JP2022161475A - 欠陥検出装置、欠陥検出方法、画像処理装置及び画像処理プログラム - Google Patents

欠陥検出装置、欠陥検出方法、画像処理装置及び画像処理プログラム Download PDF

Info

Publication number
JP2022161475A
JP2022161475A JP2021066331A JP2021066331A JP2022161475A JP 2022161475 A JP2022161475 A JP 2022161475A JP 2021066331 A JP2021066331 A JP 2021066331A JP 2021066331 A JP2021066331 A JP 2021066331A JP 2022161475 A JP2022161475 A JP 2022161475A
Authority
JP
Japan
Prior art keywords
area
image
defect
difference
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021066331A
Other languages
English (en)
Inventor
大樹 金原
Daiki Kanehara
佳明 楊
Chia Ming Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lasertec Corp
Original Assignee
Lasertec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lasertec Corp filed Critical Lasertec Corp
Priority to JP2021066331A priority Critical patent/JP2022161475A/ja
Publication of JP2022161475A publication Critical patent/JP2022161475A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

【課題】装置起因の微小な差分による疑似欠陥を排除し、微小欠陥の検出感度を向上させることができる欠陥検出装置、欠陥検出方法、画像処理装置及び画像処理プログラムを提供する。【解決手段】本発明に係る欠陥検出装置1は、試料60を撮像する撮像光学系10と、撮像光学系10が撮像した画像を処理する画像処理装置30と、を備え、画像処理装置30は、試料60の欠陥候補領域を撮像した画像を取得する画像取得部31と、差分画像GSを生成させる差分画像生成部32と、バイナリーマップBMを生成させるバイナリーマップ生成部33と、エリアフィルターマップAFMを生成させるエリアフィルターマップ生成部34と、クラスター割合を算出するクラスター割合算出部35と、0<クラスター割合≦所定の割合上限値を満たすときに、欠陥候補領域に欠陥が存在すると判断する欠陥判断部と、を有する。【選択図】図1

