JP2022166401A - Mechanical crusher for production of toner and crushing process system producing toner - Google Patents
Mechanical crusher for production of toner and crushing process system producing toner Download PDFInfo
- Publication number
- JP2022166401A JP2022166401A JP2021071600A JP2021071600A JP2022166401A JP 2022166401 A JP2022166401 A JP 2022166401A JP 2021071600 A JP2021071600 A JP 2021071600A JP 2021071600 A JP2021071600 A JP 2021071600A JP 2022166401 A JP2022166401 A JP 2022166401A
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- toner
- pulverization
- pulverizer
- stator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 230000008569 process Effects 0.000 title claims description 46
- 230000002093 peripheral effect Effects 0.000 claims abstract description 29
- 238000010298 pulverizing process Methods 0.000 claims description 159
- 239000000463 material Substances 0.000 claims description 47
- 238000011144 upstream manufacturing Methods 0.000 claims description 13
- 230000004323 axial length Effects 0.000 claims description 4
- 239000002245 particle Substances 0.000 abstract description 108
- 238000004898 kneading Methods 0.000 abstract description 11
- 230000009467 reduction Effects 0.000 abstract description 2
- 239000000155 melt Substances 0.000 abstract 1
- 239000002994 raw material Substances 0.000 description 32
- 230000000052 comparative effect Effects 0.000 description 30
- 239000000843 powder Substances 0.000 description 28
- 238000011156 evaluation Methods 0.000 description 22
- 238000005259 measurement Methods 0.000 description 21
- 230000000694 effects Effects 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 238000009826 distribution Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 9
- 238000010924 continuous production Methods 0.000 description 9
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 239000002270 dispersing agent Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000001132 ultrasonic dispersion Methods 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Landscapes
- Developing Agents For Electrophotography (AREA)
- Crushing And Grinding (AREA)
Abstract
Description
本発明は、電子写真方式、静電記録方式、静電印刷方式、トナージェット方式に用いられるトナー製造用機械式粉砕機及びトナーを製造する粉砕工程システムに関する。 The present invention relates to a mechanical pulverizer for producing toner and a pulverizing process system for producing toner used in electrophotography, electrostatic recording, electrostatic printing, and toner jet.
近年、電子写真方式のフルカラー複写機が広く普及し、印刷市場への適用も始まっている。印刷市場では、幅広いメディア(紙種)に対応しながら、高速、高画質、高い生産性が要求されるようになってきている。トナーにおいては、帯電性の安定化、現像性や転写性の安定化に加え、更なる小粒径化を行うことで高画質化を図ることができる。
一般的なトナー粒子の製造方法としては、溶融混練粉砕法が知られている。具体的には、結着樹脂、色材、離型剤などのトナー構成材料を溶融混練し、冷却固化した後、混練物を粉砕手段により微細化しトナー粒子を得る手法であり、その後、必要に応じて所望の粒径分布に分級したり、流動化剤などを添加したりして、トナーを製造する。
混練物の粉砕手段としては各種粉砕機が用いられている。特許文献1には、高圧気体で被粉砕物を搬送し、加速管の出口から被粉砕物を噴射し衝突部材に衝突させ、その衝撃力により被粉砕物を粉砕する衝突式気流粉砕機が開示されている。
特許文献2には、被粉砕物の投入口および排出口を有するケーシング内に、中心回転軸に支持され、外周面に複数の凸部と凹部とを有する回転子と、この回転子の外側に、この回転子の外周面と所定の間隙を設けて配置され、その内周面に複数の凸部と凹部とを有する固定子とを備え、投入口から排出口を流れる気流にのって回転子と固定子とが対向する処理部を被粉砕物が通過する際に、回転子もしくは固定子の凸部もしくは凹部に衝突することで被粉砕物を粉砕する機械式粉砕装置が開示されている。
2. Description of the Related Art In recent years, electrophotographic full-color copiers have become widely used and have begun to be applied to the printing market. In the printing market, there is a growing demand for high speed, high image quality, and high productivity while supporting a wide range of media (paper types). In the toner, in addition to stabilizing the chargeability, developing property and transfer property, further reduction in particle size can achieve high image quality.
As a general method for producing toner particles, a melt-kneading pulverization method is known. Specifically, it is a method of melting and kneading toner constituent materials such as a binder resin, a coloring material, and a release agent, cooling and solidifying the kneaded material, and then pulverizing the kneaded material to obtain toner particles. The toner is produced by classifying the particles into a desired particle size distribution or adding a fluidizing agent or the like.
Various pulverizers are used as means for pulverizing the kneaded material. Patent Literature 1 discloses a collision-type airflow pulverizer that conveys a material to be pulverized by high-pressure gas, injects the material to be pulverized from the exit of an acceleration tube, causes the material to collide with a collision member, and pulverizes the material to be pulverized by the impact force. It is
Patent Document 2 describes a rotor supported by a central rotating shaft and having a plurality of protrusions and recesses on the outer peripheral surface in a casing having an inlet and outlet for pulverized material, and a rotor outside the rotor. a stator disposed with a predetermined gap from the outer peripheral surface of the rotor and having a plurality of protrusions and recesses on the inner peripheral surface thereof; Disclosed is a mechanical pulverizing device that pulverizes the pulverized material by colliding with projections or recesses of a rotor or stator when the pulverized material passes through a processing section in which a child and a stator face each other. .
例えば、溶融混練で得られた粒径50~200μm程度の粗粉砕品を従来の機械式粉砕機により粒径4~8μmに微粉砕を行う粉砕工程において、機械式粉砕機の回転子の周速を速めることで、回転子及び固定子と被粉砕物との衝突エネルギーが増大し、トナー粒子をより細かく粉砕することが可能となる。また、被粉砕物が通過する回転子と固定子との隙間(ギャップ)を狭くすることでもトナー粒子をより細かく粉砕することが可能となる。
トナー製造における粉砕工程は、被粉砕物の狙い粒径に応じ粉砕機の運転条件を任意に決めればよい。得られた微粉砕品の粒度分布は、狙い粒径をピークとした概ね正規分布となる。
一方、トナー製造の場合、トナー粒子の重量平均粒径(D4)や、2~3μm程度の粒径の微粉量、トナー粒子の円形度などは、成果物(印刷物の画質)の良しあしに影響を与えることは知られている。特に所望の粒径を下回る微粉量が多くなると、長期にわたる複写において、カブリ、トナー飛散等による画質の低下を招くことが知られている。
2~3μm程度の微粉は、粉砕工程以降の工程によりカットすることで調整が可能であるが、粉砕工程での微粉量が多くなると後工程でのカット量が必然的に多くなり、収率の低下を招いてしまう場合がある。
また、狙いの粒径をより微粒子側に設定した場合、回転子をより高速に運転するなど粉砕機にかかる負担は上昇し、被粉砕物の安定性が低下する場合があった。
さらに本発明者らは、粉砕工程後のトナーの円形度に注目し、粉砕機にかかる負担が大きい条件では、トナーの円形度のばらつきが大きくなるという課題に直面していた。また、粉砕機にかかる負担の上昇に伴い、粉砕機内部で発生する衝突エネルギーが被粉砕物に蓄積され温度上昇が加速していくという課題もある。
被粉砕物の温度上昇は、例えばトナー粒子をより細かく粉砕するために回転子の速度を増大させた場合や、生産性向上のために単位時間当たりのトナー原料の投入量増やした場合に顕著となる。
粉砕機内のトナーの温度上昇が顕著になると、トナー表面が部分的に溶け、トナー同士が結合してしまい、微粉砕品の粒径が安定しない場合がある。更には、トナーが粉砕機内部に付着する場合もあり(以下、この現象を融着と表記する)、安定した粉砕ができなくなる場合があった。
このような粉砕工程での不安定な状態は、溶融混練粉砕法におけるトナー製造においての課題でもあった。
本発明は、上記課題を解決し、溶融混練粉砕法におけるトナー粒子の粉砕工程における安定性の向上を達成するトナー製造用機械式粉砕機及びトナーを製造する粉砕工程システムを提供することにある。
For example, in a pulverization process in which a coarsely pulverized product having a particle size of about 50 to 200 μm obtained by melt-kneading is finely pulverized to a particle size of 4 to 8 μm by a conventional mechanical pulverizer, the peripheral speed of the rotor of the mechanical pulverizer is increased, the collision energy between the rotor and stator and the material to be pulverized increases, and the toner particles can be pulverized more finely. Further, the toner particles can be finely pulverized by narrowing the gap between the rotor and the stator through which the material to be pulverized passes.
In the pulverization step in toner production, the operating conditions of the pulverizer may be arbitrarily determined according to the target particle size of the material to be pulverized. The particle size distribution of the obtained finely pulverized product is generally a normal distribution with the target particle size as the peak.
On the other hand, in the case of toner production, the weight average particle diameter (D4) of toner particles, the amount of fine powder with a particle diameter of about 2 to 3 μm, and the circularity of toner particles affect the quality of the output (image quality of the printed matter). is known to give In particular, it is known that an increase in the amount of fine powder below a desired particle size causes deterioration in image quality due to fogging, toner scattering, etc. during long-term copying.
Fine powder of about 2 to 3 μm can be adjusted by cutting in the process after the pulverization process, but when the amount of fine powder in the pulverization process increases, the amount of fine powder cut in the subsequent process inevitably increases, resulting in a decrease in yield. It may lead to decline.
In addition, when the target particle size is set to a finer particle side, the load on the pulverizer, such as operating the rotor at a higher speed, increases, and the stability of the material to be pulverized may decrease.
Furthermore, the present inventors paid attention to the circularity of the toner after the pulverization process, and faced the problem that the variation in the circularity of the toner increased under conditions where the load on the pulverizer was large. In addition, there is also the problem that as the load on the crusher increases, the collision energy generated inside the crusher accumulates in the material to be crushed, accelerating the temperature rise.
The rise in the temperature of the material to be pulverized is remarkable, for example, when the speed of the rotor is increased in order to pulverize the toner particles more finely, or when the input amount of toner material per unit time is increased in order to improve productivity. Become.
When the temperature of the toner in the pulverizer rises significantly, the surface of the toner is partially melted and the toners are bound together, which may result in an unstable particle size of the finely pulverized product. Furthermore, the toner may adhere to the inside of the pulverizer (this phenomenon is hereinafter referred to as fusion), which may hinder stable pulverization.
Such an unstable state in the pulverization process is also a problem in toner production in the melt-kneading pulverization method.
An object of the present invention is to solve the above problems and to provide a mechanical pulverizer for toner production and a pulverization process system for producing toner, which achieves improved stability in the pulverization process of toner particles in the melt-kneading pulverization method.
本発明者らは鋭意検討の結果、上記課題を解決しトナー粒子の粉砕工程における安定性の向上を実現できることを見出した。
すなわち、本発明は、内周面に複数の凸部と凹部とを有する固定子と、
中心回転軸に取り付けられ、円柱形の外周面に複数の凸部と凹部とを有する回転子とを有し、
該固定子は該回転子を内包しており、該固定子の表面と該回転子の表面とが形成する隙間に被粉砕物を通過させて粉砕するトナー製造用機械式粉砕機であって、
前記回転子には、少なくとも一以上の表面が周方向全面に平坦である平坦領域を有し、
該平坦領域の少なくとも一つは、両側に複数の凸部と凹部とを有することを特徴とするトナー製造用機械式粉砕機に関する。
また、本発明は、トナーを製造する粉砕工程システムであって、
該システムは、第一の粉砕工程と第二の粉砕工程を有し、第一の粉砕工程で微粉砕品を作製し、該微粉砕品を第二の粉砕工程にて粉砕し、
前記第一または第二の粉砕工程で用いる粉砕機は、どちらか一方を上記構成のトナー製造用機械式粉砕機を用いることを特徴とするトナーを製造する粉砕工程システムに関する。
さらに、本発明は、トナーを製造する粉砕工程システムであって、
該システムは、第一の粉砕工程と第二の粉砕工程を有し、第一の粉砕工程で微粉砕品を作製し、該微粉砕品を第二の粉砕工程にて粉砕し、
少なくとも前記第二の粉砕工程で用いる粉砕機は、上記構成のトナー製造用機械式粉砕機を用いることを特徴とするトナーを製造する粉砕工程システムに関する。
As a result of intensive studies, the inventors of the present invention have found that the above problem can be solved and the stability of the toner particles can be improved in the pulverization process.
