工物Wの中心位置が一致する。
図1に戻り、ロードロックモジュールLL1及びロードロックモジュールLL2の各々は、ローダモジュールLMとトランスファーモジュールTFとの間に設けられている。ロードロックモジュールLL1及びロードロックモジュールLL2の各々は、予備減圧室を提供している。
トランスファーモジュールTFは、ロードロックモジュールLL1及びロードロックモジュールLL2にゲートバルブを介して気密に接続されている。トランスファーモジュールTFは、減圧可能な減圧室を提供している。この減圧室には、搬送装置TU2が設けられている。搬送装置TU2は、例えば、搬送アームTUaを有する多関節ロボットであり、制御部MCによって制御される。搬送装置TU2は、ロードロックモジュールLL1~LL2とプロセスモジュールPM1~PM6との間、及び、プロセスモジュールPM1~PM6のうち任意の二つのプロセスモジュール間において、被加工物Wを搬送するように構成されている。
プロセスモジュールPM1~PM6は、トランスファーモジュールTFにゲートバルブを介して気密に接続されている。プロセスモジュールPM1~PM6の各々は、被加工物Wに対してプラズマ処理といった専用の処理を行うよう構成された処理装置である。
この処理システム1において被加工物Wの処理が行われる際の一連の動作は以下の通り例示される。ローダモジュールLMの搬送装置TU1が、容器4a~4dの何れかから被加工物Wを取り出し、当該被加工物WをアライナANに搬送する。次いで、搬送装置TU1は、その位置が調整された被加工物WをアライナANから取り出して、当該被加工物WをロードロックモジュールLL1及びロードロックモジュールLL2のうち一方のロードロックモジュールに搬送する。次いで、一方のロードロックモジュールが、予備減圧室の圧力を所定の圧力に減圧する。次いで、トランスファーモジュールTFの搬送装置TU2が、一方のロードロックモジュールから被加工物Wを取り出し、当該被加工物WをプロセスモジュールPM1~PM6のうち何れかに搬送する。そして、プロセスモジュールPM1~PM6のうち一以上のプロセスモジュールが被加工物Wを処理する。そして、搬送装置TU2が、処理後の被加工物WをプロセスモジュールからロードロックモジュールLL1及びロードロックモジュールLL2のうち一方のロードロックモジュールに搬送する。次いで、搬送装置TU1が被加工物Wを一方のロードロックモジュールから容器4a~4dの何れかに搬送する。
この処理システム1は、上述したように制御部MCを備えている。制御部MCは、プロセッサ、メモリといった記憶装置、表示装置、入出力装置、通信装置等を備えるコンピュータであり得る。上述した処理システム1の一連の動作は、記憶装置に記憶されたプログラムに従った制御部MCによる処理システム1の各部の制御により、実現されるようになっている。
図3は、プロセスモジュールPM1~PM6の何れかとして採用され得るプラズマ処理装置の一例を示す図である。図3に示すプラズマ処理装置10は、容量結合型プラズマエッチング装置である。プラズマ処理装置10は、略円筒形状のチャンバ本体12を備えている。チャンバ本体12は、例えば、アルミニウムから形成されており、その内壁面には、陽極酸化処理が施され得る。このチャンバ本体12は保安接地されている。
チャンバ本体12の底部上には、略円筒形状の支持部14が設けられている。支持部14は、例えば、絶縁材料から構成されている。支持部14は、チャンバ本体12内に設けられており、チャンバ本体12の底部から上方に延在している。また、チャンバ本体12によって提供されるチャンバS内には、ステージSTが設けられている。ステージSTは、支持部14によって支持されている。
ステージSTは、下部電極LE及び静電チャックESCを有している。下部電極LEは、第1プレート18a及び第2プレート18bを含んでいる。第1プレート18a及び第2プレート18bは、例えばアルミニウムといった金属から構成されており、略円盤形状をなしている。第2プレート18bは、第1プレート18a上に設けられており、第1プレート18aに電気的に接続されている。
第2プレート18b上には、静電チャックESCが設けられている。静電チャックESCは、導電膜である電極を一対の絶縁層又は絶縁シート間に配置した構造を有しており、略円盤形状を有している。静電チャックESCの電極には、直流電源22がスイッチ23を介して電気的に接続されている。この静電チャックESCは、直流電源22からの直流電圧により生じたクーロン力等の静電力により被加工物Wを吸着する。これにより、静電チャックESCは、被加工物Wを保持することができる。
第2プレート18bの周縁部上には、フォーカスリングFRが設けられている。このフォーカスリングFRは、被加工物Wのエッジ及び静電チャックESCを囲むように設けられている。このフォーカスリングFRは、シリコン、炭化ケイ素、酸化シリコンといった種々の材料のうち何れかから形成され得る。
第2プレート18bの内部には、冷媒流路24が設けられている。冷媒流路24は、温調機構を構成している。冷媒流路24には、チャンバ本体12の外部に設けられたチラーユニットから配管26aを介して冷媒が供給される。冷媒流路24に供給された冷媒は、配管26bを介してチラーユニットに戻される。このように、冷媒流路24とチラーユニットとの間では、冷媒が循環される。この冷媒の温度を制御することにより、静電チャックESCによって支持された被加工物Wの温度が制御される。
ステージSTには、当該ステージSTを貫通する複数(例えば、三つ)の貫通孔25が形成されている。複数の貫通孔25は、平面視において静電チャックESCの内側に形成されている。これら、それぞれの貫通孔25には、リフトピン25aが挿入されている。なお、図3においては、一本のリフトピン25aが挿入された一つの貫通孔25が描かれている。リフトピン25aは、貫通孔25内において上下動可能に設けられている。リフトピン25aの上昇によって、静電チャックESC上に支持された被加工物Wが上昇する。