Description

本発明は、欠陥検出装置、欠陥検出方法、画像処理装置及び画像処理プログラムに関する。
半導体プロセスノードの微細化に伴い、マスク検査のさらなる高感度化が急務となっている。マスクの異物を検査する方法として、Die-to-Die検査、Mask-to-Mask検査等が知られている。
Die-to-Die検査は、例えば、正常なDie画像と、欠陥を含むDie画像とを比較し、輝度の差から欠陥を検出する方法である。輝度の差を差分とも呼ぶ。Die-to-Die検査は、マスクに複数設けられたDieにおいて、隣接するDie同士を比較し、差分から欠陥を検出してもよい。
特開2018-084587号公報 特開2018-084588号公報 特開2017-003274号公報
Die-to-Die検査において、装置起因及びプロセス起因による差分のように、異物以外の差分を疑似欠陥として誤検出してしまう場合がある。具体的には、Die-to-Die検査において、大きな欠陥は、画像間の差分やサイズ(差分分布)が大きいため、比較的容易に検出することができる。しかしながら、微小な欠陥は、画像間の差分やサイズが小さいため、これを検出しようとすると、装置起因の微小な差分を疑似欠陥として検出してしまう。これにより、微小な欠陥の検出感度を低下させている。
本発明の目的は、このような問題を解決するためになされたものであり、装置起因の微小な差分による疑似欠陥を排除し、微小欠陥の検出感度を向上させることができる欠陥検出装置、欠陥検出方法、画像処理装置及び画像処理プログラムを提供することである。
本実施形態の一態様に係る欠陥検出装置は、試料を撮像する撮像光学系と、前記撮像光学系が撮像した画像を処理する画像処理装置と、を備え、前記画像処理装置は、前記試料の欠陥候補領域を撮像した第1画像及び前記欠陥候補領域に対応した領域を撮像した第2画像を取得する画像取得部と、前記第1画像に含まれる複数の画素の各輝度と、前記第2画像に含まれる複数の画素の各輝度と、の差分を算出することにより、各差分値を有する複数の画素を含む差分画像を生成させる差分画像生成部と、前記差分画像に含まれる前記複数の画素の前記差分値を、所定の差分閾値よりも大きい第1値または前記差分閾値以下の第2値に変換してバイナリーマップを生成させるバイナリーマップ生成部と、エリアサイズ数として設定された複数個数の隣接した画素を含むエリア毎に順番に前記バイナリーマップに含まれる前記複数の画素に渡ってエリアフィルタによる畳み込みを行う際に、前記エリアフィルタがかけられる前記エリアの前記第1値の画素数がエリアカウント数として設定された個数以上の場合に、前記エリアをクラスターとして出力されたエリアフィルターマップを生成させるエリアフィルターマップ生成部と、前記エリアフィルターマップにおける前記クラスターの個数をクラスター数とし、前記エリアサイズ数に対する前記エリアカウント数の比に比例した係数を補正係数とした場合に、下記(A)式のクラスター割合を算出するクラスター割合算出部と、
クラスター割合=(クラスター数×補正係数)/(バイナリーマップにおける第1値の画素数) (A)
下記の(B)式を満たすときに、前記欠陥候補領域に欠陥が存在すると判断する欠陥判断部と、
0<クラスター割合≦所定の割合上限値 (B)
を有する。
上記の欠陥検出装置では、前記エリアは、行方向及び列方向に同じ数だけ並んだ前記画素を含み、前記エリアフィルタは、前記行方向及び前記列方向の少なくともいずれかに1行または1列ずつ移動して畳み込みを行ってもよい。
上記の欠陥検出装置では、前記割合上限値は、予め微小欠陥の個数を検出した試料を用いて設定されてもよい。
上記の欠陥検出装置では、前記撮像光学系が撮像した前記画像から所定の差分値を有する画素を含む前記欠陥候補領域を検出する欠陥候補検出部をさらに備えてもよい。
本実施形態の一態様に係る欠陥検出処理方法は、試料を撮像する撮像ステップと、撮像された画像を処理する画像処理ステップと、を備え、前記画像処理ステップは、前記試料の欠陥候補領域を撮像した第1画像及び前記欠陥候補領域に対応した領域を撮像した第2画像を取得する画像取得ステップと、前記第1画像に含まれる複数の画素の各輝度と、前記第2画像に含まれる複数の画素の各輝度と、の差分を算出することにより、各差分値を有する複数の画素を含む差分画像を生成させる差分画像生成ステップと、前記差分画像に含まれる前記複数の画素の前記差分値を、所定の差分閾値よりも大きい第1値または前記差分閾値以下の第2値に変換してバイナリーマップを生成させるバイナリーマップ生成ステップと、エリアサイズ数として設定された複数個数の隣接した画素を含むエリア毎に順番に前記バイナリーマップに含まれる前記複数の画素に渡ってエリアフィルタによる畳み込みを行う際に、前記エリアフィルタがかけられる前記エリアの前記第1値の画素数がエリアカウント数として設定された個数以上の場合に、前記エリアをクラスターとして出力されたエリアフィルターマップを生成させるエリアフィルターマップ生成ステップと、前記エリアフィルターマップにおける前記クラスターの個数をクラスター数とし、前記エリアサイズ数に対する前記エリアカウント数の比に比例した係数を補正係数とした場合に、下記(A)式のクラスター割合を算出するクラスター割合算出ステップと、
クラスター割合=(クラスター数×補正係数)/(バイナリーマップにおける第1値の画素数) (A)
下記の(B)式を満たすときに、前記欠陥候補領域に欠陥が存在すると判断する欠陥判断ステップと、
0<クラスター割合≦所定の割合上限値 (B)
を有する。
本実施形態の一態様に係る画像処理装置は、試料の欠陥候補領域を撮像した第1画像及び前記欠陥候補領域に対応した領域を撮像した第2画像を取得する画像取得部と、前記第1画像に含まれる複数の画素の各輝度と、前記第2画像に含まれる複数の画素の各輝度と、の差分を算出することにより、各差分値を有する複数の画素を含む差分画像を生成させる差分画像生成部と、前記差分画像に含まれる前記複数の画素の前記差分値を、所定の差分閾値よりも大きい第1値または前記差分閾値以下の第2値に変換してバイナリーマップを生成させるバイナリーマップ生成部と、エリアサイズ数として設定された複数個数の隣接した画素を含むエリア毎に順番に前記バイナリーマップに含まれる前記複数の画素に渡ってエリアフィルタによる畳み込みを行う際に、前記エリアフィルタがかけられる前記エリアの前記第1値の画素数がエリアカウント数として設定された個数以上の場合に、前記エリアをクラスターとして出力されたエリアフィルターマップを生成させるエリアフィルターマップ生成部と、前記エリアフィルターマップにおける前記クラスターの個数をクラスター数とし、前記エリアサイズ数に対する前記エリアカウント数の比に比例した係数を補正係数とした場合に、下記(A)式のクラスター割合を算出するクラスター割合算出部と、
クラスター割合=(クラスター数×補正係数)/(バイナリーマップにおける第1値の画素数) (A)
下記の(B)式を満たすときに、前記欠陥候補領域に欠陥が存在すると判断する欠陥判断部と、
0<クラスター割合≦所定の割合上限値 (B)
を備える。
本実施形態の一態様に係る欠陥検出処理プログラムでは、試料の欠陥候補領域を撮像した第1画像及び前記欠陥候補領域に対応した領域を撮像した第2画像を取得する画像取得ステップと、前記第1画像に含まれる複数の画素の各輝度と、前記第2画像に含まれる複数の画素の各輝度と、の差分を算出することにより、各差分値を有する複数の画素を含む差分画像を生成させる差分画像生成ステップと、前記差分画像に含まれる前記複数の画素の前記差分値を、所定の差分閾値よりも大きい第1値または前記差分閾値以下の第2値に変換してバイナリーマップを生成させるバイナリーマップ生成ステップと、エリアサイズ数として設定された複数個数の隣接した画素を含むエリア毎に順番に前記バイナリーマップに含まれる前記複数の画素に渡ってエリアフィルタによる畳み込みを行う際に、前記エリアフィルタがかけられる前記エリアの前記第1値の画素数がエリアカウント数として設定された個数以上の場合に、前記エリアをクラスターとして出力されたエリアフィルターマップを生成させるエリアフィルターマップ生成ステップと、前記エリアフィルターマップにおける前記クラスターの個数をクラスター数とし、前記エリアサイズ数に対する前記エリアカウント数の比に比例した係数を補正係数とした場合に、下記(A)式のクラスター割合を算出するクラスター割合算出ステップと、