That is, the present invention provides a stator having a plurality of protrusions and recesses on its inner peripheral surface,
a rotor attached to the central rotating shaft and having a plurality of protrusions and recesses on a cylindrical outer peripheral surface;
The stator encloses the rotor, and a mechanical pulverizer for producing toner in which the material to be pulverized is passed through a gap formed between the surface of the stator and the surface of the rotor to be pulverized,
The rotor has at least one flat region in which at least one surface is flat in the entire circumferential direction,
At least one of the flat areas relates to a mechanical pulverizer for producing toner, characterized in that it has a plurality of protrusions and recesses on both sides.
The present invention also provides a pulverization process system for manufacturing toner, comprising:
The system has a first pulverization step and a second pulverization step, produces a finely pulverized product in the first pulverization step, pulverizes the pulverized product in the second pulverization step,
The present invention relates to a pulverizing process system for producing toner, wherein one of the pulverizers used in the first pulverizing process or the second pulverizing process is a mechanical pulverizer for toner production having the above configuration.
Further, the present invention provides a pulverization process system for manufacturing toner, comprising:
The system has a first pulverization step and a second pulverization step, produces a finely pulverized product in the first pulverization step, pulverizes the pulverized product in the second pulverization step,
The pulverizer used in at least the second pulverization step relates to a pulverization process system for producing toner, characterized in that the mechanical pulverizer for toner production having the configuration described above is used.
本発明によると、溶融混練粉砕法におけるトナー粒子の粉砕工程における安定性を向上させることができるトナー製造用機械式粉砕機及びトナーを製造する粉砕工程システムを提供することができる。
上記効果が得られる要因は明確になっていないが、以下のように想定している。
一般に、粉砕は体積粉砕と表面粉砕に分類されるが、粉砕機内においては体積粉砕と表面粉砕が同時に実施され、其々の粉砕の強度や割合で被粉砕物は任意の粒径と円形度を得ると推測される。
表面粉砕は表面を削りながら粉砕するため、円形度を決定付ける粉砕として支配的であり、表面粉砕の割合が多くなると円形度は上昇する。
本発明者らは、粉砕条件によっては円形度のばらつきが増大するという前述の課題に対して、粉砕工程における表面粉砕成分の増加に着目し鋭意研究を行った。その結果、粉砕機の回転子の一部の複数の凸部と凹部(以下、刃とも表記する)をなくし平坦部を設けることで、粉砕機内での工程において表面粉砕の割合を増加させ円形度のばらつきを抑制することができたものである。
また、本発明者らは別の効果として以下に示す微粉発生の抑制効果が得られることも見出した。
本発明の骨子は、平坦部を回転子の中間に設け、その後再び回転子に刃を設けることである。これにより、最初体積粉砕がメインでなされた被粉砕物は、その後平坦部領域で微弱なエネルギーで表面粉砕のみを実施させることが可能となる。平坦部領域において、低エネルギー下で被粉砕物の円形度を上昇させた後、再び刃のある領域において粉砕を行うことで、従来の粉砕工程に比べ微粉の発生が減少すると推測している。これは、被粉砕物の円形度が一旦途中で上昇することで、その後の粉砕工程での微粉の発生確率が減少するものと推測している。
粉砕工程で発生する微粉量の減少により、後工程でカットする微粉量を減少させることができ、単位時間当たりの生産量向上の効果も得ることができる。
According to the present invention, it is possible to provide a mechanical pulverizer for producing toner and a pulverization process system for producing toner, which can improve stability in the pulverization process of toner particles in the melt-kneading pulverization method.
Although the factors for obtaining the above effects are not clear, the following assumptions are made.
In general, pulverization is classified into volume pulverization and surface pulverization. In the pulverizer, volume pulverization and surface pulverization are carried out at the same time. presumed to obtain.
Since the surface pulverization is pulverized while scraping the surface, it is dominant as pulverization that determines the degree of circularity, and the circularity increases as the ratio of surface pulverization increases.
The inventors of the present invention focused on the increase in the surface pulverized component in the pulverization process and conducted intensive research on the above-mentioned problem that the variation in circularity increases depending on the pulverization conditions. As a result, by eliminating the plurality of protrusions and recesses (hereinafter also referred to as blades) of the rotor of the crusher and providing a flat part, the ratio of surface crushing in the process in the crusher is increased and the circularity It was possible to suppress the variation of
In addition, the present inventors have also found that the following effect of suppressing the generation of fine powder can be obtained as another effect.
The gist of the invention is to provide a flat in the middle of the rotor and then again to provide the rotor with blades. As a result, the object to be pulverized, which has been mainly subjected to volume pulverization at first, can then be subjected to only surface pulverization with weak energy in the flat region. It is speculated that by increasing the circularity of the material to be pulverized under low energy in the flat region and then pulverizing again in the blade region, the generation of fine powder is reduced compared to the conventional pulverization process. It is speculated that this is because the degree of circularity of the material to be pulverized temporarily increases in the middle of the pulverization process, thereby reducing the probability of generation of fine powder in the subsequent pulverization process.
By reducing the amount of fine powder generated in the pulverization process, the amount of fine powder to be cut in the subsequent process can be reduced, and the effect of improving the production amount per unit time can also be obtained.
以下、本発明の実施形態について説明する。 Embodiments of the present invention will be described below.
本発明において、数値範囲を表す「○○以上××以下」や「○○~××」の記載は、特に断りのない限り、端点である下限及び上限を含む数値範囲を意味する。 In the present invention, unless otherwise specified, the descriptions of "○○ or more and XX or less" and "○○ to XX", which represent numerical ranges, mean numerical ranges including the lower and upper limits that are endpoints.
(粉砕方法の概略)
まず、機械式粉砕機による粉砕方法の概略を、図3を用いて説明する。
(Outline of pulverization method)
First, an outline of a pulverization method using a mechanical pulverizer will be described with reference to FIG.
図3では、横型の一般的な機械式粉砕機の概略断面図を示しているが、縦型であっても構わない。ケーシング、ケーシング内にあって冷却水を通水できるジャケット、ケーシング内にあって中心回転軸107に取り付けられた円柱形の回転体からなる高速回転する外周面の表面に複数の刃が設けられている回転子103、回転子103の外周に一定間隔を保持して配置されている内周面の表面に複数の刃が設けられている固定子104、更に、被処理原料を導入する為の原料投入口101、処理後の粉体を排出する為の原料排出口106とから構成されている。
FIG. 3 shows a schematic cross-sectional view of a general horizontal mechanical pulverizer, but a vertical pulverizer may also be used. A plurality of blades are provided on the surface of the outer peripheral surface rotating at high speed, which consists of a casing, a jacket in the casing through which cooling water can flow, and a cylindrical rotating body in the casing and attached to the central
上記構成からなる機械式粉砕機では、定量供給機から機械式粉砕機の原料投入口101へ所定量の粉体原料が投入されると、原料は機械式粉砕機内の前室1021を通過し、回転子103と固定子104とで形成される間隙による粉砕処理部を通過し、後室105を通過し、後室105と連通する排出口106より排出される。被粉砕物は該粉砕処理部内で高速回転する回転子の刃と、固定子の刃による往復運動、衝突により粉砕される。被粉砕物及び粉砕後のトナー粒子は、吸引ブロアー(不図示)により引かれるエアー(空気)の気流に乗って装置システムの系外に排出される。
In the mechanical pulverizer configured as described above, when a predetermined amount of raw material powder is introduced from the metering feeder into the
このような機械式粉砕機としては、イノマイザー(ホソカワミクロン社製)、クリプトリン(川崎重工業社製)、スーパーローター(日清エンジニアリング社製)、ターボミル(ターボ工業社製)、トルネードミル(日機装社製)などを挙げることができる。これらをそのまま、あるいは適宜改造して用いることができる。 Examples of such mechanical pulverizers include Inomizer (manufactured by Hosokawa Micron), Cryptorin (manufactured by Kawasaki Heavy Industries), Super Rotor (manufactured by Nisshin Engineering), Turbo Mill (manufactured by Turbo Kogyo), and Tornado Mill (manufactured by Nikkiso). ) and the like. These can be used as they are or after being modified as appropriate.
(微粉抑制メカニズム)
上記図3に示した従来の機械式粉砕機は、固定子とそれに内包されている回転子が対向する表面全域に刃が構成されている。これに対し、本発明においては、図1及び図2により例示されるように、被粉砕物の通過方向の途中に回転子の刃がなく、周方向全面が平坦部(図中、103-2)となっている領域を有する。
(Mechanism for suppressing fine powder)
In the conventional mechanical pulverizer shown in FIG. 3, blades are formed over the entire surfaces of the stator and the rotor contained therein facing each other. On the other hand, in the present invention, as illustrated in FIGS. 1 and 2, there is no blade of the rotor in the middle of the passage direction of the material to be crushed, and the entire surface in the circumferential direction is a flat portion (103-2 in the figure). ).
ここで、本発明の構成による粉砕工程での微粉抑制メカニズムを詳しく説明する。 Here, the fine powder suppression mechanism in the pulverization process according to the configuration of the present invention will be described in detail.
図5及び図6は、粉砕機の構成及び被粉砕物の形状変化を模式的に示した図である。 5 and 6 are diagrams schematically showing the configuration of the pulverizer and the shape change of the material to be pulverized.
図5は、代表的な本発明の粉砕機構成及び被粉砕物の形状変化を示し、図6は従来の粉砕機構成及び被粉砕物の形状変化を示したものである。 FIG. 5 shows the configuration of a typical pulverizer of the present invention and the shape change of the material to be pulverized, and FIG. 6 shows the configuration of a conventional pulverizer and the shape change of the material to be pulverized.
図6に示した従来粉砕機では、連続的に体積粉砕と表面粉砕が実施されるときの微粉の発生モデルを示している。 The conventional pulverizer shown in FIG. 6 shows a generation model of fine powder when volume pulverization and surface pulverization are continuously performed.
図5に示した本発明の一例の粉砕機では、体積粉砕メインの工程後に回転子平坦部の低エネルギー下での表面粉砕により、被粉砕物の円形度を向上させた後、再び体積粉砕及び表面粉砕がなされる。 In the pulverizer of one example of the present invention shown in FIG. 5, after the main process of volume pulverization, the surface pulverization of the flat part of the rotor is performed under low energy to improve the circularity of the material to be pulverized. Surface grinding is done.
粉砕途中に低エネルギー下で表面粉砕を行うことで、従来の刃のある回転子領域での表面粉砕に比べ、表面の削れ量が少なく円形度を高めることができることに加え、被粉砕物の円形度を途中で上昇させることで、その後の粉砕工程での微粉の発生確率も減少するものと推測している。 By performing surface pulverization under low energy during pulverization, compared to conventional surface pulverization in the rotor area with blades, the amount of surface abrasion can be reduced and the circularity of the pulverized material can be increased. It is speculated that by increasing the degree in the middle, the probability of generation of fine powder in the subsequent pulverization process also decreases.
図4は、回転子の形状違いによる粉砕機内での被粉砕物の動きを示したモデル図である。 FIG. 4 is a model diagram showing the movement of the material to be crushed inside the crusher due to the difference in the shape of the rotor.
回転子、固定子ともに刃のある領域(図4(a))では、通過するトナー原料は、回転子の刃により固定子に飛ばされ、固定子に衝突して粉砕される。この時の粉砕は体積粉砕の割合が大きく、トナー原料が破壊されて細かくなっていく。その後、回転子の刃のない領域(図4(b))を通過するときには、トナーは固定子に衝突することはほとんどなく、固定子の表面をこすりながら下流へと移動する。この領域では体積粉砕は行われず、表面粉砕のみが実施されると推測される。 In the region where both the rotor and the stator have blades (FIG. 4A), the passing toner raw material is flung to the stator by the blades of the rotor, collides with the stator, and is pulverized. The pulverization at this time has a large proportion of volumetric pulverization, and the raw material of the toner is destroyed and becomes finer. After that, when the toner passes through the bladeless region of the rotor (FIG. 4(b)), the toner hardly collides with the stator and moves downstream while scraping the surface of the stator. It is speculated that no volumetric crushing takes place in this region, only surface crushing.
