JP7414534B2 - Mechanical crusher for toner manufacturing, toner manufacturing method, and toner manufacturing system - Google Patents

Mechanical crusher for toner manufacturing, toner manufacturing method, and toner manufacturing system Download PDF

Info

Publication number
JP7414534B2
JP7414534B2 JP2020001584A JP2020001584A JP7414534B2 JP 7414534 B2 JP7414534 B2 JP 7414534B2 JP 2020001584 A JP2020001584 A JP 2020001584A JP 2020001584 A JP2020001584 A JP 2020001584A JP 7414534 B2 JP7414534 B2 JP 7414534B2
Authority
JP
Japan
Prior art keywords
toner
rotor
pulverizer
pulverizing
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020001584A
Other languages
Japanese (ja)
Other versions
JP2021110803A (en
Inventor
竜次 岡村
祐一 溝尾
正治 三浦
順一 田村
陽介 岩崎
裕樹 渡辺
大輔 山下
黎 土川
信一 岩田
裕樹 中江
光司 飯泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020001584A priority Critical patent/JP7414534B2/en
Publication of JP2021110803A publication Critical patent/JP2021110803A/en
Application granted granted Critical
Publication of JP7414534B2 publication Critical patent/JP7414534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本開示は、電子写真方式、静電記録方式、静電印刷方式、トナージェット方式に用いられるトナー製造用機械式粉砕機、トナーの製造方法及びトナー製造システムに関する。 The present disclosure relates to a mechanical pulverizer for producing toner used in electrophotography, electrostatic recording, electrostatic printing, and toner jet methods, a method for producing toner, and a toner production system.

近年、電子写真方式のフルカラー複写機が広く普及し、印刷市場への適用も始まっている。印刷市場では、幅広いメディア(紙種)に対応しながら、高速、高画質、高い生産性が要求されるようになってきている。トナーにおいては、帯電性、現像性及び転写性の安定化に加え、さらなる小粒径化を行うことで高画質化を図ることができる。
一般的な、トナー粒子の製造方法として溶融混練粉砕法が知られている。具体的には、結着樹脂、着色剤、離型剤などのトナー構成材料を溶融混練し、冷却固化した後、混練物を粉砕手段により微細化しトナー粒子を得る手法である。その後、必要に応じて所望の粒度分布に分級したり、流動化剤などを添加したりする。
混練物の粉砕手段として各種粉砕機が用いられるが、高圧気体で被粉砕物を搬送し、加速管の出口より噴射し、加速管の出口の開口面に対向して設けた衝突部材の衝突面に衝突させて、その衝撃力により被粉砕物を粉砕する衝突式気流粉砕機(特許文献1)が知られている。
また、被粉砕物の投入口及び排出口を有するケーシング内に、中心回転軸に支持され、外周面に複数の凸部と凹部とを有する回転子と、この回転子の外側に、この回転子の外周面と所定の間隙を設けて配置され、その内周面に複数の凸部と凹部とを有する固定子とを備え、投入口から排出口を流れる気流にのって回転子と固定子とが対向する処理部を被粉砕物が通過する際に、回転子又は固定子の凸部又は凹部に衝突することで被粉砕物を粉砕する機械式粉砕装置(特許文献2)などが知られている。
In recent years, electrophotographic full-color copying machines have become widespread and are beginning to be applied to the printing market. In the printing market, there is a growing demand for high speed, high image quality, and high productivity while supporting a wide range of media (paper types). In toner, in addition to stabilizing chargeability, developability, and transferability, high image quality can be achieved by further reducing the particle size.
A melt-kneading pulverization method is known as a general method for producing toner particles. Specifically, this is a method in which toner constituent materials such as a binder resin, a colorant, and a release agent are melt-kneaded, cooled and solidified, and then the kneaded material is pulverized by a crushing means to obtain toner particles. Thereafter, if necessary, the particles are classified into a desired particle size distribution or a fluidizing agent is added.
Various types of pulverizers are used as means for pulverizing the kneaded material, and the material to be pulverized is conveyed with high-pressure gas, injected from the outlet of the accelerating tube, and the collision surface of a collision member provided opposite the opening surface of the outlet of the accelerating tube. A collision-type air flow crusher (Patent Document 1) is known that crushes objects to be crushed by the impact force of the collision.
In addition, a rotor supported by a central rotating shaft and having a plurality of convex portions and concave portions on an outer circumferential surface is disposed within a casing having an input port and a discharge port for the material to be crushed; A stator is disposed with a predetermined gap between the outer circumferential surface of A mechanical crushing device (Patent Document 2) is known, which crushes the object by colliding with a convex part or a recess of a rotor or a stator when the object passes through a processing section where the rotor and the stator face each other. ing.

特開2006-051496号公報JP2006-051496A 特開2011-237816号公報JP2011-237816A

上記のような機械式粉砕機によるトナー溶融混練物の粉砕では、機械式粉砕機の回転子の周速を向上させることで、回転子及び固定子と被粉砕物との衝突エネルギーが増大し、トナー粒子を小粒径化することが可能となる。
さらには、被粉砕物が通過する回転子と固定子との隙間(ギャップ)を狭くするほど粒径は小さくなることが知られている。
こうした機械式粉砕機の場合、回転子及び固定子の隙間を被粉砕物が通過する際、回転子及び固定子上流から下流側に向かうにつれて、徐々に粗大粒子が粉砕され、微粒子化される。同時に、衝突エネルギーが被粉砕物に蓄積され温度上昇していく。
In pulverizing the toner melt-kneaded material using the mechanical pulverizer as described above, by increasing the circumferential speed of the rotor of the mechanical pulverizer, the collision energy between the rotor and stator and the object to be pulverized is increased. It becomes possible to reduce the particle size of toner particles.
Furthermore, it is known that the particle size becomes smaller as the gap between the rotor and the stator through which the object to be crushed is narrowed.
In the case of such a mechanical pulverizer, when the object to be pulverized passes through the gap between the rotor and the stator, coarse particles are gradually pulverized and pulverized from upstream to downstream of the rotor and stator. At the same time, collision energy is accumulated in the object to be crushed, causing its temperature to rise.

被粉砕物の温度上昇は、例えばトナー粒子をより小粒径に粉砕するために回転子の回転数を増大させた場合や、生産性向上のために単位時間当たりの被粉砕物の投入量を増やした場合により顕著となる。
例えば、被粉砕物の温度上昇が顕著になると、被粉砕物の表面が部分的に溶け、被粉砕物どうしが結合してしまい、粒径が安定しない場合がある。さらには、被粉砕物が粉砕機内部に付着する場合もあり(以下、この現象を「融着」と表記する)、安定した粉砕ができなくなる場合がある。
上記製造の安定性及び融着は、溶融混練粉砕法におけるトナー製造、特に小粒径トナー製造においての課題である。
本開示は、溶融混練粉砕法において、トナー粒子の小粒径化及び生産性の向上を達成するトナー製造用機械式粉砕機、トナーの製造方法及びトナー製造システムを提供する。
For example, the temperature increase of the material to be crushed may occur when the rotation speed of the rotor is increased to grind toner particles into smaller particle sizes, or when the amount of material to be crushed per unit time is increased to improve productivity. It becomes more noticeable when increased.
For example, if the temperature of the object to be crushed becomes significant, the surface of the object to be crushed will partially melt, the objects to be crushed will bond together, and the particle size may become unstable. Furthermore, the objects to be crushed may adhere to the inside of the crusher (hereinafter, this phenomenon will be referred to as "fusion"), and stable crushing may not be possible.
The above-mentioned production stability and fusion are issues in toner production using the melt-kneading and pulverization method, particularly in the production of small particle size toner.
The present disclosure provides a mechanical pulverizer for toner production, a toner production method, and a toner production system that achieve reduction in the particle size of toner particles and improvement in productivity in a melt-kneading pulverization method.

本開示の一態様は、
トナー製造用機械式粉砕機であって、
該粉砕機は、
被粉砕物の投入口及び排出口を有するケーシング内に、
中心回転軸に支持され、外周面に複数の凸部及び凹部を有する円柱形の回転子と、
該回転子の外側に、該回転子の該外周面と所定の間隙を設けて配置され、その内周面に複数の凸部及び凹部を有する固定子と、を備え、
該粉砕機は、該固定子の該内周面と該回転子の該外周面とが形成する隙間に被粉砕物を通過させて粉砕し、
該回転子の該凸部の先端と該固定子の該凸部の先端が対向した時の隙間の距離が、該被粉砕物の通過方向において上流側よりも下流側が広いトナー製造用機械式粉砕機に関する。
また、本開示の他の態様は、
トナーの原料を粉砕する粉砕工程を有するトナーの製造方法であって、
該粉砕工程で用いる粉砕機が、上記トナー製造用機械式粉砕機であるトナーの製造方法に関する。
また、本開示の他の態様は、
トナー原料を粉砕し、第一の粉砕品を得る第一の粉砕機及び
該第一の粉砕品をさらに粉砕する第二の粉砕機を備えるトナー製造システムであって、
少なくとも該第一の粉砕機が、上記トナー製造用機械式粉砕機であるトナー製造システムに関する。
One aspect of the present disclosure is
A mechanical crusher for toner production,
The crusher is
Inside the casing, which has an input port and a discharge port for the material to be crushed,
a cylindrical rotor supported by a central rotating shaft and having a plurality of convex portions and concave portions on an outer peripheral surface;
a stator disposed outside the rotor with a predetermined gap from the outer circumferential surface of the rotor, and having a plurality of convex portions and concave portions on the inner circumferential surface thereof;
The pulverizer passes the object to be pulverized through a gap formed between the inner circumferential surface of the stator and the outer circumferential surface of the rotor, and pulverizes the object.
Mechanical pulverization for toner production in which the gap distance when the tip of the convex portion of the rotor and the tip of the convex portion of the stator face each other is wider on the downstream side than on the upstream side in the passing direction of the object to be crushed. Regarding machines.
Further, other aspects of the present disclosure include:
A toner manufacturing method comprising a pulverizing step of pulverizing toner raw materials, the method comprising:
The present invention relates to a toner manufacturing method, wherein the pulverizer used in the pulverizing step is the above-mentioned mechanical pulverizer for toner manufacturing.
Further, other aspects of the present disclosure include:
A toner manufacturing system comprising: a first pulverizer that pulverizes a toner raw material to obtain a first pulverized product; and a second pulverizer that further pulverizes the first pulverized product.
The present invention relates to a toner manufacturing system in which at least the first pulverizer is the above-described mechanical pulverizer for manufacturing toner.

本開示により、溶融混練粉砕法においてトナー粒子の生産性の向上及び小粒径化を両立させることができる。 According to the present disclosure, it is possible to simultaneously improve productivity and reduce the particle size of toner particles in a melt-kneading and pulverizing method.

実施例に用いられる機械式粉砕機の概略図Schematic diagram of the mechanical crusher used in the examples 実施例に用いられる機械式粉砕機の回転子と固定子の模式図Schematic diagram of the rotor and stator of the mechanical crusher used in the example 従来の機械式粉砕機の概略図Schematic diagram of a conventional mechanical crusher

数値範囲を表す「XX以上YY以下」や「XX~YY」の記載は、特に断りのない限り、端点である下限及び上限を含む数値範囲を意味する。
数値範囲が段階的に記載されている場合、各数値範囲の上限及び下限は任意に組み合わせることができる。
Unless otherwise specified, the expression "XX to YY" or "XX to YY" indicating a numerical range means a numerical range including the lower limit and upper limit, which are the endpoints.
When numerical ranges are described in stages, the upper and lower limits of each numerical range can be arbitrarily combined.

上記効果が得られる要因について、以下のように想定している。
回転子と固定子との隙間が一定である従来の機械式粉砕機においては、回転子の回転速度と回転子と固定子との隙間の距離により粉砕物の粒径が決定される。
前述したとおり、回転子の回転数を上げるほど被粉砕物の粒度は小さくなり、回転子と固定子の隙間を小さくするほど被粉砕物の粒度は小さくなる。
しかしながら、粒度を小さくするほどに、粉砕機内部の温度上昇は顕著になり、トナー原料の粉砕では温度上昇に伴い前述したような粒度の安定性低下や生産性の低下の課題が
発生する。
The following are assumed to be the factors contributing to the above effects.
In a conventional mechanical crusher in which the gap between the rotor and the stator is constant, the particle size of the pulverized material is determined by the rotational speed of the rotor and the distance between the gap between the rotor and the stator.
As mentioned above, the higher the rotation speed of the rotor, the smaller the particle size of the object to be crushed, and the smaller the gap between the rotor and the stator, the smaller the particle size of the object to be crushed.
However, the smaller the particle size is, the more remarkable the temperature rise inside the pulverizer becomes, and when pulverizing toner raw materials, the above-mentioned problems of a decrease in stability of the particle size and a decrease in productivity occur as the temperature increases.

これに対し、上記トナー製造用機械式粉砕機は、回転子と固定子との隙間の距離が、被粉砕物の通過方向において上流側よりも下流側が広い構成である。
回転子と固定子との隙間を広げると、被粉砕物の粒度は大きくなってしまう。しかし、上記構成とした機械式粉砕機においては、粒度が大きくなった分、回転子の回転速度を上げて粒度を下げた場合でも、従来の機械式粉砕機と比べて機内の温度と、回転子の駆動にかかる負荷電流を抑えられることを本発明者らは実験的に確認した。
具体的には、回転子と固定子の隙間が全領域において1.0mmの従来粉砕機で重量平均粒径100μm程度のトナー原料を6.0μmの粒度に粉砕した場合と、上流側の隙間が1.0mm、隙間の下流端から30%までの下流側の領域の隙間が1.4mmの機械式粉砕機にて6.0μmの粒度に粉砕した場合を比べた。上記機械式粉砕機を用いることで、機内温度、回転子の駆動にかかる負荷電流の低下が認められた。
On the other hand, the mechanical crusher for producing toner has a configuration in which the distance between the rotor and the stator is wider on the downstream side than on the upstream side in the passing direction of the object to be crushed.
If the gap between the rotor and the stator is widened, the particle size of the material to be crushed will increase. However, in the mechanical crusher with the above configuration, even if the particle size is increased by increasing the rotation speed of the rotor, the temperature inside the machine and the rotation speed will be lower compared to the conventional mechanical crusher. The present inventors have experimentally confirmed that the load current required to drive the child can be suppressed.
Specifically, when toner raw material with a weight average particle size of about 100 μm is crushed to a particle size of 6.0 μm using a conventional crusher with a gap between the rotor and stator of 1.0 mm in the entire area, and when the gap on the upstream side is A comparison was made between pulverization to a particle size of 6.0 μm using a mechanical pulverizer with a gap of 1.0 mm and a gap of 1.4 mm in the downstream region up to 30% from the downstream end of the gap. By using the above-mentioned mechanical crusher, a decrease in the internal temperature of the machine and the load current required to drive the rotor was observed.

