JP2022159214A - 有機化合物、発光デバイス、発光装置、電子機器および照明装置 - Google Patents

有機化合物、発光デバイス、発光装置、電子機器および照明装置 Download PDF

Info

Publication number
JP2022159214A
JP2022159214A JP2022059156A JP2022059156A JP2022159214A JP 2022159214 A JP2022159214 A JP 2022159214A JP 2022059156 A JP2022059156 A JP 2022059156A JP 2022059156 A JP2022059156 A JP 2022059156A JP 2022159214 A JP2022159214 A JP 2022159214A
Authority
JP
Japan
Prior art keywords
light
layer
abbreviation
group
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022059156A
Other languages
English (en)
Inventor
朋広 久保田
Tomohiro Kubota
崇生 鳥巣
Takao Torisu
剛吉 渡部
Gokichi Watabe
藍莉 植田
Airi Ueda
優太 河野
Yuta Kono
信晴 大澤
Nobuharu Osawa
哲史 瀬尾
Tetsushi Seo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2022159214A publication Critical patent/JP2022159214A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】屈折率が小さく且つ正孔輸送性を有する有機化合物を提供する。【解決手段】下記一般式(G1)で表される有機化合物を提供する。式中、Ar1は置換または無置換の環を形成する炭素の数が6乃至13のアリーレン基を表す。nは0または1の整数を表す。また、Ar2は環を形成する炭素の数が6乃至10のアリール基を表し、炭素数3乃至12の分岐鎖状または環状のアルキル基を少なくとも一つ有する。Ar2が有する前記分岐鎖状または環状のアルキル基の炭素数の総和は、6以上である。R15乃至R18のいずれか一、およびR25乃至R28のいずれか一は直接窒素原子に結合する結合手であり、他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。JPEG2022159214000042.jpg52167【選択図】なし

Description

本発明の一態様は、有機化合物、発光素子、発光デバイス、ディスプレイモジュール、照明モジュール、表示装置、発光装置、電子機器、照明装置および電子デバイスに関する。なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装置、蓄電装置、記憶装置、撮像装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
有機化合物を用いたエレクトロルミネッセンス(EL:Electroluminescence)を利用する発光デバイス(有機ELデバイス)の実用化が進んでいる。これら発光デバイスの基本的な構成は、一対の電極間に発光材料を含む有機化合物層(EL層)を挟んだものである。この素子に電圧を印加して、キャリア(正孔および電子)を注入し、当該キャリアの再結合エネルギーを利用することにより、発光材料からの発光を得ることができる。
このような発光デバイスは自発光型であるためディスプレイの画素として用いると、液晶に比べ、視認性が高く、バックライトが不要である等の利点があり、フラットパネルディスプレイ素子として好適である。また、このような発光デバイスを用いたディスプレイは、薄型軽量に作製できることも大きな利点である。さらに非常に応答速度が速いことも特徴の一つである。
また、これらの発光デバイスは発光層を二次元に連続して形成することが可能であるため、面状に発光を得ることができる。これは、白熱電球やLEDに代表される点光源、あるいは蛍光灯に代表される線光源では得難い特色であるため、有機ELデバイスは、照明等に応用できる面光源としての利用価値も高い。
このように発光デバイスを用いたディスプレイおよび照明装置はさまざまな電子機器に好適であり、より良好な特性を有する発光デバイスを求めて研究開発が進められている。
有機ELデバイスが語られる際にしばしば問題として挙げられるものの一つに、光取出し効率の低さがある。特に、隣接する層の屈折率の違いから起こる反射による減衰は、デバイスの効率を下げる大きな要因となっている。この影響を低減させるために、EL層内部に低屈折率材料からなる層を形成する構成が提案されている(例えば、非特許文献1参照)。
この構成を備えた発光デバイスは、従来の構成を有する発光デバイスよりも光取出し効率、ひいては外部量子効率の高い発光デバイスとすることが可能であるが、このような低屈折率の層を、その他の発光デバイスにおける重要な特性に悪影響を与えずにEL層内部に形成するのは容易なことではない。なぜならば、低い屈折率と、高いキャリア輸送性または発光デバイスに用いた場合の信頼性はトレードオフの関係にあるからである。この問題は、有機化合物におけるキャリア輸送性や信頼性は不飽和結合の存在に由来するところが大きく、不飽和結合を多く有する有機化合物は、屈折率が高い傾向があることに原因がある。
Jaeho Lee、他12名,「Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes」,nature COMMUNICATIONS,平成28年6月2日,DOI:10.1038/ncomms11791
本発明の一態様では、新規有機化合物を提供することを目的とする。または、本発明の一態様では、キャリア輸送性を有する新規な有機化合物を提供することを目的とする。または、本発明の一態様では、正孔輸送性を有する新規有機化合物を提供することを目的とする。本発明の一態様では、屈折率の小さい有機化合物を提供することを目的とする。または、本発明の一態様では、屈折率が小さく且つキャリア輸送性を有する有機化合物を提供することを目的とする。または、本発明の一態様では、屈折率が小さく且つ正孔輸送性を有する有機化合物を提供することを目的とする。または、本発明の一態様では、屈折率が小さく且つ正孔注入性を有する有機化合物を提供することを目的とする。