本発明の骨子は、粉砕工程の途中の領域において、表面粉砕を選択的に生成させることであり、その結果、微粉の発生を抑制したトナー製造用機械式粉砕機を提供するものである。 The gist of the present invention is to selectively generate surface pulverization in a region in the middle of the pulverization process, and as a result, to provide a mechanical pulverizer for manufacturing toner that suppresses the generation of fine powder.
本発明の機械式粉砕機は、回転子の途中に平坦部(平坦領域)を設ける構成である。 The mechanical pulverizer of the present invention has a configuration in which a flat portion (flat area) is provided in the middle of the rotor.
回転子の途中の平坦部では、高エネルギーでの粉砕がおこなわれないが、平坦部のない従来の粉砕機よりも回転子の回転数を速めることで同一粒径を得ることができる。 In the flat part in the middle of the rotor, pulverization with high energy is not performed, but the same particle size can be obtained by increasing the rotation speed of the rotor as compared with the conventional pulverizer without the flat part.
本発明の構成とした機械式粉砕機においては、回転子平坦部と固定子の凸部との距離を最適にすることで、狙い粒径に粉砕するために回転子の回転速度を上昇させた場合においても、従来の機械式粉砕機と比べて機内の温度上昇を抑えることができることを本発明者らは実験的に確認した。 In the mechanical pulverizer configured according to the present invention, by optimizing the distance between the flat portion of the rotor and the convex portion of the stator, the rotational speed of the rotor is increased in order to pulverize to the target particle size. The present inventors have experimentally confirmed that even in this case, the temperature rise in the machine can be suppressed as compared with the conventional mechanical crusher.
本発明の機械式粉砕機が従来機に比べ機内温度の上昇抑制が優位となるメカニズムは現在調査中であるが、以下のように推測している。 The mechanism by which the mechanical pulverizer of the present invention is superior to conventional pulverizers in suppressing the temperature rise inside the pulverizer is currently under investigation, but is presumed as follows.
機械式粉砕機を用いて粉砕する工程は、数100~数10μmの中砕と呼ばれる領域のトナー原料を、微粉砕領域から数μmの超微粉砕に粉砕する粒径領域となる。 In the step of pulverizing using a mechanical pulverizer, the toner raw material in the range of several hundred to several tens of micrometers, which is called medium pulverization, is pulverized into a fine pulverization range to an ultra-fine pulverization of several micrometers.
機械式粉砕機でのトナー原料の粉砕過程において、中砕から微粉砕への粉砕が実施される機内の上流部分では主として体積粉砕が行われ、微粉砕から超微粉砕が行われる下流側の領域では、体積粉砕に加えて表面粉砕も同時に行われると推測される。 In the process of pulverizing toner raw materials in a mechanical pulverizer, volume pulverization is mainly performed in the upstream part of the machine where pulverization from medium to fine pulverization is performed, and the downstream area where pulverization from fine pulverization to ultra-fine pulverization is performed. It is speculated that in addition to volumetric crushing, surface crushing is also carried out at the same time.
体積粉砕で発生する熱エネルギーは、表面粉砕に比べて大きい。従来の粉砕機の場合、主として体積粉砕が行われる上流で発生した熱エネルギーはトナーに蓄積される。下流側においても継続して体積粉砕と表面粉砕が実施されるため、条件によってはトナーに悪影響を及ぼす温度の閾値を超えてしまう場合があると考えられる。 The thermal energy generated in volumetric crushing is greater than that in surface crushing. In conventional crushers, the thermal energy generated upstream, where bulk crushing takes place, is primarily stored in the toner. Since volume pulverization and surface pulverization are continuously performed on the downstream side as well, it is considered that the temperature may exceed the threshold value that adversely affects the toner depending on the conditions.
さらには、狙い粒径が小粒径になるほど、表面粉砕に必要なエネルギーの閾値以上のエネルギーがトナーに与えられてしまい、昇温が加速してしまうのではないかと推測している。 Furthermore, it is speculated that the smaller the target particle size is, the more energy is applied to the toner than the threshold value of the energy required for surface pulverization, which accelerates the temperature rise.
一方、本発明の粉砕機の場合、回転子の途中に平坦部を設け、被粉砕物の体積粉砕を一旦中断させ、低エネルギー下で表面粉砕に切り替えることができる。これにより、トナーの昇温を鈍化させ、不必要なエネルギーがトナーに与えられにくくなり、適度なエネルギーで再び粉砕が行われると推測している。その結果、上流側でトナーに蓄積されたネルエネルギーが下流領域において悪影響を及ぼす温度の閾値を超えることなく粉砕が行われると推測している。 On the other hand, in the case of the pulverizer of the present invention, a flat portion is provided in the middle of the rotor, and the volume pulverization of the material to be pulverized can be interrupted temporarily and switched to surface pulverization under low energy. It is presumed that this slows down the temperature rise of the toner, makes it difficult for unnecessary energy to be applied to the toner, and pulverizes the toner again with an appropriate amount of energy. As a result, it is assumed that pulverization is performed without exceeding a temperature threshold at which the flannel energy accumulated in the toner on the upstream side adversely affects the downstream region.
さらに、回転子の平坦領域表面と固定子凸部との距離が、刃のある領域の回転子凸部と固定子凸部との距離よりも広く設定することで、粉砕性の向上効果が得られることを確認した。 Further, by setting the distance between the flat region surface of the rotor and the stator projections to be wider than the distance between the rotor projections in the blade region and the stator projections, an effect of improving pulverization is obtained. It was confirmed that
これは、平坦部を通過したのち、再び刃のある領域に突入する箇所において、局所的に風速が上昇し、固定子への衝突速度が増加し粉砕性が向上すると推測している。 It is speculated that, after passing through the flat part, the wind speed locally increases at the point where the blade enters the region again, and the collision speed to the stator increases, thereby improving the pulverization performance.
本発明での回転子の平坦部とは、被粉砕物が回転によって固定子への衝突運動が起こらない程度の表面性であればよく、十点平均粗さ(Rz)で100μm程度、算術平均粗さ(Ra)が25μm程度の荒仕上げが好ましいが、仕上げ無しの表面でも本発明の効果を得ることは可能である。 The flat portion of the rotor in the present invention may be any surface property that does not cause collision movement of the material to be crushed against the stator due to rotation. Rough finishing with a roughness (Ra) of about 25 μm is preferable, but the effect of the present invention can be obtained even on an unfinished surface.
本発明での回転子の凹凸部の構成は特に規定はなく、被粉砕物が効率よく粉砕できる構成であればよい。また、凹凸部の角度、間隔、形状、などは必ずしも一様の構成である必要はなく、ゾーン毎に構成が異なっても本発明は有効である。また、固定子の凹凸部の構成においても同様である。 In the present invention, the configuration of the uneven portion of the rotor is not particularly limited as long as the material to be pulverized can be efficiently pulverized. Also, the angles, intervals, shapes, etc. of the uneven portions do not necessarily have to be uniform, and the present invention is effective even if the configurations differ for each zone. The same applies to the configuration of the uneven portions of the stator.
以上のメカニズムにより、本発明の粉砕機を用いた場合、従来粉砕機に比べて機内温度の上昇抑制効果が得られ、安定性の優れた粉砕工程を提供することができると考えている。 Due to the above mechanism, when using the pulverizer of the present invention, it is possible to obtain the effect of suppressing the temperature rise in the machine compared to the conventional pulverizer, and it is possible to provide a pulverization process with excellent stability.
(回転子の平坦部の態様)
前述した図4のモデル図に示されるような作用効果を得て粉砕機内部の粉砕の働きを変化させることができ、微粉発生の抑制、円形度のばらつき抑制、被粉砕物の降温作用が生じると考えているが、被粉砕物の降温作用に関しては、本発明において、回転子の平坦部と固定子の隙間を広げることがさらに有効である。
(Aspect of the flat portion of the rotor)
It is possible to obtain the action and effect shown in the model diagram of FIG. 4 described above and change the pulverization function inside the pulverizer, suppressing the generation of fine powder, suppressing the variation in circularity, and lowering the temperature of the material to be pulverized. However, in the present invention, it is more effective to widen the gap between the flat portion of the rotor and the stator with respect to the effect of lowering the temperature of the material to be pulverized.
本発明において、回転子平坦部表面と固定子凸部との隙間は、刃のある回転子の領域の隙間に対して1.2倍以上5.0倍以下(図2中のD2/D1相当)であることが本発明では好ましい。 In the present invention, the gap between the rotor flat portion surface and the stator convex portion is 1.2 times or more and 5.0 times or less (corresponding to D2/D1 in FIG. ) is preferred in the present invention.
上記隙間の比が1.2倍より小さい場合は、被粉砕物の降温効果が小さく、効果が得られにくくなる場合がある。上記隙間の比が5.0倍よりも大きい場合は、平坦部での表面粉砕に要するエネルギーが低下しすぎてしまい、円形度ばらつき抑制効果が得られにくくなる場合がある。 If the gap ratio is less than 1.2 times, the effect of lowering the temperature of the material to be pulverized is small, and it may be difficult to obtain the effect. If the gap ratio is more than 5.0 times, the energy required for surface pulverization at the flat portion is too low, and it may be difficult to obtain the effect of suppressing circularity variation.
本発明において、回転子の平坦部の領域は、回転子の軸方向長さの1/8以上1/2以下の範囲(図2中のL2/L相当)が好ましい。 In the present invention, the area of the flat portion of the rotor preferably ranges from 1/8 to 1/2 of the axial length of the rotor (corresponding to L2/L in FIG. 2).
上記範囲が1/8よりも小さいと、本発明の効果が得られにくくなる場合がある。上記範囲が1/2よりも大きいと、目標粒径を得るために、より高速で回転子を回転させなければならなくなってしまい、製造条件に制限が発生してしまう場合がある。 If the above range is smaller than 1/8, it may be difficult to obtain the effects of the present invention. If the above range is larger than 1/2, the rotor must be rotated at a higher speed in order to obtain the target particle size, which may limit the manufacturing conditions.
本発明においては、平坦領域を一以上有し、少なくとも1つの平坦領域が両側に複数の凸部と凹部とを有する構成であればよく、平坦領域は複数領域であっても本発明は有効である。 In the present invention, it is sufficient to have one or more flat regions, and at least one flat region has a plurality of protrusions and recesses on both sides, and the present invention is effective even if there are a plurality of flat regions. be.
図7及び図8は、回転子の平坦領域が複数(2か所)である本発明の粉砕機構成を示した模式図である。平坦部が複数領域の場合、前述の平坦部範囲の値はその合計とし、図で示したL2とL4との和の値であることが本発明では有効な範囲となる。 7 and 8 are schematic diagrams showing the configuration of the pulverizer of the present invention in which the rotor has a plurality of (two) flat areas. When the flat portion is a plurality of areas, the value of the above-mentioned flat portion range is the total, and the value of the sum of L2 and L4 shown in the figure is an effective range in the present invention.
本発明において、回転子の平坦部の開始点は、被粉砕物の通過方向上流側端部から回転子の軸方向長さの1/8以降3/4以前の範囲であることが好ましい。 In the present invention, the starting point of the flat portion of the rotor is preferably in the range from 1/8 to 3/4 of the axial length of the rotor from the upstream end in the passage direction of the material to be pulverized.
開始点が1/8以前の場合、体積粉砕が不十分な状態で平坦部での工程が開始してしまうので、本発明の効果が充分得られない場合がある。開始点が3/4以降の場合、体積粉砕から表面粉砕への移行が連続的に進んでしまう割合が多くなってしまい、本発明の効果が得られにくくなってしまう場合がある。 If the starting point is less than 1/8, the process starts in a flat portion with insufficient volume pulverization, so the effect of the present invention may not be obtained sufficiently. If the starting point is 3/4 or more, the proportion of the transition from volume pulverization to surface pulverization progresses continuously, which may make it difficult to obtain the effects of the present invention.