クラスター割合=(クラスター数×補正係数)/(バイナリーマップにおける第1値の画素数) (A)
下記の(B)式を満たすときに、前記欠陥候補領域に欠陥が存在すると判断する欠陥判断ステップと、
0<クラスター割合≦所定の割合上限値 (B)
をコンピュータに実行させる。
本発明によれば、装置起因の微小な差分による疑似欠陥を排除し、微小欠陥の検出感度を向上させることができる欠陥検出装置、欠陥検出方法、画像処理装置及び画像処理プログラムを提供することができる。
実施形態に係る欠陥検出装置を例示した構成図である。 実施形態に係る画像処理装置を例示したブロック図である。 実施形態に係る画像取得部が取得した画像及び差分画像生成部が生成した差分画像を例示した図である。 実施形態に係る差分画像生成部が生成した差分画像及びバイナリーマップ生成部が生成したバイナリーマップを例示した図である。 実施形態に係るバイナリーマップ生成部が生成したバイナリーマップ及びエリアフィルターマップ生成部が生成したエリアフィルターマップを例示した図である。 実施形態に係る微小欠陥の差分分布を例示した図である。 実施形態に係るデフォーカスによる差分分布を例示した図である。 実施形態に係る欠陥検出装置の欠陥検出方法を例示したフローチャート図である。 実施形態に係る画像処理装置の画像処理方法を例示したフローチャート図である。 実施形態に係るシミュレーション結果を例示したグラフであり、横軸は、割合上限設定値を示し、縦軸は、削除されずに残った疑似欠陥個数及び削除されずに残った微小欠陥個数を示す。 実施形態に係るシミュレーション結果を例示したグラフであり、横軸は、割合上限設定値を示し、縦軸は、削除されずに残った疑似欠陥個数及び削除されずに残った微小欠陥個数を示す。 実施形態に係るシミュレーション結果を例示したグラフであり、横軸は、割合上限設定値を示し、縦軸は、削除されずに残った疑似欠陥個数を示す。 実施形態に係るシミュレーション結果を例示したグラフであり、横軸は、割合上限設定値を示し、縦軸は、削除されずに残った疑似欠陥個数を示す。 実施形態に係る画像処理装置が処理した画像を例示した図である。
以下、本実施形態の具体的構成について図面を参照して説明する。以下の説明は、本発明の好適な実施の形態を示すものであって、本発明の範囲が以下の実施の形態に限定されるものではない。以下の説明において、同一の符号が付されたものは実質的に同様の内容を示している。
(実施形態)
実施形態に係る欠陥検出装置を説明する。まず、<欠陥検出装置の構成>を説明し、その後、<画像処理装置の構成>を説明する。そして、欠陥検出装置を用いた<欠陥検出方法>を説明した後、画像処理装置を用いた<画像処理方法>を説明する。
<欠陥検出装置の構成>
図1は、実施形態に係る欠陥検出装置を例示した構成図である。図1に示すように、欠陥検出装置1は、撮像光学系10、欠陥候補検出部20、画像処理装置30、表示装置40及びステージ50を備えている。ここで、欠陥検出装置1の説明の便宜のために、XYZ直交座標軸系を導入する。ステージ50のステージ面51に直交する方向をZ軸方向、Z軸方向に直交する面をXY面とする。例えば、+Z軸方向を上方と呼び、-Z軸方向を下方と呼ぶ。なお、上方及び下方は、説明の便宜のためであり、実際の欠陥検出装置1の配置方向を示すものではない。
撮像光学系10は、ステージ面51上に配置された試料60を撮像する。撮像光学系10は、光源11、ビームスプリッタ12、対物レンズ13、及び、検出器14を備えている。なお、図1に示す撮像光学系10は、適宜、簡略されている。撮像光学系10は、上記の構成以外の光学素子、レンズ、光スキャナ、ミラー、フィルタ、ビームスプリッタなどが設けられていてもよい。例えば、撮像光学系10はコンフォーカル光学系であってもよい。
光源11は、照明光L11を発生する。光源11は、ランプ光源、LED(Light Emitting Diode)光源、レーザ光源などである。照明光L11は、例えば、EUV(Extreme Ultraviolet)光でもよい。なお、照明光L11は、EUV光に限らず、UV光、可視光でもよい。光源11からの照明光L11は、ビームスプリッタ12に入射する。ビームスプリッタ12は、例えば、ハーフミラーであり、照明光L11のほぼ半分を試料60の方向に反射する。ビームスプリッタ12で反射した照明光L11は、対物レンズ13に入射する。対物レンズ13の光軸OXは、例えば、Z軸方向と平行となっている。対物レンズ13は、照明光L11を試料60に集光する。これにより、試料60を照明することができる。
ステージ50には、撮像対象の試料60が載置されている。ステージ面51上において、試料60は、XY平面に平行に保持されている。試料60の厚さ方向は、Z軸方向とされている。ステージ50は、駆動機構52を有する3次元駆動ステージである。画像処理装置30が駆動機構52を制御することで、ステージ50がXYZ軸方向に駆動される。
試料60は、例えば、微細なパターン61が形成されたフォトマスクや半導体ウェハ等であり、ステージ面51上に保持されている。試料60のパターン61は、例えば、遮光膜等である。
試料60で反射した反射光L12は、対物レンズ13で集光されて、ビームスプリッタ12に入射する。ビームスプリッタ12は、反射光L12のほぼ半分を透過させる。ビームスプリッタ12を透過した反射光L12は、検出器14に入射する。これにより、検出器14が試料60を撮像することができる。対物レンズ13により試料60の像が検出器14に拡大投影される。また、反射光L12を検出器14の受光面に結像するためのレンズなどを設けてもよい。
図1では、欠陥検出装置1が明視野照明方式の顕微鏡となっているが、欠陥検出装置1の照明方式は、特に限定されるものではない。例えば、透過照明方式を用いた場合、検出器14は、試料60を透過した透過光を検出する。検出器14が検出する検出光は、試料60で反射した反射光に限られるものではなく、試料60を透過した透過光であってもよい。
検出器14は、試料60を撮像するための撮像素子を有している。検出器14は、例えば、TDI(Time Delay Integration)センサである。なお、検出器14は、照明光L11で照明された試料60からの反射光L12を検出するものであれば、CCD(Charge Coupled Device)カメラやCMOS(Complementary Metal Oxide Semiconductor)センサ等でもよい。検出器14は、X軸方向に配列された複数の画素を有してもよい。検出器14は、複数の画素が1列に配列されたラインセンサであってもよい。
パターン61の有無に応じて、照明光L11に対する反射率が異なる。例えば、フォトマスクの場合、パターン61がある箇所では反射率が高くなり、パターン61がない箇所では反射率が低くなる。よって、パターン61の有無に応じて、検出器14の受光量が変化する。検出器14は、画素毎に、受光量に応じた検出信号(検出データ)を欠陥候補検出部20または画像処理装置30に出力する。
