JP2022166818A - Undrawn film for food packaging and bag for food packaging - Google Patents

Undrawn film for food packaging and bag for food packaging Download PDF

Info

Publication number
JP2022166818A
JP2022166818A JP2022046863A JP2022046863A JP2022166818A JP 2022166818 A JP2022166818 A JP 2022166818A JP 2022046863 A JP2022046863 A JP 2022046863A JP 2022046863 A JP2022046863 A JP 2022046863A JP 2022166818 A JP2022166818 A JP 2022166818A
Authority
JP
Japan
Prior art keywords
propylene
weight
resin
layer
bag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022046863A
Other languages
Japanese (ja)
Inventor
宏 緩詰
Hiroshi Yurutsume
大輔 野尻
Daisuke Nojiri
真未 北村
Mami Kitamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futamura Chemical Co Ltd
Original Assignee
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futamura Chemical Co Ltd filed Critical Futamura Chemical Co Ltd
Publication of JP2022166818A publication Critical patent/JP2022166818A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide an undrawn film for food packaging that retains sufficient performances required for a bag for food packaging and can suppress the blowout of a fuse part during food charging particularly at low temperatures, and provide the bag for food packaging.SOLUTION: An undrawn film 10 is used for bag-making by a fuse seal and comprises three layers of: a surface layer 20, an intermediate layer 30, and a seal layer 40, the surface layer subjected to corona treatment on the surface. The surface layer is predominantly composed of propylene resin. The intermediate layer is predominantly composed of a propylene resin composition that comprises a propylene-ethylene block copolymer with a xylene soluble content of 12% or more of 50 wt.% or more and has a calculated MFR of 6 g/10 min or less. The seal layer comprises a propylene elastomer with a density of 0.880 g/cm3 or less of 20-80 wt.% and a propylene-ethylene random copolymer of 20-80 wt.%.SELECTED DRAWING: Figure 1

Description

本発明は、食品包装用無延伸フィルム及びこの無延伸フィルムを用いた食品包装用袋に関する。 TECHNICAL FIELD The present invention relates to a non-stretched food packaging film and a food packaging bag using this non-stretched film.

例えば、食パン等の食品を包装するための袋は、溶断シールによりガゼット袋に製袋されて、食品が充填された後、開口部がヒートシールにより封止される。この種の食品包装用袋を構成するフィルムは、無延伸フィルムからなり、包装される食品の種類等に応じて透明フィルムやマット調フィルムが選択される。特にパン類を包装する包装袋は、マット調が好ましく使用される。 For example, a bag for packaging food such as loaf of bread is made into a gusset bag by fusion sealing, filled with food, and then the opening is sealed by heat sealing. The film constituting this type of food packaging bag is a non-stretched film, and a transparent film or a matte film is selected according to the type of food to be packaged. In particular, a matte finish is preferably used for packaging bags for packaging bread.

上記包装用袋開口部のヒートシールは高速で行われるため、低温ヒートシール性が求められる。また上記包装用袋を開封し一部の食品を取り出した後、開口部を再度クロージャ等で留める事が出来るよう、袋が伸びたり切れたりする事なく弱い力で開封できる易開封性が必要とされる。そこで、溶断強度を維持しながら低温ヒートシール性と易開封性を有する食品包装用フィルムとして、プロピレン・α-オレフィンランダム共重合体20~80重量%とブテン重合体80~20重量%とからなる熱融着層と、プロピレン重合体層とを有するポリオレフィン多層フィルムが知られている(例えば、特許文献1参照)。このフィルムは、溶断強度を維持しながら低温熱融着性及び易開封性に優れており、包装用袋としての使用に適している。 Since the heat-sealing of the opening of the packaging bag is performed at high speed, low-temperature heat-sealability is required. In addition, after the packaging bag is opened and some food is taken out, it is necessary to have an easy-to-open property that can be opened with a weak force without stretching or tearing the bag so that the opening can be closed again with a closure or the like. be done. Therefore, as a food packaging film having low-temperature heat-sealability and easy-openability while maintaining fusing strength, it is composed of 20 to 80% by weight of a propylene/α-olefin random copolymer and 80 to 20% by weight of a butene polymer. A polyolefin multilayer film having a heat-sealable layer and a propylene polymer layer is known (see, for example, Patent Document 1). This film is excellent in low-temperature heat-sealability and easy-openability while maintaining fusion strength, and is suitable for use as a packaging bag.

また、食品包装用袋に使用される他のフィルムとして、プロピレン系ブロック共重合体樹脂を70質量%以上含有する印刷層と、プロピレン系ブロック共重合体樹脂15~90質量%及び直鎖状低密度ポリエチレン5~30質量%を含有する中間層と、シール層とを有するマット調の積層フィルムが知られている(例えば、特許文献2参照)。このマット調フィルムは、低温での耐衝撃性、シール強度、耐摩擦性、耐破袋性、溶断シール強度に優れており、パン包装用途に適している。 In addition, as other films used for food packaging bags, a printed layer containing 70% by mass or more of a propylene block copolymer resin, a propylene block copolymer resin of 15 to 90% by mass and a linear low A matte laminated film having an intermediate layer containing 5 to 30% by mass of density polyethylene and a sealing layer is known (see, for example, Patent Document 2). This matte film is excellent in low-temperature impact resistance, sealing strength, abrasion resistance, bag-breaking resistance, and fusion-cut sealing strength, and is suitable for bread packaging.

しかしながら、従来の食品包装用袋では、シール面同士の溶断強度が十分であっても、特に冬場等の気温が低い時期においてパン等の食品を充填する際に、溶断部が裂けてしまうことがあった。そこで、フィルムの耐裂け性、溶断強度、低温シール性、易開封性、製袋適性等の食品包装用袋に必要な各性能を良好に保持し、特に冬場等の低温下における食品充填時の溶断部の裂けの発生を抑制することが求められている。 However, in a conventional food packaging bag, even if the seal surfaces have sufficient fusion strength, the fusion section may be torn when filling food such as bread, especially in winter or other periods when the temperature is low. there were. Therefore, each performance required for food packaging bags such as film tear resistance, fusion strength, low temperature sealability, easy opening, bag making suitability, etc. It is demanded to suppress the occurrence of tearing at the fusing part.

特開2002-210897号公報Japanese Patent Application Laid-Open No. 2002-210897 WO2017/018282号公報WO2017/018282

本発明は、上記状況に鑑み提案されたものであり、食品包装用袋に必要な各性能を良好に保持し、特に低温下における食品充填時の溶断部の破袋(裂け)の発生を抑制することができる食品包装用無延伸フィルム及び食品包装用袋を提供する。 The present invention has been proposed in view of the above situation, and maintains each performance required for food packaging bags in good condition, and suppresses the occurrence of bag breakage (tear) at the fusion cut part when filling food at low temperatures. To provide an unstretched film for food packaging and a food packaging bag capable of

すなわち、請求項1の発明は、溶断シールによる製袋に用いられ、表面層、中間層、シール層の3層を備え、前記表面層表面にコロナ処理が施された無延伸フィルムであって、前記表面層は、プロピレン系樹脂を主体とし、前記中間層は、キシレン可溶分割合が12%以上であるプロピレン-エチレンブロック共重合体を50重量%以上含むとともに下記式(i)に示される計算MFRが6g/10min以下となるプロピレン系樹脂組成物を主体とし、前記シール層は、密度が0.880g/cm以下のプロピレン系エラストマー20~80重量%とプロピレンランダム共重合体20~80重量%とする組成からなることを特徴とする食品包装用無延伸フィルムに係る。
MFR:プロピレン系樹脂組成物の計算MFR(g/10min)
n:プロピレン系樹脂組成物を構成するプロピレン系樹脂の総数
:プロピレン系樹脂組成物を構成するプロピレン系樹脂iの配合割合
MFR:プロピレン系樹脂組成物を構成するプロピレン系樹脂iのMFR(g/10min)
That is, the invention of claim 1 is a non-stretched film used for bag making by fusion sealing, comprising three layers of a surface layer, an intermediate layer, and a seal layer, wherein the surface layer surface is subjected to corona treatment, The surface layer is mainly composed of a propylene-based resin, and the intermediate layer contains 50% by weight or more of a propylene-ethylene block copolymer having a xylene-soluble content of 12% or more and is represented by the following formula (i). The seal layer is mainly composed of a propylene resin composition having a calculated MFR of 6 g/10 min or less, and is composed of 20 to 80% by weight of a propylene elastomer having a density of 0.880 g/cm 3 or less and 20 to 80% of a propylene random copolymer. It relates to an unstretched film for food packaging characterized by having a composition of weight %.
MFR X : Calculated MFR of propylene-based resin composition (g/10min)
n: Total number of propylene-based resins constituting the propylene-based resin composition w i : Mixing ratio of propylene-based resin i constituting the propylene-based resin composition MFR i : MFR of propylene-based resin i constituting the propylene-based resin composition (g/10min)

Figure 2022166818000002
Figure 2022166818000002

請求項2の発明は、溶断シールによる製袋に用いられ、表面層、中間層、シール層の3層を備え、前記表面層表面にコロナ処理が施された無延伸フィルムであって、前記表面層は、プロピレン系樹脂を主体とし、前記中間層は、キシレン可溶分割合が12%以上であるプロピレン-エチレンブロック共重合体を50重量%以上含むとともに上記式(i)に示される計算MFRが6g/10min以下となるプロピレン系樹脂組成物を主体とし、前記シール層は、密度が0.880g/cm以下のプロピレン系エラストマー20~80重量%と、プロピレンランダム共重合体18~78重量%と、直鎖状低密度ポリエチレン2~20重量%とする組成からなることを特徴とする食品包装用無延伸フィルムに係る。 The invention of claim 2 is a non-stretched film used for bag making by fusion sealing, comprising three layers of a surface layer, an intermediate layer, and a seal layer, wherein the surface layer surface is subjected to corona treatment, wherein the surface The layer is mainly composed of a propylene-based resin, and the intermediate layer contains 50% by weight or more of a propylene-ethylene block copolymer having a xylene-soluble content of 12% or more, and the calculated MFR represented by the above formula (i). is 6 g/10 min or less, and the sealing layer is composed of 20 to 80% by weight of a propylene elastomer having a density of 0.880 g/cm 3 or less and 18 to 78% by weight of a propylene random copolymer. % and 2 to 20% by weight of linear low-density polyethylene.

請求項3の発明は、前記無延伸フィルムが、JIS K 7136(2000)に準拠して測定したヘーズ値が40%以上である請求項1又は2に記載の食品包装用無延伸フィルムに係る。 The invention of claim 3 relates to the unstretched film for food packaging according to claim 1 or 2, wherein the unstretched film has a haze value of 40% or more as measured according to JIS K 7136 (2000).

請求項4の発明は、前記中間層が前記プロピレン系樹脂組成物70~98重量%と、密度が0.910以上の直鎖状低密度ポリエチレン2~30重量%とを有する請求項1ないし3のいずれか1項に記載の食品包装用無延伸フィルムに係る。 In the invention of claim 4, the intermediate layer comprises 70 to 98% by weight of the propylene-based resin composition and 2 to 30% by weight of linear low-density polyethylene having a density of 0.910 or more. It relates to the unstretched film for food packaging according to any one of the above.

請求項5の発明は、請求項1ないし4のいずれか1項に記載の食品包装用無延伸フィルムからなり、前記シール層を内側として溶断製袋された食品包装用袋に係る。 According to a fifth aspect of the invention, there is provided a food packaging bag made of the unstretched food packaging film according to any one of the first to fourth aspects, which is formed by fusion cutting with the seal layer inside.

請求項6の発明は、底部にガゼット部を有する請求項5に記載の食品包装用袋に係る。 The invention of claim 6 relates to the food packaging bag of claim 5, which has a gusset portion at the bottom.

請求項1の発明に係る食品包装用無延伸フィルムによると、溶断シールによる製袋に用いられ、表面層、中間層、シール層の3層を備え、前記表面層表面にコロナ処理が施された無延伸フィルムであって、前記表面層は、プロピレン系樹脂を主体とし、前記中間層は、キシレン可溶分割合が12%以上であるプロピレン-エチレンブロック共重合体を50重量%以上含むとともに計算MFRが6g/10min以下となるプロピレン系樹脂組成物を主体とし、前記シール層は、密度が0.880g/cm以下のプロピレン系エラストマー20~80重量%とプロピレンランダム共重合体20~80重量%とする組成からなるため、食品包装用袋の各性能が良好であり、特に低温下における食品充填時の溶断部の裂けの発生を効果的に抑制することができる。 According to the non-stretched film for food packaging according to the invention of claim 1, it is used for bag making by fusion sealing, has three layers of a surface layer, an intermediate layer, and a seal layer, and the surface of the surface layer is subjected to corona treatment. In the unstretched film, the surface layer is mainly composed of a propylene-based resin, and the intermediate layer contains 50% by weight or more of a propylene-ethylene block copolymer having a xylene-soluble content of 12% or more. The seal layer is mainly composed of a propylene resin composition having an MFR of 6 g/10 min or less, and is composed of 20 to 80% by weight of a propylene elastomer having a density of 0.880 g/cm 3 or less and 20 to 80% by weight of a propylene random copolymer. %, each performance of the food packaging bag is good, and the occurrence of tearing at the fusing portion during filling of the food at low temperatures can be effectively suppressed.