平坦部が複数領域の場合、上記開始点は、上流側の平坦部の開始点とすることが本発明では有効である。 In the present invention, it is effective to set the starting point to the starting point of the flat portion on the upstream side when there are multiple flat portions.
(粉砕工程システム)
粉砕法によるトナーの製造方法においては、粒径2mm程度にする粗粉砕工程と、所望の粒径にする微粉砕工程との間に中粉砕工程を入れても良く、本発明の粉砕プロセスはこの中粉砕工程であってもいいし、微粉砕工程であっても良い。また本発明の粉砕プロセスを直列に2段以上連結して粉砕しても良い。
(Pulverization process system)
In the method of producing toner by the pulverization method, an intermediate pulverization step may be inserted between the coarse pulverization step to obtain a particle size of about 2 mm and the fine pulverization step to obtain a desired particle size. It may be a medium pulverization step or a fine pulverization step. Further, the pulverization process of the present invention may be pulverized by connecting two or more stages in series.
本発明においては、特に重量平均粒径が4μm台のトナー粉砕工程においては、本発明構成の粉砕機を直列に連結し、二段階で粉砕することも有効である。また、二段階で粉砕処理する場合、第一の粉砕工程、第二の粉砕工程共に本発明構成の粉砕機としてもよいし、いずれかを本発明構成の粉砕機としてもよい。 In the present invention, particularly in the step of pulverizing toner particles having a weight average particle size of the order of 4 μm, it is effective to connect the pulverizers having the structure of the present invention in series and pulverize in two stages. Further, when pulverization is performed in two stages, both the first pulverization step and the second pulverization step may be made using the pulverizer having the configuration of the present invention, or either one may be made the pulverizer having the configuration of the present invention.
(トナー製造手順)
次に、本発明の粉砕機で、トナー粒子を製造する手順について説明する。
(Toner manufacturing procedure)
Next, the procedure for manufacturing toner particles with the pulverizer of the present invention will be described.
まず、原料混合工程では、トナー内添剤として、少なくとも結着樹脂、着色剤を所定量秤量して配合し、混合する。必要に応じて、トナーの加熱定着時にホットオフセットの発生を抑制する離型剤、該離型剤を分散させる分散剤、帯電制御剤などを混合してもよい。混合装置の一例としては、ダブルコン・ミキサー、V型ミキサー、ドラム型ミキサー、スーパーミキサー、ヘンシェルミキサー、ナウターミキサー等がある。 First, in the raw material mixing step, predetermined amounts of at least a binder resin and a colorant are weighed and mixed as toner internal additives. If necessary, a release agent for suppressing the occurrence of hot offset during heat fixing of the toner, a dispersant for dispersing the release agent, a charge control agent, and the like may be mixed. Examples of mixing devices include a double-con mixer, a V-type mixer, a drum-type mixer, a super mixer, a Henschel mixer, a Nauta mixer, and the like.
更に、上記で配合し、混合したトナー原料を溶融混練して、樹脂類を溶融し、その中の着色剤等を分散させる。該溶融混練工程では、例えば、加圧ニーダー、バンバリィミキサー等のバッチ式練り機や、連続式の練り機を用いることができる。近年では、連続製造できる等の優位性から、1軸または2軸押出機が主流となっており、例えば、神戸製鋼所社製KTK型2軸押出機、東芝機械社製TEM型2軸押出機、ケイ・シー・ケイ社製2軸押出機、ブス社製コ・ニーダー等が一般的に使用される。更に、トナー原料を溶融混練することによって得られる着色樹脂組成物は、溶融混練後、2本ロール等で圧延され、水冷等で冷却する冷却工程を経て冷却される。 Further, the toner materials blended and mixed as described above are melted and kneaded to melt the resins and disperse the colorant and the like therein. In the melt-kneading step, for example, a pressure kneader, a batch kneader such as a Banbury mixer, or a continuous kneader can be used. In recent years, single-screw or twin-screw extruders have become mainstream due to their advantages such as continuous production. , a twin-screw extruder manufactured by K.C.K. Further, the colored resin composition obtained by melt-kneading the toner raw material is rolled with two rolls or the like after melt-kneading, and is cooled through a cooling step of cooling by water cooling or the like.
上記で得られた着色樹脂組成物の冷却物は、次いで、粉砕工程で所望の粒径にまで粉砕される。粉砕工程では、まず、クラッシャー、ハンマーミル、フェザーミル等で粗粉砕される。更に、本発明に係わる機械式粉砕機および粉砕工程システムにて微粉砕される。粉砕工程では、このように段階的に所定のトナー粒径まで粉砕される。 The cooled colored resin composition obtained above is then pulverized to a desired particle size in a pulverization step. In the pulverization step, first, coarse pulverization is performed using a crusher, a hammer mill, a feather mill, or the like. Further, it is pulverized by the mechanical pulverizer and pulverizing process system according to the present invention. In the pulverization process, the toner is thus pulverized step by step to a predetermined toner particle size.
次に、トナー粒子の重量平均粒径(D4)、微粉率(3μm以下の個数%)及び円形度の測定方法について説明する。 Next, the method for measuring the weight average particle diameter (D4), the fineness ratio (number % of 3 μm or less) and the circularity of the toner particles will be described.
<トナー粒子の重量平均粒径(D4)、微粉率の測定方法>
トナー粒子の重量平均粒径(D4)は、50μmのアパーチャーチューブを備えた細孔電気抵抗法による精密粒径分布測定装置「コールター・カウンター Multisizer 3」(登録商標、ベックマン・コールター社製)と、測定条件設定及び測定データ解析をするための付属の専用ソフト「ベックマン・コールター Multisizer 3 Version3.51」(ベックマン・コールター社製)を用いて、実効測定チャンネル数2万5千チャンネルで測定し、測定データの解析を行い、算出する。
<Method for Measuring Weight Average Particle Diameter (D4) of Toner Particles and Fine Particle Ratio>
The weight-average particle size (D4) of the toner particles was measured by a precision particle size distribution measuring device "Coulter Counter Multisizer 3" (registered trademark, manufactured by Beckman Coulter, Inc.) using a pore electrical resistance method equipped with a 50 μm aperture tube, Using the attached dedicated software "Beckman Coulter Multisizer 3 Version 3.51" (manufactured by Beckman Coulter) for setting measurement conditions and analyzing measurement data, measure with 25,000 effective measurement channels. Analyze the data and calculate.
測定に使用する電解水溶液は、特級塩化ナトリウムをイオン交換水に溶解して濃度が約1質量%となるようにしたもの、例えば、「ISOTON II」(ベックマン・コールター社製)が使用できる。 As the electrolytic aqueous solution used for measurement, a solution obtained by dissolving special grade sodium chloride in ion-exchanged water to a concentration of about 1% by mass, for example, "ISOTON II" (manufactured by Beckman Coulter, Inc.) can be used.
なお、測定、解析を行う前に、以下のように前記専用ソフトの設定を行う。 Before performing measurement and analysis, the dedicated software is set as follows.
前記専用ソフトの「標準測定方法(SOM)を変更画面」において、コントロールモードの総カウント数を50000粒子に設定し、測定回数を1回、Kd値は「標準粒子10.0μm」(ベックマン・コールター社製)を用いて得られた値を設定する。閾値/ノイズレベルの測定ボタンを押すことで、閾値とノイズレベルを自動設定する。また、カレントを1600μAに、ゲインを2に、電解液をISOTON IIに設定し、測定後のアパーチャーチューブのフラッシュにチェックを入れる。 In the "change standard measurement method (SOM) screen" of the dedicated software, set the total count number in control mode to 50000 particles, set the number of measurements to 1, and set the Kd value to "standard particle 10.0 μm" (Beckman Coulter (manufactured by Co., Ltd.) is used to set the value obtained. By pressing the threshold/noise level measurement button, the threshold and noise level are automatically set. Also, set the current to 1600 μA, the gain to 2, the electrolyte to ISOTON II, and check the flash of aperture tube after measurement.
専用ソフトの「パルスから粒径への変換設定画面」において、ビン間隔を対数粒径に、粒径ビンを256粒径ビンに、粒径範囲を1μm以上30μm以下に設定する。 In the "pulse-to-particle size conversion setting screen" of the dedicated software, set the bin interval to logarithmic particle size, the particle size bin to 256 particle size bins, and the particle size range to 1 μm or more and 30 μm or less.
具体的な測定法は以下の通りである。
(1)Multisizer 3専用のガラス製250ml丸底ビーカーに前記電解水溶液約200mlを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行う。そして、解析ソフトの「アパーチャーのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡を除去しておく。
(2)ガラス製の100ml平底ビーカーに前記電解水溶液約30mlを入れ、この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で3質量倍に希釈した希釈液を約0.3ml加える。
(3)発振周波数50kHzの発振器2個を、位相を180度ずらした状態で内蔵し、電気的出力120Wの超音波分散器「UltRasonic Dispension System Tetora150」(日科機バイオス社製)の水槽内に所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2ml添加する。
(4)前記(2)のビーカーを前記超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させる。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整する。
(5)前記(4)のビーカー内の電解水溶液に超音波を照射した状態で、トナー約10mgを少量ずつ前記電解水溶液に添加し、分散させる。そして、さらに60秒間超音波分散処理を継続する。なお、超音波分散にあたっては、水槽の水温が10℃以上40℃以下となる様に適宜調節する。
(6)サンプルスタンド内に設置した前記(1)の丸底ビーカーに、ピペットを用いてトナーを分散した前記(5)の電解質水溶液を滴下し、測定濃度が約5%となるように調整する。そして、測定粒子数が50000個になるまで測定を行う。
(7)測定データを装置付属の前記専用ソフトにて解析を行い、重量平均粒径(D4)、微粉率(3μm以下の個数%)を算出する。なお、専用ソフトでグラフ/体積%と設定したときの、分析/体積統計値(算術平均)画面の「平均径」が重量平均粒径(D4)である。
A specific measuring method is as follows.
(1) About 200 ml of the electrolytic aqueous solution is placed in a 250 ml round-bottom glass beaker exclusively for Multisizer 3, set on a sample stand, and stirred with a stirrer rod counterclockwise at 24 rotations/second. Then, use the analysis software's "flush aperture" function to remove dirt and air bubbles inside the aperture tube.
(2) About 30 ml of the electrolytic aqueous solution is placed in a 100 ml flat-bottomed glass beaker, and "Contaminon N" (a nonionic surfactant, an anionic surfactant, and an organic builder consisting of an organic builder) is used as a dispersing agent in the beaker. About 0.3 ml of a diluent obtained by diluting a 10% by mass aqueous solution of a neutral detergent for washing ware (manufactured by Wako Pure Chemical Industries, Ltd.) with ion-exchanged water three times by mass is added.
(3) Two oscillators with an oscillation frequency of 50 kHz are built in with a phase shift of 180 degrees, and an ultrasonic disperser with an electrical output of 120 W "Ultrasonic Dispersion System Tetora 150" (manufactured by Nikkaki Bios) in a water tank. A predetermined amount of ion-exchanged water is put into the water tank, and about 2 ml of the contaminon N is added to the water tank.
(4) The beaker of (2) is set in the beaker fixing hole of the ultrasonic disperser, and the ultrasonic disperser is operated. Then, the height position of the beaker is adjusted so that the resonance state of the liquid level of the electrolytic aqueous solution in the beaker is maximized.
(5) While the electrolytic aqueous solution in the beaker in (4) above is being irradiated with ultrasonic waves, about 10 mg of toner is added little by little to the electrolytic aqueous solution and dispersed. Then, the ultrasonic dispersion treatment is continued for another 60 seconds. In the ultrasonic dispersion, the temperature of the water in the water tank is appropriately adjusted to 10°C or higher and 40°C or lower.