このような効果が得られるメカニズムについて、以下のように推測している。
上記機械式粉砕機を用いて粉砕する工程では、数10μm~数100μm程度の中粉砕粒子と呼ばれる粒径のトナー原料を、微粉砕粒子から数μmの超微粉砕粒子に粉砕する。
トナー原料が粉砕機内を粉砕されながら通過する過程において、中粉砕粒子から微粉砕粒子への粉砕が実施される機内の上流部分では主として体積粉砕が行われ、微粉砕粒子から超微粉砕粒子への粉砕が行われる下流側の領域では、主として表面粉砕が行われると推測される。
粉砕に必要なエネルギーは表面粉砕に比べ体積粉砕が大きく、発生する熱エネルギーも大きくなる。
従来の粉砕機の場合、体積粉砕が行われる上流で発生した熱エネルギーは被粉砕物に蓄積される。下流側においても継続して表面粉砕が実施されるために、被粉砕物の表面を軟化させる温度を超える場合があると考えられる。
さらには、表面粉砕に必要なエネルギーの閾値以上のエネルギーが与えられ被粉砕物の昇温が加速してしまうのではないかと推測している。
The mechanism by which such an effect is obtained is speculated as follows.
In the step of pulverizing using the mechanical pulverizer, toner raw material having a particle size called medium pulverized particles of approximately several tens of micrometers to several hundred micrometers is pulverized from finely pulverized particles to ultrafine pulverized particles of several micrometers.
During the process in which toner raw materials pass through the pulverizer while being pulverized, volumetric pulverization is mainly performed in the upstream part of the machine where medium pulverized particles are pulverized into finely pulverized particles. It is assumed that surface crushing is mainly performed in the downstream area where crushing occurs.
The energy required for pulverization is larger in volumetric pulverization than in surface pulverization, and the generated thermal energy is also greater.
In conventional crushers, the thermal energy generated upstream of the volumetric crushing is stored in the material to be crushed. Since surface pulverization is continued on the downstream side, it is thought that the temperature may exceed the temperature that softens the surface of the object to be pulverized.
Furthermore, it is speculated that energy exceeding the threshold value of energy required for surface pulverization is applied, accelerating the temperature rise of the material to be pulverized.

一方、上記機械式粉砕機の場合、下流側の表面粉砕が主となる領域において、回転子と固定子の隙間が広く設定されているので、不必要な表面粉砕のエネルギーが被粉砕物に与えられにくくなり、適度なエネルギーで表面粉砕が行われると推測している。これより、上流側で被粉砕物に蓄積されたエネルギーが下流領域において、被粉砕物に悪影響を及ぼすことなく表面粉砕が行われると推測している。
さらに、下流領域の回転子と固定子との隙間が広いことで、粉砕中の機内の気体風量が増加し、被粉砕物の降温作用が生じるのではないかと考えている。
その結果、上記機械式粉砕機を用いた場合、従来粉砕機に比べて機内温度の低下効果が得られ、粉砕粒度の安定化、融着の抑制の効果が得られ、高い生産性及び小粒径化が両立できると考えている。
On the other hand, in the case of the above-mentioned mechanical crusher, the gap between the rotor and stator is set wide in the downstream area where surface crushing is mainly performed, so unnecessary surface crushing energy is applied to the material to be crushed. It is assumed that surface crushing will occur with a moderate amount of energy. From this, it is presumed that the energy accumulated in the object to be crushed on the upstream side causes surface crushing to be performed in the downstream region without adversely affecting the object to be crushed.
Furthermore, we believe that the wide gap between the rotor and stator in the downstream region increases the amount of gas air inside the machine during crushing, which lowers the temperature of the crushed material.
As a result, when using the above-mentioned mechanical crusher, compared to conventional crushers, it is possible to lower the internal temperature of the machine, stabilize the crushed particle size, suppress fusion, and achieve high productivity and small particles. We believe that it is possible to achieve both reductions in diameter.

まず、上記機械式粉砕機による粉砕方法の概略を、図1を用いて説明する。
図1では、横型の機械式粉砕機の概略断面図を示しているが、縦型であってもよい。被粉砕物の投入口及び排出口を有するケーシング、ケーシング内にあって冷却水を通水できるジャケット、ケーシング内にあって中心回転軸に取り付けられた回転体からなる、高速回転する表面(外周面)に複数の凸部及び凹部が設けられている円柱形の回転子103、回転子103の外側に所定の間隙を保持して配置され、表面(内周面)に複数の凸部及び凹部が設けられている固定子104、被粉砕物を導入する為の原料投入口101、処理後の粉体を排出する為の原料排出口106を有している。
First, the outline of the pulverization method using the mechanical pulverizer described above will be explained using FIG. 1.
Although FIG. 1 shows a schematic cross-sectional view of a horizontal mechanical crusher, a vertical mechanical crusher may also be used. A surface that rotates at high speed (outer surface ) A cylindrical rotor 103 is provided with a plurality of convex portions and concave portions, and a rotor 103 is arranged on the outside of the rotor 103 with a predetermined gap, and has a plurality of convex portions and concave portions on the surface (inner peripheral surface). It has a stator 104 provided, a raw material inlet 101 for introducing the material to be crushed, and a raw material outlet 106 for discharging the powder after processing.

以上のように構成してなる機械式粉砕機では、定量供給機から機械式粉砕機の原料投入
口101へ所定量の粉体原料が投入される。原料は機械式粉砕機内の前室1021を通過し、円柱形の回転子103の外周面と固定子104の内周面との間隙による粉砕処理部を通過し、後室105を通過し、後室105と連通する排出口106より排出される。
被粉砕物は該粉砕処理部内で高速回転する回転子の凸部若しくは凹部表面と、又は固定子の凸部若しくは凹部表面との衝突により粉砕される。被粉砕物及び粉砕後のトナー粒子は、吸引ブロアー(不図示)により引かれるエアー(空気)の気流に乗って装置システムの系外に排出される。
In the mechanical pulverizer configured as described above, a predetermined amount of powder raw material is fed from the quantitative feeder to the raw material input port 101 of the mechanical pulverizer. The raw material passes through the front chamber 1021 in the mechanical crusher, passes through the crushing section created by the gap between the outer peripheral surface of the cylindrical rotor 103 and the inner peripheral surface of the stator 104, passes through the rear chamber 105, and then passes through the rear chamber 105. It is discharged from an outlet 106 communicating with the chamber 105.
The object to be crushed is crushed by collision with the convex or concave surface of the rotor rotating at high speed within the crushing processing section, or with the convex or concave surface of the stator. The to-be-pulverized material and the toner particles after being crushed are discharged out of the apparatus system along with the flow of air drawn by a suction blower (not shown).

このような機械式粉砕機は、従来の機械式粉砕機を適宜改造して得ることができる。従来の機械式粉砕機としては、例えば、イノマイザー(ホソカワミクロン社製)、クリプトリン(川崎重工業社製)、スーパーローター(日清エンジニアリング社製)、ターボミル(ターボ工業社製)、トルネードミル(日機装社製)などを挙げることができる。 Such a mechanical crusher can be obtained by appropriately modifying a conventional mechanical crusher. Conventional mechanical crushers include, for example, Inomizer (manufactured by Hosokawa Micron), Kryptolin (manufactured by Kawasaki Heavy Industries), Super Rotor (manufactured by Nisshin Engineering), Turbo Mill (manufactured by Turbo Kogyo), and Tornado Mill (manufactured by Nikkiso). (manufactured by).

図3に示した従来の機械式粉砕機の固定子と回転子との隙間の距離は一定である。本開示においては、図1及び図2により例示されるように、被粉砕物の通過方向における上流側と下流側で、固定子の凸部の先端と回転子の凸部の先端とが対抗したときの隙間の距離が異なる。さらに、上流側の隙間の距離よりも下流側の隙間の距離が広くなっている。
このことにより、前述したように粉砕機内の上流で蓄積された熱エネルギーが、下流側の回転子と固定子との隙間を広げた領域において効率よく解消され、被粉砕物の降温作用が生じると考えている。
The gap distance between the stator and rotor of the conventional mechanical crusher shown in FIG. 3 is constant. In the present disclosure, as illustrated in FIGS. 1 and 2, the tips of the protrusions of the stator and the tips of the protrusions of the rotor are opposed to each other on the upstream and downstream sides in the passing direction of the object to be crushed. The distance between the gaps is different. Furthermore, the distance between the gaps on the downstream side is wider than the distance between the gaps on the upstream side.
As a result, as mentioned above, the thermal energy accumulated upstream in the crusher is efficiently dissipated in the area where the gap between the rotor and stator is widened on the downstream side, causing a cooling effect on the material to be crushed. thinking.

図1及び図2において、上流側の隙間の距離は一定であり、下流側の隙間の距離も一定であるが、回転子及び固定子の形状はこのような形状に制限されない。回転子の中心回転軸方向の断面形状に傾斜がつけられていてもよい。例えば、回転子の中心回転軸方向の断面形状が台形状であってもよいし、回転子の中心回転軸方向の断面形状の少なくとも一部がテーパー形状を有していてもよい。一方、同様に、固定子の中心回転軸方向の断面形状に傾斜がつけられていてもよい。
上流側における隙間の距離は一定であることが好ましい。また、下流側における隙間の距離が一定であることが好ましい。隙間の距離は、少なくとも二段階(例えば、二段階~四段階)で変化していることが好ましく、二段階で変化していることがより好ましい。図1及び図2のように、上流側における隙間の距離と下流側における隙間の距離とが階段状に変化していることが好ましい。階段状部分は垂直であってもよいし、傾斜がつけられていてもよい。隙間の距離の段階的な変化は、固定子側に段差をつけて行うことが好ましい。
In FIGS. 1 and 2, the distance between the gaps on the upstream side is constant, and the distance between the gaps on the downstream side is also constant, but the shapes of the rotor and stator are not limited to such shapes. The cross-sectional shape of the rotor in the direction of the central rotation axis may be inclined. For example, the cross-sectional shape of the rotor in the direction of the central rotation axis may be trapezoidal, or at least a portion of the cross-sectional shape of the rotor in the direction of the central rotation axis may have a tapered shape. On the other hand, similarly, the cross-sectional shape of the stator in the direction of the central rotation axis may be inclined.
Preferably, the distance of the gap on the upstream side is constant. Further, it is preferable that the distance of the gap on the downstream side is constant. The gap distance preferably changes in at least two steps (for example, two to four steps), and more preferably in two steps. As shown in FIGS. 1 and 2, it is preferable that the gap distance on the upstream side and the gap distance on the downstream side change stepwise. The stepped portion may be vertical or sloped. It is preferable that the stepwise change in the distance of the gap is performed by providing a step on the stator side.

また、下流側における、隙間の距離が上流側よりも広くなっている領域が、固定子の内周面と回転子の外周面とが形成する隙間の中心回転軸方向の距離を基準として、隙間の下流側端部を起点に中心回転軸上流方向へ15%以上55%以下までの範囲であることが好ましい。より好ましくは、隙間の下流側端部から中心回転軸上流方向へ20%以上50%以下までの範囲であり、さらに好ましくは25%以上40%以下である。
上記領域が隙間の下流側端部から15%以上であると、被粉砕物の降温効果がより得られやすくなる。
上記領域が隙間の下流側端部から55%以下であると、目標粒径を得るための、回転子の回転数を好適な範囲に維持できる。
In addition, the region where the gap distance on the downstream side is wider than that on the upstream side is determined based on the distance in the central rotation axis direction of the gap formed by the inner peripheral surface of the stator and the outer peripheral surface of the rotor. It is preferable that the range is 15% or more and 55% or less in the upstream direction of the central rotating shaft starting from the downstream end of the central rotating shaft. More preferably, the range is from 20% to 50% from the downstream end of the gap to the upstream direction of the central rotating shaft, and even more preferably from 25% to 40%.
When the area is 15% or more from the downstream end of the gap, the effect of lowering the temperature of the material to be crushed can be more easily obtained.
When the above region is 55% or less from the downstream end of the gap, the rotation speed of the rotor can be maintained within a suitable range to obtain the target particle size.

下流側の隙間の距離は、上流側の隙間の距離の1.1倍以上2.1倍以下であることが好ましい。より好ましくは1.2倍以上2.0倍以下であり、さらに好ましくは1.3倍以上1.8倍以下である。
上記隙間の距離の比が1.1倍以上であると、被粉砕物の降温効果が得られやすくなる。
上記隙間の比が2.1倍以下であると、目標粒径を得るための、回転子の回転数を好適な範囲に維持できる。
The distance of the gap on the downstream side is preferably 1.1 times or more and less than 2.1 times the distance of the gap on the upstream side. More preferably, it is 1.2 times or more and 2.0 times or less, and even more preferably 1.3 times or more and 1.8 times or less.
When the distance ratio of the gaps is 1.1 times or more, the effect of lowering the temperature of the material to be crushed can be easily obtained.
When the gap ratio is 2.1 times or less, the rotation speed of the rotor can be maintained within a suitable range to obtain the target particle size.

上流側の隙間の距離は、好ましくは0.5mm~2.0mmであり、より好ましくは0.7mm~1.5mmである。
下流側の隙間の距離は、好ましくは0.8mm~3.0mmであり、より好ましくは1.2mm~2.5mmである。
固定子の内周面と回転子の外周面とが形成する隙間の中心回転軸方向の距離は、好ましくは150mm~1000mm程度であり、より好ましくは200mm~600mm程度である。
The distance of the upstream gap is preferably 0.5 mm to 2.0 mm, more preferably 0.7 mm to 1.5 mm.
The distance of the downstream gap is preferably 0.8 mm to 3.0 mm, more preferably 1.2 mm to 2.5 mm.
The distance in the direction of the central rotation axis of the gap formed between the inner circumferential surface of the stator and the outer circumferential surface of the rotor is preferably about 150 mm to 1000 mm, more preferably about 200 mm to 600 mm.