ステージ50は駆動ステージであり、試料60をXYZ軸方向に移動させることができる。欠陥候補検出部20及び画像処理装置30は、駆動機構52を制御することができる。駆動機構52が、試料60における検出領域を相対的に移動させる。ステージ50をXYZ軸方向に移動させることで、試料60において、照明光L11による照明位置を変化させることができる。
このため、試料60の任意の位置を撮像することができ、試料60のほぼ全面を検査することができる。なお、ステージ50ではなく、撮像光学系10を駆動してもよい。すなわち、ステージ50に対する撮像光学系10の相対位置を移動可能にしてもよい。あるいは、光スキャナなどを用いて、照明光L11を走査してもよい。
欠陥候補検出部20は、撮像光学系10が撮像した画像から所定の差分を有する画素を含む欠陥候補領域を検出する。例えば、欠陥候補検出部20は、Die-to-Die検査における一方のDieの画像と他方のDieの画像との差分から、欠陥または欠陥の候補とされる周辺の領域の欠陥候補領域を検出する。なお、欠陥検出装置1は、欠陥候補検出部20を設けず、以下に示す画像処理装置30において、欠陥候補領域を検出してもよい。
欠陥候補検出部20は、欠陥候補領域を検出する前に、イメージマッチングを行ってもよい。例えば、一方のDieの画像と他方のDieの画像との間の位置ずれを解消するために、全体の差分が極小値になるように位置を調整してもよい。なお、欠陥候補検出部20は、最大差分値が所定のマッチング差分閾値より小さい場合に、疑似欠陥として、削除してもよい。所定のマッチング差分閾値は、以下で示す差分閾値VSよりも大きい値に設定してもよい。
<画像処理装置の構成>
次に、撮像光学系10が撮像した画像を処理する画像処理装置30を説明する。図2は、実施形態に係る画像処理装置30を例示したブロック図である。図2に示すように、画像処理装置30は、画像取得部31、差分画像生成部32、バイナリーマップ生成部33、エリアフィルターマップ生成部34、クラスター割合算出部35、欠陥判断部36を備えている。画像処理装置30は、例えば、GPU(Graphics Processing Unit)及びメモリ等を備えたコンピュータである。画像処理装置30における各構成要素は、例えば、プログラムを実行させることによって実現できる。なお、画像処理装置30は、GPUに限らず、CPU(Central Processing Unit)、FPGA(Field-Programmable Gate Array)又はマイコン等を備えたコンピュータでもよい。
画像取得部31は、試料60の欠陥候補領域を撮像した第1画像及び欠陥候補領域に対応した領域を撮像した第2画像を取得する。例えば、画像取得部31は、検出器14または欠陥候補検出部20から画素毎の検出データを受け取る。画像取得部31は、受け取った検出データから試料60の画像を取得する。
画像取得部31は、イメージマッチングを行ってもよい。例えば、第1パターン画像G1及び第2パターン画像G2との間の位置ずれを解消するために、全体の差分が極小値になるように位置を調整してもよい。
図3は、実施形態に係る画像取得部31が取得した画像及び差分画像生成部32が生成した差分画像を例示した図である。図3に示すように、画像取得部31は、例えば、欠陥または欠陥の候補とされる周辺の欠陥候補領域における同一パターンの2枚の画像を取得する。同一パターンの2枚の画像を、第1パターン画像G1及び第2パターン画像G2と呼ぶ。第1パターン画像G1を単に第1画像とも呼び、第2パターン画像G2を単に第2画像とも呼ぶ。各画像の画素数は、例えば、256px×256pxであるが、各画像の画素数はこれに限らない。リアルタイム検出する場合のデータ通信速度を考慮すれば、画像に含まれる画素数は変更可能である。
第1パターン画像G1及び第2パターン画像G2は、Die-to-Die検査の各画像の欠陥候補領域に相当してもよい。例えば、第1パターン画像G1は、試料60における隣接したDieのうち一方のDieのパターンを撮像したものである。第2パターン画像G2は、試料60における隣接したDieのうち他方のDieのパターンを撮像したものである。このようにして、画像取得部31は、試料60の欠陥候補領域を撮像した第1パターン画像G1及び欠陥候補領域に対応した領域を撮像した第2パターン画像G2を取得する。
なお、画像取得部31は、欠陥候補領域の画像を欠陥候補検出部20から取得してもよいし、Die-to-Die検査における一方のDieの画像と他方のDieの画像との差分から、欠陥候補領域を検出してもよい。
差分画像生成部32は、第1パターン画像G1と第2パターン画像G2との差分画像GSを生成する。具体的には、差分画像生成部32は、第1パターン画像G1に含まれる複数の画素の各輝度と、第2パターン画像G2に含まれる複数の画素の各輝度と、の差分を算出する。これにより、各差分値を有する複数の画素を含む差分画像GSを生成させる。図3に示すように、一例として、差分画像GSの一部を拡大させると、各画素は、輝度の差分値を有している。例えば、1画素が8ビットの場合には、0~255の輝度の差分値を有している。差分は、例えば、差の絶対値である。
図4は、実施形態に係る差分画像生成部32が生成した差分画像GS及びバイナリーマップ生成部33が生成したバイナリーマップBMを例示した図である。図4に示すように、バイナリーマップ生成部33は、差分閾値VSを設定し、バイナリーマップBMを生成させる。例えば、バイナリーマップ生成部33は、差分閾値VSとして5を設定する。この場合には、バイナリーマップ生成部33は、差分値が5よりも大きい画素を1に変換し、差分値が5以下の画素を0に変換する。
このように、バイナリーマップ生成部33は、差分画像GSに含まれる複数の画素の差分値を、所定の差分閾値よりも大きい第1値または差分閾値以下の第2値に変換してバイナリーマップを生成させる。図4に示すバイナリーマップBMでは、第1値を「1」で示し、第2値を「0」で示している。図4に示すバイナリーマップBMでは、第1値「1」、すなわち、閾値VS=5を超えた差分値を有する画素数は12画素である。なお、図4では、図3の差分画像GSの一部のみのバイナリーマップBMを示しているが、バイナリーマップ生成部33は、差分画像GS全体のバイナリーマップBMを生成してもよい。
図5は、実施形態に係るバイナリーマップ生成部33が生成したバイナリーマップBM及びエリアフィルターマップ生成部34が生成したエリアフィルターマップAFMを例示した図である。図5に示すように、差分分布がクラスター化している箇所、すなわち、第1値がクラスター化している箇所を求めるために、エリアフィルターマップ生成部34は、バイナリーマップBMからエリアフィルターマップAFMを生成する。具体的には、エリアフィルターマップ生成部34は、まず、クラスターサイズを設定する。そして、エリアフィルターマップ生成部34は、バイナリーマップBMに含まれる複数の画素に渡って畳み込みを行うことによって、エリアフィルターマップAFMを生成する。
クラスターサイズは、エリアサイズ数及びエリアカウント数を含む。エリアサイズ数は、エリアフィルタがフィルタ処理するエリアの大きさを示す。すなわち、エリアサイズ数は、エリアフィルタがかけられるエリアの画素数を示す。エリアの各画素は隣接している。よって、エリアフィルタは、エリアサイズ数として設定された複数個数の隣接した画素を含むエリアに対して畳み込みを行う。
例えば、エリアフィルタがかけられるエリアは、行方向及び列方向に2個ずつ並んだ4つの画素を含む。この場合には、エリアサイズ数は、4画素であり、2×2と表す。エリアサイズ数は、例えば、検出対象としている欠陥の差分分布の大きさに合わせることが望ましい。例えば、1画素を、45nmとした場合には、欠陥差分分布が2×2のエリア(90nm程度)でまとまって分布している欠陥を検出するのに適している。なお、エリアは、2×2に限らず、3×3等、他の画素数でもよい。また、検出する欠陥の差分分布は、エリアの大きさに合うものに限らず、エリアの大きさよりも大きい欠陥の差分分布を検出してもよいし、エリアの大きさよりも小さい欠陥の差分分布を検出してもよい。