(6) Using a pipette, drop the electrolytic aqueous solution of (5) in which the toner is dispersed into the round-bottomed beaker of (1) set in the sample stand, and adjust the measured concentration to about 5%. . The measurement is continued until the number of measured particles reaches 50,000.
(7) Analyze the measurement data with the dedicated software attached to the apparatus, and calculate the weight average particle diameter (D4) and the fine powder rate (number % of 3 μm or less). The weight average particle diameter (D4) is the "average diameter" on the analysis/volume statistics (arithmetic mean) screen when graph/vol% is set using dedicated software.
<トナー粒子の円形度の測定方法>
トナー粒子の円形度は、フロー式粒子像分析装置「FPIA-3000」(シスメックス社製)によって、校正作業時の測定及び解析条件で測定する。
<Method for Measuring Circularity of Toner Particles>
The circularity of toner particles is measured by a flow-type particle image analyzer “FPIA-3000” (manufactured by Sysmex Corporation) under measurement and analysis conditions during calibration work.
具体的な測定方法は、以下の通りである。まず、ガラス製の容器中に予め不純固形物などを除去したイオン交換水約20mlを入れる。この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で約3質量倍に希釈した希釈液を約0.2ml加える。更に測定試料を約0.02g加え、超音波分散器を用いて2分間分散処理を行い、測定用の分散液とする。その際、分散液の温度が10℃以上40℃以下となる様に適宜冷却する。超音波分散器としては、発振周波数50kHz、電気的出力150Wの卓上型の超音波洗浄器分散器(「VS-150」(ヴェルヴォクリーア社製))を用い、水槽内には所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2ml添加する。 A specific measuring method is as follows. First, about 20 ml of ion-exchanged water, from which solid impurities have been removed in advance, is placed in a glass container. As a dispersant, "Contaminon N" (a 10% by mass aqueous solution of a neutral detergent for cleaning precision measuring instruments at pH 7 consisting of a nonionic surfactant, an anionic surfactant, and an organic builder, manufactured by Wako Pure Chemical Industries, Ltd.) was used as a dispersant. ) is diluted with ion-exchanged water to about 3 times the mass, and about 0.2 ml of the diluted solution is added. Further, about 0.02 g of a measurement sample is added, and dispersion treatment is performed for 2 minutes using an ultrasonic disperser to obtain a dispersion liquid for measurement. At that time, the temperature of the dispersion liquid is appropriately cooled to 10° C. or higher and 40° C. or lower. As the ultrasonic disperser, a tabletop ultrasonic cleaner disperser (“VS-150” (manufactured by Vervoclea)) with an oscillation frequency of 50 kHz and an electrical output of 150 W was used. Replaced water is put in, and about 2 ml of the contaminon N is added to this water tank.
測定には、標準対物レンズ(10倍)を搭載した前記フロー式粒子像分析装置を用い、シース液にはパーティクルシース「PSE-900A」(シスメックス社製)を使用した。前記手順に従い調整した分散液を前記フロー式粒子像分析装置に導入し、HPF測定モードで、トータルカウントモードにて3000個のトナー粒子を計測する。そして、粒子解析時の2値化閾値を85%とし、解析粒子径を円相当径1.985μm以上39.69μm未満に限定し、トナー粒子の円形度を求める。 For the measurement, the flow type particle image analyzer equipped with a standard objective lens (10x) was used, and the particle sheath "PSE-900A" (manufactured by Sysmex Corporation) was used as the sheath liquid. The dispersion prepared according to the above procedure is introduced into the flow type particle image analyzer, and 3000 toner particles are counted in the HPF measurement mode and the total count mode. Then, the binarization threshold during particle analysis is set to 85%, the analysis particle diameter is limited to a circle equivalent diameter of 1.985 μm or more and less than 39.69 μm, and the circularity of the toner particles is obtained.
測定にあたっては、測定開始前に標準ラテックス粒子(Duke Scientific社製の「RESEARCH AND TEST PARTICLES Latex Microsphere Suspensions 5200A」をイオン交換水で希釈)を用いて自動焦点調整を行う。その後、測定開始から2時間毎に焦点調整を実施することが好ましい。 In the measurement, automatic focus adjustment is performed using standard latex particles (“RESEARCH AND TEST PARTICLES Latex Microsphere Suspensions 5200A” manufactured by Duke Scientific, diluted with deionized water) before starting the measurement. After that, it is preferable to perform focus adjustment every two hours from the start of measurement.
尚、本願実施例では、シスメックス社による校正作業が行われた、シスメックス社が発行する校正証明書の発行を受けたフロー式粒子像分析装置を使用した。解析粒子径を円相当径1.985μm以上39.69μm未満に限定した以外は、校正証明を受けた時の測定及び解析条件で測定を行った。 In the examples of the present application, a flow-type particle image analyzer that was calibrated by Sysmex and received a calibration certificate issued by Sysmex was used. The measurement was performed under the measurement and analysis conditions when the calibration certificate was received, except that the analyzed particle diameter was limited to a circle equivalent diameter of 1.985 μm or more and less than 39.69 μm.
以下、本発明の効果を具体的に説明するための実施例を示す。 Examples are given below to specifically explain the effects of the present invention.
〔実施例1〕
本実施例においては、粉砕機に図1に示したものを用いる。図1に示す粉砕機の構成は、機械式粉砕機(ターボ工業社製ターボミルT250-CRS-ローター形状RS型)を、本発明の構成に改造したものである。
[Example 1]
In this embodiment, the pulverizer shown in FIG. 1 is used. The configuration of the pulverizer shown in FIG. 1 is obtained by modifying a mechanical pulverizer (turbo mill T250-CRS-rotor shape RS type manufactured by Turbo Kogyo Co., Ltd.) to the configuration of the present invention.
図2は、回転子と固定子の構成を模式的に示した図である。図2において、L1は回転子103の上流側の刃がある部分103-1の領域を示している。L2は回転子の刃のない部分(平坦部)103-2の領域を示している。L3は回転子103の下流側の刃がある部分103-3の領域を示している。
FIG. 2 is a diagram schematically showing the configuration of the rotor and stator. In FIG. 2, L1 indicates the area of the portion 103-1 on the upstream side of the
D1及びD2は回転子と固定子の隙間を示しており、D1は前記L1の領域での回転子と固定子の隙間を示し、D2は前記L2の領域の回転子と固定子の隙間を示している。 D1 and D2 represent the clearance between the rotor and the stator, D1 represents the clearance between the rotor and the stator in the region of L1, and D2 represents the clearance between the rotor and the stator in the region of L2. ing.
なお、ここでいう隙間とは、L1の領域は対向する刃の先端と先端(凸部と凸部)との距離をいう。L2の領域は固定子の刃の先端と回転子の平坦部表面との距離をいう。 The term "gap" as used herein refers to the distance between the tips of blades facing each other in the area of L1 (convex portion to convex portion). The area of L2 refers to the distance between the tips of the stator blades and the flat surface of the rotor.
上記機械式粉砕機を用い、以下に示す条件にて粉砕品を製造した。粉砕に用いる原料は、一般的に市販されている結着樹脂、色材、離型剤等を上述の原料混合、溶融混練、粗粉砕により平均粒径100μm程度にして用いた。 A pulverized product was produced using the mechanical pulverizer under the following conditions. As raw materials for pulverization, generally commercially available binder resins, coloring materials, releasing agents, etc. were used after being adjusted to an average particle size of about 100 μm by the above-described raw material mixing, melt-kneading, and coarse pulverization.
[実施例1-1]
(Feed=30kg/h)
図1に示す粉砕機を用い供給口からトナー原料を30kg/h、冷風を風量4m3/min流入させ、冷風温度-10℃、の条件(条件1)でトナー原料の粉砕を行った。
[Example 1-1]
(Feed=30kg/h)
Using the pulverizer shown in FIG. 1, the toner raw material was pulverized under the conditions (Condition 1) of 30 kg/h of the toner raw material and 4 m 3 /min of cool air flow from the supply port, and the cool air temperature of -10°C.
なお、本条件での粉砕機の構成は、図2において、D1=1.0mm、D2=1.0mmとし、L1=120mm、L2=80mm、L3=120mmとした。 The configuration of the pulverizer under these conditions was D1=1.0 mm, D2=1.0 mm, L1=120 mm, L2=80 mm, and L3=120 mm in FIG.
条件1では、まず粉砕品の重量平均粒径が6.8~7.0μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続1時間製造を行い約30kgの粉砕品を得た。 In condition 1, first, the peripheral speed of the rotor is set so that the weight average particle size of the pulverized product is in the range of 6.8 to 7.0 μm, and then production is continued for 1 hour under the same conditions to obtain about 30 kg of pulverized product. got
[実施例1-2]
(Feed=40kg/h)
本条件では、条件1と同様の粉砕機の構成にて、供給口からトナー原料を40kg/hとし、冷風を風量4m3/min流入させ、冷風温度-10℃、の条件(条件2)でトナー原料の粉砕を行った。
[Example 1-2]
(Feed=40kg/h)
In this condition, the pulverizer has the same configuration as condition 1, the toner raw material is 40 kg/h from the supply port, the cold air is flowed in at an air volume of 4 m 3 /min, and the cold air temperature is −10° C. (condition 2). A toner raw material was pulverized.
条件2においても、粉砕品の重量平均粒径が6.8~7.0μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続1時間製造を行い約40kgの粉砕品を得た。 Also under condition 2, the peripheral speed of the rotor is set so that the weight average particle size of the pulverized product is in the range of 6.8 to 7.0 μm, and then production is continued for 1 hour under the same conditions to obtain about 40 kg of pulverized product. got
実施例1-1、1-2における詳細な条件は表1に合わせて示す。 Detailed conditions in Examples 1-1 and 1-2 are also shown in Table 1.
〔比較例1-1〕
(Feed=30kg/h)
本比較例においては、粉砕機に図3に示したものを用いる。図3に示す粉砕機は、機械式粉砕機(ターボ工業社製ターボミルT250-CRS-ローター形状RS型)であり、回転子は固定子と対向する全領域において刃がある。また、固定子と回転子の隙間の距離は1.0mmとした。
[Comparative Example 1-1]
(Feed=30kg/h)
In this comparative example, the crusher shown in FIG. 3 is used. The pulverizer shown in FIG. 3 is a mechanical pulverizer (turbo mill T250-CRS-rotor shape RS type manufactured by Turbo Kogyo Co., Ltd.), and the rotor has blades in the entire area facing the stator. Also, the distance between the stator and the rotor was set to 1.0 mm.
本比較例において、実施例1-1及び実施例1-2と同じトナー原料を用い、供給口からトナー原料を30kg/hとし、冷風を風量4m3/min流入させ、冷風温度-10℃、の条件でトナー原料の粉砕を行った。 In this comparative example, the same toner raw material as in Examples 1-1 and 1-2 was used, the toner raw material was 30 kg/h from the supply port, cold air was introduced at an air volume of 4 m 3 /min, and the cold air temperature was -10°C. The toner raw material was pulverized under the conditions of
本比較例においても、粉砕品の重量平均粒径が各条件で6.8~7.0μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続1時間製造を行い、約30kgの粉砕品を得た。 Also in this comparative example, the peripheral speed of the rotor was set so that the weight average particle diameter of the pulverized product was in the range of 6.8 to 7.0 μm under each condition, and then continuous production was performed for 1 hour under the same conditions. About 30 kg of ground product was obtained.
〔比較例1-2〕
(Feed=40kg/h)
本比較例では、供給口からトナー原料を40kg/hとした以外は比較例1-1と同様にトナー原料の粉砕を行った。
[Comparative Example 1-2]
(Feed=40kg/h)
In this comparative example, the toner raw material was pulverized in the same manner as in Comparative Example 1-1, except that the toner raw material was supplied from the supply port at 40 kg/h.
本比較例においても、粉砕品の重量平均粒径が各条件で6.8~7.0μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続1時間製造を行い、約40kgの粉砕品を得た。 Also in this comparative example, the peripheral speed of the rotor was set so that the weight average particle diameter of the pulverized product was in the range of 6.8 to 7.0 μm under each condition, and then continuous production was performed for 1 hour under the same conditions. About 40 kg of ground product was obtained.