ステージSTには、平面視において静電チャックESCよりも外側の位置に、当該ステージST(下部電極LE)を貫通する複数(例えば、三つ)の貫通孔27が形成されている。これら、それぞれの貫通孔27には、リフトピン27aが挿入されている。なお、図3においては、一本のリフトピン27aが挿入された一つの貫通孔27が描かれている。リフトピン27aは、貫通孔27内において上下動可能に設けられている。リフトピン27aの上昇によって、第2プレート18b上に支持されたフォーカスリングFRが上昇する。
また、プラズマ処理装置10には、ガス供給ライン28が設けられている。ガス供給ライン28は、伝熱ガス供給機構からの伝熱ガス、例えばHeガスを、静電チャックESCの上面と被加工物Wの裏面との間に供給する。
また、プラズマ処理装置10は、上部電極30を備えている。上部電極30は、ステージSTの上方において、当該ステージSTと対向配置されている。上部電極30は、絶縁性遮蔽部材32を介して、チャンバ本体12の上部に支持されている。上部電極30は、天板34及び支持体36を含み得る。天板34はチャンバSに面しており、当該天板34には複数のガス吐出孔34aが設けられている。この天板34は、シリコン又は石英から形成され得る。或いは、天板34は、アルミニウム製の母材の表面に酸化イットリウムといった耐プラズマ性の膜を形成することによって構成され得る。
支持体36は、天板34を着脱自在に支持するものであり、例えばアルミニウムといった導電性材料から構成され得る。この支持体36は、水冷構造を有し得る。支持体36の内部には、ガス拡散室36aが設けられている。このガス拡散室36aからは、ガス吐出孔34aに連通する複数のガス通流孔36bが下方に延びている。また、支持体36には、ガス拡散室36aに処理ガスを導くガス導入口36cが形成されており、このガス導入口36cには、ガス供給管38が接続されている。
ガス供給管38には、バルブ群42及び流量制御器群44を介して、ガスソース群40が接続されている。ガスソース群40は、複数種のガス用の複数のガスソースを含んでいる。バルブ群42は複数のバルブを含んでおり、流量制御器群44はマスフローコントローラといった複数の流量制御器を含んでいる。ガスソース群40の複数のガスソースはそれぞれ、バルブ群42の対応のバルブ及び流量制御器群44の対応の流量制御器を介して、ガス供給管38に接続されている。
また、プラズマ処理装置10では、チャンバ本体12の内壁に沿ってデポシールド46が着脱自在に設けられている。デポシールド46は、支持部14の外周にも設けられている。デポシールド46は、チャンバ本体12にエッチング副生物(デポ)が付着することを防止するものであり、アルミニウム材に酸化イットリウム等のセラミックスを被覆することにより構成され得る。
チャンバ本体12の底部側、且つ、支持部14とチャンバ本体12の側壁との間には排気プレート48が設けられている。排気プレート48は、例えば、アルミニウム材に酸化イットリウム等のセラミックスを被覆することにより構成され得る。排気プレート48には、その板厚方向に貫通する複数の孔が形成されている。この排気プレート48の下方、且つ、チャンバ本体12には、排気口12eが設けられている。排気口12eには、排気管52を介して排気装置50が接続されている。排気装置50は、圧力調整弁及びターボ分子ポンプなどの真空ポンプを有しており、チャンバ本体12内の空間を所望の真空度まで減圧することができる。また、チャンバ本体12の側壁には被加工物Wの搬入出口12gが設けられており、この搬入出口12gはゲートバルブ54により開閉可能となっている。
また、プラズマ処理装置10は、第1の高周波電源62及び第2の高周波電源64を更に備えている。第1の高周波電源62は、プラズマ生成用の第1の高周波を発生する電源であり、例えば、27~100MHzの周波数を有する高周波を発生する。第1の高周波電源62は、整合器66を介して上部電極30に接続されている。整合器66は、第1の高周波電源62の出力インピーダンスと負荷側(上部電極30側)の入力インピーダンスを整合させるための回路を有している。なお、第1の高周波電源62は、整合器66を介して下部電極LEに接続されていてもよい。
第2の高周波電源64は、被加工物Wにイオンを引き込むための第2の高周波を発生する電源であり、例えば、400kHz~13.56MHzの範囲内の周波数の高周波を発生する。第2の高周波電源64は、整合器68を介して下部電極LEに接続されている。整合器68は、第2の高周波電源64の出力インピーダンスと負荷側(下部電極LE側)の入力インピーダンスを整合させるための回路を有している。
プラズマ処理装置10では、複数のガスソースのうち選択された一以上のガスソースからのガスがチャンバSに供給される。また、チャンバSの圧力が排気装置50によって所定の圧力に設定される。さらに、第1の高周波電源62からの第1の高周波によってチャンバS内のガスが励起される。これにより、プラズマが生成される。そして、発生した活性種によって被加工物Wが処理される。なお、必要に応じて、第2の高周波電源64の第2の高周波に基づくバイアスにより、被加工物Wにイオンが引き込まれてもよい。
チャンバ本体12には光を透過する窓12wが設けられている。窓12wは、例えばハニカム形状の2重窓構造となっていてもよい。この場合、窓12w内へのプラズマ及びラジカルの進入が抑制され、窓12wに付着する反応生成物の量が低減される。窓12wの外側には、レンズ、ミラー等の集光部12aが配置されていてもよい。窓12wには、集光部12a及び光ファイバ71を介して発光分光分析装置72が接続されている。発光分光分析装置72は、チャンバS内に生成されたプラズマの発光強度を分析する。発光分光分析装置72は、プラズマからの光を、窓12wを介して受光する。発光分光分析装置72は、プラズマの発光強度を分析する通常モードでの動作の他に、メンテナンスモードでの動作が可能となっている。メンテナンスモードでは、所定の光源を基準として発光分光分析装置72に搭載された分光器の校正が実行される。