エリアフィルタは、エリア毎に順番にバイナリーマップBMに含まれる複数の画素に渡って畳み込みを行う。例えば、図5において、バイナリーマップBMの左上のエリアAR1から畳み込みを行い、順次、エリアAR2、・・・と進み、エリアAR16まで行う。エリアフィルタは、畳み込みを行う際に、エリアにおける行方向及び列方向の少なくともいずれかに1行または1列ずつ移動して畳み込みを行う。すなわち、エリアフィルタは、バイナリーマップBMの左上から右上まで移動する際に、1列ずつ移動する。よって、エリアフィルタがかけられる隣り合うエリアは、同じ画素を含んでいる。例えば、エリアAR1は、1行2列及び2行2列の画素を含み、エリアAR2も、1行2列及び2行2列の画素を含んでいる。このように、エリアフィルターマップ生成部34は、エリアに含まれるエリアサイズ数の画素のうち、一部を重複させて移動させながらエリアフィルタによる畳み込みを行う。
エリアカウント数は、エリアに含まれた画素のうち、第1値の画素数の閾値である。例えば、エリアカウント数を3以上に設定した場合には、エリアに含まれた第1値の画素数が2以下の場合には、エリアフィルタはクラスターとして出力しない。一方、エリアに含まれた第1値の画素数が3以上の場合には、エリアフィルタは、クラスターとして出力する。
このようにして、エリアフィルターマップ生成部34は、エリアサイズ数として設定された複数個数の隣接した画素を含むエリア毎に順番にバイナリーマップBMに含まれる複数の画素に渡ってエリアフィルタによる畳み込みを行う。エリアフィルターマップ生成部34は、このような畳み込みを行う際に、エリアフィルタがかけられるエリアの第1値の画素数がエリアカウント数として設定された個数以上の場合に、そのエリアをクラスターとして出力されたエリアフィルターマップを生成させる。
図5に示すように、例えば、(1、0、1、1)のバイナリー値を有する2×2のエリアAR1は、エリアカウント数3個以上であるのでクラスターとして出力される。例えば、「1」として出力される。一方、(0、0、1、0)のバイナリー値を有する2×2のエリアAR2は、エリアカウント数3個未満であるのでクラスターとして出力しない。例えば、「0」として出力される。
クラスターサイズは、予め設定されてもよいし、エリアフィルターマップ生成部34がこれまでの検査におけるバイナリーマップBM及びエリアフィルターマップAFMのデータの中から類似したデータを選択して、そのときのクラスターサイズに設定してもよい。
クラスター割合算出部35は、クラスター割合を算出する。クラスター割合は、エリアフィルターマップAFMにおけるクラスターの個数をクラスター数とし、エリアサイズ数に対するエリアカウント数の比に比例した係数を補正係数とした場合に、下記(1)式から求められる。
クラスター割合=(クラスター数×補正係数K)/(バイナリーマップBMにおける第1値の画素数) (1)
ここで、補正係数Kは、下記(2)式である。
補正係数K=(エリアカウント数/エリアサイズ数)×α (2)
αは、クラスター割合算出の便宜のためのスケールであり、例えば、1024である。そうすると、図5のバイナリーマップBMについては、以下の(3)式である。
クラスター割合=5×(3/4)×1024/12=320 (3)
欠陥判断部36は、下記の(4)式を満たす場合に、欠陥候補領域に欠陥が存在すると判断する。
0<クラスター割合≦所定の割合上限値 (4)
欠陥判断部36は、(4)式を満たす場合には、欠陥候補領域における差分を微小欠陥による差分と判断する。一方、欠陥判断部36は、クラスター割合が、所定の割合上限値よりも大きい場合には、欠陥候補領域の差分は疑似欠陥等による誤検出と判断する。その場合には、欠陥候補領域を削除してもよい。例えば、欠陥候補領域における差分を周囲と同等の輝度に修正することにより削除する。また、欠陥判断部36は、クラスター割合が0の場合も微小欠陥ではないと判断して欠陥候補領域から削除してもよい。クラスター割合=0のとき、つまり、差分のクラスターが1つもない場合は、本物の欠陥はないとして疑似欠陥と判定する。
表示装置40は、欠陥判断部36が欠陥候補領域に欠陥が存在すると判断する場合に、当該欠陥を表示する。表示装置40は、例えば、ユーザとのユーザインターフェースとなるメインPCである。
図6は、実施形態に係る微小欠陥の差分分布を例示した図である。図7は、実施形態に係るデフォーカスによる差分分布を例示した図である。図6及び図7では、差分が大きいほど明るく表示されるようになっている。図6に示すように、微小欠陥は、画像間の差分やサイズ(差分分布)が小さい。よって、微小欠陥を検出しようとすると、装置起因の微小な差分を疑似欠陥として検出してしまう恐れがある。例えば、図7は、隣接する2つのDieを撮像する間にデフォーカスが発生した場合であり、パターン61のエッジにおけるデフォーカスによる輝度の差が差分として検出されている。図7に示すように、装置起因の疑似欠陥は、デフォーカスによる差分の誤検出である場合が多く、パターンエッジに沿って差分が発生する。このため、差分分布は、大きくなり、画像内のある割合以上を占めていることが多い。
そこで、本実施形態では、欠陥候補領域の差分分布に着目し、差分値の大きいクラスター割合が画像内の所定の割合上限値よりも大きい場合は、疑似欠陥と判断する。一方、クラスター割合が、所定の割合上限値以下の場合には、微小欠陥と判断する。これにより、図6に示すような微小欠陥を、図7に示すような疑似欠陥から区別することができる。
なお、サイズの大きな欠陥は、差分分布が大きく、実施形態の画像処理装置30では、微小欠陥と判断されない場合がある。しかしながら、そもそも、サイズの大きな欠陥は、装置起因の疑似欠陥と、本実施形態以外の方法で明確に区別することができるので、本実施形態の対象外である。本実施形態では、微小な欠陥をターゲットにしているため、大きな欠陥は、別の方法で予め検出しておくことが望ましい。本実施形態は、装置起因の微小な疑似欠陥と区別するためのものであり、微小欠陥を検出するために高感度設定されたアルゴリズムに適用することが望ましい。
<欠陥検出方法>
次に、欠陥検出装置1の動作として、欠陥検出方法を説明する。図8は、実施形態に係る欠陥検出装置1の欠陥検出方法を例示したフローチャート図である。図8に示すように、欠陥検出方法は、撮像ステップ(ステップS11)、欠陥候補検出ステップ(ステップS12)、画像処理ステップ(ステップS13)及び欠陥の表示ステップ(ステップS14)を備えている。
撮像ステップ(ステップS11)において、撮像光学系10は、試料60を撮像する。次に、欠陥候補検出ステップ(ステップS12)において、欠陥候補検出部20は、撮像光学系10が撮像した画像から欠陥候補領域を検出する。なお、欠陥候補検出部20は、欠陥候補領域を検出する前に、イメージマッチングを行ってもよい。例えば、一方のDieの画像と他方のDieの画像との間の位置ずれを解消するために、全体の差分が極小値になるように位置を調整してもよい。また、欠陥候補検出部20は、最大差分値が所定のマッチング差分閾値より小さい場合に、疑似欠陥として、削除してもよい。
次に、画像処理ステップ(ステップS13)において、画像処理装置30は、撮像された画像を処理する。具体的には、下記の画像処理方法で説明するように、第1パターン画像G1及び第2パターン画像G2を用いて画像処理を行う。画像処理では、上述した画像処理装置30を用いて、高速処理することで、疑似欠陥を排除し、微小欠陥をリアルタイムで識別する。そして、欠陥の表示ステップ(ステップS14)において、表示装置40は、欠陥が存在すると判断された場合に、欠陥を表示させる。このようにして、試料60の欠陥を検出することができる。