請求項2の発明に係る食品包装用無延伸フィルムによると、溶断シールによる製袋に用いられ、表面層、中間層、シール層の3層を備え、前記表面層表面にコロナ処理が施された無延伸フィルムであって、前記表面層は、プロピレン系樹脂を主体とし、前記中間層は、キシレン可溶分割合が12%以上であるプロピレン-エチレンブロック共重合体を50重量%以上含むとともに計算MFRが6g/10min以下となるプロピレン系樹脂組成物を主体とし、前記シール層は、密度が0.880g/cm以下のプロピレン系エラストマー20~80重量%と、プロピレンランダム共重合体18~78重量%と、直鎖状低密度ポリエチレン2~20重量%とする組成からなるため、食品包装用袋の各性能が良好であり、特に低温下における食品充填時の溶断部の裂けの発生を効果的に抑制することができる。 According to the non-stretched film for food packaging according to the invention of claim 2, it is used for bag making by fusion sealing, has three layers of a surface layer, an intermediate layer, and a seal layer, and the surface of the surface layer is subjected to corona treatment. In the unstretched film, the surface layer is mainly composed of a propylene-based resin, and the intermediate layer contains 50% by weight or more of a propylene-ethylene block copolymer having a xylene-soluble content of 12% or more. The seal layer is mainly composed of a propylene resin composition having an MFR of 6 g/10 min or less, and is composed of 20 to 80% by weight of a propylene elastomer having a density of 0.880 g/cm 3 or less and 18 to 78% of a propylene random copolymer. 2% by weight and 2 to 20% by weight of linear low-density polyethylene, each performance of the food packaging bag is good, and especially effective in preventing the occurrence of tearing at the fusing part when filling food at low temperatures. can be effectively suppressed.

請求項3の発明に係る食品包装用無延伸フィルムによると、請求項1又は2の発明において、前記無延伸フィルムが、JIS K 7136(2000)に準拠して測定したヘーズ値が40%以上であるため、パン類等の食品の包装に適したマット調のフィルムが得られる。 According to the unstretched film for food packaging according to the invention of claim 3, in the invention of claim 1 or 2, the unstretched film has a haze value of 40% or more measured in accordance with JIS K 7136 (2000). Therefore, a matte film suitable for packaging foods such as bread can be obtained.

請求項4の発明に係る食品包装用無延伸フィルムによると、請求項1ないし3のいずれか1の発明において、前記中間層が前記プロピレン系樹脂組成物70~98重量%と、密度が0.910以上の直鎖状低密度ポリエチレン2~30重量%とを有するため、フィルムのコシの強さが高まって製袋適性が向上する。 According to the non-stretched film for food packaging according to the invention of claim 4, in the invention of any one of claims 1 to 3, the intermediate layer contains 70 to 98% by weight of the propylene-based resin composition and has a density of 0.5%. Since it contains 2 to 30% by weight of linear low-density polyethylene of 910 or more, the stiffness of the film is increased and the bag-making aptitude is improved.

請求項5の発明に係る食品包装用袋によると、請求項1ないし4のいずれか1項に記載の食品包装用無延伸フィルムからなり、前記シール層を内側として溶断製袋されたため、溶断部の強度が向上して低温下における食品充填時の溶断部の裂けの発生が抑制される。 According to the food packaging bag according to the invention of claim 5, it is made of the non-stretched film for food packaging according to any one of claims 1 to 4, and is made by fusion cutting with the seal layer inside. The strength of is improved, and the occurrence of tearing at the melted portion during food filling at low temperatures is suppressed.

請求項6の発明に係る食品包装用袋によると、請求項5の発明において、底部にガゼット部を有するため、パン類を好適に包装することができる。 According to the food packaging bag according to the invention of claim 6, in the invention of claim 5, since the bottom part has a gusset part, bread can be suitably packaged.

本発明の一実施形態に係る食品包装用無延伸フィルムの概略断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic sectional drawing of the unstretched film for food packaging which concerns on one Embodiment of this invention. 食品包装用無延伸フィルムを溶断製袋して得られた食品包装用袋の概略平面図である。1 is a schematic plan view of a food packaging bag obtained by fusion-cutting a non-stretched film for food packaging. FIG. 食品包装用無延伸フィルムを溶断シールによって製袋する工程の概略斜視図である。FIG. 2 is a schematic perspective view of a process of bag-making a non-stretched film for food packaging by fusion-cut sealing. ガゼット折りにより折り重ねられたフィルムの折部の概略断面図である。FIG. 4 is a schematic cross-sectional view of a folded portion of a film folded by gusset folding;

図1に示す本発明の一実施形態に係るフィルム10は、表面層20、中間層30、シール層40の3層を備える食品包装用の無延伸フィルムである。このフィルム10は、Tダイ法等の公知の製造方法により製造される。 A film 10 according to one embodiment of the present invention shown in FIG. 1 is a non-stretched film for food packaging, which includes three layers, a surface layer 20, an intermediate layer 30, and a sealing layer 40. FIG. This film 10 is manufactured by a known manufacturing method such as the T-die method.

食品包装用無延伸フィルム10は、適宜の食品を包装する食品包装用袋の材料として使用され、特に食パンや菓子パン等のパン類の包装用袋に好適に使用される。このフィルム10は用途等に応じて外観が透明やマット調(つや消し調)等に構成され、パン類の包装用袋では、マット調(つや消し調)のフィルムが好ましく使用される。そこで、フィルム10では、マット調とする場合、JIS K 7136(2000)に準拠して測定したヘーズ値を40%以上に構成することが好ましい。ヘーズ値を40%以上とすることにより、パン類等の食品の包装に適したマット調のフィルムが得られる。また、透明なフィルムとする場合には、ヘーズ値を10%未満に構成することが好ましい。 The unstretched film for food packaging 10 is used as a material for food packaging bags for packaging appropriate foods, and is particularly suitable for packaging bags for bread such as loaves of bread and sweet buns. The appearance of the film 10 is configured to be transparent, matte (matte) or the like depending on the application, etc. A matte (matte) film is preferably used for bread packaging bags. Therefore, when the film 10 is to be matte, it is preferable to set the haze value measured according to JIS K 7136 (2000) to 40% or more. By setting the haze value to 40% or more, a matte film suitable for packaging foods such as bread can be obtained. Moreover, when making it into a transparent film, it is preferable to comprise a haze value to less than 10%.

表面層20は、プロピレン系樹脂を主体とする層である。この表面層20は、適宜の印刷が施される印刷層に相当する。そこで、表面層20では、フィルム表面の良好な印刷性能を得るために、表面にコロナ処理が施される。 The surface layer 20 is a layer mainly composed of propylene-based resin. This surface layer 20 corresponds to a printing layer on which appropriate printing is applied. Therefore, the surface of the surface layer 20 is subjected to corona treatment in order to obtain good printing performance on the surface of the film.

プロピレン系樹脂は、プロピレンの単独重合体(ホモポリプロピレン)や、プロピレンとエチレンやブテン等の他のオレフィンとの共重合体(プロピレンコポリマー)等のプロピレンを主体とする重合体から選択される。表面層20を構成する樹脂の具体例としては、透明フィルムとする場合には、プロピレン単独重合体、プロピレン-エチレンランダム共重合体、プロピレン-エチレン-ブテンランダム共重合体、プロピレン単独重合体とプロピレンランダム共重合体のブレンド、プロピレン単独重合体及び/又はプロピレンランダム共重合体とエチレン系エラストマーとのブレンド、プロピレン単独重合体及び/又はプロピレンランダム共重合体とプロピレン系エラストマーとのブレンド等が挙げられる。またマット調フィルムとする場合には、プロピレン-エチレンブロック共重合体、プロピレン-エチレンブロック共重合体とポリエチレンのブレンド、ホモポリプロピレン及び/又はプロピレンランダム共重合体とポリエチレンとのブレンド等が挙げられる。2種以上の樹脂をブレンドする方法としては、コンパウンド、ドライブレンド等から選択できる。 The propylene-based resin is selected from propylene-based polymers such as homopolymers of propylene (homopolypropylene) and copolymers of propylene with other olefins such as ethylene and butene (propylene copolymers). Specific examples of the resin constituting the surface layer 20 include propylene homopolymer, propylene-ethylene random copolymer, propylene-ethylene-butene random copolymer, and propylene homopolymer and propylene when used as a transparent film. Blends of random copolymers, blends of propylene homopolymers and/or propylene random copolymers and ethylene-based elastomers, and blends of propylene homopolymers and/or propylene random copolymers and propylene-based elastomers. . In the case of a matte film, propylene-ethylene block copolymers, blends of propylene-ethylene block copolymers and polyethylene, homopolypropylene and/or blends of propylene random copolymers and polyethylene, and the like can be used. A method for blending two or more resins can be selected from compounding, dry blending, and the like.

中間層30は、キシレン可溶分割合が12%以上であるプロピレン-エチレンブロック共重合体を50重量%以上含むプロピレン系樹脂組成物を主体とする層である。プロピレン-エチレンブロック共重合体のキシレン可溶分とは、プロピレン-エチレンブロック共重合体に含有されるキシレン中へ溶解するエラストマー成分と考えられる。プロピレン-エチレンブロック共重合体のキシレン可溶分割合が12%未満である場合、溶断部に裂けが生じやすくなるおそれがある。また、中間層30のプロピレン-エチレンブロック共重合体の割合が50重量%より少ない場合、溶断部に裂けが生じやすくなるため好ましくない。 The intermediate layer 30 is a layer mainly composed of a propylene-based resin composition containing 50% by weight or more of a propylene-ethylene block copolymer having a xylene-soluble content of 12% or more. The xylene-soluble component of the propylene-ethylene block copolymer is considered to be an elastomer component that dissolves in xylene contained in the propylene-ethylene block copolymer. If the xylene soluble content of the propylene-ethylene block copolymer is less than 12%, the fusing portion may easily crack. Further, if the ratio of the propylene-ethylene block copolymer in the intermediate layer 30 is less than 50% by weight, the fusion-cut portion is likely to crack, which is not preferable.

中間層30のプロピレン系樹脂組成物では、特に下記式(i)に示される計算MFRが6g/10min以下となるものが用いられる。なお、計算MFRは混合樹脂のMFRとみなし、プロピレン系樹脂組成物の計算MFRが6g/10minより高い場合には、溶断部が裂けやすくなるおそれがある。 The propylene-based resin composition used for the intermediate layer 30 has a calculated MFR of 6 g/10 min or less, as indicated by the following formula (i). Note that the calculated MFR is regarded as the MFR of the mixed resin, and if the calculated MFR of the propylene-based resin composition is higher than 6 g/10 min, the fusing portion may easily tear.

Figure 2022166818000003
Figure 2022166818000003

ここで、式(i)の記号は以下のとおりである。
MFR:プロピレン系樹脂組成物の計算MFR(g/10min)
n:プロピレン系樹脂組成物を構成するプロピレン系樹脂の総数
:プロピレン系樹脂組成物を構成するプロピレン系樹脂iの配合割合
MFR:プロピレン系樹脂組成物を構成するプロピレン系樹脂iのMFR(g/10min)
Here, the symbols of formula (i) are as follows.
MFR X : Calculated MFR of propylene-based resin composition (g/10min)
n: Total number of propylene-based resins constituting the propylene-based resin composition w i : Mixing ratio of propylene-based resin i constituting the propylene-based resin composition MFR i : MFR of propylene-based resin i constituting the propylene-based resin composition (g/10min)

上記中間層30では、フィルムのコシの強さを高めて製袋適性の向上を図るために、密度が0.910g/cm以上の直鎖状低密度ポリエチレンを配合することが好ましい。直鎖状低密度ポリエチレンは、植物由来のものでも化石由来のものでもよい。中間層30の好ましい配合割合は、プロピレン系樹脂組成物70~98重量%と、密度が0.910以上の直鎖状低密度ポリエチレン2~30重量%である。直鎖状低密度ポリエチレンの配合割合が小さすぎるとフィルムのコシの強さを高めることが困難であり、直鎖状低密度ポリエチレンの配合割合が大きすぎると反対にフィルムのコシは低下するおそれがある。また、直鎖状低密度ポリエチレンの密度が低すぎてもフィルムのコシの強さを高めることが困難である。 The intermediate layer 30 preferably contains linear low-density polyethylene having a density of 0.910 g/cm 3 or more in order to increase the stiffness of the film and improve bag-making suitability. Linear low-density polyethylene may be of plant or fossil origin. A preferable compounding ratio of the intermediate layer 30 is 70 to 98% by weight of the propylene-based resin composition and 2 to 30% by weight of linear low-density polyethylene having a density of 0.910 or more. If the blending ratio of the linear low-density polyethylene is too small, it is difficult to increase the stiffness of the film. be. Moreover, even if the density of the linear low-density polyethylene is too low, it is difficult to increase the stiffness of the film.