固定子の内周面の凸部及び凹部の形状は、中心回転軸方向に沿って直線状の溝が形成された構造であることが好ましい。また、回転子の外周面の凸部及び凹部の形状は、中心回転軸方向に沿って直線状の溝が形成された構造であることが好ましい。
凸部の先端から凹部の最深部までの距離は、好ましくは1.0mm~5.0mm程度であり、より好ましくは2.0mm~3.0mm程度である。
凸部間の距離は、好ましくは1.0mm~8.0mm程度であり、より好ましくは2.0mm~5.0mm程度である。
回転子の中心回転軸方向に垂直な断面の直径は、製造規模により任意に決定されるため特に限定はないが、好ましくは100mm~900mm程度であり、より好ましくは250mm~800mm程度である。
The shapes of the convex portions and concave portions on the inner circumferential surface of the stator are preferably such that linear grooves are formed along the direction of the central rotation axis. Moreover, it is preferable that the shape of the convex part and the concave part of the outer peripheral surface of the rotor is such that a linear groove is formed along the direction of the central rotation axis.
The distance from the tip of the convex part to the deepest part of the concave part is preferably about 1.0 mm to 5.0 mm, more preferably about 2.0 mm to 3.0 mm.
The distance between the protrusions is preferably about 1.0 mm to 8.0 mm, more preferably about 2.0 mm to 5.0 mm.
The diameter of the cross section perpendicular to the central rotational axis direction of the rotor is arbitrarily determined depending on the manufacturing scale and is not particularly limited, but is preferably about 100 mm to 900 mm, more preferably about 250 mm to 800 mm.

粉砕法によるトナーの製造方法においては、粒径2mm程度にする粗粉砕工程と、所望の粒径にする微粉砕工程とを採用してもよい。粗粉砕工程及び微粉砕工程の間に中粉砕工程を入れてもよい。上記機械式粉砕機はいずれの工程にも使用しうる。中粉砕工程及び/又は微粉砕工程において上記機械式粉砕機を用いることが好ましい。また上記機械式粉砕機を直列又は並列に2段以上連結して粉砕してもよい。
重量平均粒径が4.0μm台の小粒径トナーの粉砕工程においては、上記機械式粉砕機を直列に連結し、二段階で粉砕することも有効である。
In the toner manufacturing method using the pulverization method, a coarse pulverization step to obtain a particle size of about 2 mm and a fine pulverization step to obtain a desired particle size may be employed. A medium pulverization step may be inserted between the coarse pulverization step and the fine pulverization step. The mechanical crusher described above can be used in either step. It is preferable to use the mechanical pulverizer described above in the medium pulverization step and/or the fine pulverization step. Further, the above-mentioned mechanical crushers may be connected in series or in parallel in two or more stages to perform crushing.
In the process of pulverizing small particle size toner having a weight average particle size of 4.0 μm, it is also effective to connect the mechanical pulverizers in series and perform pulverization in two stages.

例えば、以下のようなトナー製造システムが好ましい。
トナー製造システムは、トナー原料を粉砕し、第一の粉砕品を得る第一の粉砕機及び
該第一の粉砕品をさらに粉砕する第二の粉砕機を備え、
少なくとも該第一の粉砕機が、上記トナー製造用機械式粉砕機であることが好ましい。より好ましくは第一の粉砕機及び第二の粉砕機が、上記トナー製造用機械式粉砕機である。
For example, the following toner manufacturing system is preferable.
The toner manufacturing system includes a first pulverizer that pulverizes toner raw materials to obtain a first pulverized product, and a second pulverizer that further pulverizes the first pulverized product,
It is preferable that at least the first pulverizer is the above-described mechanical pulverizer for producing toner. More preferably, the first pulverizer and the second pulverizer are the above-described mechanical pulverizers for producing toner.

また、トナーの製造方法は、トナーの原料を粉砕する粉砕工程を有し、
該粉砕工程で用いる粉砕機が、上記トナー製造用機械式粉砕機であることが好ましい。
また、トナーの製造方法は、トナー原料を粉砕する粉砕工程を有し、
該粉砕工程は、
該トナー原料を粉砕し、第一の粉砕品を得る第一の粉砕工程及び
該第一の粉砕品をさらに粉砕する第二の粉砕工程を有し、
少なくとも該第一の粉砕工程で用いる粉砕機が、上記トナー製造用機械式粉砕機であることが好ましい。より好ましくは第一の粉砕工程及び第二の粉砕工程で用いる粉砕機が、上記トナー製造用機械式粉砕機である。
Further, the toner manufacturing method includes a pulverizing step of pulverizing toner raw materials,
The pulverizer used in the pulverizing step is preferably the above-described mechanical pulverizer for producing toner.
Further, the toner manufacturing method includes a pulverizing step of pulverizing toner raw materials,
The grinding step is
a first pulverizing step of pulverizing the toner raw material to obtain a first pulverized product; and a second pulverizing step of further pulverizing the first pulverized product;
It is preferable that the pulverizer used in at least the first pulverizing step is the above-mentioned mechanical pulverizer for producing toner. More preferably, the pulverizer used in the first pulverizing step and the second pulverizing step is the above-described mechanical pulverizer for producing toner.

前記隙間を広げる構成は、上流及び下流の二段階変化に限定はされない。例えば、三段階、四段階と数段階で下流側に向かって広げることも有効である。
さらには、下流側に向かって連続的に隙間を広げることも有効な手段である。
The configuration for widening the gap is not limited to two-step change upstream and downstream. For example, it is effective to extend the flow toward the downstream in several stages, such as three or four stages.
Furthermore, it is also an effective means to continuously widen the gap toward the downstream side.

トナーの粉砕工程において、回転子の回転周速を180m/sec以上230m/sec以下に設定することが好ましい。より好ましくは190m/sec以上220m/sec以下でる。
上記周速が180m/sec以上であると、被粉砕物の粉砕機内における固定子及び回転子との衝突において、被粉砕物に与えられるエネルギーが高くなる。
そのため、トナーを粉砕させるために必要となるクラックの成長がトナー表面近傍で適度に起こることになり、その結果表面粉砕が適度に発生する。このように表面粉砕が適度に発生すると、製品トナーとして除去すべき微粉生成物の過剰な発生を抑制できる。
In the toner pulverization process, it is preferable that the rotational peripheral speed of the rotor is set to 180 m/sec or more and 230 m/sec or less. More preferably, the speed is 190 m/sec or more and 220 m/sec or less.
When the circumferential speed is 180 m/sec or more, the energy given to the object to be crushed increases when it collides with the stator and rotor in the crusher.
Therefore, the growth of cracks necessary for pulverizing the toner occurs appropriately near the toner surface, and as a result, surface pulverization occurs appropriately. When surface pulverization occurs appropriately in this manner, it is possible to suppress excessive generation of fine powder products that should be removed as a product toner.

上記周速が230m/sec以下であると、被粉砕物に与えられるエネルギーが適度である。そのため、過剰なエネルギーが被粉砕物の粉砕だけでなく、圧縮、せん断といったトナーを変形させる力として作用することを抑制できる。その結果として、扁平又は異形のトナーが生じにくく、製品として所望の円形度を付与できる。
また、上記周速の範囲内で粉砕機を運転することで、得られるトナーの粒度分布をシャープにすることができる。粉砕工程を粗粉砕工程から微粉砕工程まで分割して行う場合、機械式粉砕機を上記周速範囲で運転するプロセスは、最終的に得られるトナーの粒径分布を決定する工程である、微粉砕工程に適用することがより好ましい。
もちろん最終工程以外の粉砕プロセスにおいて、上記プロセスを適用することも有効である。
When the circumferential speed is 230 m/sec or less, the energy given to the object to be crushed is appropriate. Therefore, it is possible to prevent excessive energy from acting not only on the pulverization of the object to be pulverized, but also as a force that deforms the toner, such as compression or shearing. As a result, flat or irregularly shaped toner is less likely to occur, and desired circularity can be imparted to the product.
Further, by operating the pulverizer within the above peripheral speed range, the particle size distribution of the obtained toner can be made sharp. When the pulverizing process is divided into a coarse pulverizing process and a fine pulverizing process, the process of operating the mechanical pulverizer in the above circumferential speed range is the process of determining the particle size distribution of the toner finally obtained. It is more preferable to apply it to the pulverization process.
Of course, it is also effective to apply the above process in pulverization processes other than the final step.

(トナー製造手順)
次に、機械式粉砕機で、トナー粒子を製造する手順について説明する。
まず、原料混合工程では、結着樹脂及び着色剤などを所定量秤量して配合し、混合する。必要に応じて、トナーの加熱定着時にホットオフセットの発生を抑制する離型剤、該離型剤を分散させる分散剤、帯電制御剤などを混合してもよい。混合装置の一例としては、ダブルコン・ミキサー、V型ミキサー、ドラム型ミキサー、スーパーミキサー、ヘンシェルミキサー、ナウターミキサー等がある。
(Toner manufacturing procedure)
Next, a procedure for manufacturing toner particles using a mechanical crusher will be described.
First, in the raw material mixing step, predetermined amounts of a binder resin, a colorant, and the like are weighed, blended, and mixed. If necessary, a release agent that suppresses the occurrence of hot offset during heat fixing of the toner, a dispersant that disperses the release agent, a charge control agent, and the like may be mixed. Examples of mixing devices include a double con mixer, a V-type mixer, a drum-type mixer, a super mixer, a Henschel mixer, a Nauta mixer, and the like.

さらに、上記で配合し、混合したトナー原料を溶融混練して、樹脂類を溶融し、その中の着色剤等を分散させる。該溶融混練工程では、例えば、加圧ニーダー、バンバリィミキサー等のバッチ式練り機や、連続式の練り機を用いることができる。近年では、連続生産できる等の優位性から、1軸または2軸押出機が主流となっており、例えば、神戸製鋼所社製KTK型2軸押出機、東芝機械社製TEM型2軸押出機、ケイ・シー・ケイ社製2軸押出機、ブス社製コ・ニーダー等が一般的に使用される。
さらに、トナー原料を溶融混練することによって得られる着色樹脂組成物は、溶融混練後、2本ロール等で圧延され、水冷等で冷却する冷却工程を経て冷却される。
Further, the toner raw materials blended and mixed as described above are melt-kneaded to melt the resins and disperse the coloring agent and the like therein. In the melt-kneading step, for example, a batch-type kneader such as a pressure kneader or a Banbury mixer, or a continuous-type kneader can be used. In recent years, single-screw or twin-screw extruders have become mainstream due to their superiority in continuous production, such as the KTK-type twin-screw extruder manufactured by Kobe Steel, and the TEM-type twin-screw extruder manufactured by Toshiba Machinery Co., Ltd. , a twin-screw extruder manufactured by K.C.K., a co-kneader manufactured by Buss, etc. are generally used.
Further, the colored resin composition obtained by melt-kneading the toner raw materials is rolled after melt-kneading with two rolls or the like, and is cooled through a cooling step of cooling with water or the like.

上記で得られた着色樹脂組成物の冷却物は、次いで、粉砕工程で所望の粒径にまで粉砕される。粉砕工程では、まず、クラッシャー、ハンマーミル、フェザーミル等で粗粉砕される。さらに、イノマイザー(ホソカワミクロン社製)、クリプトロン(川崎重工社製)、スーパーローター(日清エンジニアリング社製)、ターボミル(ターボ工業社製)等の機械式粉砕機で微粉砕される。粉砕工程では、このように段階的に所定のトナー粒度まで粉砕される。当該粉砕工程で、上記機械式粉砕機を用いることが好ましい。 The cooled colored resin composition obtained above is then pulverized to a desired particle size in a pulverization step. In the pulverization process, first, the material is coarsely pulverized using a crusher, hammer mill, feather mill, etc. Furthermore, it is finely pulverized using a mechanical pulverizer such as Inomizer (manufactured by Hosokawa Micron), Kryptron (manufactured by Kawasaki Heavy Industries, Ltd.), Super Rotor (manufactured by Nissin Engineering), or Turbo Mill (manufactured by Turbo Kogyo). In the pulverization step, the toner is pulverized in stages to a predetermined particle size. In the pulverizing step, it is preferable to use the mechanical pulverizer described above.

次に、トナーについて説明する。
<結着樹脂>
トナーは結着樹脂を含む。結着樹脂としては、一般的な樹脂を用いることができ、例えば以下のものが挙げられる。ポリエステル樹脂、スチレン-アクリル酸共重合体、ポリオレフィン系樹脂、ビニル系樹脂、フッ素樹脂、フェノール樹脂、シリコーン樹脂、エポキ
シ樹脂などが例示できる。
この中でも、低温定着性を良好にするという観点から非晶性ポリエステル樹脂が好ましい。低温定着性と耐ホットオフセット性の両立の観点から、低分子量ポリエステルと高分子量ポリエステルを併用することが好ましい。また、さらなる低温定着性の向上と保管時の耐ブロッキング性の観点から結晶性ポリエステルを可塑剤として用いることもある。
Next, toner will be explained.
<Binder resin>
The toner contains a binder resin. As the binder resin, common resins can be used, such as the following. Examples include polyester resin, styrene-acrylic acid copolymer, polyolefin resin, vinyl resin, fluororesin, phenol resin, silicone resin, and epoxy resin.
Among these, amorphous polyester resins are preferred from the viewpoint of improving low-temperature fixability. From the viewpoint of achieving both low-temperature fixability and hot offset resistance, it is preferable to use a low-molecular-weight polyester and a high-molecular-weight polyester together. Further, from the viewpoint of further improving low-temperature fixing properties and blocking resistance during storage, crystalline polyester may be used as a plasticizer.