続いて、校正装置について説明する。校正装置は、メンテナンスモードで動作する発光分光分析装置72の校正が実行されるときの基準となる光を発する。すなわち、校正装置100は、発光分光分析装置72の校正のための、いわゆる基準器である。なお、一例の校正装置100は、プロセスモジュールPM内のステージST上において、所定位置に光源を配置するための装置であるため、治具と称してもよい。
図4は、実施形態に係る校正装置100を上面側から見た平面図である。図5は、校正装置100に設けられた発光装置130を説明する図であり、図4のV-V断面図である。図6は、校正装置を示すブロック図である。なお、図6では、校正装置100を使用する際に用いられる専用のFOUP4Fも模式的に示されている。校正装置100は、ベース基板110と、制御基板120と、バッテリ140と、を有する。校正装置100は、半導体製造装置S1としての機能を有する処理システム1の搬送装置によって搬送されて、複数の発光装置130を発光させる。
ベース基板110は、円盤状のウエハを一例とする基板である。ただし、ベース基板110は、円盤状に限られず、基板を搬送する搬送装置により搬送できれば、多角形、楕円等、形状には限定されない。ベース基板110のエッジには、ノッチ110Nが形成されている。基板の材質としては、例えばシリコン、カーボンファイバ、石英ガラス、シリコンカーバイド、シリコンナイトライド、アルミナなどが挙げられる。
制御基板120は、ベース基板110の上面に設けられる回路基板であり、複数の発光装置130A~130D(以下、発光装置を総称する場合には「発光装置130」という)と、コネクタパッド160と、制御回路170と、加速度センサ180とを有する。
発光装置130A~130Dは、例えば、制御基板120上に配置されている。図4に示すように、一例の発光装置130A~130Dは、制御基板120の周縁において、周方向に等間隔となるように、互いに離間して配置されている。発光装置130は、光源131と反射部材135とを含む。一例の光源131はLED(light emitting diode)光源であり、基板132と、基板132上に設けられたLED素子133と、LED素子133を覆うレンズ134と、を含む。なお、光源131は、OLED(Organic light emitting diode)であってもよい。光源131は、発光分光分析装置72のメンテナンスモードにおける校正の基準となる光を発する。すなわち、プロセスモジュールPM内で光源131が発光している状態において、メンテナンスモードで動作する発光分光分析装置72が校正される。例えば、光源131から出力される光の強度データは、基準となる発光分光分析装置によって事前に取得されている。プラズマ処理装置10に接続された校正の対象となる発光分光分析装置72は、光源131から出力される光の強度データを校正用の基準データとして記憶していてよい。
一例では、基板132は矩形板状を有している。また、一例の光源131の光軸131aの向きは、ベース基板110の上面110aに垂直であってよい。なお、光軸131aの向きは、LED素子133の発光面133aに垂直な向きとして定義され得る。一例では、LED素子133の発光面133aは、制御基板120の上面120aおよびベース基板110の上面110aに平行となっている。発光装置130A~130Dのぞれぞれは、複数の光源131を有している。図示例では、発光装置130A~130Dは、それぞれ3つの光源131を有している。発光装置130Aの光源131と、発光装置130Bの光源131と、発光装置130Cの光源131と、発光装置130Dの光源131とは、それぞれ互いに異なる波長(つまり、異なる色)の光を発する。各波長の光源131の個数は3つに限られず、2以下又は4以上であってもよい。
反射部材135は、光源131から出力される光を平面視においてベース基板110の外側に向けて反射する。一例の反射部材135は、反射板(ミラー)であってよい。反射部材135は、光を反射する平面状の反射面135aを有する。なお、反射面とは、入射された光を鏡面反射させる面であってよい。図示例の反射部材135は、支持体137に支持されている。図示例の支持体は、直方体形状を呈している。
支持体137は、制御基板120上において、光源131よりも制御基板120(ベース基板110)の中心側に位置している。図示例では、一つの発光装置130を構成する3つの光源131が、ベース基板110の径方向に対して交差(図示例では直交)する方向に離間して配列されている。支持体137は、ベース基板110の径方向において、3つの光源131よりも中心側において、3つの光源131に当接する位置に配置されている。支持体137の高さは、光源131の高さよりも高い。
反射部材135の基端は、支持体137の上端に接続されている。反射部材135は、支持体137の上端から光源131の上方に張り出している。反射部材135の基端から先端までの長さは、例えば、ベース基板110の径方向における光源131の基板132の長さと同程度であってもよい。また、反射部材135の反射面135aと基板132の上面に平行な面とは、所定の角度をもって交差している。反射面135aと基板132の上面に平行な面とのなす角度θは、発光分光分析装置72が接続される窓12Wの高さに応じて決定され得る。例えば、ステージSTの静電チャックESC上に校正装置100が載置された状態で、光源131の光軸131aが反射面135aで反射したときに窓12Wに向かうように、反射部材135の角度θが調整され得る。反射部材135は、角度θがずれないように、ネジ等の締結部材138によって支持体137に固定されてもよい。反射部材135の角度θは、反射部材135と窓12wとの高さが同程度の場合、一例として42°~48°程度であってよいが、これに限定されない。なお、図6に破線で示すように、反射部材135の角度位置は、調整可能であってよい。