<画像処理方法>
次に、画像処理装置30の動作として、画像処理方法を説明する。図9は、実施形態に係る画像処理装置30の画像処理方法を例示したフローチャート図である。図9に示すように、画像処理方法は、画像取得ステップ(ステップS21)、差分画像生成ステップ(ステップS22)、バイナリーマップ生成ステップ(ステップS23)、エリアフィルターマップ生成ステップ(ステップS24)、クラスター割合算出ステップ(ステップS25)及び欠陥判断ステップ(ステップS26)を備えている。本実施形態では、例えば、GPUを含む画像処理装置30を用いて高速処理することで、疑似欠陥を排除し、微小欠陥をリアルタイムで識別する。
画像取得ステップ(ステップS21)において、画像取得部31は、試料60の欠陥候補領域を撮像した第1パターン画像G1及び欠陥候補領域に対応した領域を撮像した第2パターン画像G2を取得する。
次に、差分画像生成ステップ(ステップS22)において、差分画像生成部32は、第1パターン画像G1に含まれる複数の画素の各輝度と、第2パターン画像G2に含まれる複数の画素の各輝度と、の差分を算出することにより、各差分値を有する複数の画素を含む差分画像GSを生成させる。なお、差分画像GSにおいて、最大差分値が所定のマッチング差分閾値より小さい場合には、疑似欠陥として削除してもよい。ここで、マッチング差分閾値は、基本的に本実施形態で設定する差分閾値VSよりも大きい値に設定する。そして、マッチング差分閾値を用いた処理で削除されなかった欠陥候補に対して、本実施形態の画像処理を適用してもよい。
次に、バイナリーマップ生成ステップ(ステップS23)において、バイナリーマップ生成部33は、差分画像GSに含まれる複数の画素の差分値を、所定の差分閾値VSよりも大きい第1値または差分閾値VS以下の第2値に変換してバイナリーマップを生成させる。
次に、エリアフィルターマップ生成ステップ(ステップS24)において、エリアフィルターマップ生成部34は、エリアサイズ数として設定された複数個数の隣接した画素を含むエリア毎に順番にバイナリーマップBMに含まれる複数の画素に渡ってエリアフィルタによる畳み込みを行う。エリアフィルターマップ生成部34は、このような畳み込みを行う際に、エリアフィルタがかけられるエリアの第1値の画素数がエリアカウント数として設定された個数以上の場合に、エリアをクラスターとして出力されたエリアフィルターマップを生成させる。
次に、クラスター割合算出ステップ(ステップS25)において、クラスター割合算出部35は、上記(1)式のクラスター割合を算出する。
次に、欠陥判断ステップ(ステップS26)において、欠陥判断部36は、上記(4)式を満たすときに、欠陥候補領域に欠陥が存在すると判断する。
<シミュレーション結果>
次に、シミュレーション結果を説明する。図10及び図11は、実施形態に係るシミュレーション結果を例示したグラフであり、横軸は、割合上限設定値を示し、縦軸は、削除されずに残った疑似欠陥個数及び削除されずに残った微小欠陥個数を示す。
図10に示すように、画像処理装置30による画像処理を行う前において、マスク1には、92個の欠陥(疑似欠陥)が検出された。また、マスク1には、もともと6個の微小欠陥が存在する。よって、もともと6個ある微小欠陥を削除せずに、疑似欠陥をどれだけ減らせるかをシミュレーションする。例えば、本実施形態の画像処理後において、割合上限値を400に設定した場合には、微小欠陥を6個検出しつつ、疑似欠陥を50個まで抑えることができる。割合上限値を200に設定した場合には、微小欠陥を6個検出しつつ、疑似欠陥を20個まで抑えることができる。割合上限値を100に設定した場合には、微小欠陥を6個検出しつつ、疑似欠陥を2個まで抑えることができる。なお、差分閾値VS=2、エリアサイズ=(2、2)、エリアカウント=3である。
割合上限値を小さくするほど、小さくクラスター化しているものだけが残ることになる。よって、割合上限値を100に設定することにより、もともと存在する微小欠陥を6個検出しつつ、疑似欠陥を2個まで抑えることができる。このように、他の方法で予め微小欠陥の個数を検出した試料を用いて上限設定値を設定してもよい。
図11に示すように、画像処理装置30による画像処理を行う前において、マスク2には、157個の欠陥(疑似欠陥)が検出された。また、マスク2には、もともと1個の微小欠陥が存在する。よって、もともと1個ある微小欠陥を削除せずに、疑似欠陥をどれだけ減らせるかをシミュレーションする。例えば、本実施形態の画像処理後において、割合上限値を400に設定した場合には、微小欠陥を1個検出しつつ、疑似欠陥を20個まで抑えることができる。割合上限値を200に設定した場合には、微小欠陥を1個検出しつつ、疑似欠陥を3個程度まで抑えることができる。割合上限値を100に設定した場合には、微小欠陥を1個検出しつつ、疑似欠陥を1個まで抑えることができる。なお、差分閾値VS=2、エリアサイズ=(2、2)、エリアカウント=4である。図11の場合でも、割合上限値を100に設定することにより、もともと存在する微小欠陥を1個検出しつつ、疑似欠陥を2個まで抑えることができる。
図12及び図13は、実施形態に係るシミュレーション結果を例示したグラフであり、横軸は、割合上限設定値を示し、縦軸は、削除されずに残った疑似欠陥個数を示す。
図12及び図13に示すように、本実施形態の画像処理を適用することにより、疑似欠陥を大幅に減少させることができる。なお、差分閾値=2、エリアサイズ=(2、2)、エリアカウント=4である。
次に、本実施形態の効果を説明する。本実施形態によれば、試料60の欠陥をリアルタイムで検出することができる。そして、微小欠陥と疑似欠陥との区別をすることができ、疑似欠陥の検出を抑えつつ、微小欠陥を検出することができる。よって、欠陥の検出感度を向上させることができる。
図14は、実施形態に係る画像処理装置30が処理した画像を例示した図である。図14に示すように、本実施形態では、欠陥の検査中にリアルタイムで画像処理を適用することができ、疑似欠陥の検出を抑制しつつ、微小欠陥を検出することができる。
また、本実施形態では、エリアフィルタによりフィルタ処理するエリアは、行方向及び列方向に同じ数だけ並んだ画素を含む。そして、エリアフィルタは、行方向及び列方向の少なくともいずれかに1行または1列ずつ移動して畳み込みを行う。よって、各エリアの一部を重複させて畳み込みを行うので、欠陥検出の元となるクラスターを精度よく検出することができる。
さらに、割合上限値は、予め微小欠陥の個数を検出した試料を用いて設定されてもよい。これにより、微小欠陥を削除せずに、疑似欠陥を抑制することができる。
本実施形態の欠陥検出装置1は、撮像光学系10が撮像した画像から欠陥候補領域を検出する欠陥候補検出部20をさらに備えてもよい。これにより、欠陥候補領域に絞って画像処理を行うことができ、処理を高速化することができる。
以上、本発明の実施形態を説明したが、本発明はその目的と利点を損なうことのない適宜の変形を含み、更に、上記の実施形態による限定は受けない。
1 欠陥検出装置
10 撮像光学系
11 光源
12 ビームスプリッタ
13 対物レンズ
14 検出器
20 欠陥候補検出部
30 画像処理装置
31 画像取得部
32 差分画像生成部
33 バイナリーマップ生成部
34 エリアフィルターマップ生成部
35 クラスター割合算出部
36 欠陥判断部
40 表示装置
50 ステージ
51 ステージ面
52 駆動機構
60 試料
61 パターン
BM バイナリーマップ
G1 第1パターン画像
G2 第2パターン画像
GS 差分画像
L11 照明光
L12 反射光
VS 差分閾値