<着色剤>
トナーは着色剤を含む。着色剤としては、以下のものが挙げられる。
着色剤としては、公知の有機顔料若しくは油性染料、カーボンブラック、又は磁性体などが挙げられる。
シアン系着色剤としては、銅フタロシアニン化合物及びその誘導体、アントラキノン化合物、塩基染料レーキ化合物などが挙げられる。
マゼンタ系着色剤としては、縮合アゾ化合物、ジケトピロロピロール化合物、アントラキノン化合物、キナクリドン化合物、塩基染料レーキ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物などが挙げられる。
イエロー系着色剤としては、縮合アゾ化合物、イソインドリノン化合物、アントラキノン化合物、アゾ金属錯体、メチン化合物、アリルアミド化合物などが挙げられる。
黒色系着色剤としては、カーボンブラック、磁性体、又は、前記イエロー系着色剤、マゼンタ系着色剤、及びシアン着色剤を用い黒色に調色されたものが挙げられる。
該着色剤は、一種単独で又は二種以上を混合して用いることができる。
<Colorant>
The toner contains a colorant. As the coloring agent, the following may be mentioned.
Examples of the coloring agent include known organic pigments, oil dyes, carbon black, and magnetic materials.
Examples of the cyan colorant include copper phthalocyanine compounds and derivatives thereof, anthraquinone compounds, and basic dye lake compounds.
Examples of magenta colorants include condensed azo compounds, diketopyrrolopyrrole compounds, anthraquinone compounds, quinacridone compounds, basic dye lake compounds, naphthol compounds, benzimidazolone compounds, thioindigo compounds, perylene compounds, and the like.
Examples of the yellow colorant include condensed azo compounds, isoindolinone compounds, anthraquinone compounds, azo metal complexes, methine compounds, and allylamide compounds.
Examples of the black colorant include carbon black, a magnetic material, and those toned to black using the yellow colorant, magenta colorant, and cyan colorant described above.
These colorants can be used alone or in combination of two or more.

<離型剤>
トナーには、必要に応じて、トナーの加熱定着時にホットオフセットの発生を抑制する離型剤を用いてもよい。該離型剤としては、低分子量ポリオレフィン類、シリコーンワックス、脂肪酸アミド類、エステルワックス類、カルナバワックス、炭化水素系ワックスなどが一般的に例示できる
<Release agent>
If necessary, a release agent may be used in the toner to suppress the occurrence of hot offset during heat fixing of the toner. Common examples of the mold release agent include low molecular weight polyolefins, silicone waxes, fatty acid amides, ester waxes, carnauba wax, and hydrocarbon waxes.

次に、トナー粒子の重量平均粒径(D4)の測定方法について説明する。
<トナー粒子の重量平均粒径(D4)の測定方法>
トナー粒子の重量平均粒径(D4)は、50μmのアパーチャーチューブを備えた細孔電気抵抗法による精密粒度分布測定装置「コールター・カウンター Multisizer 3」(登録商標、ベックマン・コールター社製)と、測定条件設定及び測定データ解析をするための付属の専用ソフト「ベックマン・コールター Multisizer 3
Version3.51」(ベックマン・コールター社製)を用いて、実効測定チャンネル数2万5千チャンネルで測定し、測定データの解析を行い、算出する。
測定に使用する電解水溶液は、特級塩化ナトリウムをイオン交換水に溶解して濃度が約1質量%となるようにしたもの、例えば、「ISOTON II」(ベックマン・コールター社製)が使用できる。
なお、測定、解析を行う前に、以下のように前記専用ソフトの設定を行う。
前記専用ソフトの「標準測定方法(SOM)を変更画面」において、コントロールモードの総カウント数を50000粒子に設定し、測定回数を1回、Kd値は「標準粒子10.0μm」(ベックマン・コールター社製)を用いて得られた値を設定する。閾値/ノイズレベルの測定ボタンを押すことで、閾値とノイズレベルを自動設定する。また、カレントを1600μAに、ゲインを2に、電解液をISOTON IIに設定し、測定後のアパーチャーチューブのフラッシュにチェックを入れる。
専用ソフトの「パルスから粒径への変換設定画面」において、ビン間隔を対数粒径に、粒径ビンを256粒径ビンに、粒径範囲を1μm以上30μm以下に設定する。
Next, a method for measuring the weight average particle diameter (D4) of toner particles will be explained.
<Method for measuring weight average particle diameter (D4) of toner particles>
The weight average particle diameter (D4) of the toner particles was measured using a precise particle size distribution measuring device "Coulter Counter Multisizer 3" (registered trademark, manufactured by Beckman Coulter) equipped with a 50 μm aperture tube using the pore electrical resistance method. The attached special software “Beckman Coulter Multisizer 3” is used to set conditions and analyze measurement data.
Version 3.51 (manufactured by Beckman Coulter) with an effective measurement channel count of 25,000 channels, and the measurement data is analyzed and calculated.
The electrolytic aqueous solution used in the measurement can be one in which special grade sodium chloride is dissolved in ion-exchanged water to have a concentration of about 1% by mass, such as "ISOTON II" (manufactured by Beckman Coulter).
Note that before performing measurement and analysis, the dedicated software is set as follows.
In the "Change standard measurement method (SOM) screen" of the dedicated software, set the total count in control mode to 50,000 particles, set the number of measurements to 1, and set the Kd value to "standard particle 10.0 μm" (Beckman Coulter). Set the value obtained using By pressing the threshold/noise level measurement button, the threshold and noise level are automatically set. Also, set the current to 1600 μA, the gain to 2, the electrolyte to ISOTON II, and check the aperture tube flush after measurement.
On the "Pulse to particle size conversion setting screen" of the dedicated software, set the bin interval to logarithmic particle size, the particle size bin to 256 particle size bins, and the particle size range to 1 μm or more and 30 μm or less.

具体的な測定法は以下の通りである。
(1)Multisizer 3専用のガラス製250ml丸底ビーカーに前記電解水溶
液約200mlを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行う。そして、専用ソフトの「アパーチャーチューブのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡を除去しておく。
(2)ガラス製の100ml平底ビーカーに前記電解水溶液約30mlを入れ、この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で3質量倍に希釈した希釈液を約0.3ml加える。
(3)発振周波数50kHzの発振器2個を、位相を180度ずらした状態で内蔵し、電気的出力120Wの超音波分散器「Ultrasonic Dispersion System Tetora150」(日科機バイオス社製)の水槽内に所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2ml添加する。
(4)前記(2)のビーカーを前記超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させる。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整する。
(5)前記(4)のビーカー内の電解水溶液に超音波を照射した状態で、トナー約10mgを少量ずつ前記電解水溶液に添加し、分散させる。そして、さらに60秒間超音波分散処理を継続する。なお、超音波分散にあたっては、水槽の水温が10℃以上40℃以下となる様に適宜調節する。
(6)サンプルスタンド内に設置した前記(1)の丸底ビーカーに、ピペットを用いてトナーを分散した前記(5)の電解水溶液を滴下し、測定濃度が約5%となるように調整する。そして、測定粒子数が50000個になるまで測定を行う。
(7)測定データを装置付属の前記専用ソフトにて解析を行い、重量平均粒径(D4)を算出する。なお、専用ソフトでグラフ/体積%と設定したときの、分析/体積統計値(算術平均)画面の「平均径」が重量平均粒径(D4)である。
The specific measurement method is as follows.
(1) Approximately 200 ml of the above electrolyte aqueous solution is placed in a 250 ml round-bottom glass beaker exclusively for Multisizer 3, set on a sample stand, and stirred with a stirrer rod counterclockwise at 24 revolutions/second. Then, use the dedicated software's ``Aperture Tube Flush'' function to remove dirt and air bubbles from inside the aperture tube.
(2) Pour about 30 ml of the above electrolytic aqueous solution into a 100 ml glass flat-bottomed beaker, and add "Contaminon N" as a dispersant (precision measurement of pH 7 consisting of nonionic surfactant, anionic surfactant, and organic builder). Approximately 0.3 ml of a diluted solution prepared by diluting a 10% by mass aqueous solution of a neutral detergent for cleaning utensils (manufactured by Wako Pure Chemical Industries, Ltd.) by 3 times by mass with ion-exchanged water is added.
(3) Two oscillators with an oscillation frequency of 50 kHz are built in with their phases shifted by 180 degrees, and are placed in the water tank of an ultrasonic dispersion device "Ultrasonic Dispersion System Tetora 150" (manufactured by Nikkaki Bios Co., Ltd.) with an electrical output of 120 W. A predetermined amount of ion-exchanged water is poured into the water tank, and approximately 2 ml of the contaminon N is added to the water tank.
(4) Set the beaker of (2) above in the beaker fixing hole of the ultrasonic disperser, and operate the ultrasonic disperser. Then, the height position of the beaker is adjusted so that the resonance state of the liquid level of the electrolytic aqueous solution in the beaker is maximized.
(5) While the electrolytic aqueous solution in the beaker of (4) is irradiated with ultrasonic waves, about 10 mg of toner is added little by little to the electrolytic aqueous solution and dispersed. Then, the ultrasonic dispersion treatment is continued for another 60 seconds. In addition, in the ultrasonic dispersion, the water temperature in the water tank is appropriately adjusted to be 10° C. or more and 40° C. or less.
(6) Using a pipette, drop the electrolytic aqueous solution of (5) in which toner is dispersed into the round-bottomed beaker of (1) placed in the sample stand, and adjust the measured concentration to approximately 5%. . Then, the measurement is continued until the number of particles to be measured reaches 50,000.
(7) Analyze the measurement data using the dedicated software attached to the device and calculate the weight average particle diameter (D4). Note that when the dedicated software is set to graph/volume %, the "average diameter" on the analysis/volume statistics (arithmetic mean) screen is the weight average particle diameter (D4).

<トナー粒子の個数平均粒径(D1)の測定方法>
トナー粒子の個数平均粒径(D4)の測定方法の(7)の工程において、専用ソフトでグラフ/個数%と設定したときの、分析/個数統計値(算術平均)画面の「平均径」が個数平均粒径(D1)である。
<Method for measuring number average particle diameter (D1) of toner particles>
In step (7) of the method for measuring the number average particle diameter (D4) of toner particles, when the graph/number % is set in the dedicated software, the "average diameter" on the analysis/number statistics (arithmetic mean) screen is It is the number average particle diameter (D1).

<平均円形度の測定方法>
トナー粒子の平均円形度は、フロー式粒子像分析装置「FPIA-3000」(シスメックス社製)によって、校正作業時の測定及び解析条件で測定する。
具体的な測定方法は、以下の通りである。まず、ガラス製の容器中に予め不純固形物などを除去したイオン交換水約20mlを入れる。この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で約3質量倍に希釈した希釈液を約0.2ml加える。
さらに測定試料を約0.02g加え、超音波分散器を用いて2分間分散処理を行い、測定用の分散液とする。その際、分散液の温度が10℃以上40℃以下となる様に適宜冷却する。超音波分散器としては、発振周波数50kHz、電気的出力150Wの卓上型の超音波洗浄器分散器(「VS-150」(ヴェルヴォクリーア社製))を用い、水槽内には所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2ml添加する。
<Method of measuring average circularity>
The average circularity of toner particles is measured using a flow type particle image analyzer "FPIA-3000" (manufactured by Sysmex Corporation) under measurement and analysis conditions during calibration work.
The specific measurement method is as follows. First, approximately 20 ml of ion-exchanged water from which impure solid matter has been removed is placed in a glass container. Contaminon N is used as a dispersant (a 10% by mass aqueous solution of a neutral detergent for cleaning precision measuring instruments with a pH of 7 consisting of a nonionic surfactant, an anionic surfactant, and an organic builder, manufactured by Wako Pure Chemical Industries, Ltd.) ) is diluted to about 3 times the mass with ion-exchanged water, and then add about 0.2 ml of the diluted solution.
Furthermore, approximately 0.02 g of the measurement sample is added, and a dispersion process is performed for 2 minutes using an ultrasonic disperser to obtain a dispersion liquid for measurement. At that time, the temperature of the dispersion liquid is appropriately cooled to a temperature of 10° C. or higher and 40° C. or lower. As the ultrasonic disperser, a table-top ultrasonic cleaner disperser ("VS-150" (manufactured by Vervo Crea)) with an oscillation frequency of 50 kHz and an electrical output of 150 W was used, and a predetermined amount of ions were placed in the water tank. Replacement water is poured into the tank, and approximately 2 ml of the contaminon N is added to the tank.

測定には、標準対物レンズ(10倍)を搭載した前記フロー式粒子像分析装置を用い、シース液にはパーティクルシース「PSE-900A」(シスメックス社製)を使用した。前記手順に従い調整した分散液を前記フロー式粒子像分析装置に導入し、HPF測定モードで、トータルカウントモードにて3000個のトナー粒子を計測する。そして、粒子解析時の2値化閾値を85%とし、解析粒子径を円相当径1.985μm以上39.69μm未満に限定し、トナー粒子の平均円形度を求める。
測定にあたっては、測定開始前に標準ラテックス粒子(Duke Scientific社製の「RESEARCH AND TEST PARTICLES Latex Microsphere Suspensions 5200A」をイオン交換水で希釈)を用いて自動焦点調整を行う。その後、測定開始から2時間毎に焦点調整を実施することが好ましい。
なお、本願実施例では、シスメックス社による校正作業が行われた、シスメックス社が発行する校正証明書の発行を受けたフロー式粒子像分析装置を使用した。解析粒子径を円相当径1.985μm以上39.69μm未満に限定した以外は、校正証明を受けた時の測定及び解析条件で測定を行った。
For the measurement, the flow-type particle image analyzer equipped with a standard objective lens (10x magnification) was used, and a particle sheath "PSE-900A" (manufactured by Sysmex Corporation) was used as the sheath liquid. The dispersion liquid prepared according to the above procedure is introduced into the flow type particle image analyzer, and 3000 toner particles are measured in the HPF measurement mode and the total count mode. Then, the binarization threshold at the time of particle analysis is set to 85%, the analyzed particle diameter is limited to an equivalent circle diameter of 1.985 μm or more and less than 39.69 μm, and the average circularity of the toner particles is determined.
In the measurement, automatic focus adjustment is performed using standard latex particles ("RESEARCH AND TEST PARTICLES Latex Microsphere Suspensions 5200A" manufactured by Duke Scientific, diluted with ion-exchanged water) before starting the measurement. Thereafter, it is preferable to perform focus adjustment every two hours from the start of the measurement.
In this example, a flow-type particle image analyzer was used, which was calibrated by Sysmex and had a calibration certificate issued by Sysmex. The measurement was carried out under the measurement and analysis conditions under which the calibration certificate was received, except that the particle diameter for analysis was limited to an equivalent circle diameter of 1.985 μm or more and less than 39.69 μm.