または、本発明の一態様では、発光効率の高い発光デバイスを提供することを目的とする。または、本発明の一態様では、消費電力の小さい発光デバイス、発光装置、電子機器、表示装置、および電子デバイスを各々提供することを目的とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はない。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様では、上述の課題のうちいずれか一を解決すればよいものとする。
本発明の一態様は、一般式(G1)で表される有機化合物である。
Figure 2022159214000001
上記一般式(G1)において、Arは置換または無置換の環を形成する炭素の数が6乃至13のアリーレン基を表す。また、nは0または1の整数を表す。また、Arは環を形成する炭素の数が6乃至10のアリール基を表し、炭素数3乃至12の分岐鎖状または環状のアルキル基を少なくとも一つ有する。また、Arが有する前記分岐鎖状または環状のアルキル基の炭素数の総和は、6以上である。また、R乃至Rは各々独立に炭素数1乃至6のアルキル基を表す。また、R11乃至R14は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R15乃至R18のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R21乃至R24は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R25乃至R28のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。
また、本発明の一態様は、一般式(G2)で表される有機化合物である。
Figure 2022159214000002
上記一般式(G2)において、R乃至Rは各々独立に炭素数1乃至6のアルキル基を表す。また、R11乃至R14は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R15乃至R18のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R21乃至R24は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R25乃至R28のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R31乃至R35は各々独立に水素原子または炭素数3乃至12の分岐鎖状または環状のアルキル基を表す。ただし、R31乃至R35が有する総炭素数は、6以上である。また、nは0または1の整数を表す。
また、本発明の一態様は、一般式(G3)で表される有機化合物である。
Figure 2022159214000003
上記一般式(G3)において、R乃至Rは各々独立に炭素数1乃至6のアルキル基を表す。また、R11乃至R14は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R15乃至R18のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R21乃至R24は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R25乃至R28のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R31乃至R35は各々独立に水素原子または炭素数3乃至12の分岐鎖状または環状のアルキル基を表す。ただし、R31乃至R35が有する総炭素数は、6以上である。
また、本発明の一態様は、上記各構成において、R11乃至R14およびR21乃至R24は水素原子であり、R15乃至R18のいずれか一は直接窒素原子に結合する結合手であり、その他は水素原子であり、R25乃至R28のいずれか一は直接窒素原子に結合する結合手であり、その他は水素原子である、有機化合物である。
また、本発明の一態様は、一般式(G4)で表される有機化合物である。
Figure 2022159214000004
上記一般式(G4)において、R乃至Rは各々独立に炭素数1乃至6のアルキル基を表す。また、R31乃至R35は各々独立に水素原子または炭素数3乃至12の分岐鎖状または環状のアルキル基を表す。ただし、R31乃至R35が有する総炭素数は、6以上である。
また、本発明の一態様は、上記各構成において、R31乃至R35の少なくともいずれか一がtert-ブチル基またはシクロヘキシル基である有機化合物である。
また、本発明の一態様は、上記各構成において、R31、R33、R35が水素原子であり、R32、R34がtert-ブチル基またはシクロヘキシル基である有機化合物である。
また、本発明の一態様は、上記各構成において、R31、R32、R34、R35が水素原子であり、R33がtert-ブチル基またはシクロヘキシル基である有機化合物である。
また、本発明の一態様は、上記各構成において、有機化合物からなる層の波長465nmの光に対する常光屈折率が1.45以上1.80以下である有機化合物である。
また、本発明の一態様は、上記各構成において、有機化合物からなる層の波長465nmの光に対する常光屈折率が1.50以上1.75以下である有機化合物である。
また、本発明の一態様は、上記各構成において、有機化合物からなる層の波長520nmの光に対する常光屈折率が1.45以上1.75以下である有機化合物である。
また、本発明の一態様は、上記各構成において、有機化合物からなる層の波長520nmの光に対する常光屈折率が1.50以上1.70以下である有機化合物である。
また、本発明の一態様は、上記各構成において、有機化合物からなる層の波長633nmの光に対する常光屈折率が1.40以上1.75以下である有機化合物である。
また、本発明の一態様は、上記各構成において、有機化合物からなる層の波長633nmの光に対する常光屈折率が1.45以上1.70以下である有機化合物である。
また、本発明の一態様は、構造式(100)または(101)のいずれか一で表される有機化合物である。
Figure 2022159214000005
また、本発明の一態様は、上記各構成の有機化合物を用いた発光デバイスである。
また、本発明の一態様は、上記構成の発光デバイスと、検知部、入力部、または、通信部と、を有する電子機器である。
また、本発明の一態様は、上記構成の発光デバイスと、トランジスタ、または、基板と、を有する発光装置である。
また、本発明の一態様は、上記構成の発光デバイスと、筐体と、を有する照明装置である。