シール層40は、製袋後に包装袋の内側となる層である。このシール層40は、密度が0.880g/cm以下のプロピレン系エラストマー20~80重量%と、プロピレンランダム共重合体20~80重量%とする組成からなる。 The sealing layer 40 is a layer that becomes the inner side of the packaging bag after bag making. The sealing layer 40 is composed of 20 to 80% by weight of a propylene elastomer having a density of 0.880 g/cm 3 or less and 20 to 80% by weight of a propylene random copolymer.

プロピレン系エラストマーは、特にメタロセン系触媒によるものが好ましい。メタロセン系触媒によるプロピレン系エラストマーは、低分子量成分が少ないためフィルムにべたつきが生じにくく、配合量が多くても滑り性やブロッキング等の問題が起こりにくい等の利点がある。プロピレン系エラストマーは、配合割合が小さすぎると、シール開始温度が高くなり低温ヒートシール性が得られないおそれがある。また、配合割合が大きすぎると、シール開始温度が低くなりすぎるとともに易開封性が得られないおそれがある。プロピレン系エラストマーの密度が0.880g/cmより高い場合には、シール部分の剥離時にフィルムが伸びて易開封性が得られなくなるおそれがある。 The propylene-based elastomer is particularly preferably produced by using a metallocene-based catalyst. Propylene-based elastomers produced by metallocene-based catalysts have the advantages of less stickiness in films due to less low-molecular-weight components, and less problems such as slipperiness and blocking even when blended in large amounts. If the blending ratio of the propylene-based elastomer is too small, the seal initiation temperature becomes high, and low-temperature heat-sealability may not be obtained. On the other hand, if the blending ratio is too large, the seal initiation temperature may become too low and the easy-open property may not be obtained. If the density of the propylene-based elastomer is higher than 0.880 g/cm 3 , the film may stretch when the seal portion is peeled off, making it difficult to obtain easy-openability.

プロピレンランダム共重合体としては、例えば、プロピレンとエチレンとの二元ランダム共重合体、プロピレンとα-オレフィンとの二元ランダム共重合体、プロピレンとエチレンと炭素数4~12のα-オレフィンとの三元ランダム共重合体等を挙げることができる。 Propylene random copolymers include, for example, binary random copolymers of propylene and ethylene, binary random copolymers of propylene and α-olefins, and propylene, ethylene and α-olefins having 4 to 12 carbon atoms. A ternary random copolymer and the like can be mentioned.

また、シール層は、他の実施形態として、密度が0.880g/cm以下のプロピレン系エラストマー20~80重量%と、プロピレンランダム共重合体18~78重量%と、直鎖状低密度ポリエチレン2~20重量%とする組成からなる構成としてもよい。他の実施形態に係るシール層では、直鎖状低密度ポリエチレンを上記の配合割合で含有させることにより、ヒートシール強度の経時低下を抑制することができる。 In another embodiment, the sealing layer comprises 20 to 80% by weight of a propylene-based elastomer having a density of 0.880 g/cm 3 or less, 18 to 78% by weight of a propylene random copolymer, and linear low-density polyethylene. A composition having a composition of 2 to 20% by weight may be used. In the seal layer according to another embodiment, by containing the linear low-density polyethylene in the above blending ratio, deterioration of the heat seal strength over time can be suppressed.

なお、表面層20、中間層30、シール層40の各層には、必要に応じてアンチブロッキング剤、スリップ剤、帯電防止剤、防曇材、熱安定剤、酸化防止剤、光安定剤、結晶核剤等の各種添加剤や端材等、各層の特性を損なわない範囲で適宜に添加することができる。各種添加剤は、各樹脂重合後のパウダーへ直接添加しても良く、高濃度マスターバッチを用意してフィルムを得るまでの任意の工程で混合しても良い。マスターバッチを用いる場合、意図せず少量の樹脂が配合されることがあるが、各層の特性を損なわない範囲で使用できる。 The surface layer 20, the intermediate layer 30, and the seal layer 40 may contain antiblocking agents, slip agents, antistatic agents, antifogging agents, heat stabilizers, antioxidants, light stabilizers, and crystals as needed. Various additives such as nucleating agents and offcuts can be appropriately added within a range that does not impair the characteristics of each layer. Various additives may be added directly to the powder after polymerization of each resin, or may be mixed in any process from preparing a high-concentration masterbatch to obtaining a film. When using a masterbatch, a small amount of resin may be unintentionally blended, but it can be used within a range that does not impair the properties of each layer.

上記フィルム10では、取り扱い易さや強度等の観点からフィルム厚が20~50μmの範囲とすることが好ましく、より好ましい厚みは25~35μmである。また、各層の厚みは特に限定されないが、例えば各層の比率が、表面層5~40%、中間層30~90%、シール層5~30%と設定され、より好ましくは表面層10~30%、中間層50~83%、シール層7~20%と設定される。 The film 10 preferably has a thickness of 20 to 50 μm, more preferably 25 to 35 μm, from the viewpoint of ease of handling and strength. The thickness of each layer is not particularly limited, but for example, the ratio of each layer is set to 5 to 40% for the surface layer, 30 to 90% for the intermediate layer, and 5 to 30% for the seal layer, more preferably 10 to 30% for the surface layer. , an intermediate layer of 50 to 83%, and a seal layer of 7 to 20%.

本発明のフィルム10は、溶断シールによる製袋に用いられて、食品包装用袋を得るものである。溶断シールによる製袋は、シール層を内側として折り返された食品包装用無延伸フィルムの底部となる折部の直交方向に対し、加熱された溶断刃を押し当てて、切断とともに熱溶着して袋状に成形するものである。溶断製袋は公知の方法のうちから適宜選択され、角底ガゼット袋等の適宜の形状の溶断袋が得られる。 The film 10 of the present invention is used for making bags by fusion sealing to obtain food packaging bags. In bag making by fusion sealing, a heated fusion cutting blade is pressed against the orthogonal direction of the folded part that will be the bottom of the unstretched film for food packaging folded back with the seal layer inside, and the bag is cut and heat-sealed. It is molded into a shape. The melt-cut bag-making method is appropriately selected from known methods, and a melt-cut bag having an appropriate shape such as a square-bottomed gusset bag is obtained.

図2に示す実施例は、溶断製袋された底部52に角底ガゼット部53を有する食品包装用袋50である。図示の食品包装用袋50では、袋本体51の側辺51aから角底ガゼット部53の側辺53aを含む袋側辺部(図の太線部分)54が、溶断シールされた溶断部55である。角底ガゼット部53を有する食品包装用袋50は、パン類の包装用袋として好適である。 The embodiment shown in FIG. 2 is a food packaging bag 50 having a square bottom gusset portion 53 on a bottom portion 52 formed by fusion cutting. In the illustrated food packaging bag 50, a bag side portion 54 (thick line portion in the figure) including the side portion 51a of the bag main body 51 and the side portion 53a of the square bottom gusset portion 53 is a fused portion 55 that is fused and sealed. . The food packaging bag 50 having the square bottom gusset portion 53 is suitable as a bread packaging bag.

ここで、角底ガゼット部52を有する食品包装用袋50の製袋工程を説明する。まず、図3(a)に示すように、折り返されたフィルム10の折部11がガゼット折りにより側面止略W字状に折り込まれる。この時、フィルム10は、シール層40が内側となるように折り返されている。続いて、図3(b)に示すように、ガゼット折りされた折部11を含めてフィルム10が折り重ねられ、折部11の直交方向に相当するフィルム10の両側部(図の点線部分)12,12にて溶断シールが行われる。そして、図3(c)に示すように、フィルム10は、折り返された折部11と、溶断シールされた両側部である溶断部54,54の三方が封止された袋形状(50A)に形成され、食品包装用袋50(図4参照)が得られる。 Here, the bag-making process of the food packaging bag 50 having the square bottom gusset portion 52 will be described. First, as shown in FIG. 3(a), the folded portion 11 of the folded back film 10 is folded into a substantially W-shaped side by gusset folding. At this time, the film 10 is folded back so that the seal layer 40 faces inside. Subsequently, as shown in FIG. 3B, the film 10 including the gusset-folded folded portion 11 is folded, and both sides of the film 10 corresponding to the orthogonal direction of the folded portion 11 (dotted line portions in the figure) are folded. Fusion sealing is performed at 12,12. Then, as shown in FIG. 3(c), the film 10 is formed into a bag shape (50A) in which three sides of the folded portion 11 and the fused portions 54, 54, which are both side portions that are fused and sealed, are sealed. Thus, a food packaging bag 50 (see FIG. 4) is obtained.

このように溶断シールにより製袋される食品包装用袋50では、図4に示すように、ガゼット折りされた折部11においてフィルム10が4段重ねで溶断シールされている。そのため、溶断シールされた折部11においては、1段目のフィルム10aと2段目のフィルム10bの内側となるシール層40同士がシールされ(シール部15a)、2段目のフィルム10bと3段目のフィルム10cの外側となる表面層20同士がシールされ(シール部15b)、3段目のフィルム10cと4段目のフィルム10dの内側となるシール層40同士がシールされる(シール部15c)。 As shown in FIG. 4, in the food packaging bag 50 manufactured by fusion-cut sealing, the film 10 is weld-cut sealed in four layers at the gusset-folded folded portion 11 . Therefore, in the folded portion 11 where the fusion-cut sealing is performed, the seal layers 40 inside the first-stage film 10a and the second-stage film 10b are sealed (sealed portion 15a), and the second-stage films 10b and 3 are sealed. The outer surface layers 20 of the film 10c of the stage are sealed together (seal portion 15b), and the seal layers 40 of the film 10c of the third stage and the film 10d of the fourth stage are sealed together (the seal portion 15b). 15c).

本発明の食品包装用無延伸フィルム10では、溶断シールによる製袋に際して、シール層40同士の溶断シールだけでなく、表面層20同士の溶断シールも強固に行うことができる。 In the unstretched film 10 for food packaging of the present invention, when making a bag by fusion sealing, not only the sealing layers 40 but also the surface layers 20 can be firmly fusion-sealed.

[溶断袋の作製]
試作例1~30の溶断袋の作製に際し、まず後述の各材料をドライブレンドして、Tダイ法にて三層共押出Tダイフィルム成型機から表面層、中間層、シール層の順に各層の厚みが8μm、18μm、4μmとなるように共押出しして、各試作例1~30の溶断袋に対応する無延伸フィルムを成形した。次に、作製した各無延伸フィルムを、それぞれシール層を内側として半折りした後、底部に角底のガゼット折りを形成し、溶断製袋装置(トタニ技研工業株式会社製;「HK-40V」)を用いて、溶断刃の先端角度120°、溶断温度350℃、製袋速度194枚/minにて溶断製袋して、試作例1~30の溶断袋を得た。
[Preparation of fusion bag]
When producing the fusion cut bags of Prototype Examples 1 to 30, first, the materials described later are dry blended, and the surface layer, intermediate layer, and seal layer are formed in order from a three-layer co-extrusion T-die film molding machine by the T-die method. They were co-extruded to have thicknesses of 8 μm, 18 μm, and 4 μm to form unstretched films corresponding to the fusion-cut bags of Prototype Examples 1 to 30. Next, each of the produced non-stretched films was folded in half with the seal layer on the inside, and then a gusset fold with a square bottom was formed at the bottom, and a fusion bag making machine (manufactured by Totani Giken Kogyo Co., Ltd.; "HK-40V") was used. ) was used to make fusion-cut bags at a tip angle of a fusion cutting blade of 120°, a fusion cutting temperature of 350°C, and a bag-making speed of 194 sheets/min to obtain fusion-cut bags of Prototype Examples 1 to 30.

[使用材料]
表面層、中間層、ヒートシール層の樹脂組成物として、以下の樹脂を使用した。各樹脂の特性として、メルトフローレート(MFR)はJIS K 7210(2014)に準拠し、プロピレン系樹脂は230℃、2.16kg、エチレン系樹脂は190℃、2.16kgで測定された値、密度はJIS K 7112に準拠して測定した値である。
[Materials used]
The following resins were used as resin compositions for the surface layer, intermediate layer, and heat seal layer. As the characteristics of each resin, the melt flow rate (MFR) conforms to JIS K 7210 (2014), the value measured at 230 ° C., 2.16 kg for the propylene resin, and the value measured at 190 ° C., 2.16 kg for the ethylene resin, Density is a value measured according to JIS K7112.