以下、本発明を実施例及び比較例を用いて更に詳細に説明するが、これらは本発明をなんら限定するものではない。なお、以下の処方において、部は特に断りのない限り質量基準である。 EXAMPLES Hereinafter, the present invention will be explained in more detail using Examples and Comparative Examples, but these are not intended to limit the present invention in any way. In addition, in the following prescriptions, parts are based on mass unless otherwise specified.

<非晶性ポリエステル樹脂Lの製造例>
・ポリオキシプロピレン(2.2)-2,2-ビス(4-ヒドロキシフェニル)プロパン:72.0部(0.20モル;多価アルコール総モル数に対して100.0mol%)
・テレフタル酸:
28.0部(0.17モル;多価カルボン酸総モル数に対して96.0mol%)
・2-エチルヘキサン酸錫(エステル化触媒):0.5部
冷却管、攪拌機、窒素導入管、及び、熱電対のついた反応槽に、上記材料を秤量した。次にフラスコ内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、200℃の温度で撹拌しつつ、4時間反応させた。
さらに、反応槽内の圧力を8.3kPaに下げ、1時間維持した後、180℃まで冷却し、大気圧に戻した。
・無水トリメリット酸:
1.3部(0.01モル;多価カルボン酸総モル数に対して4.0mol%)
・tert-ブチルカテコール(重合禁止剤):0.1部
その後、上記材料を加え、反応槽内の圧力を8.3kPaに下げ、温度180℃に維持したまま、1時間反応させ、ASTM D36-86に従って測定した軟化点が90℃に達したことを確認してから温度を下げて反応を止め、非晶性ポリエステル樹脂Lを得た。
<Production example of amorphous polyester resin L>
・Polyoxypropylene (2.2)-2,2-bis(4-hydroxyphenyl)propane: 72.0 parts (0.20 mol; 100.0 mol% based on the total number of moles of polyhydric alcohol)
·Terephthalic acid:
28.0 parts (0.17 mol; 96.0 mol% based on the total number of moles of polycarboxylic acids)
- Tin 2-ethylhexanoate (esterification catalyst): 0.5 part The above materials were weighed into a reaction tank equipped with a cooling tube, a stirrer, a nitrogen introduction tube, and a thermocouple. Next, after purging the inside of the flask with nitrogen gas, the temperature was gradually raised while stirring, and reaction was carried out for 4 hours while stirring at a temperature of 200°C.
Furthermore, the pressure inside the reaction tank was lowered to 8.3 kPa and maintained for 1 hour, then cooled to 180° C. and returned to atmospheric pressure.
・Trimellitic anhydride:
1.3 parts (0.01 mol; 4.0 mol% based on the total number of moles of polycarboxylic acids)
・Tert-butylcatechol (polymerization inhibitor): 0.1 part After that, the above materials were added, the pressure inside the reaction tank was lowered to 8.3 kPa, and the reaction was carried out for 1 hour while maintaining the temperature at 180°C, and ASTM D36- After confirming that the softening point measured according to No. 86 reached 90° C., the temperature was lowered to stop the reaction, and amorphous polyester resin L was obtained.

<非晶性ポリエステル樹脂Hの製造例>
・ポリオキシプロピレン(2.2)-2,2-ビス(4-ヒドロキシフェニル)プロパン:72.3部(0.20モル;多価アルコール総モル数に対して100.0mol%)
・テレフタル酸:
18.3部(0.11モル;多価カルボン酸総モル数に対して65.0mol%)
・フマル酸:
2.9部(0.03モル;多価カルボン酸総モル数に対して15.0mol%)
・2-エチルヘキサン酸錫(エステル化触媒):0.5部
冷却管、攪拌機、窒素導入管、及び、熱電対のついた反応槽に、上記材料を秤量した。次にフラスコ内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、200℃の温度で撹拌しつつ、2時間反応させた。
さらに、反応槽内の圧力を8.3kPaに下げ、1時間維持した後、180まで冷却し、大気圧に戻した。
・無水トリメリット酸:
6.5部(0.03モル;多価カルボン酸総モル数に対して20.0mol%)
・tert-ブチルカテコール(重合禁止剤):0.1部
その後、上記材料を加え、反応槽内の圧力を8.3kPaに下げ、温度160℃に維持
したまま、15時間反応させ、ASTM D36-86に従って測定した軟化点が137℃に達したのを確認してから温度を下げて反応を止め、非晶性ポリエステル樹脂Hを得た。
<Production example of amorphous polyester resin H>
・Polyoxypropylene (2.2)-2,2-bis(4-hydroxyphenyl)propane: 72.3 parts (0.20 mol; 100.0 mol% based on the total number of moles of polyhydric alcohol)
·Terephthalic acid:
18.3 parts (0.11 mol; 65.0 mol% based on the total number of moles of polycarboxylic acids)
・Fumaric acid:
2.9 parts (0.03 mol; 15.0 mol% based on the total number of moles of polycarboxylic acids)
- Tin 2-ethylhexanoate (esterification catalyst): 0.5 part The above materials were weighed into a reaction tank equipped with a cooling tube, a stirrer, a nitrogen introduction tube, and a thermocouple. Next, after purging the inside of the flask with nitrogen gas, the temperature was gradually raised while stirring, and the mixture was reacted for 2 hours while stirring at a temperature of 200°C.
Furthermore, the pressure inside the reaction tank was lowered to 8.3 kPa and maintained for 1 hour, then cooled to 180°C and returned to atmospheric pressure.
・Trimellitic anhydride:
6.5 parts (0.03 mol; 20.0 mol% based on the total number of moles of polyhydric carboxylic acid)
・Tert-butylcatechol (polymerization inhibitor): 0.1 part After that, the above materials were added, the pressure inside the reaction tank was lowered to 8.3 kPa, and the reaction was carried out for 15 hours while maintaining the temperature at 160°C, and ASTM D36- After confirming that the softening point measured according to No. 86 reached 137° C., the temperature was lowered to stop the reaction, and an amorphous polyester resin H was obtained.

<結晶性ポリエステル樹脂>
・1,6-ヘキサンジオール:
34.5部(0.29モル;多価アルコール総モル数に対して100.0mol%)
・ドデカン二酸:
65.5部(0.28モル;多価カルボン酸総モル数に対して100.0mol%)
・2-エチルヘキサン酸錫:0.5部
冷却管、攪拌機、窒素導入管、及び、熱電対のついた反応槽に、上記材料を秤量した。フラスコ内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、140℃の温度で撹拌しつつ、3時間反応させた。
次に、上記材料を加え、反応槽内の圧力を8.3kPaに下げ、温度200℃に維持したまま、4時間反応させ、結晶性ポリエステル樹脂を得た。
<Crystalline polyester resin>
・1,6-hexanediol:
34.5 parts (0.29 mol; 100.0 mol% based on the total number of moles of polyhydric alcohol)
・Dodecanedioic acid:
65.5 parts (0.28 mol; 100.0 mol% based on the total number of moles of polycarboxylic acids)
- Tin 2-ethylhexanoate: 0.5 part The above materials were weighed into a reaction tank equipped with a cooling tube, a stirrer, a nitrogen introduction tube, and a thermocouple. After purging the inside of the flask with nitrogen gas, the temperature was gradually raised while stirring, and the reaction was carried out at a temperature of 140° C. for 3 hours while stirring.
Next, the above materials were added, the pressure inside the reaction tank was lowered to 8.3 kPa, and the reaction was carried out for 4 hours while maintaining the temperature at 200° C. to obtain a crystalline polyester resin.

<トナーの製造例>
・非晶性ポリエステル樹脂L 70部
・非晶性ポリエステル樹脂H 30部
・結晶性ポリエステル樹脂 5部
・フィッシャートロプシュワックス(炭化水素ワックス、最大吸熱ピークのピーク温度90℃) 8部
・C.I.ピグメントブルー15:3 7部
上記材料をヘンシェルミキサー(FM-75型、三井鉱山(株)製)を用いて、回転数20s-1、回転時間5minで混合した後、二軸混練機(PCM-30型、株式会社池貝製)にて混練した。混練時のバレル温度は、混練物の出口温度が120℃になるよう設定した。混練物の出口温度は、安立計器社製ハンディタイプ温度計HA-200Eを用い直接計測した。得られた混練物を冷却し、ピンミルにて体積平均粒径100μm以下に粗粉砕し、トナー原料1を得た。
<Toner manufacturing example>
- Amorphous polyester resin L 70 parts - Amorphous polyester resin H 30 parts - Crystalline polyester resin 5 parts - Fischer-Tropsch wax (hydrocarbon wax, maximum endothermic peak temperature 90°C) 8 parts - C.I. I. Pigment Blue 15:3 7 parts The above materials were mixed using a Henschel mixer (model FM-75, manufactured by Mitsui Mining Co., Ltd.) at a rotation speed of 20 s -1 and a rotation time of 5 min, and then mixed with a twin-screw kneader (PCM- 30 model, manufactured by Ikegai Co., Ltd.). The barrel temperature during kneading was set so that the outlet temperature of the kneaded product was 120°C. The outlet temperature of the kneaded material was directly measured using a handy type thermometer HA-200E manufactured by Anritsu Keiki Co., Ltd. The obtained kneaded product was cooled and coarsely pulverized using a pin mill to a volume average particle size of 100 μm or less to obtain toner raw material 1.

以下、具体的な実施例及び比較例を記す。
なお、以下の実施例及び比較例で得られた微粉砕品の重量平均粒径は、上記トナー粒子の重量平均粒径(D4)の測定方法に従い測定した。
(実施例1)
本実施例においては、粉砕機に図1に示したものを用いる。
図1に示す粉砕機の構成は、機械式粉砕機(ターボ工業社製ターボミルT250-CRS-ローター形状RS型)を、改造したものである。
図2は、回転子と固定子の構成を模式的に示した図である。
図2において、103は回転子、104は固定子を表す。D1及びD2は、固定子の凸部の先端と回転子の凸部の先端とが対向したときの隙間の距離を表している。
L1は隙間D1の領域(隙間の上流端から、隙間の距離がD1となっている領域)を示し、L2は隙間D2の領域(隙間の下流端から隙間の距離がD2となっている領域)を示している。
上記機械式粉砕機を用い、トナー原料1を用い以下に示す条件にて粉砕品を製造した。
Specific examples and comparative examples will be described below.
The weight average particle size of the finely pulverized products obtained in the following Examples and Comparative Examples was measured according to the method for measuring the weight average particle size (D4) of toner particles described above.
(Example 1)
In this example, the crusher shown in FIG. 1 is used.
The configuration of the pulverizer shown in FIG. 1 is a modified mechanical pulverizer (turbo mill T250-CRS-rotor shape RS type manufactured by Turbo Kogyo Co., Ltd.).
FIG. 2 is a diagram schematically showing the configuration of a rotor and a stator.
In FIG. 2, 103 represents a rotor, and 104 represents a stator. D1 and D2 represent the distance of the gap when the tip of the convex portion of the stator and the tip of the convex portion of the rotor face each other.
L1 indicates the area of the gap D1 (the area where the gap distance is D1 from the upstream end of the gap), and L2 indicates the area of the gap D2 (the area where the gap distance is D2 from the downstream end of the gap). It shows.
A pulverized product was produced using the above-mentioned mechanical pulverizer using Toner Raw Material 1 under the conditions shown below.

<条件1>Feed=30Kg/h
図1に示す粉砕機を用い、供給口からトナー原料1を30Kg/hで供給し、冷風を風量4m/min流入させ、冷風温度-10℃の条件で粉砕を行った。
なお、本条件での粉砕機の構成は、図2において、D1=1.0mm、D2=1.5mmとし、L1=224mm、L2=96mm(隙間の中心回転軸方向の距離を基準として
、L2は、隙間の下流端から30%までの領域)とした。
条件1では、まず粉砕品の重量平均粒径が6.0μm~6.2μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続10時間製造を行い約300Kgの粉砕品を得た。
<Condition 1> Feed=30Kg/h
Using the pulverizer shown in FIG. 1, toner raw material 1 was supplied from the supply port at a rate of 30 kg/h, cold air was flowed in at a flow rate of 4 m 3 /min, and pulverization was performed at a cold air temperature of -10°C.
In addition, the configuration of the crusher under these conditions is as shown in FIG. 2, D1 = 1.0 mm, D2 = 1.5 mm, L1 = 224 mm, L2 = 96 mm (L2 is the area up to 30% from the downstream end of the gap).
Under condition 1, first, the peripheral speed of the rotor was set so that the weight average particle size of the pulverized product was in the range of 6.0 μm to 6.2 μm, and then production was continued for 10 hours under the same conditions to produce a pulverized product of approximately 300 kg. I got it.

<条件2>Feed=40Kg/h
本条件では、条件1と同様の粉砕機の構成にて、供給口からトナー原料1を40Kg/hで供給し、冷風を風量4m/min流入させ、冷風温度-10℃の条件で粉砕を行った。
条件2においても、粉砕品の重量平均粒径が6.0μm~6.2μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続10時間製造を行い約400Kgの粉砕品を得た。
<Condition 2> Feed=40Kg/h
In this condition, with the same pulverizer configuration as in Condition 1, toner raw material 1 is supplied from the supply port at a rate of 40 kg/h, cold air is flowed in at a flow rate of 4 m 3 /min, and pulverization is performed at a cold air temperature of -10°C. went.
In Condition 2, the peripheral speed of the rotor was set so that the weight average particle size of the pulverized product was in the range of 6.0 μm to 6.2 μm, and then production was continued for 10 hours under the same conditions to produce a pulverized product of approximately 400 kg. I got it.