なお、本明細書中における発光装置とは、発光デバイスを用いた画像表示デバイスを含む。また、基板上の発光デバイスにコネクター、例えば異方導電性フィルム又はTCP(Tape Carrier Package)が取り付けられたモジュール、TCPの先にプリント配線板が設けられたモジュール、又は発光デバイスにCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも発光装置に含む場合がある。さらに、照明器具等は、発光装置を有する場合がある。
本発明の一態様では、新規有機化合物を提供することができる。または、本発明の一態様では、キャリア輸送性を有する新規な有機化合物を提供することができる。または、本発明の一態様では、正孔輸送性を有する新規有機化合物を提供することができる。本発明の一態様では、屈折率の小さい有機化合物を提供することができる。または、本発明の一態様では、屈折率が小さく且つキャリア輸送性を有する有機化合物を提供することができる。または、本発明の一態様では、屈折率が小さく且つ正孔輸送性を有する有機化合物を提供することができる。または、本発明の一態様では、屈折率が小さく且つ正孔注入性を有する有機化合物を提供することができる。
または、本発明の一態様では、発光効率の高い発光デバイスを提供することができる。または、本発明の一態様では、消費電力の小さい発光デバイス、発光装置、電子機器、表示装置および電子デバイスを各々提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1(A)乃至図1(E)は、実施の形態に係る発光デバイスの構成を説明する図である。 図2(A)乃至図2(C)は、実施の形態に係る発光装置を説明する図である。 図3(A)乃至図3(C)は、実施の形態に係る発光装置の製造方法を説明する図である。 図4(A)乃至図4(C)は、実施の形態に係る発光装置の製造方法を説明する図である。 図5(A)乃至図5(C)は、実施の形態に係る発光装置の製造方法を説明する図である。 図6(A)乃至図6(C)は、実施の形態に係る発光装置の製造方法を説明する図である。 図7は、実施の形態に係る発光装置を説明する図である。 図8(A)および図8(B)は、実施の形態に係る発光装置を説明する図である。 図9(A)および図9(B)は、実施の形態に係る発光装置を説明する図である。 図10(A)および図10(B)は、実施の形態に係る発光装置を説明する図である。 図11(A)および図11(B)は、実施の形態に係る発光装置を説明する図である。 図12(A)乃至図12(E)は、実施の形態に係る電子機器を説明する図である。 図13(A)乃至図13(E)は、実施の形態に係る電子機器を説明する図である。 図14(A)および図14(B)は、実施の形態に係る電子機器を説明する図である。 図15(A)および図15(B)は、実施の形態に係る電子機器を説明する図である。 図16は、実施の形態に係る電子機器を説明する図である。 図17(A)乃至図17(C)は実施の形態に係る発光デバイスおよび受光デバイスを説明する図である。 図18はmmtBuBiFFのトルエン溶液における吸収スペクトルと発光スペクトルである。 図19はmmtBuBiFFのMSスペクトルである。 図20はmmtBuBiFFの屈折率を測定したデータである。 図21はmmtBuBiFF-02のトルエン溶液における吸収スペクトルと発光スペクトルである。 図22はmmtBuBiFF-02のMSスペクトルである。 図23はmmtBuBiFF-02の屈折率を測定したデータである。 図24は、実施例に係る発光デバイスの構成を説明する図である。 図25は、mmtBuBiFF、mmtBuBiFF-02、FBiFLPBおよびoFBiSFの屈折率を測定したデータである。 図26は発光デバイス1-1、発光デバイス1-2、比較発光デバイス1-1および比較発光デバイス1-2の輝度-電流密度特性である。 図27は発光デバイス1-1、発光デバイス1-2、比較発光デバイス1-1および比較発光デバイス1-2の電流効率-輝度特性である。 図28は発光デバイス1-1、発光デバイス1-2、比較発光デバイス1-1および比較発光デバイス1-2の輝度-電圧特性である。 図29は発光デバイス1-1、発光デバイス1-2、比較発光デバイス1-1および比較発光デバイス1-2の電流-電圧特性である。 図30は発光デバイス1-1、発光デバイス1-2、比較発光デバイス1-1および比較発光デバイス1-2の外部量子効率-輝度特性である。 図31は発光デバイス1-1、発光デバイス1-2、比較発光デバイス1-1および比較発光デバイス1-2の発光スペクトルである。 図32は発光デバイス1-1、発光デバイス1-2、比較発光デバイス1-1および比較発光デバイス1-2の駆動時間に対する輝度変化を表す図である。 図33は発光デバイス2-1、発光デバイス2-2、比較発光デバイス2-1および比較発光デバイス2-2の輝度-電流密度特性である。 図34は発光デバイス2-1、発光デバイス2-2、比較発光デバイス2-1および比較発光デバイス2-2の電流効率-輝度特性である。 図35は発光デバイス2-1、発光デバイス2-2、比較発光デバイス2-1および比較発光デバイス2-2の輝度-電圧特性である。 図36は発光デバイス2-1、発光デバイス2-2、比較発光デバイス2-1および比較発光デバイス2-2の電流-電圧特性である。 図37は発光デバイス2-1、発光デバイス2-2、比較発光デバイス2-1および比較発光デバイス2-2の外部量子効率-輝度特性である。 図38は発光デバイス2-1、発光デバイス2-2、比較発光デバイス2-1および比較発光デバイス2-2の発光スペクトルである。 図39は発光デバイス2-1、発光デバイス2-2、比較発光デバイス2-1および比較発光デバイス2-2の駆動時間に対する輝度変化を表す図である。
以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
(実施の形態1)
有機ELデバイスに用いることが可能なキャリア輸送性を有する有機化合物の中でも、屈折率が小さい材料の一つとしてジ-[4-(N,N-ジトリル-アミノ)-フェニル]シクロヘキサン(略称:TAPC)が知られている。屈折率の小さな材料をEL層に用いることで、高い外部量子効率を示す発光デバイスを得ることが可能であるため、TAPCを用いることで良好な外部量子効率を有する発光デバイスを得ることが可能である。
通常、高いキャリア輸送性と低い屈折率とはトレードオフの関係にある。それは、有機化合物におけるキャリア輸送性は不飽和結合の存在に由来するところが大きく、不飽和結合を多く有する有機化合物は、屈折率が高い傾向があるからである。TAPCは、正孔輸送性と低い屈折率とが絶妙なバランスの上に成り立っている物質であるが、一方で、TAPCのようにシクロヘキサンの1,1-ジ置換構造を有する化合物では、シクロヘキサンの一炭素上に、嵩高い置換基が二基挿入されていることから、立体反発が大きくなり、分子自体の不安定性を誘起するため、信頼性的に不利であるという問題があった。また、TAPCはその骨格の構成がシクロヘキサンと、単純なベンゼン環からなることに起因して、ガラス転移点(Tg)が低く、耐熱性にも問題を有していた。