また、樹脂A1~A4については、キシレン可溶分割合(%)を求めた。キシレン可溶分割合を求めるに際し、まず樹脂5~6gを取って重量を測定した(溶解前の樹脂の重量X)。次に、これをキシレン中で還流溶解し、冷却後に遠心分離してキシレン可溶分液と不溶分とに分離した。キシレン可溶分液をさらに濃縮し、メタノールを添加して析出、沈殿させて、この析出物をろ過して回収、乾燥して、重量を測定した(キシレン可溶分の析出物の重量Y)。そこで、溶解前の樹脂の重量Xと、キシレン可溶分の析出物の重量Yから、下記式(ii)に基づいてキシレン可溶分割合Z(%)を求めた。 Further, the xylene soluble content ratio (%) was determined for the resins A1 to A4. When determining the xylene soluble content, first 5 to 6 g of resin was taken and weighed (weight X of resin before dissolution). Next, this was dissolved in xylene under reflux, cooled and then centrifuged to separate a xylene soluble fraction and an insoluble fraction. The xylene-soluble fraction was further concentrated, and methanol was added to precipitate and precipitate, and the precipitate was collected by filtration, dried, and weighed (weight Y of xylene-soluble precipitate). . Therefore, from the weight X of the resin before dissolution and the weight Y of the precipitate of the xylene-soluble matter, the xylene-soluble matter ratio Z (%) was determined based on the following formula (ii).

Figure 2022166818000004
Figure 2022166818000004

さらに、樹脂B1,C1~C5について、融点(℃)を求めた。樹脂の融点は、JIS K 7121(2012)の示差走査熱量測定(DSC)の測定に準拠し、示差走査熱量計(ネッチ・ジャパン株式会社製;「DSC 214 Polyma」)を使用して、加熱速度10℃/minで昇温した際に得られたDSC曲線から融解ピーク温度を求めて融点とした。 Further, melting points (° C.) were obtained for resins B1 and C1 to C5. The melting point of the resin conforms to JIS K 7121 (2012) differential scanning calorimetry (DSC) measurement, using a differential scanning calorimeter (manufactured by Netch Japan Co., Ltd.; "DSC 214 Polyma"), the heating rate The melting peak temperature was determined from the DSC curve obtained when the temperature was raised at 10°C/min and was taken as the melting point.

・樹脂A1:プロピレン-エチレンブロック共重合体(日本ポリプロ株式会社製;「BC3HF」)、MFR(230℃、2.16kg):8.5g/10min、キシレン可溶分割合10.6%、密度0.9g/cm
・樹脂A2:プロピレン-エチレンブロック共重合体(株式会社プライムポリマー製;「F-274NP」)、MFR(230℃、2.16kg):2.5g/10min、キシレン可溶分割合15.8%、密度0.9g/cm
・樹脂A3:プロピレン-エチレンブロック共重合体(日本ポリプロ株式会社製;「BC6DRF」)、MFR(230℃、2.16kg):2.5g/10min、キシレン可溶分割合16.2%、密度0.9g/cm
・樹脂A4:プロピレン-エチレンブロック共重合体(日本ポリプロ株式会社製;「BC5FA」)、MFR(230℃、2.16kg):3.5g/10min、キシレン可溶分割合12.4%、密度0.9g/cm
・ Resin A1: propylene-ethylene block copolymer (manufactured by Japan Polypropylene Corporation; "BC3HF"), MFR (230 ° C., 2.16 kg): 8.5 g / 10 min, xylene soluble content 10.6%, density 0.9g/ cm3
・ Resin A2: Propylene-ethylene block copolymer (manufactured by Prime Polymer Co., Ltd.; "F-274NP"), MFR (230 ° C., 2.16 kg): 2.5 g / 10 min, xylene soluble content 15.8% , density 0.9 g/cm 3
・ Resin A3: propylene-ethylene block copolymer (manufactured by Japan Polypropylene Corporation; "BC6DRF"), MFR (230 ° C., 2.16 kg): 2.5 g / 10 min, xylene soluble content 16.2%, density 0.9g/ cm3
・ Resin A4: propylene-ethylene block copolymer (manufactured by Japan Polypropylene Corporation; "BC5FA"), MFR (230 ° C., 2.16 kg): 3.5 g / 10 min, xylene soluble content 12.4%, density 0.9g/ cm3

・樹脂B1:ホモポリプロピレン(日本ポリプロ株式会社製;「FB3B」)、MFR(230℃、2.16kg):7.5g/10min、密度0.9g/cm、融点163℃ Resin B1: homopolypropylene (manufactured by Japan Polypropylene Corporation; "FB3B"), MFR (230°C, 2.16 kg): 7.5 g/10 min, density 0.9 g/cm 3 , melting point 163°C

・樹脂C1:プロピレンランダム共重合体(プロピレン-エチレンランダム共重合体)(日本ポリプロ株式会社製;「WFW4M」)、MFR(230℃、2.16kg):7g/10min、密度0.9g/cm、融点135℃
・樹脂C2:プロピレンランダム共重合体(プロピレン-エチレンランダム共重合体)(株式会社プライムポリマー製;「S235WC」)、MFR(230℃、2.16kg):11g/10min、密度0.9g/cm、融点135℃
・樹脂C3:プロピレンランダム共重合体(プロピレン-エチレンランダム共重合体)(日本ポリプロ株式会社製;「WFX5233」)、MFR(230℃、2.16kg):7g/10min、密度0.9g/cm、融点130℃
・樹脂C4:プロピレンランダム共重合体(プロピレン-エチレン-ブテンランダム共重合体)(日本ポリプロ株式会社製;「FW4BT」)、MFR(230℃、2.16kg):6.5g/10min、密度0.9g/cm、融点138℃
・樹脂C5:プロピレンランダム共重合体(プロピレン-エチレンランダム共重合体)(日本ポリプロ株式会社製;「WFX6」)、MFR(230℃、2.16kg):2g/10min、密度0.9g/cm、融点125℃
Resin C1: propylene random copolymer (propylene-ethylene random copolymer) (manufactured by Japan Polypropylene Corporation; "WFW4M"), MFR (230°C, 2.16 kg): 7 g/10 min, density 0.9 g/cm 3 , melting point 135°C
・ Resin C2: Propylene random copolymer (propylene-ethylene random copolymer) (manufactured by Prime Polymer Co., Ltd.; "S235WC"), MFR (230 ° C., 2.16 kg): 11 g / 10 min, density 0.9 g / cm 3 , melting point 135°C
・Resin C3: Propylene random copolymer (propylene-ethylene random copolymer) (manufactured by Japan Polypropylene Corporation; "WFX5233"), MFR (230°C, 2.16 kg): 7 g/10 min, density 0.9 g/cm 3 , melting point 130°C
・ Resin C4: Propylene random copolymer (propylene-ethylene-butene random copolymer) (manufactured by Japan Polypropylene Corporation; "FW4BT"), MFR (230 ° C., 2.16 kg): 6.5 g / 10 min, density 0 .9 g/cm 3 , melting point 138°C
・ Resin C5: Propylene random copolymer (propylene-ethylene random copolymer) (manufactured by Japan Polypropylene Corporation; "WFX6"), MFR (230 ° C., 2.16 kg): 2 g / 10 min, density 0.9 g / cm 3 , melting point 125°C

・樹脂D1:低密度ポリエチレン(宇部丸善ポリエチレン株式会社製;「R300」)、MFR(190℃、2.16kg):0.35g/10min、密度0.920g/cm ・ Resin D1: Low density polyethylene (manufactured by Ube Maruzen Polyethylene Co., Ltd.; "R300"), MFR (190 ° C., 2.16 kg): 0.35 g / 10 min, density 0.920 g / cm 3

・樹脂E1:植物由来の直鎖状低密度ポリエチレン(ブラスケム社製;「SLH118」)、MFR(190℃、2.16kg):1g/10min、密度0.916g/cm
・樹脂E2:植物由来の直鎖状低密度ポリエチレン(ブラスケム社製;「SLH218」)、MFR(190℃、2.16kg):2.3g/10min、密度0.916g/cm
・樹脂E3:植物由来の直鎖状低密度ポリエチレン(ブラスケム社製;「SLL318」)、MFR(190℃、2.16kg):2.7g/10min、密度0.918g/cm
・樹脂E4:直鎖状低密度ポリエチレン(宇部丸善ポリエチレン株式会社製;「1540F」)、MFR(190℃、2.16kg):4g/10min、密度0.913g/cm
・樹脂E5:直鎖状低密度ポリエチレン(宇部丸善ポリエチレン株式会社製;「0540F」)、MFR(190℃、2.16kg):4g/10min、密度0.904g/cm
・樹脂E6:直鎖状低密度ポリエチレン(宇部丸善ポリエチレン株式会社製;「2040FC」)、MFR(190℃、2.16kg):5g/10min、密度0.919g/cm
・樹脂E7:直鎖状低密度ポリエチレン(日本ポリエチレン株式会社製;「KF360T」)、MFR(190℃、2.16kg):3.5g/10min、密度0.898g/cm
Resin E1: plant-derived linear low-density polyethylene ("SLH118" manufactured by Braskem), MFR (190°C, 2.16 kg): 1 g/10 min, density 0.916 g/cm 3
Resin E2: plant-derived linear low-density polyethylene ("SLH218" manufactured by Braskem), MFR (190°C, 2.16 kg): 2.3 g/10 min, density 0.916 g/ cm3
Resin E3: plant-derived linear low-density polyethylene ("SLL318" manufactured by Braskem), MFR (190°C, 2.16 kg): 2.7 g/10 min, density 0.918 g/cm 3
・Resin E4: Linear low-density polyethylene (manufactured by Ube Maruzen Polyethylene Co., Ltd.; “1540F”), MFR (190° C., 2.16 kg): 4 g/10 min, density 0.913 g/cm 3
・Resin E5: Linear low-density polyethylene (manufactured by Ube Maruzen Polyethylene Co., Ltd.; “0540F”), MFR (190° C., 2.16 kg): 4 g/10 min, density 0.904 g/cm 3
・ Resin E6: Linear low-density polyethylene (manufactured by Ube Maruzen Polyethylene Co., Ltd.; “2040FC”), MFR (190 ° C., 2.16 kg): 5 g / 10 min, density 0.919 g / cm 3
・ Resin E7: Linear low-density polyethylene (manufactured by Japan Polyethylene Co., Ltd.; "KF360T"), MFR (190 ° C., 2.16 kg): 3.5 g / 10 min, density 0.898 g / cm 3

・樹脂F1:メタロセン系触媒によるプロピレン系エラストマー(エクソンモービル社製;「VISTAMAXX3980FL」)、MFR(230℃、2.16kg):8g/10min、密度0.878g/cm
・樹脂F2:メタロセン系触媒によるプロピレン系エラストマー(エクソンモービル社製;「VISTAMAXX6102FL」)、MFR(230℃、2.16kg):3g/10min、密度0.862g/cm
・樹脂F3:メタロセン系触媒によるプロピレン系エラストマー(エクソンモービル社製;「VISTAMAXX3588FL」)、MFR(230℃、2.16kg):8g/10min、密度0.889g/cm
・Resin F1: Metallocene-based catalyzed propylene-based elastomer (manufactured by ExxonMobil; "VISTAMAXX3980FL"), MFR (230°C, 2.16 kg): 8 g/10 min, density 0.878 g/cm 3
・Resin F2: Metallocene-based catalyst propylene-based elastomer (manufactured by ExxonMobil; "VISTAMAXX6102FL"), MFR (230°C, 2.16 kg): 3 g/10 min, density 0.862 g/cm 3
・Resin F3: Metallocene-based catalyst propylene-based elastomer (manufactured by ExxonMobil; "VISTAMAXX3588FL"), MFR (230°C, 2.16 kg): 8 g/10 min, density 0.889 g/cm 3

・樹脂G1:メタロセン系触媒によるエチレン系エラストマー(ダウ・ケミカル社製;「AFFINITY KC8852G」)、MFR(190℃、2.16kg):3g/10min、密度0.875g/cm ・Resin G1: metallocene-based catalyst ethylene-based elastomer (manufactured by Dow Chemical Co., Ltd.; "AFFINITY KC8852G"), MFR (190 ° C., 2.16 kg): 3 g / 10 min, density 0.875 g / cm 3

[試作例1]
試作例1は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を100重量%、シール層が樹脂C1を35重量%と樹脂F1を65重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype example 1]
In prototype example 1, the surface layer is made of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is made of 100% by weight of resin A2, and the seal layer is made of 35% by weight of resin C1 and 65% by weight of resin F1. It is a fusion cut bag made of a non-stretched film.

[試作例2]
試作例2は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A3を100重量%、シール層が樹脂C1を35重量%と樹脂F1を65重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype example 2]
In prototype example 2, the surface layer is made of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is made of 100% by weight of resin A3, and the sealing layer is made of 35% by weight of resin C1 and 65% by weight of resin F1. It is a fusion cut bag made of a non-stretched film.

[試作例3]
試作例3は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A4を100重量%、シール層が樹脂C1を35重量%と樹脂F1を65重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 3]
In prototype example 3, the surface layer is made of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is made of 100% by weight of resin A4, and the seal layer is made of 35% by weight of resin C1 and 65% by weight of resin F1. It is a fusion cut bag made of a non-stretched film.

[試作例4]
試作例4は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を100重量%、シール層が樹脂C3を80重量%と樹脂F2を20重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype example 4]
In prototype example 4, the surface layer is made of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is made of 100% by weight of resin A2, and the sealing layer is made of 80% by weight of resin C3 and 20% by weight of resin F2. It is a fusion cut bag made of a non-stretched film.