(比較例1)
本比較例においては、粉砕機に図3に示したものを用いる。
図3に示す粉砕機は、機械式粉砕機(ターボ工業社製ターボミルT250-CRS-ローター形状RS型)であり、回転子と固定子の隙間は回転子と固定子が対面するすべての領域において均一である。隙間の距離は1.0mmとした。
本比較例においてトナー原料1を用い、実施例1と同様に、供給口からの供給量を条件1で30Kg/h、条件2で40Kg/hとし、冷風を風量4m/min流入させ、冷風温度-10℃の条件で粉砕を行った。
本比較例においても、粉砕品の重量平均粒径が各条件で6.0μm~6.2μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続10時間製造を行い、条件1にて約300Kg、条件2にて約400Kgの粉砕品を得た。
(Comparative example 1)
In this comparative example, the crusher shown in FIG. 3 is used.
The pulverizer shown in Fig. 3 is a mechanical pulverizer (turbo mill T250-CRS-rotor shape RS type manufactured by Turbo Kogyo Co., Ltd.), and the gap between the rotor and stator is in all areas where the rotor and stator face each other. Uniform. The gap distance was 1.0 mm.
In this comparative example, toner raw material 1 was used, and in the same manner as in Example 1, the supply amount from the supply port was 30 kg/h under condition 1 and 40 kg/h under condition 2, and cold air was introduced at an air volume of 4 m 3 /min. Grinding was carried out at a temperature of -10°C.
In this comparative example as well, the circumferential speed of the rotor was set so that the weight average particle size of the pulverized product was in the range of 6.0 μm to 6.2 μm under each condition, and then production was continued for 10 hours under the same conditions. Approximately 300 kg of pulverized products were obtained under condition 1 and approximately 400 kg under condition 2.

本実施例及び比較例では、製造した微粉砕品を1時間毎にサンプリングし、重量平均粒径(D4)を測定し、微粉砕品の粒径安定性の評価を行った。
評価は、サンプリングした粒径の最大値と最小値の差を算出し、以下のランク付けを行った。
A・・・0.2μm未満であり非常に良好。
B・・・0.2μm以上0.4μm未満であり良好。
C・・・0.4μm以上。
In the present examples and comparative examples, the manufactured finely pulverized products were sampled every hour, the weight average particle diameter (D4) was measured, and the particle size stability of the finely pulverized products was evaluated.
For evaluation, the difference between the maximum and minimum sampled particle sizes was calculated, and the results were ranked as follows.
A: Less than 0.2 μm, very good.
B...0.2 μm or more and less than 0.4 μm, which is good.
C...0.4 μm or more.

さらに、連続10時間の製造後装置を停止し、回転子及び固定子のトナーの付着度合い(汚れ)を目視で確認した。
評価ランクは以下とする。
A・・・付着はほとんどなくり非常に優れている。
B・・・若干付着は認められるが良好である。
C・・・付着がみとめられる。
Further, after 10 continuous hours of production, the apparatus was stopped and the degree of toner adhesion (staining) on the rotor and stator was visually confirmed.
The evaluation ranks are as follows.
A: Very good, almost no adhesion.
B... Some adhesion is observed, but it is good.
C: Adhesion is observed.

実施例1及び比較例1での各条件での評価結果を表1に示す。
表1に示されるように、実施例の粉砕機にて製造した粉砕品は粒径の安定性が優れている。
されには、長時間製造した後での機内のトナー付着もほとんどなく、生産性に優れた結果を得ている。
また、比較例に比べて、処理量を増加させてより厳しい条件にすると、効果はより顕著に表れている。
Table 1 shows the evaluation results under each condition in Example 1 and Comparative Example 1.
As shown in Table 1, the pulverized products produced by the pulverizer of the example have excellent particle size stability.
Furthermore, there is almost no toner adhesion inside the machine after long periods of production, resulting in excellent productivity.
Moreover, compared to the comparative example, when the processing amount was increased and the conditions were made more severe, the effect was more pronounced.

Figure 0007414534000001
Figure 0007414534000001

(実施例2)
粉砕機に図1に示したものを用い、図2に示す回転子103と固定子104の隙間の距離が異なる領域を示すL1及びL2を変化させて粉砕品の製造を行った。
具体的には、表2に示す各条件でL1及びL2を変化させ、隙間の下流端からのL2の割合10%から60%まで変化させた。
なお、粉砕機の他の構成は、図2において、D1=1.0mm、D2=1.5mmとした。
供給口からトナー原料1を40Kg/hで供給し、冷風を風量4m/min流入させ、冷風温度-10℃の条件でトナー原料1の粉砕を行った。
なお、本実施例では、粉砕品の重量平均粒径が5.0μm~5.2μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続10時間製造を行い約400Kgの粉砕品を得た。
(Example 2)
Using the crusher shown in FIG. 1, pulverized products were manufactured by changing L1 and L2, which indicate regions in which the distance between the rotor 103 and the stator 104 differs, as shown in FIG.
Specifically, L1 and L2 were changed under each condition shown in Table 2, and the ratio of L2 from the downstream end of the gap was changed from 10% to 60%.
In addition, other configurations of the pulverizer were set as D1=1.0 mm and D2=1.5 mm in FIG. 2.
Toner raw material 1 was supplied from the supply port at a rate of 40 kg/h, cold air was flowed in at a flow rate of 4 m 3 /min, and toner raw material 1 was pulverized at a cold air temperature of -10°C.
In this example, the circumferential speed of the rotor was set so that the weight average particle size of the pulverized product was in the range of 5.0 μm to 5.2 μm, and then production was continued for 10 hours under the same conditions to produce a product of approximately 400 kg. A crushed product was obtained.

(比較例2)
粉砕品の重量平均粒径が5.0μm~5.2μmの範囲となるように回転子の周速度を設定する以外は比較例1と同様の粉砕機の構成、条件にて連続10時間製造を行い約400Kgの粉砕品を得るものとする。
本実施例、比較例においても、実施例1及び比較例1と同様の評価を実施した。結果を表2に示す。
なお、本実施例において、隙間を拡大した下流端からの領域L2の割合が60%の条件においては、粉砕機の回転数の上限でも設定の粒径には達せず、供給口からのトナー原料1の供給量を30Kg/hに下げて粉砕品を作製した。
(Comparative example 2)
Production was continued for 10 hours using the same pulverizer configuration and conditions as Comparative Example 1, except that the peripheral speed of the rotor was set so that the weight average particle size of the pulverized product was in the range of 5.0 μm to 5.2 μm. Approximately 400 kg of crushed product will be obtained.
In this Example and Comparative Example, the same evaluation as in Example 1 and Comparative Example 1 was performed. The results are shown in Table 2.
In this example, under the condition that the ratio of the region L2 from the downstream end where the gap is enlarged is 60%, the set particle size is not reached even at the upper limit of the rotation speed of the crusher, and the toner raw material from the supply port is A pulverized product was produced by lowering the feed rate of No. 1 to 30 kg/h.

処理量について以下のランク付けを行い、各項目において総合評価を実施した。
処理量の評価
A・・・設定粒径に対し40Kg/h以上の処理量が得られた。
B・・・設定粒径に対し30Kg/hの処理量が得られたが、40Kg/hの処理量は得られなかった。
C・・・設定粒径に対し20Kg/hの処理量が得られたが、30Kg/hの処理量は得られなかった。
The throughput was ranked as follows, and a comprehensive evaluation was performed for each item.
Evaluation of throughput A: A throughput of 40 kg/h or more was obtained for the set particle size.
B: A throughput of 30 kg/h was obtained for the set particle size, but a throughput of 40 kg/h was not obtained.
C: A throughput of 20 kg/h was obtained for the set particle size, but a throughput of 30 kg/h was not obtained.

総合評価
A・・・各評価項目においてすべてAランクであった。
B・・・各評価項目において、最低ランクにBランクが1項目でもあった。
C・・・各評価項目において、最低ランクにCランクが1項目でもあった。
Overall rating: A: All evaluation items were ranked A.
B: In each evaluation item, at least one item had a B rank as the lowest rank.
C...In each evaluation item, there was even one item with C rank as the lowest rank.

表2に示すように、実施例においては、良好な結果が得られている。特に、下流側の回転子と固定子の隙間の距離を広げた領域の割合が20%~50%であると、全項目において良好な結果が得られた。 As shown in Table 2, good results were obtained in the Examples. In particular, good results were obtained in all items when the ratio of the area where the distance between the downstream rotor and stator gap was increased was 20% to 50%.

Figure 0007414534000002

表中、「L2の割合」は、隙間の距離が上流側よりも広くなっている下流側の領域の割合である。
Figure 0007414534000002

In the table, "Ratio of L2" is the ratio of the region on the downstream side where the gap distance is wider than on the upstream side.

(実施例3)
本実施例においても、粉砕機に図1に示したものを用いる。
本実施例では、図2に示す回転子103と固定子104の隙間の距離D1及びD2を変化させて粉砕品の製造を行った。
具体的には、D1及びD2を各条件で表3に示す値とし、上流側の回転子と固定子の隙間の距離D1に対する下流側の回転子と固定子の隙間の距離D2の比(D2/D1)を1.1~2.1の範囲で変化させた。
なお、本実施例での下流側の隙間の距離を広げた領域は、図2において、L1=224mm、L2=96mm(隙間の下流端から30%までの領域)とした。
粉砕品の製造条件は、供給口からトナー原料1を40Kg/h、冷風を風量4m/min流入させ、冷風温度-10℃の条件でトナー原料1の粉砕を行った。
なお、本実施例では、粉砕品の重量平均粒径が5.0μm~5.2μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続10時間製造を行い約400Kgの粉砕品を得るものとする。
(Example 3)
In this example as well, the crusher shown in FIG. 1 is used.
In this example, pulverized products were manufactured by varying the distances D1 and D2 of the gap between the rotor 103 and the stator 104 shown in FIG.
Specifically, D1 and D2 are set to the values shown in Table 3 under each condition, and the ratio of the distance D2 of the gap between the rotor and stator on the downstream side to the distance D1 of the gap between the rotor and stator on the upstream side (D2 /D1) was varied in the range of 1.1 to 2.1.
In addition, in FIG. 2, the region where the distance of the gap on the downstream side in this example is widened is L1=224 mm and L2=96 mm (region up to 30% from the downstream end of the gap).
The manufacturing conditions for the pulverized product were as follows: 40 kg/h of toner raw material 1 was flowed through the supply port at a flow rate of 4 m 3 /min of cold air, and the toner raw material 1 was pulverized under the condition that the temperature of the cold air was -10°C.
In this example, the circumferential speed of the rotor was set so that the weight average particle size of the pulverized product was in the range of 5.0 μm to 5.2 μm, and then production was continued for 10 hours under the same conditions to produce a product of approximately 400 kg. A crushed product shall be obtained.

本実施例においても、実施例2と同様の評価を実施し、結果を表3に示した。
なお、本実施例において、D2/D1が2.1となる条件においては、粉砕機の回転数の上限でも設定の粒径には達せず、供給口からのトナー原料1の供給量を30Kg/hに下げて粉砕品を作製した。
表3に示すように、実施例においては、良好な結果が得られている。特に、D2/D1が1.2~2.0の範囲においては全項目において良好な結果が得られている。
In this example as well, the same evaluation as in Example 2 was carried out, and the results are shown in Table 3.
In this example, under the condition that D2/D1 is 2.1, even the upper limit of the rotation speed of the crusher does not reach the set particle size, and the amount of toner raw material 1 supplied from the supply port is reduced to 30 kg/ A pulverized product was prepared by lowering the temperature to h.
As shown in Table 3, good results were obtained in the Examples. In particular, good results were obtained in all items when D2/D1 was in the range of 1.2 to 2.0.

Figure 0007414534000003
Figure 0007414534000003

(実施例4)
本実施例では、第一の粉砕工程で、実施例1で用いた構成の粉砕機を用い、第二の粉砕工程で、比較例1で用いた構成の従来の粉砕機を用いて粉砕品を作製した。
まず、重量平均粒径が4.2μm~4.4μmの粉砕品を得るために、第一の粉砕工程の設定粒径を重量平均粒径5.0μm~5.2μmとした。粉砕品の製造条件は、供給口からトナー原料1を40Kg/hで供給し、冷風を風量4m/min流入させ、冷風温度-10℃の条件でトナー原料1の粉砕を行った。
なお、粉砕品の重量平均粒径が5.0μm~5.2μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続10時間製造を行い約400Kgの粉砕品を得た。
次いで、第一の粉砕工程で得られた粉砕品を第二の粉砕工程に供した。粉砕品の重量平均粒径が4.2μm~4.4μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続10時間製造を行い約400Kgの粉砕品を得るものとする。
(Example 4)
In this example, a pulverizer with the configuration used in Example 1 was used in the first pulverization process, and a conventional pulverizer with the configuration used in Comparative Example 1 was used in the second pulverization process to produce pulverized products. Created.
First, in order to obtain a pulverized product with a weight average particle size of 4.2 μm to 4.4 μm, the particle size set in the first pulverization step was set to a weight average particle size of 5.0 μm to 5.2 μm. The manufacturing conditions for the pulverized product were as follows: Toner raw material 1 was supplied from the supply port at a rate of 40 kg/h, cold air was flowed in at a flow rate of 4 m 3 /min, and toner raw material 1 was pulverized at a cold air temperature of -10°C.
The peripheral speed of the rotor was set so that the weight average particle size of the pulverized product was in the range of 5.0 μm to 5.2 μm, and then production was continued for 10 hours under the same conditions to obtain a pulverized product weighing approximately 400 kg. .
Next, the pulverized product obtained in the first pulverization step was subjected to a second pulverization step. The peripheral speed of the rotor is set so that the weight average particle diameter of the pulverized product is in the range of 4.2 μm to 4.4 μm, and then production is continued for 10 hours under the same conditions to obtain a pulverized product weighing approximately 400 kg. .