耐熱性が高く、信頼性の良好な正孔輸送材料を得るための一つの方法として、不飽和炭化水素基、特に環式不飽和炭化水素基を分子内に導入することが考えられる。一方、屈折率が低い材料を得るためには、分子の屈折率を下げることのできる置換基を導入することが好ましい。当該置換基としては飽和炭化水素基および環式飽和炭化水素基等を挙げることができる。
また、有機ELデバイスのキャリア輸送材料として用いる材料は、キャリア輸送性が高い骨格を有することが好ましく、中でも芳香族アミン骨格は正孔輸送性が高く好ましい骨格である。正孔輸送性をさらに向上させるために、アミン骨格を二基導入する手段も考えられる。しかし、上述のTAPCのように、その周辺に配置された置換基の環境によっては、ジアミン構造は信頼性に対して不利に働くこともある。
トレードオフを乗り越え、キャリア輸送性、キャリア注入性、低い屈折率、そして高い信頼性を兼ね備える有機化合物として、本発明者らは、二つのフルオレニル基と、分岐鎖状または環状のアルキル基を置換基として有するアリール基と、を有するトリアリールアミン化合物を見出した。当該トリアリールアミン化合物は、通常の屈折率を有する従来の正孔輸送層用材料と同等の良好な信頼性を有する材料である。また、当該トリアリールアミン化合物のアルキル基の数および置換位置に工夫をすることでより良好な特性を有する材料とすることができる。
また、トリアリールアミン化合物は、フルオレニル基を有する場合に正孔輸送性が高い傾向がある。分子構造の中に二つのフルオレニル基を有することにより、さらに正孔輸送性が良好となり、当該トリアリールアミン化合物を正孔輸送層用材料として用いた発光デバイスは、駆動電圧の良好な発光デバイスとすることが可能となる。また、フルオレニル基はアミンの窒素原子と直接結合していることが分子のHOMO(最高被占有軌道:Highest Occupied Molecular Orbital)準位を浅くすることに寄与し、これによってホールの受け渡しが容易になるため好ましい。
一般に、ある化合物に直鎖状のアルキル基を導入することで、対応する(例えば炭素数が同等の)分岐鎖状または環状のアルキル基を導入する場合と比べ、当該化合物のTgもしくは融点またはその両方が下がる傾向がある。Tgが下がると、有機EL材料として耐熱性が下がる場合がある。有機EL材料を用いたELデバイスは、ヒトの生活における様々な環境下で安定した物性を示すことが望ましいことから、同等の特性を示す材料であればTgが高いことが好ましい。本発明の一態様のトリアリールアミン化合物は、分岐鎖状または環状のアルキル基を有することにより、直鎖状のアルキル基を導入する場合よりもTgを高く維持し、耐熱性の高い材料とすることが可能である。
すなわち、本発明の一態様は、一般式(G1)で表される有機化合物である。
Figure 2022159214000006
上記一般式(G1)において、Arは置換または無置換の環を形成する炭素の数が6乃至13のアリーレン基を表す。また、nは0または1の整数を表す。また、Arは環を形成する炭素の数が6乃至10のアリール基を表し、炭素数3乃至12の分岐鎖状または環状のアルキル基を少なくとも一つ有する。また、Arが有する前記分岐鎖状または環状のアルキル基の炭素数の総和は、6以上である。また、R乃至Rは各々独立に炭素数1乃至6のアルキル基を表す。また、R11乃至R14は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R15乃至R18のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R21乃至R24は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R25乃至R28のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。
上記一般式(G1)において、Arに用いることのできる、環を形成する炭素の数が6乃至13のアリーレン基としては、フェニレン基、ナフチレン基、およびフルオレンジイル基などを具体例として挙げることができる。環を形成する炭素の数が6乃至13のアリーレン基が置換基を有する場合、当該置換基は、炭素数1乃至4のアルキル基である。
また、Arに用いることのできる、環を形成する炭素の数が6乃至10のアリール基としては、フェニル基およびナフチル基などを具体例として挙げることができる。
また、Arが有する炭素数3乃至12の分岐鎖状のアルキル基としては、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、neo-ペンチル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、イソヘプチル基、sec-ヘプチル基、tert-ヘプチル基、neo-ヘプチル基、イソオクチル基、sec-オクチル基、tert-オクチル基、neo-オクチル基、イソノニル基、sec-ノニル基、tert-ノニル基、neo-ノニル基、イソデシル基、sec-デシル基、tert-デシル基、イソウンデシル基、sec-ウンデシル基、tert-ウンデシル基、イソドデシル基、sec-ドデシル基、tert-ドデシル基、などを挙げることができ、特に好ましくはtert-ブチル基である。
また、Arが有する炭素数3乃至12の環状のアルキル基として具体的には、シクロプロピル基、メチルイソプロピル基、シクロブチル基、メチルシクロブチル基、シクロペンチル基、メチルシクロペンチル基、イソプロピルシクロペンチル基、tert-ブチルシクロプロピル基、シクロヘキシル基、メチルシクロヘキシル基、イソプロピルシクロヘキシル基、tert-ブチルシクロヘキシル基、シクロヘプチル基、メチルシクロヘプチル基、イソプロピルシクロヘプチル基、tert-ブチルシクロヘプチル基、シクロオクチル基、メチルシクロオクチル基、イソプロピルシクロヘキシル基、tert-ブチルシクロオクチル基、シクロノニル基、メチルシクロノニル基、イソプロピルシクロノニル基、シクロデシル基、メチルシクロデシル基、シクロウンデシル基、メチルシクロウンデシル基、シクロドデシル基などを用いることができるが、炭素数6以上のシクロアルキル基が低屈折率化のために好ましく、特にシクロヘキシル基が好ましい。
また、本発明の一態様は、一般式(G2)で表される有機化合物である。
Figure 2022159214000007