[試作例5]
試作例5は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を85重量%と樹脂E5を15重量%、シール層が樹脂C1を35重量%と樹脂F1を65重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 5]
In Prototype Example 5, the surface layer is composed of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is composed of 85% by weight of resin A2 and 15% by weight of resin E5, and the seal layer is composed of 35% by weight of resin C1. It is a fusion-cut bag made of a non-stretched film formed with 65% by weight of F1.

[試作例6]
試作例6は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を60量%と樹脂E2を40重量%、シール層が樹脂C1を35重量%と樹脂F1を65重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 6]
In Prototype Example 6, the surface layer is composed of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is composed of 60% by weight of resin A2 and 40% by weight of resin E2, and the seal layer is composed of 35% by weight of resin C1. It is a fusion-cut bag made of a non-stretched film formed with 65% by weight of F1.

[試作例7]
試作例7は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を98量%と樹脂E2を2重量%、シール層が樹脂C1を35重量%と樹脂F1を65重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 7]
In prototype example 7, the surface layer is composed of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is composed of 98% by weight of resin A2 and 2% by weight of resin E2, and the sealing layer is composed of 35% by weight of resin C1. It is a fusion-cut bag made of a non-stretched film formed with 65% by weight of F1.

[試作例8]
試作例8は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を85量%と樹脂E1を15重量%、シール層が樹脂C1を35重量%と樹脂F1を65重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 8]
In prototype example 8, the surface layer is composed of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is composed of 85% by weight of resin A2 and 15% by weight of resin E1, and the seal layer is composed of 35% by weight of resin C1. It is a fusion-cut bag made of a non-stretched film formed with 65% by weight of F1.

[試作例9]
試作例9は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を85量%と樹脂E3を15重量%、シール層が樹脂C1を35重量%と樹脂F1を65重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 9]
In prototype example 9, the surface layer is composed of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is composed of 85% by weight of resin A2 and 15% by weight of resin E3, and the sealing layer is composed of 35% by weight of resin C1. It is a fusion-cut bag made of a non-stretched film formed with 65% by weight of F1.

[試作例10]
試作例10は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を70量%と樹脂E2を30重量%、シール層が樹脂C1を35重量%と樹脂F1を65重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 10]
In prototype example 10, the surface layer is composed of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is composed of 70% by weight of resin A2 and 30% by weight of resin E2, and the seal layer is composed of 35% by weight of resin C1. It is a fusion-cut bag made of a non-stretched film formed with 65% by weight of F1.

[試作例11]
試作例11は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を50量%と樹脂C1を25重量%と樹脂E2を15重量%と樹脂E4を10重量%、シール層が樹脂C3を80重量%と樹脂F2を20重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 11]
In prototype example 11, the surface layer contains 95% by weight of resin A1 and 5% by weight of resin D1, and the intermediate layer contains 50% by weight of resin A2, 25% by weight of resin C1, 15% by weight of resin E2, and 10% by weight of resin E4. 80% by weight of resin C3 and 20% by weight of resin F2.

[試作例12]
試作例12は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を70量%と樹脂C1を15重量%と樹脂E2を15重量%、シール層が樹脂C3を80重量%と樹脂F2を20重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 12]
In prototype example 12, the surface layer contains 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer contains 70% by weight of resin A2, 15% by weight of resin C1 and 15% by weight of resin E2, and the sealing layer is made of resin. It is a fusion-cut bag made of a non-stretched film formed with 80% by weight of C3 and 20% by weight of resin F2.

[試作例13]
試作例13は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を50量%と樹脂C2を35重量%と樹脂E2を15重量%、シール層が樹脂C1を35重量%と樹脂F1を65重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 13]
In Prototype Example 13, the surface layer is composed of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is composed of 50% by weight of resin A2, 35% by weight of resin C2 and 15% by weight of resin E2, and the sealing layer is made of resin. It is a fusion-cut bag made of a non-stretched film formed with 35% by weight of C1 and 65% by weight of resin F1.

[試作例14]
試作例14は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A1を100重量%、シール層が樹脂C1を35重量%と樹脂F1を65重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 14]
In prototype example 14, the surface layer is made of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is made of 100% by weight of resin A1, and the seal layer is made of 35% by weight of resin C1 and 65% by weight of resin F1. It is a fusion cut bag made of a non-stretched film.

[試作例15]
試作例15は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂B1を100重量%、シール層が樹脂C1を35重量%と樹脂F1を65重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 15]
In prototype example 15, the surface layer is made of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is made of 100% by weight of resin B1, and the sealing layer is made of 35% by weight of resin C1 and 65% by weight of resin F1. It is a fusion cut bag made of a non-stretched film.

[試作例16]
試作例16は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂C4を100重量%、シール層が樹脂C1を35重量%と樹脂F1を65重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 16]
In prototype example 16, the surface layer is made of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is made of 100% by weight of resin C4, and the sealing layer is made of 35% by weight of resin C1 and 65% by weight of resin F1. It is a fusion cut bag made of a non-stretched film.

[試作例17]
試作例17は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を100重量%、シール層が樹脂F1を100重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 17]
In Prototype Example 17, the surface layer is made of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is made of 100% by weight of resin A2, and the seal layer is made of 100% by weight of resin F1. It is a fusing bag.

[試作例18]
試作例18は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を100重量%、シール層が樹脂F3を100重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 18]
In Prototype Example 18, the surface layer is made of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is made of 100% by weight of resin A2, and the seal layer is made of 100% by weight of resin F3. It is a fusing bag.

[試作例19]
試作例19は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を100重量%、シール層が樹脂C3を60重量%と樹脂G1を40重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 19]
In prototype example 19, the surface layer was made of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer was made of 100% by weight of resin A2, and the seal layer was made of 60% by weight of resin C3 and 40% by weight of resin G1. It is a fusion cut bag made of a non-stretched film.

[試作例20]
試作例20は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を100重量%、シール層が樹脂C3を80重量%と樹脂G1を20重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype example 20]
In prototype example 20, the surface layer is made of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is made of 100% by weight of resin A2, and the sealing layer is made of 80% by weight of resin C3 and 20% by weight of resin G1. It is a fusion cut bag made of a non-stretched film.

[試作例21]
試作例21は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を30重量%と樹脂C5を55重量%と樹脂E2を15重量%、シール層が樹脂C1を35重量%と樹脂F1を65重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 21]
In Prototype Example 21, the surface layer is composed of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is composed of 30% by weight of resin A2, 55% by weight of resin C5 and 15% by weight of resin E2, and the sealing layer is made of resin. It is a fusion-cut bag made of a non-stretched film formed with 35% by weight of C1 and 65% by weight of resin F1.

[試作例22]
試作例22は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を100重量%、シール層が樹脂C4を35重量%と樹脂F1を65重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 22]
In prototype example 22, the surface layer is made of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is made of 100% by weight of resin A2, and the seal layer is made of 35% by weight of resin C4 and 65% by weight of resin F1. It is a fusion cut bag made of a non-stretched film.

[試作例23]
試作例23は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を100重量%、シール層が樹脂C1を25重量%と樹脂F1を65重量%と樹脂E6を10重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 23]
In prototype example 23, the surface layer is composed of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is composed of 100% by weight of resin A2, and the seal layer is composed of 25% by weight of resin C1 and 65% by weight of resin F1. It is a fusion-cut bag made of a non-stretched film formed with 10% by weight of E6.

[試作例24]
試作例24は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を100重量%、シール層が樹脂C1を25重量%と樹脂F1を65重量%と樹脂E7を10重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 24]
In Prototype Example 24, the surface layer is composed of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is composed of 100% by weight of resin A2, and the seal layer is composed of 25% by weight of resin C1 and 65% by weight of resin F1. It is a fusion-cut bag made of a non-stretched film formed with 10% by weight of E7.

[試作例25]
試作例25は、表面層が樹脂A1を95重量%と樹脂D1を5重量%、中間層が樹脂A2を100重量%、シール層が樹脂C1を18重量%と樹脂F1を65重量%と樹脂E6を3.5重量%と樹脂E7を13.5重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 25]
In Prototype Example 25, the surface layer is composed of 95% by weight of resin A1 and 5% by weight of resin D1, the intermediate layer is composed of 100% by weight of resin A2, and the sealing layer is composed of 18% by weight of resin C1 and 65% by weight of resin F1. It is a fusion-cut bag made of a non-stretched film formed with 3.5% by weight of E6 and 13.5% by weight of resin E7.

[試作例26]
試作例26は、表面層が樹脂C3を100重量%、中間層が樹脂A2を100重量%、シール層が樹脂C1を35重量%と樹脂F1を65重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 26]
Prototype Example 26 is a non-stretched film produced by forming the surface layer with 100% by weight of resin C3, the intermediate layer with 100% by weight of resin A2, and the sealing layer with 35% by weight of resin C1 and 65% by weight of resin F1. It is a fusing bag.

[試作例27]
試作例27は、表面層が樹脂C3を100重量%、中間層が樹脂A3を50重量%と樹脂C1を50重量%、シール層が樹脂C1を35重量%と樹脂F1を65重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 27]
In prototype example 27, the surface layer is made of 100% by weight of resin C3, the intermediate layer is made of 50% by weight of resin A3 and 50% by weight of resin C1, and the sealing layer is made of 35% by weight of resin C1 and 65% by weight of resin F1. It is a fusion cut bag made of a non-stretched film.

[試作例28]
試作例28は、表面層が樹脂C3を100重量%、中間層が樹脂A4を100重量%、シール層が樹脂C1を35重量%と樹脂F1を65重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 28]
Prototype Example 28 is a non-stretched film produced by forming the surface layer with 100% by weight of resin C3, the intermediate layer with 100% by weight of resin A4, and the seal layer with 35% by weight of resin C1 and 65% by weight of resin F1. It is a fusing bag.

[試作例29]
試作例29は、表面層が樹脂C3を100重量%、中間層が樹脂A2を100重量%、シール層が樹脂C3を80重量%と樹脂F2を20重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 29]
Prototype Example 29 is a non-stretched film produced by forming the surface layer with 100% by weight of resin C3, the intermediate layer with 100% by weight of resin A2, and the seal layer with 80% by weight of resin C3 and 20% by weight of resin F2. It is a fusing bag.

[試作例30]
試作例30は、表面層が樹脂C3を100重量%、中間層が樹脂A2を100重量%、シール層が樹脂C1を30重量%と樹脂F1を65重量%と樹脂E6を5重量%として製膜された無延伸フィルムからなる溶断袋である。
[Prototype Example 30]
In prototype example 30, the surface layer is made of 100% by weight of resin C3, the intermediate layer is made of 100% by weight of resin A2, and the seal layer is made of 30% by weight of resin C1, 65% by weight of resin F1, and 5% by weight of resin E6. It is a fusion cut bag made of a non-stretched film.

試作例1~30の溶断袋に関し、溶断袋を構成するフィルムの各層の樹脂組成について表1~5に示した。 Tables 1 to 5 show the resin composition of each layer of the film constituting the fusion-cut bag of Prototype Examples 1-30.

Figure 2022166818000005
Figure 2022166818000005

Figure 2022166818000006
Figure 2022166818000006

Figure 2022166818000007
Figure 2022166818000007

Figure 2022166818000008
Figure 2022166818000008

Figure 2022166818000009
Figure 2022166818000009

試作例1~30の溶断袋に使用される各フィルムの性能評価として、ヒートシール開始温度、易開封性、ヘーズ値、引張弾性率、ガゼット部の溶断強度、袋本体の溶断強度、内容物充填時の溶断部の破袋について測定した。なお、各試験は、いずれも23℃の室内で行った。 The performance evaluation of each film used in the fusion-cut bags of Prototype Examples 1 to 30 includes heat-seal initiation temperature, easy-openability, haze value, tensile elastic modulus, fusion-cut strength of the gusset portion, fusion-cut strength of the bag body, and content filling. It was measured about the breakage of the fused part at the time. Each test was conducted indoors at 23°C.

[ヒートシール開始温度]
試作例1~30に対応するフィルムについて、JIS Z 1713(2009)に準拠してヒートシール開始温度を測定した。ヒートシール試験機(株式会社東洋精機製作所製;「熱傾斜試験機」)を使用し、シールバーの形状10mm×25mm、シール圧力0.4MPa、シール時間1秒にて、各フィルムを2枚用意してそれぞれシール層同士を重ねてヒートシールした。ヒートシール後、15mm幅の試験片を切り出し、ヒートシールにより融着した試験片を180°に開いて、引張試験機(株式会社島津製作所製;「小型卓上試験機 EZ-SX」)により、200mm/minの引張速度でシール部分を剥離して、ヒートシール強度が3N/15mm幅に到達した時点の温度(ヒートシール開始温度)を求めた。測定したヒートシール開始温度が、80~120℃の場合に「良(〇)」、80℃未満又は120℃を超えた場合に「不可(×)」として、低温シール性を評価した。
[Heat seal start temperature]
For the films corresponding to Prototype Examples 1 to 30, the heat seal initiation temperature was measured according to JIS Z 1713 (2009). Using a heat seal tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.; "thermal gradient tester"), 2 sheets of each film were prepared with a seal bar shape of 10 mm × 25 mm, a seal pressure of 0.4 MPa, and a seal time of 1 second. Then, the seal layers were overlapped and heat-sealed. After heat-sealing, cut out a 15 mm wide test piece, open the heat-sealed test piece at 180 °, and use a tensile tester (manufactured by Shimadzu Corporation; "Small desktop tester EZ-SX") to 200 mm. The temperature at which the heat seal strength reached 3 N/15 mm width (heat seal initiation temperature) was determined by peeling the sealed portion at a tensile speed of /min. Low-temperature sealability was evaluated as "good (◯)" when the measured heat seal initiation temperature was 80 to 120°C, and "poor (x)" when it was less than 80°C or greater than 120°C.