(実施例5)
本実施例では、第一の粉砕工程及び第二の粉砕工程ともに実施例1で用いた構成の粉砕機を用いて粉砕品を作製した。
本実施例では実施例4と同様、重量平均粒径が4.2μm~4.4μmの粉砕品を得るために、第一の粉砕工程の設定粒径を重量平均粒径5.0μm~5.2μmとした。粉砕品の製造条件は、供給口からトナー原料1を40Kg/hで供給し、冷風を風量4m/min流入させ、冷風温度-10℃の条件でトナー原料1の粉砕を行った。
なお、粉砕品の重量平均粒径が5.0μm~5.2μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続10時間製造を行い約400Kgの粉砕品を得た。
次いで、第一粉砕工程で得られた粉砕品を第二粉砕工程に供した。粉砕品の重量平均粒径が4.2μm~4.4μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続10時間製造を行い約400Kgの粉砕品を得た。
(Example 5)
In this example, a pulverized product was produced using the pulverizer having the configuration used in Example 1 in both the first pulverization step and the second pulverization step.
In this example, as in Example 4, in order to obtain a pulverized product with a weight average particle size of 4.2 μm to 4.4 μm, the particle size set in the first pulverization step was set to 5.0 μm to 5.0 μm. It was set to 2 μm. The manufacturing conditions for the pulverized product were as follows: Toner raw material 1 was supplied from the supply port at a rate of 40 kg/h, cold air was flowed in at a flow rate of 4 m 3 /min, and toner raw material 1 was pulverized at a cold air temperature of -10°C.
The peripheral speed of the rotor was set so that the weight average particle size of the pulverized product was in the range of 5.0 μm to 5.2 μm, and then production was continued for 10 hours under the same conditions to obtain a pulverized product weighing approximately 400 kg. .
Next, the pulverized product obtained in the first pulverization step was subjected to a second pulverization step. The peripheral speed of the rotor was set so that the weight average particle size of the pulverized product was in the range of 4.2 μm to 4.4 μm, and then production was continued for 10 hours under the same conditions to obtain a pulverized product weighing about 400 kg.

(比較例3)
本比較例では、第一の粉砕工程及び第二の粉砕工程ともに比較例1で用いた構成の粉砕機を用いて粉砕品を作製した。
本比較例では実施例4と同様、重量平均粒径が4.2μm~4.4μmの粉砕品を得るために、第一の粉砕工程の設定粒径を重量平均粒径5.0μm~5.2μmとし、粉砕品の製造条件は、供給口からトナー原料1を40Kg/hで供給し、冷風を風量4m/min流入させ、冷風温度-10℃の条件でトナー原料1の粉砕を行った。
なお、本比較例においても、粉砕品の重量平均粒径が5.0μm~5.2μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続10時間製造を行い約400Kgの粉砕品を得た。
次いで、第一粉砕工程で得られた粉砕品を第二粉砕工程に供した。粉砕品の重量平均粒径が4.2μm~4.4μmの範囲になるように回転子の周速度を設定し、その後同一条件で連続10時間製造を行い約400Kgの粉砕品を得るものとする。
(Comparative example 3)
In this comparative example, a pulverized product was produced using the pulverizer having the configuration used in comparative example 1 in both the first pulverizing step and the second pulverizing step.
In this comparative example, as in Example 4, in order to obtain a pulverized product with a weight average particle size of 4.2 μm to 4.4 μm, the particle size set in the first pulverization step was changed to a weight average particle size of 5.0 μm to 5.0 μm. 2 μm, and the manufacturing conditions for the pulverized product were as follows: Toner raw material 1 was supplied from the supply port at 40 kg/h, cold air was flowed in at a flow rate of 4 m 3 /min, and toner raw material 1 was pulverized at a cold air temperature of -10°C. .
In this comparative example as well, the circumferential speed of the rotor was set so that the weight average particle size of the pulverized product was in the range of 5.0 μm to 5.2 μm, and then production was continued for 10 hours under the same conditions to produce a product weighing approximately 400 kg. A crushed product was obtained.
Next, the pulverized product obtained in the first pulverization step was subjected to a second pulverization step. The peripheral speed of the rotor is set so that the weight average particle diameter of the pulverized product is in the range of 4.2 μm to 4.4 μm, and then production is continued for 10 hours under the same conditions to obtain a pulverized product weighing approximately 400 kg. .

実施例4、5及び、比較例3において、実施例3と同様の評価を実施した。結果を表4に示す。
なお、実施例4及び比較例3の第二の粉砕工程では、回転子のモーター負荷電流が上限に達し設定の粒径には達しなかったため、供給口からのトナーの供給量を30Kg/hに下げて粉砕品を作製した。
In Examples 4 and 5 and Comparative Example 3, the same evaluation as in Example 3 was performed. The results are shown in Table 4.
In the second pulverization process of Example 4 and Comparative Example 3, the rotor motor load current reached the upper limit and did not reach the set particle size, so the amount of toner supplied from the supply port was reduced to 30 kg/h. A pulverized product was prepared by lowering the powder.

表4に示すように、トナー原料を重量平均粒径4μm前半に粉砕するために第一の粉砕工程と第二の粉砕工程を用いる粉砕システムにおいて、少なくとも第一の粉砕工程に実施例の粉砕機を用いることで、良好な結果が得られた。
さらに、第一の粉砕工程と第二の粉砕工程の両方に実施例の粉砕機を用いることで、全項目に優れたさらに良好な結果が得られた。
As shown in Table 4, in a pulverization system that uses a first pulverization step and a second pulverization step to pulverize toner raw materials to a weight average particle size of about 4 μm, at least the first pulverization step is performed using the pulverizer of the embodiment. Good results were obtained using .
Furthermore, by using the pulverizer of the example in both the first pulverizing step and the second pulverizing step, even better results were obtained that were excellent in all items.

Figure 0007414534000004
Figure 0007414534000004

(実施例6)
本実施例においても、粉砕機に図1に示したものを用いる。
本実施例では、図2に示す回転子103の回転周速を変化させた。
なお、本実施例での粉砕機の他の構成は、図2において、D1=1.0mm、D2=1.5mmとした。
粉砕品の製造条件は、供給口からトナー原料1を40Kg/hで供給し、冷風を風量4m/min流入させ、冷風温度-10℃の条件でトナー原料1の粉砕を行った。
なお、本実施例では、粉砕品の重量平均粒径が5.0μm~5.2μmの範囲になるようにL1及びL2を設定し、その後同一条件で連続10時間製造を行い約400Kgの粉砕品を得た。
(Example 6)
In this example as well, the crusher shown in FIG. 1 is used.
In this example, the peripheral speed of rotation of the rotor 103 shown in FIG. 2 was changed.
In addition, other configurations of the crusher in this example were D1=1.0 mm and D2=1.5 mm in FIG. 2.
The manufacturing conditions for the pulverized product were as follows: Toner raw material 1 was supplied from the supply port at a rate of 40 kg/h, cold air was flowed in at a flow rate of 4 m 3 /min, and toner raw material 1 was pulverized at a cold air temperature of -10°C.
In this example, L1 and L2 were set so that the weight average particle size of the pulverized product was in the range of 5.0 μm to 5.2 μm, and then production was continued for 10 hours under the same conditions to produce a pulverized product weighing approximately 400 kg. I got it.

平均円形度の評価
A・・・0.955以上
B・・・0.950以上0.955未満
Evaluation of average circularity A: 0.955 or more B: 0.950 or more and less than 0.955

D4/D1の評価(粒度分布の評価)
A・・・1.30未満
B・・・1.30以上1.40未満
Evaluation of D4/D1 (evaluation of particle size distribution)
A...Less than 1.30 B...1.30 or more and less than 1.40

総合評価
A・・・各評価項目においてすべてAランクであった。
B・・・各評価項目において、最低ランクにBランクが1項目でもあった。
Overall rating: A: All evaluation items were ranked A.
B: In each evaluation item, at least one item had a B rank as the lowest rank.

表5に示すように、実施例においては、良好な結果が得られている。特に、周速が200m/secであるとき全項目において良好な結果が得られている。 As shown in Table 5, good results were obtained in the Examples. In particular, good results were obtained in all items when the peripheral speed was 200 m/sec.

Figure 0007414534000005
Figure 0007414534000005

(実施例7)
本実施例においても、粉砕機に図1に示したものを用いる。
本実施例においても図2に示す回転子103の回転周速を変化させていき、粉砕品の重量平均粒径が5.0μm~5.2μmの範囲になるように、D2/D1を変化させた。
なお、本実施例での下流側の隙間の距離を広げた領域は、図2において、L1=224mm、L2=96mm(隙間の下流端から30%までの領域)とした。
粉砕品の製造条件は、供給口からトナー原料1を40Kg/hで供給し、冷風を風量4m/min流入させ、冷風温度-10℃の条件でトナー原料1の粉砕を行った。
なお、本実施例においても、同一条件で連続10時間製造を行い約400Kgの粉砕品を得るものとする。
本実施例においても、実施例6と同様の評価を実施した。結果を表6に示す。
なお、本実施例において、D2/D1が2.1となる条件においては、粉砕機の回転数の上限でも設定の粒径には達せず、供給口からのトナー原料1の供給量を30Kg/hに下げて粉砕品を作製した。
(Example 7)
In this example as well, the crusher shown in FIG. 1 is used.
In this example as well, the peripheral speed of rotation of the rotor 103 shown in FIG. 2 was changed, and D2/D1 was changed so that the weight average particle size of the pulverized product was in the range of 5.0 μm to 5.2 μm. Ta.
In addition, in FIG. 2, the region where the distance of the gap on the downstream side in this example is widened is L1=224 mm and L2=96 mm (region up to 30% from the downstream end of the gap).
The manufacturing conditions for the pulverized product were as follows: Toner raw material 1 was supplied from the supply port at a rate of 40 kg/h, cold air was flowed in at a flow rate of 4 m 3 /min, and toner raw material 1 was pulverized at a cold air temperature of -10°C.
In this example, production is continued for 10 hours under the same conditions to obtain a pulverized product weighing about 400 kg.
In this example as well, the same evaluation as in Example 6 was performed. The results are shown in Table 6.
In this example, under the condition that D2/D1 is 2.1, even the upper limit of the rotation speed of the crusher does not reach the set particle size, and the amount of toner raw material 1 supplied from the supply port is reduced to 30 kg/ A pulverized product was prepared by lowering the temperature to h.

表6に示すように、実施例においては、良好な結果が得られている。特に、周速が200m/secであるとき全項目において良好な結果が得られている。 As shown in Table 6, good results were obtained in the Examples. In particular, good results were obtained in all items when the peripheral speed was 200 m/sec.

Figure 0007414534000006
Figure 0007414534000006

(実施例8)
本実施例において、第一の粉砕工程及び第二の粉砕工程ともに、粉砕機に図1に示したものを用いて、図2に示す回転子103の回転周速を160m/secに固定して粉砕を行った。なお、本実施例での下流側の隙間の距離を広げた領域は、図2において、L1=224mm、L2=96mm(隙間の下流端から30%までの領域)とした。
まず、重量平均粒径が4.2μm~4.4μmの粉砕品を得るために、第一の粉砕工程の設定粒径を重量平均粒径5.0μm~5.2μmとした。粉砕品の製造条件は、供給口からトナー原料1を40Kg/hで供給し、冷風を風量4m/min流入させ、冷風温度-10℃の条件でトナー原料1の粉砕を行った。
なお、粉砕品の重量平均粒径が5.0μm~5.2μmの範囲になるようにD2/D1を変化させ、その後同一条件で連続10時間製造を行い約400Kgの粉砕品を得た。
次いで、第一粉砕工程で得られた粉砕品を第二粉砕工程に供した。粉砕品の重量平均粒径が4.2μm~4.4μmの範囲になるようにD2/D1を変化させ、その後同一条件で連続10時間製造を行い約400Kgの粉砕品を得た。
(Example 8)
In this example, in both the first crushing process and the second crushing process, the crusher shown in FIG. 1 was used, and the peripheral speed of rotation of the rotor 103 shown in FIG. 2 was fixed at 160 m/sec. Shredded. In addition, in FIG. 2, the region where the distance of the gap on the downstream side in this example is widened is L1=224 mm and L2=96 mm (region up to 30% from the downstream end of the gap).
First, in order to obtain a pulverized product with a weight average particle size of 4.2 μm to 4.4 μm, the particle size set in the first pulverization step was set to a weight average particle size of 5.0 μm to 5.2 μm. The manufacturing conditions for the pulverized product were as follows: Toner raw material 1 was supplied from the supply port at a rate of 40 kg/h, cold air was flowed in at a flow rate of 4 m 3 /min, and toner raw material 1 was pulverized at a cold air temperature of -10°C.
Incidentally, D2/D1 was changed so that the weight average particle diameter of the pulverized product was in the range of 5.0 μm to 5.2 μm, and then production was continued for 10 hours under the same conditions to obtain a pulverized product weighing about 400 kg.
Next, the pulverized product obtained in the first pulverization step was subjected to a second pulverization step. D2/D1 was changed so that the weight average particle size of the pulverized product was in the range of 4.2 μm to 4.4 μm, and then production was continued for 10 hours under the same conditions to obtain a pulverized product weighing about 400 kg.

(実施例9)
本実施例において、第一の粉砕工程及び第二の粉砕工程ともに、粉砕機に図1に示したものを用いた。図2に示す回転子103の回転周速を第一の粉砕工程では160m/secに、第二の粉砕工程では200m/secに固定して粉砕を行った。なお、本実施例での下流側の隙間の距離を広げた領域は、図2において、L1=224mm、L2=96mm(隙間の下流端から30%までの領域)とした。
まず、重量平均粒径が4.2μm~4.4μmの粉砕品を得るために、第一の粉砕工程の設定粒径を重量平均粒径5.0μm~5.2μmとした。粉砕品の製造条件は、供給口からトナー原料1を40Kg/hで供給し、冷風を風量4m/min流入させ、冷風温
度-10℃の条件でトナー原料1の粉砕を行った。
なお、粉砕品の重量平均粒径が5.0μm~5.2μmの範囲になるようにD2/D1を変化させ、その後同一条件で連続10時間製造を行い約400Kgの粉砕品を得た。
次いで、第一粉砕工程で得られた粉砕品を第二粉砕工程に供した。粉砕品の重量平均粒径が4.2μm~4.4μmの範囲になるようにD2/D1を変化させ、その後同一条件で連続10時間製造を行い約400Kgの粉砕品を得た。
(Example 9)
In this example, the crusher shown in FIG. 1 was used in both the first crushing process and the second crushing process. Pulverization was carried out with the peripheral speed of rotation of the rotor 103 shown in FIG. 2 fixed at 160 m/sec in the first crushing process and 200 m/sec in the second crushing process. In addition, in FIG. 2, the region where the distance of the gap on the downstream side in this example is widened is L1=224 mm and L2=96 mm (region up to 30% from the downstream end of the gap).
First, in order to obtain a pulverized product with a weight average particle size of 4.2 μm to 4.4 μm, the particle size set in the first pulverization step was set to a weight average particle size of 5.0 μm to 5.2 μm. The manufacturing conditions for the pulverized product were as follows: Toner raw material 1 was supplied from the supply port at a rate of 40 kg/h, cold air was flowed in at a flow rate of 4 m 3 /min, and toner raw material 1 was pulverized at a cold air temperature of -10°C.
Incidentally, D2/D1 was changed so that the weight average particle diameter of the pulverized product was in the range of 5.0 μm to 5.2 μm, and then production was continued for 10 hours under the same conditions to obtain a pulverized product weighing about 400 kg.
Next, the pulverized product obtained in the first pulverization step was subjected to a second pulverization step. D2/D1 was changed so that the weight average particle diameter of the pulverized product was in the range of 4.2 μm to 4.4 μm, and then production was continued for 10 hours under the same conditions to obtain a pulverized product weighing about 400 kg.