コネクタパッド160は、バッテリを充電するための接続部であり、外部電源に接続され得る。コネクタパッド160は、専用のFOUP4F内に載置された状態で、専用のFOUP4Fに設けられたコネクタ4FCを介して外部電源に接続される。バッテリ140は、ベース基板110の上に4つ配置されている。バッテリ140は、発光装置130a~130d及び制御回路170に電力を供給する。バッテリ140は、発光装置130a~130dの最大電流値に耐え得る数であれば、4つに限られない。図6に示されるように、コネクタパッド160とバッテリ140との間には充電回路177が接続されており、充電回路177によってバッテリ140の充電が制御されている。また、バッテリ140には電源回路178が接続されており、電源回路178を介してバッテリ140からの電力が各デバイスに供給されている。
制御回路170は、制御基板120に配置されており、プロセッサを含む演算装置171、メモリ172、コントローラ173、電流/電圧計174等を有し、メモリ172に記憶されたプログラムに基づいて校正装置100の動作を統括的に制御する。制御回路170は、校正装置100の各部を制御する制御部として機能する。例えば発光装置130のそれぞれの点灯及び消灯は、発光装置130に入力される電力が電流/電圧計174によって計測されている状態で、コントローラ173によって制御される。また、外部の他の機器との通信の制御のために、制御回路170には、通信機器175が接続されている。一例において、校正装置100には、通信機器175を介して外部のコンピュータ88等から後述する搬送レシピを含む情報が入力され得る。通信機器175とコンピュータ88との接続方式は、有線及び無線のいずれであってもよい。また、一例においては、校正装置100は、制御回路170に接続されたコネクタパッド176を含んでいる。コネクタパッド176は、専用のFOUP4Fに設けられたスイッチSWに接続される。制御回路170は、スイッチSWから入力される信号に基づいて校正装置100の制御を開始し得る。
加速度センサ180は、校正装置100に加わる加速度を検出することによって、処理システム1内における校正装置100の搬送動作を検出する。図6に示すように、加速度センサ180は、少なくとも第1加速度センサ180Xと第2加速度センサ180Yとを含んで構成されている。
図7は、校正装置100の加速度センサ180を説明するための模式図である。図7では、校正装置100を上側から見た模式的な平面図が示されている。図7におけるY軸は、校正装置100の中心とノッチ110Nとを通っている。X軸は、Y軸に直交するとともに、校正装置100の中心を通っている。X軸とY軸とは、制御基板120に沿った平面に沿って互いに直交(交差)する軸であってよい。
第1加速度センサ180Xは、X軸方向における加速度を検出するように構成され、第2加速度センサ180Yは、Y軸方向における加速度を検出するように構成されている。そのため、校正装置100が水平の状態では、第1加速度センサ180Xによって水平方向に沿った第1方向における加速度が検出可能である。また、第2加速度センサ180Yによって水平方向に沿った第1方向に交差する第2方向における加速度が検出可能である。
一例において、第1加速度センサ180Xは、X軸の正方向に加わる加速度が検出されたときに、加速度の大きさに応じた正の検出値を出力し、X軸の負方向に加わる加速度が検出されたときに、加速度の大きさに応じた負の検出値を出力する。また、第2加速度センサ180Yは、Y軸の正方向に加わる加速度が検出されたときに、加速度の大きさに応じた正の検出値を出力し、Y軸の負方向に加わる加速度が検出されたときに、加速度の大きさに応じた負の検出値を出力する。
一般的に、X軸方向及びY軸方向にベクトルを持つ加速度の算出には、二乗和平方根が用いられる。しかし、一例の実施形態においては、X軸方向及びY軸方向における正負の方向も重要となるため、以下のように合算値を用いた演算が実行される。
一例の校正装置100では、第1加速度センサ180X及び第2加速度センサ180Yからのそれぞれの検出値が演算装置171に入力される。演算装置171は、第1加速度センサ180Xの検出値と第2加速度センサ180Yの検出値とを合算し、合算値を導出する。演算装置171は、合算値に基づいて処理システム1における搬送動作をカウントする。
図7に示すX軸に沿った方向D1,D2に校正装置100が搬送される場合、第2加速度センサ180Yでは実質的に加速度が検出されない。そのため、演算装置171は、第1加速度センサ180Xのみの検出値を合算値としてもよい。同様に、図7に示すY軸に沿った方向D3,D4に校正装置100が搬送される場合には、演算装置171は、第2加速度センサ180Yのみの検出値を合算値としてもよい。また、X軸とY軸との両方が正方向である方向D5、及び、X軸とY軸との両方が負方向である方向D6に校正装置が搬送される場合には、検出値がそのまま足し合わされた値を合算値としてもよい。
X軸が正方向でありY軸が負方向である方向D7、及び、X軸が負方向でありY軸が正方向である方向D8に校正装置100が搬送される場合、第1加速度センサ180Xの検出値と第2加速度センサ180Yの検出値とでは符号が逆になる。そのため、第1加速度センサ180Xの検出値から第2加速度センサ180Yの検出値を引いた値を合算値としてもよい。なお、第1加速度センサ180Xの検出値と第2加速度センサ180Yの検出値とが合算によって打ち消されなければよいため、第2加速度センサ180Yの検出値から第1加速度センサ180Xの検出値を引いた値を合算値としてもよい。