Claims (7)

  1. 試料を撮像する撮像光学系と、
    前記撮像光学系が撮像した画像を処理する画像処理装置と、
    を備え、
    前記画像処理装置は、
    前記試料の欠陥候補領域を撮像した第1画像及び前記欠陥候補領域に対応した領域を撮像した第2画像を取得する画像取得部と、
    前記第1画像に含まれる複数の画素の各輝度と、前記第2画像に含まれる複数の画素の各輝度と、の差分を算出することにより、各差分値を有する複数の画素を含む差分画像を生成させる差分画像生成部と、
    前記差分画像に含まれる前記複数の画素の前記差分値を、所定の差分閾値よりも大きい第1値または前記差分閾値以下の第2値に変換してバイナリーマップを生成させるバイナリーマップ生成部と、
    エリアサイズ数として設定された複数個数の隣接した画素を含むエリア毎に順番に前記バイナリーマップに含まれる前記複数の画素に渡ってエリアフィルタによる畳み込みを行う際に、前記エリアフィルタがかけられる前記エリアの前記第1値の画素数がエリアカウント数として設定された個数以上の場合に、前記エリアをクラスターとして出力されたエリアフィルターマップを生成させるエリアフィルターマップ生成部と、
    前記エリアフィルターマップにおける前記クラスターの個数をクラスター数とし、前記エリアサイズ数に対する前記エリアカウント数の比に比例した係数を補正係数とした場合に、下記(A)式のクラスター割合を算出するクラスター割合算出部と、
    クラスター割合=(クラスター数×補正係数)/(バイナリーマップにおける第1値の画素数) (A)
    下記の(B)式を満たすときに、前記欠陥候補領域に欠陥が存在すると判断する欠陥判断部と、
    0<クラスター割合≦所定の割合上限値 (B)
    を有する欠陥検出装置。
  2. 前記エリアは、行方向及び列方向に同じ数だけ並んだ前記画素を含み、前記エリアフィルタは、前記行方向及び前記列方向の少なくともいずれかに1行または1列ずつ移動して畳み込みを行う、
    請求項1に記載の欠陥検出装置。
  3. 前記割合上限値は、予め微小欠陥の個数を検出した試料を用いて設定される、
    請求項1または2に記載の欠陥検出装置。
  4. 前記撮像光学系が撮像した前記画像から所定の差分値を有する画素を含む前記欠陥候補領域を検出する欠陥候補検出部をさらに備えた、
    請求項1~3のいずれか1項に記載の欠陥検出装置。
  5. 試料を撮像する撮像ステップと、
    撮像された画像を処理する画像処理ステップと、
    を備え、
    前記画像処理ステップは、
    前記試料の欠陥候補領域を撮像した第1画像及び前記欠陥候補領域に対応した領域を撮像した第2画像を取得する画像取得ステップと、
    前記第1画像に含まれる複数の画素の各輝度と、前記第2画像に含まれる複数の画素の各輝度と、の差分を算出することにより、各差分値を有する複数の画素を含む差分画像を生成させる差分画像生成ステップと、
    前記差分画像に含まれる前記複数の画素の前記差分値を、所定の差分閾値よりも大きい第1値または前記差分閾値以下の第2値に変換してバイナリーマップを生成させるバイナリーマップ生成ステップと、
    エリアサイズ数として設定された複数個数の隣接した画素を含むエリア毎に順番に前記バイナリーマップに含まれる前記複数の画素に渡ってエリアフィルタによる畳み込みを行う際に、前記エリアフィルタがかけられる前記エリアの前記第1値の画素数がエリアカウント数として設定された個数以上の場合に、前記エリアをクラスターとして出力されたエリアフィルターマップを生成させるエリアフィルターマップ生成ステップと、
    前記エリアフィルターマップにおける前記クラスターの個数をクラスター数とし、前記エリアサイズ数に対する前記エリアカウント数の比に比例した係数を補正係数とした場合に、下記(A)式のクラスター割合を算出するクラスター割合算出ステップと、
    クラスター割合=(クラスター数×補正係数)/(バイナリーマップにおける第1値の画素数) (A)
    下記の(B)式を満たすときに、前記欠陥候補領域に欠陥が存在すると判断する欠陥判断ステップと、
    0<クラスター割合≦所定の割合上限値 (B)
    を有する欠陥検出方法。
  6. 試料の欠陥候補領域を撮像した第1画像及び前記欠陥候補領域に対応した領域を撮像した第2画像を取得する画像取得部と、
    前記第1画像に含まれる複数の画素の各輝度と、前記第2画像に含まれる複数の画素の各輝度と、の差分を算出することにより、各差分値を有する複数の画素を含む差分画像を生成させる差分画像生成部と、
    前記差分画像に含まれる前記複数の画素の前記差分値を、所定の差分閾値よりも大きい第1値または前記差分閾値以下の第2値に変換してバイナリーマップを生成させるバイナリーマップ生成部と、
    エリアサイズ数として設定された複数個数の隣接した画素を含むエリア毎に順番に前記バイナリーマップに含まれる前記複数の画素に渡ってエリアフィルタによる畳み込みを行う際に、前記エリアフィルタがかけられる前記エリアの前記第1値の画素数がエリアカウント数として設定された個数以上の場合に、前記エリアをクラスターとして出力されたエリアフィルターマップを生成させるエリアフィルターマップ生成部と、
    前記エリアフィルターマップにおける前記クラスターの個数をクラスター数とし、前記エリアサイズ数に対する前記エリアカウント数の比に比例した係数を補正係数とした場合に、下記(A)式のクラスター割合を算出するクラスター割合算出部と、
    クラスター割合=(クラスター数×補正係数)/(バイナリーマップにおける第1値の画素数) (A)
    下記の(B)式を満たすときに、前記欠陥候補領域に欠陥が存在すると判断する欠陥判断部と、
    0<クラスター割合≦所定の割合上限値 (B)
    を備えた画像処理装置。
  7. 試料の欠陥候補領域を撮像した第1画像及び前記欠陥候補領域に対応した領域を撮像した第2画像を取得する画像取得ステップと、
    前記第1画像に含まれる複数の画素の各輝度と、前記第2画像に含まれる複数の画素の各輝度と、の差分を算出することにより、各差分値を有する複数の画素を含む差分画像を生成させる差分画像生成ステップと、
    前記差分画像に含まれる前記複数の画素の前記差分値を、所定の差分閾値よりも大きい第1値または前記差分閾値以下の第2値に変換してバイナリーマップを生成させるバイナリーマップ生成ステップと、
    エリアサイズ数として設定された複数個数の隣接した画素を含むエリア毎に順番に前記バイナリーマップに含まれる前記複数の画素に渡ってエリアフィルタによる畳み込みを行う際に、前記エリアフィルタがかけられる前記エリアの前記第1値の画素数がエリアカウント数として設定された個数以上の場合に、前記エリアをクラスターとして出力されたエリアフィルターマップを生成させるエリアフィルターマップ生成ステップと、
    前記エリアフィルターマップにおける前記クラスターの個数をクラスター数とし、前記エリアサイズ数に対する前記エリアカウント数の比に比例した係数を補正係数とした場合に、下記(A)式のクラスター割合を算出するクラスター割合算出ステップと、
    クラスター割合=(クラスター数×補正係数)/(バイナリーマップにおける第1値の画素数) (A)
    下記の(B)式を満たすときに、前記欠陥候補領域に欠陥が存在すると判断する欠陥判断ステップと、
    0<クラスター割合≦所定の割合上限値 (B)
    をコンピュータに実行させる画像処理プログラム。
JP2021066331A 2021-04-09 2021-04-09 欠陥検出装置、欠陥検出方法、画像処理装置及び画像処理プログラム Pending JP2022161475A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021066331A JP2022161475A (ja) 2021-04-09 2021-04-09 欠陥検出装置、欠陥検出方法、画像処理装置及び画像処理プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021066331A JP2022161475A (ja) 2021-04-09 2021-04-09 欠陥検出装置、欠陥検出方法、画像処理装置及び画像処理プログラム