[易開封性]
試作例1~30に対応するフィルムについて、易開封性を試験した。ヒートシール試験機(株式会社東洋精機製作所製;「熱傾斜試験機」)を使用し、ヒートシール開始温度を測定するのと同様の方法で、各フィルムを2枚用意してそれぞれシール層同士を重ねて、120℃でヒートシールした。ヒートシール後、15mm幅の試験片を切り出し、ヒートシールにより融着した試験片を180°に開いて、引張試験機(株式会社島津製作所製;「小型卓上試験機 EZ-SX」)により、200mm/minの引張速度で試験片を引っ張った際の剥離の状態を目視にて観察した。フィルムが伸びを伴わずに剥離された場合に「良(〇)」、伸びを伴って剥離された場合に「不可(×)」として、易開封性を評価した。なお、ヒートシールされていない(低温シール性がない)場合は「シールなし(-)」とした。
[Ease of opening]
The films corresponding to Prototype Examples 1 to 30 were tested for ease of opening. Using a heat seal tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.; "thermal gradient tester"), in the same manner as measuring the heat seal start temperature, prepare two sheets of each film and separate the seal layers. They were overlapped and heat-sealed at 120°C. After heat-sealing, cut out a 15 mm wide test piece, open the heat-sealed test piece at 180 °, and use a tensile tester (manufactured by Shimadzu Corporation; "Small desktop tester EZ-SX") to 200 mm. The state of peeling when the test piece was pulled at a tensile speed of /min was visually observed. The easy-openability was evaluated as "Good (O)" when the film was peeled without elongation, and as "Fail (X)" when the film was peeled with elongation. In addition, when it was not heat-sealed (no low-temperature sealability), it was indicated as "no seal (-)".

[ヘーズ値]
試作例1~30に対応するフィルムについて、JIS K 7136(2000)に準拠してヘーズ値を測定した。ヘーズ値(%)は透明性の指標であり、ヘーズメーター(日本電色工業株式会社製;「ヘーズメーター NDH-4000」)を使用して測定を行った。パン類等のための食品包装用袋においては、マット調フィルムの方が透明フィルムよりも見た目が良く食品メーカーや消費者に好まれる傾向がある。そこで、測定結果が40%以上の場合に「優良(◎)」、10%未満の場合に「良(〇)」、10%以上かつ40%未満の場合に「不可(×)」として、ヘーズ値を評価した。
[Haze value]
The haze values of the films corresponding to Prototype Examples 1 to 30 were measured according to JIS K 7136 (2000). The haze value (%) is an index of transparency, and was measured using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd.; "Haze meter NDH-4000"). In food packaging bags for bread and the like, matte films tend to be preferred by food manufacturers and consumers because of their better appearance than transparent films. Therefore, if the measurement result is 40% or more, it is "excellent (◎)", if it is less than 10%, it is "good (○)", and if it is 10% or more and less than 40%, it is "improper (x)". value was evaluated.

[引張弾性率]
試作例1~30に対応するフィルムについて、JIS K 7127(1999)に準拠して引張弾性率(GPa)を測定した。引張試験機(株式会社エー・アンド・デイ製;「テンシロン万能材料試験機 RTF-1310」)を使用し、各フィルムの巻き取り方向(MD)と、それに直交する横方向(TD)の2方向において測定を行った。測定結果が0.65GPa以上の場合に「優良(◎)」、0.50GPa以上の場合に「良(〇)」とし、0.50GPa未満の場合に「不可(×)」として、フィルムのコシの強さを評価した。
[Tensile modulus]
The tensile modulus (GPa) of the films corresponding to Prototype Examples 1 to 30 was measured according to JIS K 7127 (1999). Using a tensile tester (manufactured by A&D Co., Ltd.; "Tensilon universal material testing machine RTF-1310"), the winding direction (MD) of each film and the transverse direction (TD) perpendicular to it. Measurements were taken at If the measurement result is 0.65 GPa or more, it is “excellent (◎)”, if it is 0.50 GPa or more, it is “good (◯)”, and if it is less than 0.50 GPa, it is “improper (x)”. evaluated the strength of

[ガゼット部の溶断強度]
試作例1~30の溶断袋について、ガゼット部の溶断部(図2の符号53a)の溶断強度(N/15mm幅)を測定した。この測定では、溶断袋のガゼット部の溶断部を15mm幅に切り出し、引張試験機(株式会社島津製作所製;「小型卓上試験機 EZ-SX」)により、上下のチャックにそれぞれフィルムを2枚ずつ挟んで、200mm/minで引張し、溶断部が破断した時点までの最大強度を求めた。測定結果が15N/15mm幅以上の場合に「良(〇)」、15N/15mm幅未満の場合に「不可(×)」として、ガゼット部の溶断強度を評価した。
[Fusing Strength of Gusset Part]
For the fusion-cut bags of Prototype Examples 1 to 30, the fusion-cut strength (N/15 mm width) of the fusion-cut portion (reference numeral 53a in FIG. 2) of the gusset portion was measured. In this measurement, the fused part of the gusset part of the fused bag is cut into a width of 15 mm, and a tensile tester (manufactured by Shimadzu Corporation; "Small desktop tester EZ-SX") is used to apply two films to each of the upper and lower chucks. It was sandwiched and pulled at 200 mm/min, and the maximum strength until the fusion part broke was determined. The fusion strength of the gusset portion was evaluated as "good (o)" when the measurement result was 15 N/15 mm width or more, and "failed (x)" when it was less than 15 N/15 mm width.

[袋本体の溶断強度]
試作例1~30の溶断袋について、袋本体の溶断部(図2の符号51a)の溶断強度(N/15mm幅)を測定した。この測定では、溶断袋の袋本体(ガゼット部でない部分)の溶断部を15mm幅に切り出し、引張試験機(株式会社島津製作所製;「小型卓上試験機 EZ-SX」)により、上下のチャックにそれぞれフィルムを1枚ずつ挟んで、200mm/minで引張し、溶断部が破断した時点までの最大強度を求めた。測定結果が17N/15mm幅以上の場合に「良(〇)」、17N/15mm幅未満の場合に「不可(×)」として、袋本体の溶断強度を評価した。
[Welding strength of bag body]
For the fusion-cut bags of Prototype Examples 1 to 30, the fusion-cut strength (N/15 mm width) of the fusion-cut portion (reference numeral 51a in FIG. 2) of the bag body was measured. In this measurement, the fused part of the bag body (the part that is not the gusset part) of the fused bag is cut to a width of 15 mm, and a tensile tester (manufactured by Shimadzu Corporation; "Small desktop tester EZ-SX") One sheet of each film was sandwiched and pulled at 200 mm/min, and the maximum strength until the fused portion was broken was determined. When the measurement result was 17 N/15 mm width or more, it was evaluated as "Good (O)", and when it was less than 17 N/15 mm width, it was evaluated as "Failure (X)".

[袋本体溶断部の耐裂け性評価]
試作例1~30の溶断袋について、内容物(食品)充填時の衝撃による溶断部の耐裂け性の評価として、袋本体の溶断部(図2の符号51a)の耐裂け性試験を実施した。溶断部の破袋試験では、机上に溶断袋を置き、袋内側に両手を入れ、両手を溶断袋の左右両側の溶断部に勢いよくぶつけて、溶断部の破袋(裂け)の発生の有無を目視にて観察した。この破袋試験は、各試作例1~30の溶断袋を5袋ずつ用意して行った。5袋の溶断袋のうち、1袋も破袋が発生しなかった場合に「優良(◎)」、1袋だけ破袋が発生した場合に「良(〇)」とし、2袋以上の破袋が発生した場合に「不可(×)」として、内容物充填時の溶断部の耐裂け性を評価した。
[Evaluation of Tear Resistance of Fused Portion of Bag Body]
For the fusion-cut bags of Prototype Examples 1 to 30, a tear resistance test was conducted on the fusion-cut portion of the bag body (reference numeral 51a in FIG. 2) as an evaluation of the tear resistance of the fusion-cut portion due to the impact during filling of the contents (food). . In the fused bag breakage test, a fused bag is placed on the desk, both hands are placed inside the bag, and both hands are vigorously hit against the fused parts on both the left and right sides of the fused bag to check whether the fused bag has broken (teared). was visually observed. This bag-breaking test was conducted by preparing five fusion-cut bags of each of Prototype Examples 1 to 30. Out of the five fused bags, if none of the bags were broken, it was rated as “excellent (◎)”; if only one bag was broken, it was rated as “good (〇)”; When the bag was generated, it was evaluated as "impossible (x)" and the resistance to tearing of the melted portion during filling was evaluated.

試作例1~30の溶断袋に対応する各フィルム及び試作例1~30の溶断袋の試験結果と判定を表6~10に示す。また、各試作例1~30の中間層のプロピレン系樹脂組成物(樹脂A1~A4,樹脂B1,樹脂C1~C5)の計算MFRを前記の式(i)に基づいて求めて表6~10に示した。なお、表6~10において、総合評価として、各試験の判定がすべて「良(〇)」以上の場合を「良(〇)」とし、「不可(×)」や「シールなし(-)」が1つでもある場合を「不可(×)」とした。 Tables 6 to 10 show the test results and judgments of the films corresponding to the fusion cut bags of Prototype Examples 1 to 30 and the fusion cut bags of Prototype Examples 1 to 30. In addition, the calculated MFR of the intermediate layer propylene-based resin composition (resins A1 to A4, resin B1, resins C1 to C5) of each of Prototype Examples 1 to 30 was obtained based on the above formula (i), and Tables 6 to 10 It was shown to. In Tables 6 to 10, as a comprehensive evaluation, if the judgment of each test is all "good (〇)" or higher, it is "good (〇)", "improper (×)" or "no seal (-)". The case where there is at least one was set as "impossible (x)".

Figure 2022166818000010
Figure 2022166818000010

Figure 2022166818000011
Figure 2022166818000011

Figure 2022166818000012
Figure 2022166818000012

Figure 2022166818000013
Figure 2022166818000013

Figure 2022166818000014
Figure 2022166818000014

[結果と考察]
表1~5及び表6~10に示すように、試作例1~13,22~30は総合評価が「良(〇)」であり、試作例14~21は総合評価が「不可(×)」であった。そこで、良品の試作例1~13,22~30と、不良品の試作例14~21との性能の相違について、各試作例のフィルムの構成を対比して考察する。
[Results and discussion]
As shown in Tables 1 to 5 and Tables 6 to 10, the overall evaluation of prototype examples 1 to 13 and 22 to 30 is "good (○)", and the overall evaluation of prototype examples 14 to 21 is "improper (x).""Met. Therefore, the differences in performance between the non-defective prototypes 1 to 13 and 22 to 30 and the defective prototypes 14 to 21 will be discussed by comparing the film configurations of the respective prototypes.

試作例1~25はいずれもヘーズ値が40%以上であり、試作例26~30はいずれもヘーズ値が10%未満であった。すなわち、試作例1~25では表面層がプロピレン-エチレンブロック共重合体を主体とした組成により良好なマット調が得られ、試作例26~30では表面層がプロピレンランダム共重合体を主体とした組成により良好な透明性が得られた。 All of Prototype Examples 1 to 25 had a haze value of 40% or more, and all of Prototype Examples 26 to 30 had a haze value of less than 10%. That is, in Prototype Examples 1 to 25, the surface layer was composed mainly of a propylene-ethylene block copolymer, and a good matte tone was obtained, and in Prototype Examples 26 to 30, the surface layer was mainly composed of a propylene random copolymer. Good transparency was obtained with the composition.