一例として、演算装置171に入力される2つの検出値のうちの一方が実質的にゼロである場合に、演算装置171は、校正装置100が方向D1,D2,D3,D4に搬送されていると判定して、合算値を算出してもよい。また、演算装置171に入力される2つの検出値の符号が同じである場合に、演算装置171は、校正装置100が方向D5,D6に搬送されていると判定して、合算値を算出してもよい。また、演算装置171に入力される2つの検出値の符号が互いに異なる場合に、演算装置171は、校正装置100が方向D7,D8に搬送されていると判定して、合算値を算出してもよい。
処理システム1においては、搬送装置TU1,TU2によって校正装置100が搬送される。例えば、搬送装置によって、静止している校正装置100がある位置まで搬送されて静止した場合、校正装置100には、搬送の開始時に搬送方向と逆向きに加速度がかかり、搬送の停止時に搬送方向に加速度がかかる。そこで、一例の校正装置100は、第1加速度センサ180Xによる検出値と第2加速度センサ180Yの検出値との合算値が、正の第1の閾値を超えた後に一定時間内に負の第2の閾値を下回った場合に、一回の搬送動作が実行されたと判定する。さらに、校正装置100は、負の第1の閾値を下回った後に一定時間内に正の第2の閾値を超えた場合に、一回の搬送動作が実行されたと判定する。
図8は、校正装置に加わる加速度を説明するためのグラフの例である。図8では、第1加速度センサ180Xによる検出値が「X方向」として示され、第2加速度センサ180yにおける検出値が「Y方向」として示されている。第1加速度センサ180Xによる検出値と第2加速度センサ180Yにおける検出値との合算値が「合算値」として示されている。図8では、X方向とY方向との検出値の符号が互いに異なるため、X方向の検出値からY方向の検出値を引いた値が合算値となっている。グラフにおける「移動平均」は、合算値の移動平均を示している。図8では、2回の搬送動作が時間間隔を空けて実施されたときの加速度が示されている。この例では、2回の搬送動作の間に校正装置100に回転等の動作が加わることによって検出値に乱れが生じている。このような検出値の乱れを誤検出しないために、搬送動作の有無は移動平均に基づいて判定されてもよい。
図8の例では、第1加速度センサ180Xによる検出値と第2加速度センサ180Yの検出値との合算値(ここでは移動平均)が、正の第1の閾値TH1を超えた後に一定時間TS内に負の第2の閾値TH2を下回っている。そのため、演算装置171は、搬送動作が実行されたと判定する。また、その後、合算値が負の閾値TH2を下回った後に一定時間内に正の閾値TH1を超えていることから、演算装置171は、2回目の搬送動作が実行されたと判定する。
図9は、処理システムを搬送される校正装置の搬送経路の例を示す図である。一例の処理システム1において校正装置100が搬送される場合、校正装置100は複数回の搬送動作によって目的の位置まで搬送される。例えば、校正装置100がプロセスモジュールPM1まで搬送される場合を考える。校正装置100は、搬送動作T1~T6を含む工程によって搬送される。搬送動作T1は、容器4a(専用のFOUP4F)からの取り出しのための動作である。搬送動作T2は、容器4aからの取り出し位置からアライナANまでの搬送のための動作である。搬送動作T3は、アライナANからの取り出しのための動作である。搬送動作T4は、アライナANからの取り出し位置からロードロックモジュールLL1までの搬送のための動作である。搬送動作T5は、ロードロックモジュールLL1からトランスファーモジュールTFまでの搬送のための動作である。搬送動作T6は、トランスファーモジュールTFからプロセスモジュールPM1までの搬送のための動作である。これらの搬送動作T1~T6では、互いに校正装置100に加わる加速度の状態が異なっている場合がある。そこで、一例の校正装置100では、搬送レシピに基づいて、搬送動作の判定がなされる。
図10は、一例の校正装置で利用される搬送レシピの例である。搬送レシピRは、搬送装置に搬送される校正装置100に加わる加速度の情報と搬送位置の情報との関係を示し得る。図10に示す搬送レシピRは、順番に実行される搬送動作ごとに、所要時間、最大加速度、最小加速度、動作が紐付けられている。最大加速度は、第1加速度センサ180Xによる検出値と第2加速度センサ180Yの検出値との合算値(ここでは移動平均)についての正の閾値TH1に相当する。最小加速度は、合算値についての負の閾値TH2に相当する。所要時間は、合算値の最大値の検出から最小値の検出までに経過した時間、又は、合算値の最小値の検出から最大値の検出までに経過した時間である。すなわち、所要時間は、搬送の開始から終了までに必要な時間に相当し、一定時間TSに対応する。所要時間、最大加速度、および最小加速度は、動作ごとに任意に決定されてよい。
図10の例では、第1動作から第6動作が搬送動作T1から搬送動作T6にそれぞれ対応している。そのため、例えば、第2動作が実施されたことが演算装置171によって判定された時点では、校正装置100はアライナANに位置していると認識できる。また、第1動作から第6動作までが終了したと判定された場合には、校正装置100はプロセスモジュールPM1に載置されたと認識できる。演算装置171は、校正装置100がプロセスモジュールPM1に載置されたことを認識したときに、発光装置130を発光させる。
続いて、校正装置100の動作について説明する。図11は、校正装置の動作方法の一例を示すフローチャートである。図11に示すように、一例の動作方法では、搬送装置によって校正装置100がプロセスモジュールPM内に搬送される(ステップST1)。校正装置100を動作させる場合、まず、専用のFOUP4Fに載置された校正装置100を起動させる。上述のように、専用のFOUP4Fには、校正装置100を起動させるためのスイッチSWが設けられているため、当該スイッチSWによって校正装置100の起動が可能となる。校正装置100が起動されると、加速度センサ180が動作することにより、加速度センサ180からの信号が演算装置171によって取得される。校正装置100を利用して発光分光分析装置72の校正を行う場合、スイッチSWによって校正装置100が起動される。この際、制御部MCは、搬送装置TU1,TU2が校正装置100をFOUP4FからプロセスモジュールPM内のステージST上まで搬送するように処理システム1を制御する。また、制御部MCは、発光分光分析装置72がメンテナンスモードで動作するように制御する。