Publications (1)

Publication Number Publication Date
JP2022161475A true JP2022161475A (ja) 2022-10-21

Family

ID=83658597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021066331A Pending JP2022161475A (ja) 2021-04-09 2021-04-09 欠陥検出装置、欠陥検出方法、画像処理装置及び画像処理プログラム

Country Status (1)

Country Link
JP (1) JP2022161475A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116777911A (zh) * 2023-08-18 2023-09-19 深圳市华盛源机电有限公司 一种基于图像识别的双基板散热器表面缺陷检测系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116777911A (zh) * 2023-08-18 2023-09-19 深圳市华盛源机电有限公司 一种基于图像识别的双基板散热器表面缺陷检测系统

Similar Documents

Publication Publication Date Title
KR102019534B1 (ko) 결함 특유의, 다중 채널 정보를 이용한 웨이퍼 상의 결함 검출
KR101338576B1 (ko) 화상 해석에 의해서 결함 검사를 실시하는 결함검사장치
JP6769971B2 (ja) 焦点体積方法を用いたウェーハ検査
US7345755B2 (en) Defect inspecting apparatus and defect inspection method
JP2008145226A (ja) 欠陥検査装置及び欠陥検査方法
JP2007294604A (ja) 外観検査装置及び外観検査方法
JP2011163855A (ja) 欠陥検査方法及びその装置
JP2007149837A (ja) 画像欠陥検査装置、画像欠陥検査システム及び画像欠陥検査方法
TWI778258B (zh) 缺陷偵測之方法、系統及非暫時性電腦可讀媒體
IL189010A (en) Advanced cell-to-cell inspection
JP2010164487A (ja) 欠陥検査装置及び欠陥検査方法
KR20210064365A (ko) 결함 검사 장치, 결함 검사 방법
JP2012251785A (ja) 検査装置および検査方法
JP2001209798A (ja) 外観検査方法及び検査装置
JP2022161475A (ja) 欠陥検出装置、欠陥検出方法、画像処理装置及び画像処理プログラム
KR102201122B1 (ko) 민감도 개선 및 뉴슨스 억제를 위해 로직 및 핫스팟 검사에서 z-층 컨텍스트를 사용하는 시스템 및 방법
JP2009097928A (ja) 欠陥検査装置及び欠陥検査方法
JPH0636016A (ja) 物体表面の欠陥の光学的検査法とその装置
JP2009150718A (ja) 検査装置および検査プログラム
JP4523310B2 (ja) 異物識別方法及び異物識別装置
JP2001194322A (ja) 外観検査装置及び検査方法
JP7079569B2 (ja) 検査方法
JP2017138246A (ja) 検査装置、検査方法、及びイメージセンサ
JP2004212218A (ja) 試料検査方法及び検査装置
JP2009222513A (ja) 欠陥検出装置、および欠陥検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240115