上記一般式(G2)において、R乃至Rは各々独立に炭素数1乃至6のアルキル基を表す。また、R11乃至R14は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R15乃至R18のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R21乃至R24は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R25乃至R28のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R31乃至R35は各々独立に水素原子または炭素数3乃至12の分岐鎖状または環状のアルキル基を表す。ただし、R31乃至R35が有する総炭素数は、6以上である。また、nは0または1の整数を表す。
上記一般式(G2)において、炭素数3乃至12の分岐鎖状のアルキル基としては、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、neo-ペンチル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、イソヘプチル基、sec-ヘプチル基、tert-ヘプチル基、neo-ヘプチル基、イソオクチル基、sec-オクチル基、tert-オクチル基、neo-オクチル基、イソノニル基、sec-ノニル基、tert-ノニル基、neo-ノニル基、イソデシル基、sec-デシル基、tert-デシル基、イソウンデシル基、sec-ウンデシル基、tert-ウンデシル基、イソドデシル基、sec-ドデシル基、tert-ドデシル基、などを挙げることができ、特に好ましくはtert-ブチル基である。
また、Arが有する炭素数3乃至12の環状のアルキル基として具体的には、シクロプロピル基、メチルイソプロピル基、シクロブチル基、メチルシクロブチル基、シクロペンチル基、メチルシクロペンチル基、イソプロピルシクロペンチル基、tert-ブチルシクロプロピル基、シクロヘキシル基、メチルシクロヘキシル基、イソプロピルシクロヘキシル基、tert-ブチルシクロヘキシル基、シクロヘプチル基、メチルシクロヘプチル基、イソプロピルシクロヘプチル基、tert-ブチルシクロヘプチル基、シクロオクチル基、メチルシクロオクチル基、イソプロピルシクロヘキシル基、tert-ブチルシクロオクチル基、シクロノニル基、メチルシクロノニル基、イソプロピルシクロノニル基、シクロデシル基、メチルシクロデシル基、シクロウンデシル基、メチルシクロウンデシル基、シクロドデシル基などを用いることができるが、炭素数6以上のシクロアルキル基が低屈折率化のために好ましく、特にシクロヘキシル基が好ましい。
また、本発明の一態様は、一般式(G3)で表される有機化合物である。
Figure 2022159214000008
上記一般式(G3)において、R乃至Rは各々独立に炭素数1乃至6のアルキル基を表す。また、R11乃至R14は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R15乃至R18のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R21乃至R24は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R25乃至R28のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R31乃至R35は各々独立に水素原子または炭素数3乃至12の分岐鎖状または環状のアルキル基を表す。ただし、R31乃至R35が有する総炭素数は、6以上である。
上記一般式(G3)において、炭素数3乃至12の分岐鎖状のアルキル基としては、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、neo-ペンチル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、イソヘプチル基、sec-ヘプチル基、tert-ヘプチル基、neo-ヘプチル基、イソオクチル基、sec-オクチル基、tert-オクチル基、neo-オクチル基、イソノニル基、sec-ノニル基、tert-ノニル基、neo-ノニル基、イソデシル基、sec-デシル基、tert-デシル基、イソウンデシル基、sec-ウンデシル基、tert-ウンデシル基、イソドデシル基、sec-ドデシル基、tert-ドデシル基、などを挙げることができ、特に好ましくはtert-ブチル基である。
また、Arが有する炭素数3乃至12の環状のアルキル基として具体的には、シクロプロピル基、メチルイソプロピル基、シクロブチル基、メチルシクロブチル基、シクロペンチル基、メチルシクロペンチル基、イソプロピルシクロペンチル基、tert-ブチルシクロプロピル基、シクロヘキシル基、メチルシクロヘキシル基、イソプロピルシクロヘキシル基、tert-ブチルシクロヘキシル基、シクロヘプチル基、メチルシクロヘプチル基、イソプロピルシクロヘプチル基、tert-ブチルシクロヘプチル基、シクロオクチル基、メチルシクロオクチル基、イソプロピルシクロヘキシル基、tert-ブチルシクロオクチル基、シクロノニル基、メチルシクロノニル基、イソプロピルシクロノニル基、シクロデシル基、メチルシクロデシル基、シクロウンデシル基、メチルシクロウンデシル基、シクロドデシル基などを用いることができるが、炭素数6以上のシクロアルキル基が低屈折率化のために好ましく、特にシクロヘキシル基が好ましい。
また、本発明の一態様は、一般式(G1)、一般式(G2)、および一般式(G3)において、R11乃至R14およびR21乃至R24は水素原子であり、R15乃至R18のいずれか一は直接窒素原子に結合する結合手であり、その他は水素原子であり、R25乃至R28のいずれか一は直接窒素原子に結合する結合手であり、その他は水素原子である、有機化合物である。
また、本発明の一態様は、一般式(G4)で表される有機化合物である。
Figure 2022159214000009
上記一般式(G4)において、R乃至Rは各々独立に炭素数1乃至6のアルキル基を表す。また、R31乃至R35は各々独立に水素原子または炭素数3乃至12の分岐鎖状または環状のアルキル基を表す。ただし、R31乃至R35が有する総炭素数は、6以上である。
上記一般式(G4)において、炭素数3乃至12の分岐鎖状のアルキル基としては、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、neo-ペンチル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、イソヘプチル基、sec-ヘプチル基、tert-ヘプチル基、neo-ヘプチル基、イソオクチル基、sec-オクチル基、tert-オクチル基、neo-オクチル基、イソノニル基、sec-ノニル基、tert-ノニル基、neo-ノニル基、イソデシル基、sec-デシル基、tert-デシル基、イソウンデシル基、sec-ウンデシル基、tert-ウンデシル基、イソドデシル基、sec-ドデシル基、tert-ドデシル基、などを挙げることができ、特に好ましくはtert-ブチル基である。