演算装置171は、加速度センサ180から取得した検出値に基づいて加速度の合算値を導出する。演算装置171は、搬送レシピRを参照して、導出された合算値を解析することにより、校正装置100の搬送位置を認識する。搬送位置の認識は、搬送レシピRの動作がどこまで終了したかの判定と同意である。
演算装置171は、校正装置100がプロセスモジュールPM1に搬送されたと認識されたときに、光源131を発光させるようにコントローラ173を制御する(ステップST2)。すなわち、演算装置171は、ステージSTの静電チャックESC上に校正装置100が載置されたと判定したときに、所定の発光装置130を発光させる。制御部MCによって発光分光分析装置72がメンテナンスモードで待機している場合には、光源131が発光されることを契機として発光分光分析装置72の校正が実行され得る。すなわち、発光分光分析装置72は、窓12wから入射される光源131からの光の強度データを計測する(ステップST3)。発光分光分析装置72は、計測された強度データを予め保持している基準の強度データと比較し、互いの強度データが一致するように、計測された強度データを補正する(ステップS4)。光源131が発光してから所定時間経過した場合、演算装置171は発光分光分析装置72の校正が終了したと判定し、光源131の発光を停止してもよい。
なお、発光分光分析装置72の校正のプログラムに応じて、校正装置100がプロセスモジュールPMとアライナANとの間を複数回にわたって搬送されてもよい。演算装置171は、校正装置100がプロセスモジュールPM1に搬送されたと判定する度に発光装置130を発光させてもよい。この場合、搬送レシピは、FOUP4FからプロセスモジュールPMまで搬送される際の動作レシピに加えて、プロセスモジュールPMとアライナANとの間の複数の搬送動作に対応するレシピを含んでもよい。さらに、搬送レシピは、搬送動作のレシピに加えて、発光装置130の発光の制御手順を含んでもよい。この場合、演算装置171は、搬送レシピを参照して発光装置130を制御することができる。
例えば、搬送レシピに含まれる発光の制御手順は、プロセスモジュールPMとアライナANとの間の搬送動作ごとに異なる発光装置130が発光されることを示す手順である。一例の制御手順では、プロセスモジュールPMに搬送されたときに発光装置130Aが窓12wに最も近くなるように、アライナANにおいて校正装置100の回転位置が調整される。その後、プロセスモジュールPMに校正装置100が搬送されたと認識されたときに発光装置130Aが発光され、所定時間経過後に発光が停止される。
次いで、再びアライナANに搬送された校正装置100は、プロセスモジュールPMに搬送されたときに発光装置130Bが窓12wに最も近くなるように、アライナANにおいて校正装置100の回転位置が調整される。その後、プロセスモジュールPMに校正装置100が搬送されたと認識されたときに発光装置130Bが発光され、所定時間経過後に発光が停止される。
次いで、再びアライナANに搬送された校正装置100は、プロセスモジュールPMに搬送されたときに発光装置130Cが窓12wに最も近くなるように、アライナANにおいて校正装置100の回転位置が調整される。その後、プロセスモジュールPMに校正装置100が搬送されたと認識されたときに発光装置130Cが発光され、所定時間経過後に発光が停止される。
最後に、再びアライナANに搬送された校正装置100は、プロセスモジュールPMに搬送されたときに発光装置130Dが窓12wに最も近くなるように、アライナANにおいて校正装置100の回転位置が調整される。その後、プロセスモジュールPMに校正装置100が搬送されたと認識されたときに発光装置130Dが発光され、所定時間経過後に発光が停止される。
全ての発光装置130A~130Dの発光動作が終了すると、発光分光分析装置72では、発光装置130A~130Dの発光に基づいて取得された各波長の光の強度データに基づいて、分光器の校正が実行される。また、全ての発光装置130A~130Dの発光動作が終了すると、校正装置100は搬送装置TU1,TU2によってFOUP4Fに搬送される。そして、残りのプロセスモジュールPMに接続された他の発光分光分析装置72の校正が終了しているか否かの判定が行われる。校正が終了していない発光分光分析装置72がある場合、当該発光分光分析装置72に接続されたプロセスモジュールPMに校正装置100が搬送され、上記と同様の手順によって発光分光分析装置72の校正が実行される。
以上説明したように、校正装置100では、プロセスモジュールPM内に設けられたステージST上に校正装置100が配置された状態で、光源131から光が発せられるように、演算装置171が光源131を制御する。光源131から発せられた光は、反射部材135によって、平面視においてベース基板110の外側に向かって反射する。プロセスモジュールPMにおいて、発光分光分析装置72に光を入射させる窓12wがステージSTの側方に設けられている場合、反射部材35によって反射された光源131からの光は、発光分光分析装置72に入射され易くなる。すなわち、発光分光分析装置72に入射する光の強度は大きくなる。光源131の光は校正のための基準とすることができるので、校正装置100によって発光分光分析装置72を校正することができる。また、校正装置100は、搭載されたバッテリ140によって駆動される。反射部材135によって、光源131の光を窓12wに効率よく照射できるため、バッテリ140の消費が抑えられ、長時間の光源131の動作が可能となる。これにより、複数のプロセスモジュールPMに接続された複数の発光分光分析装置72の校正を実行できる。