良品の試作例1~3と、不良品の試作例14は、中間層を構成するプロピレン系樹脂組成物がプロピレン-エチレンブロック共重合体100重量%であり、プロピレン-エチレンブロック共重合体の種類(樹脂A1,樹脂A2,樹脂A3,樹脂A4)が相違する。試作例1ではキシレン可溶分割合15.8%の樹脂A2、試作例2ではキシレン可溶分割合16.2%の樹脂A3、試作例3ではキシレン可溶分割合12.4%の樹脂A4が使用され、これに対して試作例4ではキシレン可溶分割合10.6%の樹脂A1が使用されている。試作例14に使用された樹脂A1は、他の試作例1~3の樹脂A2~樹脂A4と比較して、キシレン可溶分割合が低い。また、試作例14は、中間層のプロピレン系樹脂組成物の計算MFRが、試作例1~3と比較して高い。その結果、試作例14では、試作例1~3よりも溶断部が破袋しやすかった。したがって、中間層のプロピレン系樹脂組成物(プロピレン-エチレンブロック共重合体)は、計算MFRが高く、キシレン可溶分割合が低いもの(例えば、樹脂A1;計算MFRが8.5g/10min、キシレン可溶分割合10.6%)は好ましくないと考えられる。 In Prototype Examples 1 to 3, which are good products, and Prototype Example 14, which is a defective product, the propylene-based resin composition constituting the intermediate layer is 100% by weight of a propylene-ethylene block copolymer, and the type of propylene-ethylene block copolymer is different. (Resin A1, Resin A2, Resin A3, Resin A4) are different. In Prototype Example 1, the resin A2 has a xylene-soluble content of 15.8%. In Prototype Example 2, the resin A3 has a xylene-soluble content of 16.2%. In Prototype Example 3, the resin A4 has a xylene-soluble content of 12.4%. is used, and in Prototype Example 4, resin A1 having a xylene soluble content of 10.6% is used. Resin A1 used in Prototype Example 14 has a lower xylene-soluble content ratio than Resins A2 to A4 used in other Prototype Examples 1 to 3. Moreover, in Prototype Example 14, the calculated MFR of the propylene-based resin composition for the intermediate layer is higher than in Prototype Examples 1-3. As a result, in Prototype Example 14, the bag was more likely to break at the fusion-cut portion than in Prototype Examples 1-3. Therefore, the propylene-based resin composition (propylene-ethylene block copolymer) for the intermediate layer has a high calculated MFR and a low xylene-soluble content (for example, Resin A1; calculated MFR is 8.5 g/10 min, xylene 10.6% solubles) is considered unfavorable.

不良品の試作例15は、良品の試作例1~3と対比して、中間層を構成するプロピレン系樹脂組成物として、プロピレン-エチレンブロック共重合体の代わりにホモポリプロピレン(樹脂B1)を使用した点で相違する。また、不良品の試作例16は、良品の試作例1~3と対比して、中間層を構成するプロピレン系樹脂組成物として、プロピレン-エチレンブロック共重合体の代わりにプロピレンランダム共重合体(樹脂C4)を使用した点で相違する。試作例15,16は、いずれも試作例1~3より溶断部が破袋しやすかった。したがって、中間層のプロピレン系樹脂組成物として、プロピレン-エチレンブロック共重合体の代わりにホモポリプロピレン(樹脂B1)やプロピレンランダム共重合体(樹脂C4)を使用するのは好ましくないと考えられる。 In contrast to the non-defective prototype examples 1 to 3, the defective prototype example 15 uses homopolypropylene (resin B1) instead of the propylene-ethylene block copolymer as the propylene-based resin composition constituting the intermediate layer. The difference is that Further, in contrast to the non-defective prototype examples 1 to 3, in the defective prototype example 16, a propylene random copolymer ( The difference is that the resin C4) is used. In both Prototype Examples 15 and 16, the melted portion was more likely to break than in Prototype Examples 1-3. Therefore, it is not preferable to use homopolypropylene (resin B1) or propylene random copolymer (resin C4) instead of propylene-ethylene block copolymer as the propylene-based resin composition for the intermediate layer.

良品の試作例13と、不良品の試作例21とを対比する。試作例13では、中間層を構成するプロピレン系樹脂組成物が、プロピレン-エチレンブロック共重合体(樹脂A2)とプロピレンランダム共重合体(樹脂C2)とを含むプロピレン系樹脂組成物を主体として(50重量%以上)、直鎖状低密度ポリエチレン(樹脂E2)を配合している。試作例21は、試作例13と対比して、プロピレン系樹脂組成物のプロピレン-エチレンブロック共重合体(樹脂A2)の配合割合が少ない(50重量%未満)点で相違する。試作例21は、試作例13より溶断部が破袋しやすかった。したがって、中間層のプロピレン系樹脂組成物は、プロピレン-エチレンブロック共重合体を主体とする(50重量%以上)ことが好ましいと考えられる。 Prototype Example 13, which is a good product, and Prototype Example 21, which is a defective product, are compared. In Prototype Example 13, the propylene-based resin composition constituting the intermediate layer was mainly composed of a propylene-based resin composition containing a propylene-ethylene block copolymer (resin A2) and a propylene random copolymer (resin C2) ( 50% by weight or more) and linear low-density polyethylene (resin E2). Prototype Example 21 differs from Prototype Example 13 in that the blending ratio of the propylene-ethylene block copolymer (resin A2) in the propylene-based resin composition is small (less than 50% by weight). In Prototype Example 21, the bag was more likely to break at the fusion-cut portion than in Prototype Example 13. Therefore, it is considered preferable that the propylene-based resin composition for the intermediate layer is mainly composed of a propylene-ethylene block copolymer (50% by weight or more).

ここで、良品の試作例1と、良品の試作例5~13とを対比する。試作例1では中間層がプロピレン系樹脂組成物(プロピレン-エチレンブロック共重合体)100重量%であるのに対し、試作例5~13では、プロピレン系樹脂組成物(プロピレン-エチレンブロック共重合体、又はプロピレン-エチレンブロック共重合体とプロピレンランダム共重合体)を主体として、直鎖状低密度ポリエチレン(樹脂E1~樹脂E5)が配合されている。 Here, prototype example 1 of a good product and prototype examples 5 to 13 of good products are compared. In Prototype Example 1, the intermediate layer is 100% by weight of the propylene-based resin composition (propylene-ethylene block copolymer), whereas in Prototype Examples 5-13, the propylene-based resin composition (propylene-ethylene block copolymer , or propylene-ethylene block copolymer and propylene random copolymer), and linear low-density polyethylene (resin E1 to resin E5) is blended.

試作例8~13では、試作例1と比較して、巻き取り方向(MD)と横方向(TD)の引張弾性率の判定がほとんど「優良(◎)」であり、フィルムのコシの強さの向上が見られた。また、試作例7では引張弾性率の判定が「良(〇)」であったが、試作例1と比較して引張弾性率が向上していた。一方、試作例5,6では、試作例1と比較して引張弾性率の向上は見られなかった。試作例5と、試作例8,9とを対比すると、引張弾性率が向上しなかった試作例5に使用された直鎖状低密度ポリエチレン(樹脂E5)の密度が試作例8,9よりも低かった。試作例6と、試作例7,10とを対比すると、引張弾性率が向上しなかった試作例6では、試作例7,10より直鎖状低密度ポリエチレン(樹脂E2)の配合割合が多かった。 In Prototype Examples 8 to 13, compared with Prototype Example 1, the tensile elastic moduli in the winding direction (MD) and the transverse direction (TD) are almost "excellent (◎)", and the stiffness of the film is high. improvement was seen. Also, in Prototype Example 7, the tensile modulus was judged to be “good (◯)”, and compared with Prototype Example 1, the tensile modulus was improved. On the other hand, in Prototype Examples 5 and 6, compared with Prototype Example 1, no improvement in tensile elastic modulus was observed. Comparing Prototype Example 5 with Prototype Examples 8 and 9, the density of the linear low-density polyethylene (resin E5) used in Prototype Example 5, in which the tensile modulus was not improved, was lower than that of Prototype Examples 8 and 9. was low. Comparing Prototype Example 6 with Prototype Examples 7 and 10, Prototype Example 6, in which the tensile modulus was not improved, contained a higher proportion of linear low-density polyethylene (resin E2) than Prototype Examples 7 and 10. .

試作例1,5~13から理解されるように、中間層に直鎖状低密度ポリエチレンを配合することによって、フィルムのコシの強さの向上を図ることができる。直鎖状低密度ポリエチレンの種類としては、密度が0.910g/cm程度以上あれば好ましいと考えられる。また、直鎖状低密度ポリエチレンの配合割合は、微量(例えば、試作例7の2重量%)でも引張弾性率が向上し、過剰(例えば、試作例6の40重量%)になると引張弾性率が向上しないことから、2~30重量%程度が好ましいと考えられる。 As can be understood from Prototype Examples 1, 5 to 13, the stiffness of the film can be improved by blending linear low-density polyethylene in the intermediate layer. As for the type of linear low-density polyethylene, it is considered preferable if the density is about 0.910 g/cm 3 or more. In addition, the blending ratio of the linear low-density polyethylene improves the tensile modulus even with a trace amount (for example, 2% by weight in Prototype Example 7), and when it becomes excessive (for example, 40% by weight in Prototype Example 6), the tensile elastic modulus 2 to 30% by weight is considered to be preferable because the content does not improve.

不良品の試作例17は、良品の試作例1のシール層がメタロセン系触媒によるプロピレン系エラストマー(樹脂F1)65重量%とプロピレンランダム共重合体(樹脂C1)35重量%で構成されているのに対し、シール層がメタロセン系触媒によるプロピレン系エラストマー(樹脂F1)100重量%で構成されている点で相違する。試作例17は、易開封性試験においてヒートシール部分が伸びを伴って剥離されたため、適切な易開封性能を備えていなかった。また、不良品の試作例18は、試作例17と密度が異なるプロピレン系エラストマー(樹脂F3)100重量%で構成されているが、同様に適切な易開封性能を備えていなかった。 In prototype example 17, which is a defective product, the seal layer of prototype example 1, which is a good product, is composed of 65% by weight of a propylene elastomer (resin F1) produced by a metallocene catalyst and 35% by weight of a propylene random copolymer (resin C1). On the other hand, the sealing layer is different in that it is composed of 100% by weight of a propylene-based elastomer (resin F1) produced by a metallocene-based catalyst. Prototype Example 17 did not have suitable easy-open performance because the heat-sealed portion peeled off with elongation in the easy-open test. In addition, the defective product, Prototype Example 18, was composed of 100% by weight of a propylene-based elastomer (resin F3) having a different density from that of Prototype Example 17, but similarly did not have appropriate easy-opening performance.

不良品の試作例20は、良品の試作例4と対比して、シール層に含まれる樹脂のうち、メタロセン系触媒によるプロピレン系エラストマー(樹脂F2)の代わりにメタロセン系触媒によるエチレン系エラストマー(樹脂G1)を使用した点で相違する。試作例20では、ヒートシール開始温度が126℃であり、120℃でヒートシールができず、低温シール性が得られなかった。また、不良品の試作例19は、試作例20のエチレン系エラストマー(樹脂G1)の配合割合が増加した(40重量%)ものであるが、低温シール性と易開封性が改善しているものの、袋本体の溶断部の溶断強度が不足し、溶断部が破袋しやすかった。 Prototype Example 20, which is a defective product, is different from Prototype Example 4, which is a good product. G1) is used. In Prototype Example 20, the heat-seal initiation temperature was 126°C, and heat-sealing could not be performed at 120°C, and low-temperature sealability could not be obtained. In addition, in prototype example 19, which is a defective product, the blending ratio of the ethylene-based elastomer (resin G1) of prototype example 20 is increased (40% by weight). , The fusing strength of the fusing part of the bag body was insufficient, and the fusing part was easy to break.

試作例1,4と、試作例17~20から理解されるように、シール層はプロピレン系エラストマーとプロピレンランダム共重合体とで構成されるのが好ましいと考えられる。プロピレン系エラストマーの種類としては、密度が0.880g/cm程度以下であればよいと考えられる。また、プロピレン系エラストマーの配合割合は、20~80重量%程度が好ましいと考えられる。 As can be understood from Prototype Examples 1 and 4 and Prototype Examples 17 to 20, it is considered preferable that the seal layer is composed of a propylene-based elastomer and a propylene random copolymer. As for the type of propylene-based elastomer, it is considered that the density should be about 0.880 g/cm 3 or less. Moreover, it is considered that the blending ratio of the propylene-based elastomer is preferably about 20 to 80% by weight.

試作例22は、試作例1のシール層に使用されるプロピレンランダム共重合体(樹脂C1:プロピレン-エチレンランダム共重合体)を、異なるプロピレンランダム共重合体(樹脂C4:プロピレン-エチレン-ブテンランダム共重合体)に変更したものである。試作例22は試作例1と比較して、ヒートシール開始温度や引張弾性率に若干の差異が見られたものの、フィルムの性能に大きな影響がなく良好であった。 In Prototype Example 22, the propylene random copolymer (resin C1: propylene-ethylene random copolymer) used in the seal layer of Prototype Example 1 was replaced with a different propylene random copolymer (resin C4: propylene-ethylene-butene random copolymer). Prototype Example 22 was found to be slightly different from Prototype Example 1 in the heat-sealing initiation temperature and tensile modulus, but the film performance was not significantly affected and was good.