また、Arが有する炭素数3乃至12の環状のアルキル基として具体的には、シクロプロピル基、メチルイソプロピル基、シクロブチル基、メチルシクロブチル基、シクロペンチル基、メチルシクロペンチル基、イソプロピルシクロペンチル基、tert-ブチルシクロプロピル基、シクロヘキシル基、メチルシクロヘキシル基、イソプロピルシクロヘキシル基、tert-ブチルシクロヘキシル基、シクロヘプチル基、メチルシクロヘプチル基、イソプロピルシクロヘプチル基、tert-ブチルシクロヘプチル基、シクロオクチル基、メチルシクロオクチル基、イソプロピルシクロヘキシル基、tert-ブチルシクロオクチル基、シクロノニル基、メチルシクロノニル基、イソプロピルシクロノニル基、シクロデシル基、メチルシクロデシル基、シクロウンデシル基、メチルシクロウンデシル基、シクロドデシル基などを用いることができるが、炭素数6以上のシクロアルキル基が低屈折率化のために好ましく、特にシクロヘキシル基が好ましい。
また、本発明の一態様は、一般式(G2)、一般式(G3)、および一般式(G4)において、R31乃至R35の少なくともいずれか一がtert-ブチル基またはシクロヘキシル基である、有機化合物である。
また、本発明の一態様は、一般式(G2)、一般式(G3)、および一般式(G4)において、R31、R33、R35が水素原子であり、R32、R34がtert-ブチル基またはシクロヘキシル基である、有機化合物である。
また、本発明の一態様は、一般式(G2)、一般式(G3)、および一般式(G4)において、R31、R32、R34、R35が水素原子であり、R33がtert-ブチル基またはシクロヘキシル基である、有機化合物である。
以上のような構成を有する本発明の一態様の有機化合物は、当該有機化合物からなる層の波長465nmの光に対する常光屈折率が1.45以上1.80以下、好ましくは1.50以上1.75以下、波長520nmの光に対する常光屈折率が1.45以上1.75以下、好ましくは1.50以上1.70以下、波長633nmの光に対する常光屈折率が1.40以上1.75以下、好ましくは1.45以上1.70以下、の非常に屈折率の低い化合物とすることが可能である(屈折率に関する数値範囲)。
なお、材料に異方性が生じている場合、常光に対する屈折率と異常光に対する屈折率が異なることがある。測定する薄膜がその様な状態である場合、異方性解析を実施することで、常光屈折率と異常光屈折率に分離して各々の屈折率を算出することができる。なお、本明細書においては、測定した材料に常光屈折率と異常光屈折率の双方が存在した場合、常光屈折率を指標として用いている。
以上のような構成を有する本発明の一態様の有機化合物は、良好な正孔輸送性を有し屈折率が小さい有機化合物であることから、有機ELデバイスの正孔輸送層用材料または正孔注入層用材料として好適に用いることができる。また、当該正孔輸送層用材料または正孔注入層用材料を用いた有機ELデバイスは、屈折率の小さい正孔輸送層または正孔注入層を有していることから、発光効率、すなわち外部量子効率、電流効率およびブルーインデックスの高い発光デバイスとすることができる。
また、以上のような構成を有する本発明の一態様の有機化合物は、HOMO準位の比較的浅い有機化合物である。通常、正孔注入層、および正孔輸送層等の隣接層を構成する材料のHOMO準位が発光層を構成する材料のHOMO準位と近い値を示し、適切な範囲内で浅くなる事で、これらの層から発光層への正孔受容性が向上する。一方で、有機ELデバイスの発光層に接する正孔輸送層を構成する材料として、HOMO準位の浅い材料を用いると、正孔輸送層を構成する材料のHOMO準位と発光層を構成する材料のLUMO(最低空軌道:Lowest Unoccupied Molecular Orbital)準位との間で、エネルギー準位の低いエキサイプレックスが形成され、発光効率が低下してしまう場合がある。
しかし、本発明の一態様の有機化合物は、嵩高いアルキル基を有する有機化合物である。このことから、有機ELデバイスの発光層に接する正孔輸送層用材料として用いた際に、嵩高いアルキル基の立体効果によって、通常の有機ELデバイスと比較して、隣接する発光層を構成する材料と正孔輸送層用材料の相互作用を小さくすることができるため、正孔輸送層を構成する材料のHOMO準位と発光層を構成する材料のLUMO準位とがエキサイプレックスを形成するのを抑制し、エキサイプレックス形成によって引き起こされる発光効率の低下を防ぐ効果がある。従って、本発明の一態様の有機化合物を用いることにより、駆動電圧が低く、且つ、高効率な有機ELデバイスが作製可能となる。
本発明の一態様の有機化合物のHOMO準位は-5.30eV以下、-5.50eV以上である事が好ましく、-5.30eV以下、-5.40eV以上である事が特に好ましい(HOMO準位に関する数値範囲)。これによって、本発明の一態様の有機化合物は、有機ELデバイスの発光層に接する正孔輸送層用材料として好適に用いることができる。
また、以上のような構成を有する本発明の一態様の有機化合物は、当該有機化合物からなる層の巨大表面電位(GSP:Giant Surface Potential)が、20mV/nm以上と、GSPの大きい化合物とすることが可能である(GSPに関する数値範囲)。
なお、巨大表面電位とは、蒸着膜の表面電位が膜厚に比例して増加する現象である。その大きさを膜厚に依存しない数値として扱うには、蒸着膜の表面電位を膜厚で割った値、すなわち、蒸着膜の表面電位の電位勾配(傾き)を用いればよい。本明細書中では、この蒸着膜の表面電位の電位勾配をGSP(mV/nm)と記載する。
接して積層された少なくとも2つの層(第1の正孔輸送層、第2の正孔輸送層)を有する有機半導体デバイスにおいて、第1の正孔輸送層側から第2の正孔輸送層側に向かってホールが流れる場合、第1の正孔輸送層を構成する有機化合物のGSP(GSP1)と、第2の正孔輸送層を構成する有機化合物のGSP(GSP2)の差ΔGSP(GSP2-GSP1)が正の値になる構成とすると、ホールの注入が容易であり、駆動電圧の低い有機半導体デバイスとすることが可能となる。従って、このような場合、本発明の一態様の有機化合物は、第1の正孔輸送層として好適に用いることが可能である。
また、本発明の一態様の有機化合物は、上述の屈折率に関する数値範囲、HOMO準位に関する数値範囲、およびGSPに関する数値範囲のうち、少なくとも2を満たすと好ましく、3を満たしているとより好ましい。
次に、上記各構成を有する、本発明の一態様である有機化合物の具体的な例を以下に示す。