一つの例示的実施形態において、複数の光源131のそれぞれは、LED光源である。この構成では、光源の発熱を抑制できるとともに、光源による電力消費を抑制することができる。
一つの例示的実施形態において、ベース基板110は、円盤状を呈しており、周縁の一部にノッチを含んでいる。この構成では、アライナANによって校正装置100の回転位置を制御できるため、アライナANおよび搬送装置TU1,TU2によって、校正装置100を適切な回転位置でプロセスモジュールPMに搬送できる。
一つの例示的実施形態において、複数の発光装置130は、ベース基板110の周縁に沿って周方向に配列されている。この構成では、プロセスモジュールPM内において、複数の発光装置130のいずれかを窓12wに近づけることができる。
プロセスモジュールPM内においては、校正装置100を無線によって制御することができない。しかしながら、発光装置130を用いて発光分光分析装置72の校正を行う場合に、搬送動作中にも発光装置130を発光させておくことは、運用上、必ずしも好ましくない。そこで、一つの例示的実施形態において、ベース基板110に配置された加速度センサ180をさらに備えている。演算装置171は、加速度センサ180の出力値に基づいて、校正装置100の搬送位置を認識し、校正装置100がプロセスモジュールPM内に搬送されたと認識されたときに光源131を発光させてもよい。
以上、種々の例示的実施形態について説明してきたが、上述した例示的実施形態に限定されることなく、様々な省略、置換、及び変更がなされてもよい。
例えば、発光装置130の発する光が反射部材によって反射される例を示したが、発光装置は反射部材を有さなくてもよい。図12は、他の例に係る発光装置230を示す校正装置の断面図である。図12に示す発光装置230は、発光装置130と同様に、互いに異なる波長の光を発し、制御基板120の周縁に互いに離間して配置される複数の発光装置の一つである。発光装置230は、制御基板120上に配置されている。発光装置230は、光源231を含む。一例の光源231は、発光装置130と同様に、基板232と基板232上に設けられたLED素子233とLED素子233を覆うレンズ234とを含む。
一例の光源231の光軸231aの向きは、平面視においてベース基板110の外側に向いている。すなわち、光源231から照射される光は、平面視において、ベース基板110の外側に向かって進行する。換言すると、光源231は、ベース基板110の外側に向かって光を照射する。図示例では、光源231の光軸231aは、平面視においてベース基板110の径方向に沿っているとともに、ベース基板110の上面に平行になっている。なお、光源231の光軸231aは、窓12wに向かうように、角度調整されていてもよい。例えば、光源231の光軸231aは、ベース基板110に平行な面に対して所定の角度をもって傾斜してもよい。例えば、光源231は、ベース基板110の外側に向かって、斜め上に向けて光を照射してもよい。
発光装置230では、発光装置130と同様に、平面視において光源231の光軸がベース基板110の外側に向いている。この構成によれば、プロセスモジュールPMにおいて、発光分光分析装置72に光を入射させる窓12wがステージSTの側方に設けられている場合、光源231からの光は、発光分光分析装置72に入射され易くなる。
また、反射部材135として、平面状の反射面135aを有する反射板を例示したが、反射部材の他の形態であってもよい。例えば、反射部材は、凸面又は凹面などの非平面状の反射面を有してもよい。また、反射部材は、例えばプリズム等の反射面を有する光学部品であってもよい。
また、ベース基板上において周縁の4カ所にそれぞれ発光装置130が配置された例を示したが、発光装置の数は、特に限定されない。発光装置の数は、3以下であってもよいし、5以上であってもよい。例えば、ベース基板上の周縁において、周方向に離間した10カ所に、互いに異なる波長の光を出力する10種類の発光装置がそれぞれ配置されてもよい。
以上の説明から、本開示の種々の実施形態は、説明の目的で本明細書で説明されており、本開示の範囲及び主旨から逸脱することなく種々の変更をなし得ることが、理解されるであろう。したがって、本明細書に開示した種々の実施形態は限定することを意図しておらず、真の範囲と主旨は、添付の特許請求の範囲によって示される。
100…校正装置、110…ベース基板、130…発光装置、135…反射部材、171…演算装置(制御装置)。

Claims (7)

  1. プラズマ処理装置内で生成されたプラズマを監視する発光分光分析装置を校正する校正装置であって、
    板状のベース基板と、
    前記ベース基板上に配置され、互いに異なる波長の光を発する複数の発光装置と、
    前記ベース基板上に配置された反射部材であって、前記複数の発光装置が発する光を、平面視において前記ベース基板の外側に向けて反射する反射部材と、
    前記ベース基板に配置され、前記複数の発光装置を制御する制御装置と、を備える校正装置。
  2. 前記複数の発光装置のそれぞれは、LED光源である、請求項1に記載の校正装置。
  3. 前記ベース基板は、円盤状を呈しており、周縁の一部にノッチを含んでいる、請求項1又は2に記載の校正装置。
  4. 前記複数の発光装置は、前記ベース基板の周縁に沿って周方向に配列されている、請求項1~3のいずれか一項に記載の校正装置。
  5. 前記ベース基板に配置された加速度センサをさらに備え、
    前記制御装置は、前記加速度センサの出力値に基づいて、前記プラズマ処理装置内における前記校正装置の搬送位置を認識し、前記校正装置が所定の位置に搬送されたと認識されたときに前記複数の発光装置を発光させる、請求項1~4のいずれか一項に記載の校正装置。
  6. プラズマ処理装置内で生成されたプラズマを監視する発光分光分析装置を校正する校正装置であって、