比較例1-1、1-2における詳細な条件は表1に合わせて示す。 Detailed conditions in Comparative Examples 1-1 and 1-2 are also shown in Table 1.
本実施例及び比較例では、製造した微粉砕品の微粉率の測定及び円形度の測定を行った。測定結果から、微粉率は3μm以下の個数%、円形度は、値の頻度分布から±3σの円形度分布幅を求め、分布幅でランク付けを行った。
・微粉率(3μm以下の個数%)の評価ランク:
比較例1で得られた微粉砕品の微粉率の値を1とした時の比率を以下のランクでランク付けを行った。
A・・・0.90以下で減少がみられた。
B・・・0.90超1.10未満で同等。
C・・・1.10以上で増加がみられた。
・円形度分布(ばらつき)の評価ランク:
A・・・分布幅0.040未満であり分布幅は小さい。
B・・・分布幅0.040以上0.050未満。
C・・・分布幅0.050以上であり分布幅は大きい。
In the present examples and comparative examples, the fineness ratio and the circularity of the produced finely pulverized products were measured. From the measurement results, the fine powder rate was obtained by number % of 3 μm or less, and the circularity was obtained from the frequency distribution of the values, and the circularity distribution width of ±3σ was obtained, and the distribution width was ranked.
・Evaluation rank of fine powder rate (number % of 3 μm or less):
Taking the value of the fine powder ratio of the finely pulverized product obtained in Comparative Example 1 as 1, the ratio was ranked according to the following ranks.
A: A decrease was observed at 0.90 or less.
B: more than 0.90 and less than 1.10, equivalent.
C: An increase was observed at 1.10 or more.
・Evaluation rank of circularity distribution (variation):
A: The distribution width is less than 0.040 and the distribution width is small.
B: Distribution width of 0.040 or more and less than 0.050.
C: The distribution width is 0.050 or more, and the distribution width is large.
実施例1-1、1-2及び比較例1-1、1-2での各条件での評価結果を表2に示す。 Table 2 shows the evaluation results under each condition in Examples 1-1 and 1-2 and Comparative Examples 1-1 and 1-2.
表2に示されるように、上述の微粉抑制メカニズムによる作用が発揮されたことで、本構成での粉砕機にて製造した粉砕品は微粉率が減少し、円形度の分布幅も小さく、粉砕工程での安定性が良好なトナーを得ることができる。 As shown in Table 2, due to the effect of the fine powder suppression mechanism described above, the fine powder ratio of the pulverized product produced by the pulverizer with this configuration is reduced, the circularity distribution width is small, and the pulverization A toner with good process stability can be obtained.
また、処理量(Feed量)を増加させてより厳しい条件下の実施例1―2と比較例1-2との対比から、比較例1-2に比べて、実施例1-2においては円形度のばらつき評価が2ランク上昇しており、効果はより顕著に表れている。 In addition, from the comparison between Example 1-2 and Comparative Example 1-2 under more severe conditions by increasing the amount of treatment (Feed amount), compared to Comparative Example 1-2, Example 1-2 has a circular shape. The degree of dispersion evaluation has increased by two ranks, and the effect is more pronounced.
〔実施例2〕
本実施例においても、粉砕機に図1に示したものを用いる。本実施例では、図2に示す回転子103と固定子104の隙間D1及びD2を変化させて粉砕品の製造を行った。
[Example 2]
Also in this embodiment, the grinder shown in FIG. 1 is used. In this example, the gaps D1 and D2 between the
具体的には、D1を1.0mmとし、上流側の回転子と固定子の隙間D1に対する下流側の隙間D2の比(D2/D1)を1.0~5.2の範囲で変化させ、各条件を実施例2-1~2-6とした。 Specifically, D1 is set to 1.0 mm, and the ratio of the gap D2 on the downstream side to the gap D1 between the rotor and the stator on the upstream side (D2/D1) is changed in the range of 1.0 to 5.2, Each condition was defined as Examples 2-1 to 2-6.
なお、本実施例においての回転子の構成は、実施例1と同様に図2において、L1=120mm、L2=80mm、L3=120mmとした。また、L3領域の回転子と固定子の隙間はD1と同じとする。 Note that the configuration of the rotor in this embodiment was L1=120 mm, L2=80 mm, and L3=120 mm in FIG. 2 as in the first embodiment. Also, the gap between the rotor and the stator in the L3 region is assumed to be the same as D1.
粉砕品の製造条件は、供給口から実施例1と同じトナー原料を40kg/h、冷風を風量4m3/min流入させ、冷風温度-10℃、の条件で粉砕を行った。 The pulverized product was produced under the same conditions as in Example 1: 40 kg/h of the same toner raw material as in Example 1, cold air flow rate of 4 m 3 /min, and cold air temperature of -10°C.
なお、本実施例では、粉砕品の重量平均粒径が6.8~7.0μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続10時間製造を行い約400kgの粉砕品を得るものとする。 In this example, the peripheral speed of the rotor was set so that the weight-average particle diameter of the pulverized product was in the range of 6.8 to 7.0 μm, and then production was continued for 10 hours under the same conditions to produce approximately 400 kg of powder. A crushed product shall be obtained.
実施例2-1~2-6における詳細な条件は表1に合わせて示す。 Detailed conditions in Examples 2-1 to 2-6 are also shown in Table 1.
〔比較例2〕
本比較例では、比較例1と同様の粉砕機の構成、条件にて連続10時間製造を行い約400kgの粉砕品を得るものとする。
[Comparative Example 2]
In this comparative example, the same pulverizer configuration and conditions as in Comparative Example 1 were used to perform continuous production for 10 hours to obtain a pulverized product weighing about 400 kg.
本実施例及び比較例では、実施例1及び比較例1の評価で実施した微粉率及び円形度評価に加え、製造した微粉砕品を1時間毎にサンプリングし、重量平均粒径(D4)を測定し、微粉砕品の粒径安定性の評価を行った。 In this example and comparative example, in addition to the fine powder rate and circularity evaluation performed in the evaluation of Example 1 and Comparative Example 1, the produced finely pulverized product was sampled every hour, and the weight average particle size (D4) was measured. The particle size stability of the finely pulverized product was evaluated.
評価は、サンプリングした粒径の最大値と最小値の差を算出し、以下のランク付けを行った。
・粒径安定性の評価ランク:
AA・・・0.1μm未満であり優秀。
A・・・0.1μm以上0.2未満であり良好。
B・・・0.2μm以上0.4μm未満であり、実用上問題のないレベル。
C・・・0.4μm以上であり実用上問題レベル。
For the evaluation, the difference between the maximum and minimum values of sampled particle diameters was calculated, and the following rankings were performed.
・Evaluation rank of particle size stability:
AA: Less than 0.1 µm, excellent.
A: 0.1 μm or more and less than 0.2 μm, which is good.
B: 0.2 µm or more and less than 0.4 µm, a level that poses no practical problem.
C: 0.4 µm or more, which is at a practically problematic level.
さらに、連続10時間の製造後装置を停止し、回転子及び固定子のトナーの付着度合い(汚れ)を目視で確認した。評価ランクは以下とする。
・トナー付着の評価ランク:
AA・・・付着全くなく優秀。
A・・・付着はほとんどなくり良好。
B・・・若干付着は認められるが実用上問題のないレベルである。
C・・・付着がみとめられ実用上問題がある。
・総合評価:
AA・・・各評価項目に2項目以上がAAランクであり、最低ランクがAランク以上。
A・・・各評価項目においてすべてAランク以上であった。
B・・・各評価項目において、最低ランクにBランクが1項目でもあった。
C・・・各評価項目において、最低ランクにCランクが1項目でもあった。
Further, after 10 hours of continuous production, the apparatus was stopped, and the degree of toner adhesion (dirt) on the rotor and stator was visually confirmed. The evaluation rank is as follows.
・Evaluation rank of toner adhesion:
AA: Excellent with no adhesion.
A: Almost no adhesion, good.
B . . . Slight adhesion is observed, but the level is practically non-problematic.
C: Adhesion was observed and there was a problem in practical use.
·Comprehensive evaluation:
AA . . . Two or more items in each evaluation item are ranked AA, and the lowest rank is A rank or higher.
A: Rank A or higher in all evaluation items.
B . . . In each evaluation item, there was even one B rank among the lowest ranks.
C: In each evaluation item, there was even one C rank in the lowest rank.
以上の評価結果を表2に合わせて示す。 Table 2 also shows the above evaluation results.
表2に示すように、本発明の構成である実施例においては、良好な結果が得られている。特に、回転子の刃がある領域のD1と刃のない領域のD2の比率D2/D1が1.2~5.0の範囲においては全項目において良好な結果が得られている。 As shown in Table 2, good results are obtained in the examples that are the configurations of the present invention. In particular, when the ratio D2/D1 of D1 in the rotor blade region to D2 in the bladeless region is in the range of 1.2 to 5.0, good results are obtained in all items.
上記範囲においては、粉砕性に向上がみられ、回転子の回転速度を低下させることができ、装置内温度の低下効果が得られたためと考えている。 It is believed that within the above range, the grindability was improved, the rotation speed of the rotor could be reduced, and the effect of lowering the internal temperature of the apparatus was obtained.
〔実施例3〕
本実施例においても、粉砕機に図1に示したものを用い、本実施例では図2に示す回転子103の刃のない部分(平坦部)103-2の領域L2を変化させて粉砕品の製造を行った。
[Example 3]
In this embodiment, the pulverizer shown in FIG. 1 is used, and in this embodiment, the region L2 of the bladeless portion (flat portion) 103-2 of the
具体的には、表1に示す各条件でL2/L(回転子の全長)を1/9から3/5まで変化させ、各条件を実施例3-1~3-6とした。L2/Lが1/9、1/8、1/4、1/3のとき、平坦部L2の開始点は回転子上流端部から1/2とし、L2/Lが1/2、3/5のときは、1/4とする。 Specifically, L2/L (overall length of the rotor) was changed from 1/9 to 3/5 under each condition shown in Table 1, and each condition was defined as Examples 3-1 to 3-6. When L2/L is 1/9, 1/8, 1/4, 1/3, the starting point of the flat portion L2 is 1/2 from the upstream end of the rotor, and L2/L is 1/2, 3/ When it is 5, it is 1/4.
なお、本実施例での他の粉砕機の構成は、図2において、D1=1.0mm、D2=1.5mmとした。 In addition, the structure of another crusher in this embodiment was set to D1=1.0 mm and D2=1.5 mm in FIG.
粉砕品の製造条件は、供給口からトナー原料を40kg/h、冷風を風量4m3/min流入させ、冷風温度-10℃、の条件でトナー原料の粉砕を行った。 The pulverized product was produced under the following conditions: 40 kg/h of the toner material was supplied from the supply port, cold air was supplied at an air volume of 4 m 3 /min, and the temperature of the cold air was -10°C.
なお、本実施例では、粉砕品の重量平均粒径が6.8~7.0μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続10時間製造を行い約400kgの粉砕品を得るものとする。 In this example, the peripheral speed of the rotor was set so that the weight-average particle diameter of the pulverized product was in the range of 6.8 to 7.0 μm, and then production was continued for 10 hours under the same conditions to produce approximately 400 kg of powder. A crushed product shall be obtained.
実施例3-1~3-6における詳細な条件は表1に合わせて示す。 Detailed conditions in Examples 3-1 to 3-6 are also shown in Table 1.
本実施例においても、実施例1、2及び比較例1、2と同様の評価を実施し、結果を合わせて表2に示した。 Also in this example, the same evaluation as in Examples 1 and 2 and Comparative Examples 1 and 2 was performed, and the results are shown in Table 2 together.