(実施例10)
本実施例において、第一の粉砕工程及び第二の粉砕工程ともに、粉砕機に図1に示したものを用いた。図2に示す回転子103の回転周速を200m/secに固定して粉砕を行った。なお、本実施例での下流側の隙間の距離を広げた領域は、図2において、L1=224mm、L2=96mm(隙間の下流端から30%までの領域)とした。
まず、重量平均粒径が4.2μm~4.4μmの粉砕品を得るために、第一の粉砕工程の設定粒径を重量平均粒径5.0μm~5.2μmとした。粉砕品の製造条件は、供給口からトナー原料1を40Kg/hで供給し、冷風を風量4m/min流入させ、冷風温度-10℃の条件でトナー原料1の粉砕を行った。
なお、粉砕品の重量平均粒径が5.0μm~5.2μmの範囲になるようにD2/D1を変化させ、その後同一条件で連続10時間製造を行い約400Kgの粉砕品を得た。
次いで、第一粉砕工程で得られた粉砕品を第二粉砕工程に供した。粉砕品の重量平均粒径が4.2μm~4.4μmの範囲になるようにD2/D1を変化させ、その後同一条件で連続10時間製造を行い約400Kgの粉砕品を得た。
(Example 10)
In this example, the crusher shown in FIG. 1 was used in both the first crushing process and the second crushing process. Pulverization was carried out with the peripheral speed of rotation of the rotor 103 shown in FIG. 2 fixed at 200 m/sec. In addition, in FIG. 2, the region where the distance of the gap on the downstream side in this example is widened is L1=224 mm and L2=96 mm (region up to 30% from the downstream end of the gap).
First, in order to obtain a pulverized product with a weight average particle size of 4.2 μm to 4.4 μm, the particle size set in the first pulverization step was set to a weight average particle size of 5.0 μm to 5.2 μm. The manufacturing conditions for the pulverized product were as follows: Toner raw material 1 was supplied from the supply port at a rate of 40 kg/h, cold air was flowed in at a flow rate of 4 m 3 /min, and toner raw material 1 was pulverized at a cold air temperature of -10°C.
Incidentally, D2/D1 was changed so that the weight average particle diameter of the pulverized product was in the range of 5.0 μm to 5.2 μm, and then production was continued for 10 hours under the same conditions to obtain a pulverized product weighing about 400 kg.
Next, the pulverized product obtained in the first pulverization step was subjected to a second pulverization step. D2/D1 was changed so that the weight average particle diameter of the pulverized product was in the range of 4.2 μm to 4.4 μm, and then production was continued for 10 hours under the same conditions to obtain a pulverized product weighing about 400 kg.

実施例8、9及び、実施例10において、実施例6と同様の評価を実施した。結果を表7に示す。
表7に示すように、トナー原料を重量平均粒径4μm前半に粉砕するために第一の粉砕工程と第二の粉砕工程を用いる粉砕システムにおいて、少なくとも第二の粉砕工程に実施例の粉砕機を用いることで、良好な結果が得られた。
In Examples 8, 9, and 10, the same evaluation as in Example 6 was performed. The results are shown in Table 7.
As shown in Table 7, in a pulverization system that uses a first pulverization step and a second pulverization step to pulverize toner raw materials into a weight average particle diameter of 4 μm, the pulverizer of the embodiment is used at least in the second pulverization step. Good results were obtained using .

Figure 0007414534000007
Figure 0007414534000007

101:供給口、1021:前室、1022:前室出口部、103:回転子、104:固定子、105:後室、106:排出口、107:回転軸、108:冷風発生装置、109:冷水供給口、110:冷水排出口
101: Supply port, 1021: Front chamber, 1022: Front chamber outlet, 103: Rotor, 104: Stator, 105: Rear chamber, 106: Discharge port, 107: Rotating shaft, 108: Cold air generator, 109: Cold water supply port, 110: Cold water discharge port

Claims (8)

トナー製造用機械式粉砕機であって、
該粉砕機は、
被粉砕物の投入口及び排出口を有するケーシング内に、
中心回転軸に支持され、外周面に複数の凸部及び凹部を有する円柱形の回転子と、
該回転子の外側に、該回転子の該外周面と所定の間隙を設けて配置され、その内周面に複数の凸部及び凹部を有する固定子と、を備え、
該粉砕機は、該固定子の該内周面と該回転子の該外周面とが形成する隙間に被粉砕物を通過させて粉砕し、
該回転子の該凸部の先端と該固定子の該凸部の先端が対向した時の隙間の距離が、該被粉砕物の通過方向において上流側よりも下流側が広く、
該回転子の該凸部の先端と該固定子の該凸部の先端が対向した時の隙間の距離が広くなっている該下流側においても、該回転子の該外周面及び該固定子の該内周面には、該凸部及び該凹部が存在していることを特徴とするトナー製造用機械式粉砕機。
A mechanical crusher for toner production,
The crusher is
Inside the casing, which has an input port and a discharge port for the material to be crushed,
a cylindrical rotor supported by a central rotating shaft and having a plurality of convex portions and concave portions on an outer peripheral surface;
a stator disposed outside the rotor with a predetermined gap from the outer circumferential surface of the rotor, and having a plurality of convex portions and concave portions on the inner circumferential surface thereof;
The pulverizer passes the object to be pulverized through a gap formed between the inner circumferential surface of the stator and the outer circumferential surface of the rotor, and pulverizes the object.
When the tip of the convex part of the rotor and the tip of the convex part of the stator face each other, the gap distance is wider on the downstream side than on the upstream side in the passing direction of the object to be crushed,
Even on the downstream side, where the distance between the gaps when the tips of the convex portions of the rotor and the tips of the convex portions of the stator face each other is wide, the outer peripheral surface of the rotor and the stator A mechanical crusher for producing toner, characterized in that the inner peripheral surface has the convex portion and the concave portion .
前記下流側における、前記隙間の距離が前記上流側よりも広くなっている領域が、
前記隙間の前記中心回転軸方向の距離を基準として、前記隙間の下流側端部を起点に前記中心回転軸上流方向へ15%以上55%以下までの範囲である請求項1に記載のトナー製造用機械式粉砕機。
A region on the downstream side where the gap distance is wider than on the upstream side,
The toner production according to claim 1, wherein the distance in the direction of the center rotation axis of the gap is in the range of 15% or more and upstream of the center rotation axis from the downstream end of the gap to 55% or less. mechanical crusher.
前記下流側の隙間の距離は、前記上流側の隙間の距離の1.1倍以上2.1倍以下である請求項1又は2に記載のトナー製造用機械式粉砕機。 3. The mechanical crusher for producing toner according to claim 1, wherein the distance of the downstream gap is 1.1 times or more and 2.1 times or less the distance of the upstream gap. トナーの原料を粉砕する粉砕工程を有するトナーの製造方法であって、
該粉砕工程で用いる粉砕機が、請求項1~3のいずれか一項に記載のトナー製造用機械式粉砕機であることを特徴とするトナーの製造方法。
A toner manufacturing method comprising a pulverizing step of pulverizing toner raw materials, the method comprising:
A method for producing toner, characterized in that the pulverizer used in the pulverizing step is the mechanical pulverizer for toner production according to any one of claims 1 to 3.
トナー原料を粉砕する粉砕工程を有するトナーの製造方法であって、
該粉砕工程は、
該トナー原料を粉砕し、第一の粉砕品を得る第一の粉砕工程及び
該第一の粉砕品をさらに粉砕する第二の粉砕工程を有し、
少なくとも該第一の粉砕工程で用いる粉砕機が、請求項1~3のいずれか一項に記載のトナー製造用機械式粉砕機であるトナーの製造方法。
A toner manufacturing method comprising a pulverizing step of pulverizing toner raw materials, the method comprising:
The grinding step is
a first pulverizing step of pulverizing the toner raw material to obtain a first pulverized product; and a second pulverizing step of further pulverizing the first pulverized product;
A method for producing a toner, wherein the pulverizer used in at least the first pulverizing step is the mechanical pulverizer for toner production according to any one of claims 1 to 3.
前記粉砕工程において、前記トナー製造用機械式粉砕機における前記回転子の回転周速を180m/sec以上230m/sec以下に設定する請求項4又は5に記載のトナーの製造方法。 6. The toner manufacturing method according to claim 4, wherein in the pulverizing step, the peripheral speed of rotation of the rotor in the mechanical pulverizer for toner manufacturing is set to 180 m/sec or more and 230 m/sec or less. トナーの原料を粉砕する粉砕工程を有するトナーの製造方法であって、
該粉砕工程は、
該トナー原料を粉砕し、第一の粉砕品を得る第一の粉砕工程及び
該第一の粉砕品をさらに粉砕する第二の粉砕工程を有し、
該第一の粉砕工程及び該第二の粉砕工程で用いる粉砕機が請求項1~3のいずれか一項に記載のトナー製造用機械式粉砕機であり、
少なくとも該第二の粉砕工程において、前記トナー製造用機械式粉砕機における前記回転子の回転周速を180m/sec以上230m/sec以下に設定するトナーの製造方法。
A toner manufacturing method comprising a pulverizing step of pulverizing toner raw materials, the method comprising:
The grinding step is
a first pulverizing step of pulverizing the toner raw material to obtain a first pulverized product; and a second pulverizing step of further pulverizing the first pulverized product;
The pulverizer used in the first pulverizing step and the second pulverizing step is a mechanical pulverizer for toner production according to any one of claims 1 to 3,
A toner manufacturing method, wherein in at least the second pulverizing step, the rotation peripheral speed of the rotor in the toner manufacturing mechanical pulverizer is set to 180 m/sec or more and 230 m/sec or less.
トナー原料を粉砕し、第一の粉砕品を得る第一の粉砕機及び
該第一の粉砕品をさらに粉砕する第二の粉砕機を備えるトナー製造システムであって、
少なくとも該第一の粉砕機が、請求項1~3のいずれか一項に記載のトナー製造用機械式粉砕機であるトナー製造システム。
A toner manufacturing system comprising: a first pulverizer that pulverizes a toner raw material to obtain a first pulverized product; and a second pulverizer that further pulverizes the first pulverized product.
A toner manufacturing system, wherein at least the first pulverizer is a mechanical pulverizer for toner manufacturing according to any one of claims 1 to 3.
JP2020001584A 2020-01-08 2020-01-08 Mechanical crusher for toner manufacturing, toner manufacturing method, and toner manufacturing system Active JP7414534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020001584A JP7414534B2 (en) 2020-01-08 2020-01-08 Mechanical crusher for toner manufacturing, toner manufacturing method, and toner manufacturing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020001584A JP7414534B2 (en) 2020-01-08 2020-01-08 Mechanical crusher for toner manufacturing, toner manufacturing method, and toner manufacturing system

Publications (2)

Publication Number Publication Date
JP2021110803A JP2021110803A (en) 2021-08-02
JP7414534B2 true JP7414534B2 (en) 2024-01-16

Family

ID=77059798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020001584A Active JP7414534B2 (en) 2020-01-08 2020-01-08 Mechanical crusher for toner manufacturing, toner manufacturing method, and toner manufacturing system

Country Status (1)

Country Link
JP (1) JP7414534B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167491A (en) 2004-02-13 2004-06-17 Mitsubishi Chemicals Corp Method for manufacturing electrostatic charge image developing toner and apparatus for pulverizing and classifying toner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167491A (en) 2004-02-13 2004-06-17 Mitsubishi Chemicals Corp Method for manufacturing electrostatic charge image developing toner and apparatus for pulverizing and classifying toner

Also Published As

Publication number Publication date
JP2021110803A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
KR101618659B1 (en) Heat treating apparatus for powder particles and method of producing toner
JP6021349B2 (en) Heat treatment apparatus and toner manufacturing method
JP5414507B2 (en) Toner heat treatment apparatus and toner manufacturing method
JP5479072B2 (en) Toner heat treatment apparatus and toner manufacturing method
US11829102B2 (en) Toner classification apparatus and toner production method
JP7414534B2 (en) Mechanical crusher for toner manufacturing, toner manufacturing method, and toner manufacturing system
US11835919B2 (en) Toner classification apparatus and a toner production method
JP7476022B2 (en) Toner manufacturing method
JP7199994B2 (en) Toner manufacturing method
JP7475983B2 (en) Toner manufacturing method and manufacturing apparatus
JP7494048B2 (en) Mechanical pulverizer for producing toner and pulverization process system for producing toner
JP7483429B2 (en) Toner manufacturing method and mechanical pulverizer for toner manufacturing
JP2021196436A (en) Toner manufacturing method and toner manufacturing device
JP2020134662A (en) Toner production method and toner production apparatus
JP2021196437A (en) Method for manufacturing toner
JP2022041325A (en) Method for manufacturing toner
JP2022166401A (en) Mechanical crusher for production of toner and crushing process system producing toner
JP2022064233A (en) Pulverizing device for toner and method for manufacturing toner
JP2022001934A (en) Classifier to toer and method for manufacturing toner
JP2023170729A (en) Toner manufacturing method
JP2023030802A (en) Classification device for toners and toner manufacturing method
US20230168597A1 (en) Method for manufacturing toner
JP7492405B2 (en) Toner manufacturing method
JP7479875B2 (en) Toner manufacturing method
JP2012173446A (en) Heat treatment device of resin particle and method of manufacturing toner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231228

R151 Written notification of patent or utility model registration

Ref document number: 7414534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151