試作例23~25は、試作例1のシール層の主成分(プロピレン系エラストマー)の配合割合を変えずに、ヒートシール強度の経時低下を抑制するための直鎖状低密度ポリエチレンを含有させたものである。試作例23,24は異なる直鎖状低密度ポリエチレンをそれぞれ使用し、試作例25は試作例23,24で使用した2種類の直鎖状低密度ポリエチレンを混合して使用した。試作例23~25は試作例1と比較して、ヒートシール温度や袋本体の溶断強度が若干変化したが、フィルムの性能に大きな影響がなく良好であった。 In Prototype Examples 23 to 25, linear low-density polyethylene was added to suppress deterioration in heat seal strength over time without changing the blending ratio of the main component (propylene-based elastomer) of the seal layer of Prototype Example 1. It is. Prototype Examples 23 and 24 each used different linear low-density polyethylenes, and Prototype Example 25 used a mixture of the two types of linear low-density polyethylenes used in Prototype Examples 23 and 24. In Prototype Examples 23 to 25, the heat-sealing temperature and the fusing strength of the bag body were slightly different from those in Prototype Example 1, but the performance of the film was not significantly affected and was good.

試作例26~30は、ヘーズ値が10%未満の透明フィルムである。試作例26~28は、試作例1と比較して引張弾性率やガゼット部の溶断強度の向上が見られた。また、試作例29は、試作例4と比較して同様に引張弾性率やガゼット部の溶断強度の向上が見られた。一方、試作例30は、試作例26のシール層の主成分(プロピレン系エラストマー)の配合割合を変えずに、ヒートシール強度の経時低下を抑制するための直鎖状低密度ポリエチレンを含有させた例である。試作例30では、直鎖状低密度ポリエチレンを含んでも試作例26と遜色ないフィルム性能が得られた。 Prototypes 26 to 30 are transparent films with a haze value of less than 10%. Compared to Prototype Example 1, Prototype Examples 26 to 28 showed improvement in tensile elastic modulus and fusion strength of the gusset portion. Also, in prototype example 29, improvement in the tensile modulus of elasticity and the fusing strength of the gusset portion was observed as compared with prototype example 4. On the other hand, Prototype Example 30 contained linear low-density polyethylene for suppressing deterioration in heat seal strength over time without changing the blending ratio of the main component (propylene-based elastomer) of the seal layer of Prototype Example 26. For example. In Prototype Example 30, film performance comparable to that of Prototype Example 26 was obtained even when linear low-density polyethylene was included.

以上のとおり、試作例1~13,22~25のマット調の溶断袋では、低温シール性(ヒートシール開始温度)、易開封性、フィルムのコシの強さ(引張弾性率)、溶断部の溶断強度、内容物充填時の溶断部の耐裂け性(袋本体溶断部の耐裂け性評価)の各性能がいずれも良好であった。また、試作例26~30の透明性の溶断袋においても、低温シール性(ヒートシール開始温度)、易開封性、フィルムのコシの強さ(引張弾性率)、溶断部の溶断強度、内容物充填時の溶断部の耐裂け性(袋本体溶断部の耐裂け性評価)の各性能がいずれも良好であった。従って、食品包装用袋に必要な各性能を良好に保持しつつ、低温下においても食品充填時の溶断部の裂けの発生を効果的に抑制することができる。 As described above, in the matte fusion-cut bags of Prototype Examples 1 to 13 and 22-25, low-temperature sealability (heat-seal initiation temperature), easy-openability, film stiffness (tensile modulus), fusion-cut portion Both performances of fusion cutting strength and resistance to tearing of the fusion cut portion during filling of the contents (evaluation of tear resistance of the fusion cut portion of the bag body) were good. In addition, in the transparent fusion-cut bags of Prototype Examples 26 to 30, low-temperature sealability (heat-seal initiation temperature), easy-openability, film stiffness (tensile modulus), fusion-cut strength of the fusion-cut portion, contents Each performance of tear resistance of the fusion cut portion during filling (evaluation of tear resistance of the fusion cut portion of the bag body) was good. Therefore, it is possible to effectively suppress the occurrence of tearing at the fusing portion during food filling even at low temperatures, while maintaining favorable performances required for food packaging bags.

本発明の食品包装用無延伸フィルム及び食品包装用袋は、食品包装用袋に必要な各性能を良好に保持し、特に低温下における食品充填時の溶断部の裂けの発生を抑制することができる。そのため、従来の食品包装用無延伸フィルムや食品包装用袋の代替として有望である。 The unstretched film for food packaging and the food packaging bag of the present invention can satisfactorily maintain each performance required for food packaging bags, and in particular, can suppress the occurrence of tearing at the fusion-cut portion during food filling at low temperatures. can. Therefore, it is promising as a substitute for conventional unstretched films for food packaging and food packaging bags.

10,10a~10d 食品包装用無延伸フィルム
11 折部
12 フィルムの側部
15a,15b,15c シール部
20 表面層
30 中間層
40 シール層
50 食品包装用袋
50A 袋形状のフィルム
51 袋本体
51a 袋本体の側辺
52 底部
53 角底ガゼット部
53a 角底ガゼット部の側辺
54 袋側辺部
55 溶断シール部
REFERENCE SIGNS LIST 10, 10a to 10d Unstretched film for food packaging 11 Folding part 12 Side part of film 15a, 15b, 15c Sealing part 20 Surface layer 30 Intermediate layer 40 Sealing layer 50 Food packaging bag 50A Bag-shaped film 51 Bag body 51a Bag Side of body 52 Bottom 53 Square bottom gusset 53a Side of square bottom gusset 54 Bag side 55 Fusing seal

Claims (6)

溶断シールによる製袋に用いられ、表面層、中間層、シール層の3層を備え、前記表面層表面にコロナ処理が施された無延伸フィルムであって、
前記表面層は、プロピレン系樹脂を主体とし、
前記中間層は、キシレン可溶分割合が12%以上であるプロピレン-エチレンブロック共重合体を50重量%以上含むとともに下記式(i)に示される計算MFRが6g/10min以下となるプロピレン系樹脂組成物を主体とし、
前記シール層は、密度が0.880g/cm以下のプロピレン系エラストマー20~80重量%とプロピレンランダム共重合体20~80重量%とする組成からなる
ことを特徴とする食品包装用無延伸フィルム。
MFR:プロピレン系樹脂組成物の計算MFR(g/10min)
n:プロピレン系樹脂組成物を構成するプロピレン系樹脂の総数
:プロピレン系樹脂組成物を構成するプロピレン系樹脂iの配合割合
MFR:プロピレン系樹脂組成物を構成するプロピレン系樹脂iのMFR(g/10min)
Figure 2022166818000015
A non-stretched film used for bag making by fusion sealing, comprising three layers of a surface layer, an intermediate layer, and a seal layer, wherein the surface layer surface is subjected to corona treatment,
The surface layer is mainly made of propylene-based resin,
The intermediate layer contains 50% by weight or more of a propylene-ethylene block copolymer having a xylene soluble content of 12% or more and a propylene-based resin having a calculated MFR of 6 g/10 min or less as shown in the following formula (i). mainly composed of a composition,
A non-stretched film for food packaging, wherein the sealing layer is composed of 20 to 80% by weight of a propylene elastomer having a density of 0.880 g/cm 3 or less and 20 to 80% by weight of a propylene random copolymer. .
MFR X : Calculated MFR of propylene-based resin composition (g/10min)
n: Total number of propylene-based resins constituting the propylene-based resin composition w i : Mixing ratio of propylene-based resin i constituting the propylene-based resin composition MFR i : MFR of propylene-based resin i constituting the propylene-based resin composition (g/10min)
Figure 2022166818000015
溶断シールによる製袋に用いられ、表面層、中間層、シール層の3層を備え、前記表面層表面にコロナ処理が施された無延伸フィルムであって、
前記表面層は、プロピレン系樹脂を主体とし、
前記中間層は、キシレン可溶分割合が12%以上であるプロピレン-エチレンブロック共重合体を50重量%以上含むとともに上記式(i)に示される計算MFRが6g/10min以下となるプロピレン系樹脂組成物を主体とし、
前記シール層は、密度が0.880g/cm以下のプロピレン系エラストマー20~80重量%と、プロピレンランダム共重合体18~78重量%と、直鎖状低密度ポリエチレン2~20重量%とする組成からなる
ことを特徴とする食品包装用無延伸フィルム。
A non-stretched film used for bag making by fusion sealing, comprising three layers of a surface layer, an intermediate layer, and a seal layer, wherein the surface layer surface is subjected to corona treatment,
The surface layer is mainly made of propylene-based resin,
The intermediate layer contains 50% by weight or more of a propylene-ethylene block copolymer having a xylene-soluble content of 12% or more, and a propylene-based resin having a calculated MFR of 6 g/10 min or less as shown in the above formula (i). mainly composed of a composition,
The seal layer comprises 20 to 80% by weight of a propylene elastomer having a density of 0.880 g/cm 3 or less, 18 to 78% by weight of a propylene random copolymer, and 2 to 20% by weight of a linear low density polyethylene. A non-oriented film for food packaging, characterized by comprising:
前記無延伸フィルムが、JIS K 7136(2000)に準拠して測定したヘーズ値が40%以上である請求項1又は2に記載の食品包装用無延伸フィルム。 The unstretched film for food packaging according to claim 1 or 2, wherein the unstretched film has a haze value of 40% or more as measured according to JIS K 7136 (2000). 前記中間層が前記プロピレン系樹脂組成物70~98重量%と、密度が0.910以上の直鎖状低密度ポリエチレン2~30重量%とを有する請求項1ないし3のいずれか1項に記載の食品包装用無延伸フィルム。 4. The intermediate layer according to any one of claims 1 to 3, wherein the intermediate layer contains 70 to 98% by weight of the propylene-based resin composition and 2 to 30% by weight of linear low-density polyethylene having a density of 0.910 or more. non-oriented film for food packaging. 請求項1ないし4のいずれか1項に記載の食品包装用無延伸フィルムからなり、前記シール層を内側として溶断製袋された食品包装用袋。 A food packaging bag made of the unstretched film for food packaging according to any one of claims 1 to 4, which is melt-cut and made with the sealing layer inside. 底部に角底ガゼット部を有する請求項5に記載の食品包装用袋。
6. The food packaging bag according to claim 5, having a square bottom gusset on the bottom.
JP2022046863A 2021-04-21 2022-03-23 Undrawn film for food packaging and bag for food packaging Pending JP2022166818A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021071959 2021-04-21
JP2021071959 2021-04-21

Publications (1)

Publication Number Publication Date
JP2022166818A true JP2022166818A (en) 2022-11-02

Family

ID=83851607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022046863A Pending JP2022166818A (en) 2021-04-21 2022-03-23 Undrawn film for food packaging and bag for food packaging

Country Status (1)

Country Link
JP (1) JP2022166818A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090244A1 (en) * 2021-11-18 2023-05-25 東レフィルム加工株式会社 Sealant film and power storage device exterior material using same
JP2023075056A (en) * 2021-11-18 2023-05-30 東レフィルム加工株式会社 Sealant film, and jacket material for power storage device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090244A1 (en) * 2021-11-18 2023-05-25 東レフィルム加工株式会社 Sealant film and power storage device exterior material using same
JP2023075056A (en) * 2021-11-18 2023-05-30 東レフィルム加工株式会社 Sealant film, and jacket material for power storage device using the same

Similar Documents

Publication Publication Date Title
JP6863483B2 (en) Laminated film and food packaging bag
JP6160798B2 (en) Laminated film and packaging material
JP2022166818A (en) Undrawn film for food packaging and bag for food packaging
JP5410291B2 (en) Articulating device, packaging bag with articulating device, and manufacturing method of packaging bag with articulating device
JP5088575B2 (en) Composite film
JP5394096B2 (en) Easy peel film
WO2006118030A1 (en) Heat-sealable multilayer polypropylene resin film and packaging material
JP6264092B2 (en) Easy tearable multilayer film and packaging material
JP6898799B2 (en) Polypropylene-based longitudinally uniaxially stretched film, film laminate, and bag-shaped material
JP6717639B2 (en) Multilayer film and manufacturing method thereof
JP2006181831A (en) Biaxially oriented multi-layer polyethylene film
JP7575291B2 (en) Non-oriented polypropylene film
JP4747538B2 (en) Heat-sealable laminated polypropylene resin film and package
JP2019142018A (en) Heat shrinkable laminate film
JP2005104152A (en) Heat-sealable laminated polypropylene resin film and package
JP4692818B2 (en) Co-extrusion laminated film and laminate film and packaging container using the same
JP2023158393A (en) Unstretched film and food packaging bag
JP2002210899A (en) Multi-layer polyolefin film and package
JP4877062B2 (en) Coextruded multilayer film and packaging material comprising the film
JP4452995B2 (en) Coextrusion multilayer film
JPH09150488A (en) Laminated film
JP4140307B2 (en) Packaging method, coextrusion laminated film and square bottom bag
JP4798430B2 (en) Coextruded multilayer film and paper laminate film using the same
JP6955735B2 (en) Laminated film and packaging method
JP6344012B2 (en) Paper base sheet and half clear pack using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221026