なお、本実施例において、実施例3-6の回転子の下流端からの平坦部の領域が3/5の条件においては、粉砕機の回転速度の上限でも設定の粒径には達せず、供給口からのトナー原料の供給量を30kg/hに下げて粉砕品を作製した。ゆえに、評価として処理量のランク付けを追加した。
・処理量の評価:
A・・・設定粒径に対し40kg/h以上の処理量が得られた。
B・・・設定粒径に対し30kg/hの処理量が得られたが、40kg/hの処理量は得られなかった。
C・・・設定粒径に対し20kg/hの処理量が得られたが、30kg/hの処理量は得られなかった。
In this example, under the condition that the area of the flat portion from the downstream end of the rotor in Example 3-6 was 3/5, the set particle size was not reached even at the upper limit of the rotation speed of the crusher. A pulverized product was produced by lowering the supply amount of the toner raw material from the supply port to 30 kg/h. Therefore, we added a throughput ranking as an evaluation.
・Evaluation of throughput:
A: A throughput of 40 kg/h or more was obtained with respect to the set particle size.
B . . . Although a processing amount of 30 kg/h was obtained with respect to the set particle size, a processing amount of 40 kg/h was not obtained.
C: A throughput of 20 kg/h was obtained for the set particle size, but a throughput of 30 kg/h was not obtained.
以上の評価結果を表2に合わせて示す。 Table 2 also shows the above evaluation results.
表2に示すように、本発明の構成である実施例においては、良好な結果が得られている。特に、回転子の平坦部領域が1/8~1/2である場合、全項目において良好な結果が得られている。 As shown in Table 2, good results are obtained in the examples that are the configurations of the present invention. In particular, good results were obtained in all items when the flat portion area of the rotor was 1/8 to 1/2.
〔実施例4〕
本実施例においても、粉砕機に図1に示したものを用い、本実施例では図2に示す回転子103の刃のない部分(平坦部)103-2の領域L2の回転子上流端部からの開始点を変化させて粉砕品の製造を行った。
[Example 4]
In this embodiment, the pulverizer shown in FIG. 1 is used, and in this embodiment, the rotor upstream end of the region L2 of the bladeless portion (flat portion) 103-2 of the
具体的には、平坦部の開始点を1/9~5/6の範囲で変化させ、実施例4-1~4-6とした。平坦部103-2の領域L2/L(回転子全長)は1/8とする。 Specifically, the start point of the flat portion was changed in the range of 1/9 to 5/6, and Examples 4-1 to 4-6 were obtained. The region L2/L (total rotor length) of flat portion 103-2 is 1/8.
なお、本実施例での他の粉砕機の構成は、図2において、D1=1.0mm、D2=1.5mmとした。 In addition, the structure of another crusher in this embodiment was set to D1=1.0 mm and D2=1.5 mm in FIG.
粉砕品の製造条件は、供給口からトナー原料を40kg/h、冷風を風量4m3/min流入させ、冷風温度-10℃、の条件でトナー原料の粉砕を行った。 The pulverized product was produced under the following conditions: 40 kg/h of the toner material was supplied from the supply port, cold air was supplied at an air volume of 4 m 3 /min, and the temperature of the cold air was -10°C.
なお、本実施例では、粉砕品の重量平均粒径が6.8~7.0μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続10時間製造を行い約400kgの粉砕品を得るものとする。 In this example, the peripheral speed of the rotor was set so that the weight-average particle diameter of the pulverized product was in the range of 6.8 to 7.0 μm, and then production was continued for 10 hours under the same conditions to produce approximately 400 kg of powder. A crushed product shall be obtained.
実施例4-1~4-6における詳細な条件は表1に合わせて示す。 Detailed conditions in Examples 4-1 to 4-6 are also shown in Table 1.
本実施例においても、実施例1、2及び比較例1、2と同様の評価を実施し、結果を合わせて表2に示した。 Also in this example, the same evaluation as in Examples 1 and 2 and Comparative Examples 1 and 2 was performed, and the results are shown in Table 2 together.
表2に示すように、本発明の構成である実施例においては、良好な結果が得られている。特に、回転子の平坦部の開始点が1/8~3/4である場合、全項目において良好な結果が得られている。 As shown in Table 2, good results are obtained in the examples that are the configurations of the present invention. In particular, good results are obtained in all items when the starting point of the flat portion of the rotor is 1/8 to 3/4.
〔実施例5〕
(平坦部が複数である本発明の粉砕機)
本実施例では図7に示す回転子103の刃のない部分(平坦部)が2か所である粉砕機を用いた。図において、L2は第一の平坦部103-2の領域を表し、L4は第二の平坦部103-4の領域を表している。
[Example 5]
(Pulverizer of the present invention having a plurality of flat portions)
In this embodiment, a pulverizer having two bladeless portions (flat portions) of the
本実施例においては、第一の平坦部L2の開始点を回転子上流端部から1/2とし、L2、L4は40mm(Lに対して1/8)とし、平坦部の合計を1/4とした。L3は40mm(Lに対して1/8)としている。 In this embodiment, the starting point of the first flat portion L2 is 1/2 from the upstream end of the rotor, L2 and L4 are 40 mm (1/8 of L), and the total flat portion is 1/2. 4. L3 is 40 mm (1/8 of L).
なお、本実施例において、回転子の刃のある領域の隙間は1.0mm、回転子が平坦部である領域の隙間は1.5mmとした。 In this embodiment, the gap in the region where the blades of the rotor are located is 1.0 mm, and the gap in the region where the rotor is flat is 1.5 mm.
粉砕品の製造条件は、供給口からトナー原料を40kg/h、冷風を風量4m3/min流入させ、冷風温度-10℃、の条件でトナー原料の粉砕を行った。 The pulverized product was produced under the following conditions: 40 kg/h of the toner material was supplied from the supply port, cold air was supplied at an air volume of 4 m 3 /min, and the temperature of the cold air was -10°C.
なお、本実施例においても、粉砕品の重量平均粒径が6.8~7.0μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続10時間製造を行い約400kgの粉砕品を得るものとする。 Also in this example, the peripheral speed of the rotor was set so that the weight-average particle size of the pulverized product was in the range of 6.8 to 7.0 μm, and then production was continued for 10 hours under the same conditions to produce about 400 kg. shall be obtained.
〔実施例6〕
(平坦部が複数である本発明の粉砕機:終端が平坦)
本実施例では図8に示す回転子103の刃のない部分(平坦部)が2か所である粉砕機を用いた。図において、L2は第一の平坦部103-2の領域を表し、L4は第二の平坦部103-4の領域を表し、第二の平坦部は回転子の終端までとなっている。
[Example 6]
(Pulverizer of the present invention with multiple flat parts: flat end)
In this embodiment, a pulverizer having two bladeless portions (flat portions) of the
本実施例においては、本実施例においては、第一の平坦部L2の開始点を回転子上流端部から1/2とし、L2、L4は40mm(Lに対して1/8)とし、平坦部の合計を1/4とした。L3は80mm(Lに対して1/4)としている。 In this embodiment, the starting point of the first flat portion L2 is 1/2 from the upstream end of the rotor, L2 and L4 are 40 mm (1/8 of L), and the flat The sum of the parts was 1/4. L3 is 80 mm (1/4 of L).
なお、本実施例において、回転子の刃のある領域の隙間は1.0mm、回転子が平坦部である領域の隙間は1.5mmとした。 In this embodiment, the gap in the region where the blades of the rotor are located is 1.0 mm, and the gap in the region where the rotor is flat is 1.5 mm.
粉砕品の製造条件は、供給口からトナー原料を40kg/h、冷風を風量4m3/min流入させ、冷風温度-10℃、の条件でトナー原料の粉砕を行った。 The pulverized product was produced under the following conditions: 40 kg/h of the toner material was supplied from the supply port, cold air was supplied at an air volume of 4 m 3 /min, and the temperature of the cold air was -10°C.
なお、本実施例においても、粉砕品の重量平均粒径が6.8~7.0μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続10時間製造を行い約400kgの粉砕品を得るものとする。 Also in this example, the peripheral speed of the rotor was set so that the weight-average particle size of the pulverized product was in the range of 6.8 to 7.0 μm, and then production was continued for 10 hours under the same conditions to produce about 400 kg. shall be obtained.
実施例5及び6における詳細な条件は表1に合わせて示す。 Detailed conditions in Examples 5 and 6 are also shown in Table 1.
実施例5及び6においても、実施例4と同様の評価を実施し、結果を合わせて表2に示した。 In Examples 5 and 6, the same evaluation as in Example 4 was performed, and the results are shown in Table 2 together.
表2に示すように、本発明の構成である平坦部領域が複数の構成においても良好な結果が得られている。 As shown in Table 2, good results are obtained even in the configuration of the present invention having a plurality of flat portion regions.
〔実施例7〕
(二段階の粉砕処理:第二工程のみ本発明構成の粉砕機)
本実施例では、第一の粉砕工程として比較例1で用いた従来構成の粉砕機を用い、第二の粉砕工程として実施例1で用いた構成の本発明の粉砕機を用いて粉砕品を作製した。
[Example 7]
(Two-step pulverization process: only the second step is the pulverizer configured according to the present invention)
In this example, the pulverizer of the conventional configuration used in Comparative Example 1 was used as the first pulverization step, and the pulverized product was produced using the pulverizer of the present invention having the configuration used in Example 1 as the second pulverization step. made.
本実施例では、重量平均粒径が4.0~4.2μmの粉砕品を得るために、第一の粉砕工程の設定粒径を重量平均粒径6.8~7.0μmとし、粉砕品の製造条件は、供給口からトナー原料を40kg/h、冷風を風量4m3/min流入させ、冷風温度-10℃、の条件でトナー原料の粉砕を行った。 In this example, in order to obtain a pulverized product having a weight average particle size of 4.0 to 4.2 μm, the set particle size in the first pulverization step was set to a weight average particle size of 6.8 to 7.0 μm. 40 kg/h of the toner raw material, 4 m 3 /min of cool air from the supply port, and -10° C. cold air temperature were used to pulverize the toner raw material.
なお、本実施例においても、粉砕品の重量平均粒径が6.8~7.0μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続1時間製造を行い約40kgの粉砕品を得るものとする。 Also in this example, the peripheral speed of the rotor was set so that the weight average particle diameter of the pulverized product was in the range of 6.8 to 7.0 μm, and then production was continued for 1 hour under the same conditions to produce about 40 kg. shall be obtained.
次いで、第一粉砕工程で得られた粉砕品を第二粉砕工程として、粉砕品の重量平均粒径が4.0~4.2μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続1時間製造を行い約40kgの粉砕品を得るものとする。 Next, the pulverized product obtained in the first pulverizing step is used as the second pulverizing step, and the peripheral speed of the rotor is set so that the weight average particle size of the pulverized product is in the range of 4.0 to 4.2 μm. It is assumed that continuous production is carried out for one hour under the same conditions to obtain a pulverized product of about 40 kg.
〔実施例8〕
(二段階の粉砕処理:第一、第二工程ともに本発明の粉砕機)
本実施例では、第一の粉砕工程及び第二の粉砕工程ともに実施例1で用いた構成の粉砕機を用いて粉砕品を作製した。
[Example 8]
(Two-stage pulverization process: the pulverizer of the present invention for both the first and second steps)
In this example, the pulverizer having the configuration used in Example 1 was used in both the first pulverization step and the second pulverization step to produce a pulverized product.
本実施例においても、実施例7と同様に、重量平均粒径が4.0~4.2μmの粉砕品を得るために、第一の粉砕工程の設定粒径を重量平均粒径6.8~7.0μmとし、粉砕品の製造条件は、供給口からトナー原料を40kg/h、冷風を風量4m3/min流入させ、冷風温度-10℃、の条件でトナー原料の粉砕を行った。 In this example, similarly to Example 7, in order to obtain a pulverized product having a weight average particle size of 4.0 to 4.2 μm, the set particle size of the first pulverization step was set to a weight average particle size of 6.8. 7.0 μm, and pulverized toner raw material was pulverized under the following conditions: 40 kg/h of raw toner material was supplied from a supply port, cold air was supplied at a rate of 4 m 3 /min, and the cold air temperature was -10°C.