Figure 2022159214000010
Figure 2022159214000011
Figure 2022159214000012
Figure 2022159214000013
上記構造式(100)乃至(135)で表される有機化合物は、上記一般式(G1)乃至(G4)で表される有機化合物の一例であるが、本発明の一態様である有機化合物は、これに限られない。
次に、本発明の一態様であり、下記一般式(G1)で表される有機化合物の合成方法について説明する。
Figure 2022159214000014
上記一般式(G1)において、Arは置換または無置換の環を形成する炭素の数が6乃至13のアリーレン基を表す。また、nは0または1の整数を表す。また、Arは環を形成する炭素の数が6乃至10のアリール基を表し、炭素数3乃至12の分岐鎖状または環状のアルキル基を少なくとも一つ有する。また、Arが有する前記分岐鎖状または環状のアルキル基の炭素数の総和は、6以上である。また、R乃至Rは各々独立に炭素数1乃至6のアルキル基を表す。また、R11乃至R14は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R15乃至R18のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R21乃至R24は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R25乃至R28のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。
下記合成スキームに示すように、ジフルオレニルアミンと、有機ハロゲン化物とを、塩基存在下で金属触媒、金属、または金属化合物によりカップリングさせることにより、上記一般式(G1)で表される有機化合物を得ることができる。
Figure 2022159214000015
上記スキームにおいて、Arは置換または無置換の環を形成する炭素の数が6乃至13のアリーレン基を表す。また、nは0または1の整数を表す。また、Arは環を形成する炭素の数が6乃至10のアリール基を表し、炭素数3乃至12の分岐鎖状または環状のアルキル基を少なくとも一つ有する。また、Arが有する前記分岐鎖状または環状のアルキル基の炭素数の総和は、6以上である。また、R乃至Rは各々独立に炭素数1乃至6のアルキル基を表す。また、R11乃至R14は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R15乃至R18のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R21乃至R24は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R25乃至R28のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。
上記合成スキームをバックワルド・ハートウィグ反応を用いて行う場合、Xはハロゲン又はトリフラート基を表す。ハロゲンとしては、ヨウ素、臭素、または塩素が好ましい。当該反応では、ビス(ジベンジリデンアセトン)パラジウム(0)、またはアリル塩化パラジウム二量体(II)等のパラジウム錯体または化合物と、それに配位するトリ(tert-ブチル)ホスフィン、ジtertブチル(1-メチル-2,2-ジフェニルシクロプロピル)ホスフィン、またはトリシクロヘキシルホスフィン等の配位子を用いるパラジウム触媒を利用することができる。塩基の具体例としては、ナトリウムtert-ブトキシド等の有機塩基、または炭酸カリウム等の無機塩基等が挙げられる。また、溶媒を使用する場合、トルエン、キシレン、1,3,5-トリメチルベンゼン等を用いることができる。
また、上記合成スキームをウルマン反応を用いて行う場合、Xはハロゲンを表す。ハロゲンとしては、ヨウ素、臭素、または塩素が好ましい。触媒としては、銅または銅化合物を用いることができる。なお、ヨウ化銅(I)、または酢酸銅(II)を用いることが好ましい。用いる塩基としては、炭酸カリウム等の無機塩基が挙げられる。また、溶媒は、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)ピリミジノン(DMPU)、N-メチル-2-ピロリドン(NMP)、トルエン、キシレン、または1,3,5-トリメチルベンゼン等を用いる。ただし、使用することのできる溶媒はこれらに限られるものでは無い。ウルマン反応では、反応温度が100℃以上の方がより短時間かつ高収率で目的物が得られるため、沸点の高いDMPU、NMP、または1,3,5-トリメチルベンゼンを用いることが好ましい。また、反応温度は150℃以上のより高い温度がさらに好ましいため、DMPUを用いることがより好ましい。
以上、本発明の一態様である有機化合物の合成方法の一例について説明したが、本発明はこれに限定されることはなく、他のどのような合成方法によって合成されても良い。
本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、実施の形態1で示した有機化合物を用いた発光デバイスについて、図1(A)乃至図1(E)を用いて説明する。
≪発光デバイスの基本的な構造≫
発光デバイスの基本的な構造について説明する。図1(A)には、一対の電極間に発光層を含むEL層を有する発光デバイスを示す。具体的には、第1の電極101と第2の電極102との間にEL層103が挟まれた構造を有する。
また、図1(B)には、一対の電極間に複数(図1(B)では、2層)のEL層(103a、103b)を有し、EL層の間に電荷発生層106を有する積層構造(タンデム構造)の発光デバイスを示す。タンデム構造の発光デバイスは、低電圧駆動が可能で消費電力が低い発光装置を実現することができる。
電荷発生層106は、第1の電極101と第2の電極102の間に電位差を生じさせたときに、一方のEL層(103aまたは103b)に電子を注入し、他方のEL層(103bまたは103a)に正孔を注入する機能を有する。従って、図1(B)において、第1の電極101に、第2の電極102よりも電位が高くなるように電圧を印加すると、電荷発生層106からEL層103aに電子が注入され、EL層103bに正孔が注入されることとなる。
なお、電荷発生層106は、光の取り出し効率の点から、可視光に対して透光性を有する(具体的には、電荷発生層106に対する可視光の透過率が、40%以上)ことが好ましい。また、電荷発生層106は、第1の電極101および第2の電極102よりも低い導電率であっても機能する。