    板状のベース基板と、
    前記ベース基板上に配置され、互いに異なる波長の光を発する複数の発光装置と、
    前記ベース基板に配置され、前記複数の発光装置を制御する制御装置と、を備え、
    前記発光装置の光軸は、平面視において前記ベース基板の外側に向いている、校正装置。
  7. プラズマ処理装置内で生成されるプラズマを監視する発光分光分析装置を校正装置を用いて校正する校正方法であって、
    前記校正装置は、
    板状のベース基板と、
    前記ベース基板上に配置され、互いに異なる波長の光を発する複数の発光装置と、
    前記ベース基板上に配置された反射部材であって、前記複数の発光装置が発する光を、平面視において前記ベース基板の外側に向けて反射する反射部材と、
    前記ベース基板に配置され、前記複数の発光装置を制御する制御装置と、を備え、
    該方法は、
    搬送装置によって前記校正装置を前記プラズマ処理装置内に搬送する工程と、
    前記プラズマ処理装置内に搬送された前記校正装置の前記複数の発光装置を発光させる工程と、
    前記複数の発光装置から発せられる光の強度データを前記発光分光分析装置によって測定する工程と、
    前記強度データに基づいて前記発光分光分析装置を校正する工程と、を備える、校正方法。
JP2021073983A 2021-04-26 2021-04-26 校正装置及び校正方法 Pending JP2022168485A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021073983A JP2022168485A (ja) 2021-04-26 2021-04-26 校正装置及び校正方法
US17/729,000 US20220341844A1 (en) 2021-04-26 2022-04-26 Calibration apparatus and calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021073983A JP2022168485A (ja) 2021-04-26 2021-04-26 校正装置及び校正方法

Publications (1)

Publication Number Publication Date
JP2022168485A true JP2022168485A (ja) 2022-11-08

Family

ID=83694024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021073983A Pending JP2022168485A (ja) 2021-04-26 2021-04-26 校正装置及び校正方法

Country Status (2)

Country Link
US (1) US20220341844A1 (ja)
JP (1) JP2022168485A (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL147692A0 (en) * 2002-01-17 2002-08-14 Innersense Ltd Machine and environment analyzer
US6807503B2 (en) * 2002-11-04 2004-10-19 Brion Technologies, Inc. Method and apparatus for monitoring integrated circuit fabrication
US10365212B2 (en) * 2016-11-14 2019-07-30 Verity Instruments, Inc. System and method for calibration of optical signals in semiconductor process systems

Also Published As

Publication number Publication date
US20220341844A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
TWI769237B (zh) 位置檢測系統及處理裝置
US9842754B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
TWI794563B (zh) 搬送方法及搬送系統
CN110243273B (zh) 测定器和用于检查聚焦环的系统的动作方法
US20210166960A1 (en) Jig, processing system and processing method
JP2022168485A (ja) 校正装置及び校正方法
US20070004051A1 (en) Processing method and device
JP7445532B2 (ja) 実行装置及び実行方法
CN108693409B (zh) 静电电容测量用的测量器
JP2024050059A (ja) 校正方法及び校正システム
TW202131436A (zh) 搬運之系統及方法
WO2022239800A1 (ja) パーティクルモニタシステム、パーティクルモニタ方法およびモニタ装置
WO2022249973A1 (ja) プラズマモニタシステム、プラズマモニタ方法およびモニタ装置
US11933826B2 (en) Execution device and execution method
WO2023074876A1 (ja) 測定方法及び測定システム
TWI835078B (zh) 基片對準裝置、基片處理系統及傳送機構位置調整方法
JP2023155942A (ja) 治具
TW202125629A (zh) 治具、處理系統及處理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231226