なお、本実施例においても、粉砕品の重量平均粒径が6.8~7.0μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続1時間製造を行い約40kgの粉砕品を得るものとする。 Also in this example, the peripheral speed of the rotor was set so that the weight average particle diameter of the pulverized product was in the range of 6.8 to 7.0 μm, and then production was continued for 1 hour under the same conditions to produce about 40 kg. shall be obtained.
次いで、第一粉砕工程で得られた粉砕品を第二粉砕工程として、粉砕品の重量平均粒径が4.0~4.2μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続1時間製造を行い約40kgの粉砕品を得るものとする。 Next, the pulverized product obtained in the first pulverizing step is used as the second pulverizing step, and the peripheral speed of the rotor is set so that the weight average particle size of the pulverized product is in the range of 4.0 to 4.2 μm. It is assumed that continuous production is carried out for one hour under the same conditions to obtain a pulverized product of about 40 kg.
〔実施例9〕
(二段階の粉砕処理:第一工程のみ本発明の粉砕機)
本実施例では、第一の粉砕工程として実施例1で用いた本発明の構成の粉砕機を用い、第二の粉砕工程として比較例1で用いた構成の従来構成の粉砕機を用いて粉砕品を作製した。
[Example 9]
(Two-step pulverization process: only the first step is the pulverizer of the present invention)
In this example, the pulverizer having the configuration of the present invention used in Example 1 was used as the first pulverizing step, and the pulverizer having the conventional configuration having the configuration used in Comparative Example 1 was used as the second pulverizing step. made a product.
本実施例においても、実施例7と同様に重量平均粒径が4.0~4.2μmの粉砕品を得るために、第一の粉砕工程の設定粒径を重量平均粒径6.8~7.0μmとし、粉砕品の製造条件は、供給口からトナー原料を40kg/h、冷風を風量4m3/min流入させ、冷風温度-10℃、の条件でトナー原料の粉砕を行った。 In the present example, as in Example 7, in order to obtain a pulverized product having a weight average particle size of 4.0 to 4.2 μm, the set particle size of the first pulverization step was set to a weight average particle size of 6.8 to 4.2 μm. The toner raw material was pulverized under the following conditions: 40 kg/h of the toner raw material was fed from the supply port, the cooling air flow rate was 4 m 3 /min, and the cold air temperature was -10°C.
なお、本実施例においても、粉砕品の重量平均粒径が6.8~7.0μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続1時間製造を行い約40kgの粉砕品を得るものとする。 Also in this example, the peripheral speed of the rotor was set so that the weight average particle diameter of the pulverized product was in the range of 6.8 to 7.0 μm, and then production was continued for 1 hour under the same conditions to produce about 40 kg. shall be obtained.
次いで、第一粉砕工程で得られた粉砕品を第二粉砕工程として、粉砕品の重量平均粒径が4.0~4.2μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続1時間製造を行い約40kgの粉砕品を得るものとする。 Next, the pulverized product obtained in the first pulverizing step is used as the second pulverizing step, and the peripheral speed of the rotor is set so that the weight average particle size of the pulverized product is in the range of 4.0 to 4.2 μm. It is assumed that continuous production is carried out for one hour under the same conditions to obtain a pulverized product of about 40 kg.
〔比較例3〕
(二段階の粉砕処理:第一、第二工程ともに従来の粉砕機)
本比較例では、第一の粉砕工程及び第二の粉砕工程ともに比較例1で用いた従来構成の粉砕機を用いて粉砕品を作製した。
[Comparative Example 3]
(Two-stage pulverization process: conventional pulverizer for both the first and second processes)
In this comparative example, the pulverizer having the conventional configuration used in Comparative Example 1 was used in both the first pulverization step and the second pulverization step to produce a pulverized product.
本比較例においても実施例7と同様に、重量平均粒径が4.0~4.2μmの粉砕品を得るために、第一の粉砕工程の設定粒径を重量平均粒径6.8~7.0μmとし、粉砕品の製造条件は、供給口からトナー原料を40kg/h、冷風を風量4m3/min流入させ、冷風温度-10℃、の条件でトナー原料の粉砕を行った。 In this comparative example, similarly to Example 7, in order to obtain a pulverized product having a weight average particle size of 4.0 to 4.2 μm, the set particle size of the first pulverization step was set to a weight average particle size of 6.8 to 4.2 μm. The toner raw material was pulverized under the following conditions: 40 kg/h of the toner raw material was fed from the supply port, the cooling air flow rate was 4 m 3 /min, and the cold air temperature was -10°C.
なお、本比較例においても、粉砕品の重量平均粒径が6.8~7.0μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続1時間製造を行い約40kgの粉砕品を得るものとする。 Also in this comparative example, the peripheral speed of the rotor was set so that the weight-average particle size of the pulverized product was in the range of 6.8 to 7.0 μm, and then production was continued for 1 hour under the same conditions to produce about 40 kg. shall be obtained.
次いで、第一粉砕工程で得られた粉砕品を第二粉砕工程として、粉砕品の重量平均粒径が4.2~4.4μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続1時間製造を行い約40kgの粉砕品を得るものとする。 Next, the pulverized product obtained in the first pulverizing step is used as the second pulverizing step, and the peripheral speed of the rotor is set so that the weight average particle size of the pulverized product is in the range of 4.2 to 4.4 μm. It is assumed that continuous production is carried out for one hour under the same conditions to obtain a pulverized product of about 40 kg.
実施例7~9及び比較例3における詳細な条件は表3に合わせて示す。 Detailed conditions in Examples 7 to 9 and Comparative Example 3 are also shown in Table 3.
実施例7~9及び、比較例3において、第二工程を終えたトナーを実施例1と同様の評価を行い、結果を表4に合わせて示した。 In Examples 7 to 9 and Comparative Example 3, the toner after the second step was evaluated in the same manner as in Example 1. Table 4 also shows the results.
表4に示すように、第一の粉砕工程と第二の粉砕工程を用いる粉砕システムにおいて、少なくともどちらか一方に本発明の構成の粉砕機を用いることで、重量平均粒径が4μm台のトナー粉砕品においても良好な結果が得られた。更に、少なくとも第二の粉砕工程に本発明の構成である粉砕機を用いることで、さらに良好な結果が得られている。 As shown in Table 4, in the pulverization system using the first pulverization process and the second pulverization process, by using the pulverizer having the configuration of the present invention in at least one of the pulverization systems, the toner having a weight average particle size of 4 μm or so can be obtained. Good results were also obtained with pulverized products. Furthermore, even better results are obtained by using the grinder having the configuration of the present invention for at least the second grinding step.
101:供給口、1021:前室、1022:前室出口部、103:回転子、104:固定子、105:後室、106:排出口、107:中心回転軸、108:冷風発生装置、109:冷水供給口、110:冷水排出口 101: supply port, 1021: front chamber, 1022: front chamber outlet, 103: rotor, 104: stator, 105: rear chamber, 106: discharge port, 107: central rotating shaft, 108: cold wind generator, 109 : cold water supply port, 110: cold water discharge port
Claims (6)
中心回転軸に取り付けられ、円柱形の外周面に複数の凸部と凹部とを有する回転子とを有し、
該固定子は該回転子を内包しており、該固定子の表面と該回転子の表面とが形成する隙間に被粉砕物を通過させて粉砕するトナー製造用機械式粉砕機であって、
前記回転子には、少なくとも一以上の表面が周方向全面に平坦である平坦領域を有し、
該平坦領域の少なくとも一つは、両側に複数の凸部と凹部とを有することを特徴とするトナー製造用機械式粉砕機。 a stator having a plurality of protrusions and recesses on its inner peripheral surface;
a rotor attached to the central rotating shaft and having a plurality of protrusions and recesses on a cylindrical outer peripheral surface;
The stator encloses the rotor, and a mechanical pulverizer for producing toner in which the material to be pulverized is passed through a gap formed between the surface of the stator and the surface of the rotor to be pulverized,
The rotor has at least one flat region in which at least one surface is flat in the entire circumferential direction,
A mechanical pulverizer for manufacturing toner, wherein at least one of said flat regions has a plurality of protrusions and recesses on both sides thereof.
該システムは、第一の粉砕工程と第二の粉砕工程を有し、第一の粉砕工程で微粉砕品を作製し、該微粉砕品を第二の粉砕工程にて粉砕し、
前記第一または第二の粉砕工程で用いる粉砕機は、どちらか一方を請求項1~4のいずれかに記載のトナー製造用機械式粉砕機を用いることを特徴とするトナーを製造する粉砕工程システム。 A pulverization process system for manufacturing toner,
The system has a first pulverization step and a second pulverization step, produces a finely pulverized product in the first pulverization step, pulverizes the pulverized product in the second pulverization step,
A pulverizing step for producing toner, wherein one of the pulverizers used in the first or second pulverizing step is the mechanical pulverizer for toner production according to any one of claims 1 to 4. system.
該システムは、第一の粉砕工程と第二の粉砕工程を有し、第一の粉砕工程で微粉砕品を作製し、該微粉砕品を第二の粉砕工程にて粉砕し、
少なくとも前記第二の粉砕工程で用いる粉砕機は、請求項1~4のいずれかに記載のトナー製造用機械式粉砕機を用いることを特徴とするトナーを製造する粉砕工程システム。 A pulverization process system for manufacturing toner,
The system has a first pulverization step and a second pulverization step, produces a finely pulverized product in the first pulverization step, pulverizes the pulverized product in the second pulverization step,
A pulverizing process system for producing toner, wherein the pulverizer used in at least the second pulverizing process is the mechanical pulverizer for toner production according to any one of claims 1 to 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021071600A JP2022166401A (en) | 2021-04-21 | 2021-04-21 | Mechanical crusher for production of toner and crushing process system producing toner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021071600A JP2022166401A (en) | 2021-04-21 | 2021-04-21 | Mechanical crusher for production of toner and crushing process system producing toner |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022166401A true JP2022166401A (en) | 2022-11-02 |
Family
ID=83851723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021071600A Pending JP2022166401A (en) | 2021-04-21 | 2021-04-21 | Mechanical crusher for production of toner and crushing process system producing toner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022166401A (en) |
-
2021
- 2021-04-21 JP JP2021071600A patent/JP2022166401A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6021349B2 (en) | Heat treatment apparatus and toner manufacturing method | |
JP3101416B2 (en) | Collision type airflow pulverizer and method for producing toner for electrostatic image development | |
EP2150359B1 (en) | Pulverizing and coarse powder classifying apparatus and fine powder classifying apparatus | |
JP5414507B2 (en) | Toner heat treatment apparatus and toner manufacturing method | |
JP5479072B2 (en) | Toner heat treatment apparatus and toner manufacturing method | |
JP2022166401A (en) | Mechanical crusher for production of toner and crushing process system producing toner | |
JP7494048B2 (en) | Mechanical pulverizer for producing toner and pulverization process system for producing toner | |
JP2008225317A (en) | Electrostatic charge image developing toner | |
JP7414534B2 (en) | Mechanical crusher for toner manufacturing, toner manufacturing method, and toner manufacturing system | |
JP7199994B2 (en) | Toner manufacturing method | |
JP2020134662A (en) | Toner production method and toner production apparatus | |
US11835919B2 (en) | Toner classification apparatus and a toner production method | |
JP7475983B2 (en) | Toner manufacturing method and manufacturing apparatus | |
JP7476022B2 (en) | Toner manufacturing method | |
JP7483429B2 (en) | Toner manufacturing method and mechanical pulverizer for toner manufacturing | |
JP7562339B2 (en) | Toner manufacturing method | |
JP3110965B2 (en) | Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same | |
Ishito et al. | Improvement of grinding and classifying performance using a closed-circuit system | |
JP2021196437A (en) | Method for manufacturing toner | |
JPH08299827A (en) | Mechanical grinder | |
JPH08103685A (en) | Impact type pneumatic pulverizer and production of electrostatic charge image developing toner | |
JP2021196436A (en) | Toner manufacturing method and toner manufacturing device | |
JP2663046B2 (en) | Collision type air flow crusher and crushing method | |
JPH11319601A (en) | Mechanically pulverizing device | |
JP2022001934A (en) | Classifier to toer and method for manufacturing toner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240418 |