また、図1(C)には、本発明の一態様である発光デバイスのEL層103の積層構造を示す。但し、この場合、第1の電極101は陽極として、第2の電極102は陰極として機能するものとする。EL層103は、第1の電極101上に、正孔(ホール)注入層111、正孔(ホール)輸送層112、発光層113、電子輸送層114、電子注入層115が順次積層された構造を有する。なお、発光層113は、発光色の異なる発光層を複数積層した構成であっても良い。例えば、赤色を発光する発光物質を含む発光層と、緑色を発光する発光物質を含む発光層と、青色を発光する発光物質を含む発光層とが積層、またはキャリア輸送性材料を有する層を介して積層された構造であっても良い。または、黄色を発光する発光物質を含む発光層と、青色を発光する発光物質を含む発光層との組み合わせであっても良い。ただし、発光層113の積層構造は上記に限定されない。例えば、発光層113は、発光色の同じ発光層を複数積層した構成であっても良い。例えば、青色を発光する発光物質を含む第1の発光層と、青色を発光する発光物質を含む第2の発光層とが積層、またはキャリア輸送性材料を有する層を介して積層された構造であっても良い。発光色の同じ発光層を複数積層した構成の場合、単層の構成よりも信頼性を高めることができる場合がある。また、図1(B)に示すタンデム構造のように複数のEL層を有する場合であっても、各EL層が、陽極側から上記のように順次積層される構造とする。また、第1の電極101が陰極で、第2の電極102が陽極の場合は、EL層103の積層順は逆になる。具体的には、陰極である第1の電極101上の111が、電子注入層、112が電子輸送層、113が発光層、114が正孔(ホール)輸送層、115が正孔(ホール)注入層、という構成を有する。
EL層(103、103a、103b)に含まれる発光層113は、それぞれ発光物質および複数の物質を適宜組み合わせて有しており、所望の発光色を呈する蛍光発光または燐光発光が得られる構成とすることができる。また、発光層113を発光色の異なる積層構造としてもよい。なお、この場合、積層された各発光層に用いる発光物質およびその他の物質は、それぞれ異なる材料を用いればよい。また、図1(B)に示す複数のEL層(103a、103b)から、それぞれ異なる発光色が得られる構成としても良い。この場合も各発光層に用いる発光物質およびその他の物質を異なる材料とすればよい。
また、本発明の一態様である発光デバイスにおいて、例えば、図1(C)に示す第1の電極101を反射電極とし、第2の電極102を半透過・半反射電極とし、微小光共振器(マイクロキャビティ)構造とすることにより、EL層103に含まれる発光層113から得られる発光を両電極間で共振させ、第2の電極102から得られる発光を強めることができる。
なお、発光デバイスの第1の電極101が、反射性を有する導電性材料と透光性を有する導電性材料(透明導電膜)との積層構造からなる反射電極である場合、透明導電膜の膜厚を制御することにより光学調整を行うことができる。具体的には、発光層113から得られる光の波長λに対して、第1の電極101と、第2の電極102との電極間の光学距離(膜厚と屈折率の積)がmλ/2(ただし、mは自然数)またはその近傍となるように調整するのが好ましい。
また、発光層113から得られる所望の光(波長:λ)を増幅させるために、第1の電極101から発光層113の所望の光が得られる領域(発光領域)までの光学距離と、第2の電極102から発光層113の所望の光が得られる領域(発光領域)までの光学距離と、をそれぞれ(2m’+1)λ/4(ただし、m’は自然数)またはその近傍となるように調節するのが好ましい。なお、ここでいう発光領域とは、発光層113における正孔(ホール)と電子との再結合領域を示す。
このような光学調整を行うことにより、発光層113から得られる特定の単色光のスペクトルを狭線化させ、色純度の良い発光を得ることができる。
但し、上記の場合、第1の電極101と第2の電極102との光学距離は、厳密には第1の電極101における反射領域から第2の電極102における反射領域までの総厚ということができる。しかし、第1の電極101および第2の電極102における反射領域を厳密に決定することは困難であるため、第1の電極101と第2の電極102の任意の位置を反射領域と仮定することで充分に上述の効果を得ることができるものとする。また、第1の電極101と、所望の光が得られる発光層との光学距離は、厳密には第1の電極101における反射領域と、所望の光が得られる発光層における発光領域との光学距離であるということができる。しかし、第1の電極101における反射領域および、所望の光が得られる発光層における発光領域を厳密に決定することは困難であるため、第1の電極101の任意の位置を反射領域、所望の光が得られる発光層の任意の位置を発光領域と仮定することで充分に上述の効果を得ることができるものとする。
図1(D)に示す発光デバイスは、タンデム構造を有する発光デバイスであり、マイクロキャビティ構造を有するため、各EL層(103a、103b)からの異なる波長の光(単色光)を取り出すことができる。従って、異なる発光色を得るための塗り分け(例えば、RGB)が不要となる。従って、高精細化を実現することが容易である。また、着色層(カラーフィルタ)との組み合わせも可能である。さらに、特定波長の正面方向の発光強度を強めることが可能となるため、低消費電力化を図ることができる。
図1(E)に示す発光デバイスは、図1(B)に示したタンデム構造の発光デバイスの一例であり、図に示すように、3つのEL層(103a、103b、103c)が電荷発生層(106a、106b)を挟んで積層される構造を有する。なお、3つのEL層(103a、103b、103c)は、それぞれに発光層(113a、113b、113c)を有しており、各発光層の発光色は、自由に組み合わせることができる。例えば、発光層113aを青色、発光層113bを赤色、緑色、または黄色のいずれか、発光層113cを青色とすることができるが、発光層113aを赤色、発光層113bを青色、緑色、または黄色のいずれか、発光層113cを赤色とすることもできる。
なお、上述した本発明の一態様である発光デバイスにおいて、第1の電極101と第2の電極102の少なくとも一方は、透光性を有する電極(透明電極、半透過・半反射電極など)とする。透光性を有する電極が透明電極の場合、透明電極の可視光の透過率は、40%以上とする。また、半透過・半反射電極の場合、半透過・半反射電極の可視光の反射率は、20%以上80%以下、好ましくは40%以上70%以下とする。また、これらの電極は、抵抗率が1×10-2Ωcm以下とするのが好ましい。
また、上述した本発明の一態様である発光デバイスにおいて、第1の電極101と第2の電極102の一方が、反射性を有する電極(反射電極)である場合、反射性を有する電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、この電極は、抵抗率が1×10-2Ωcm以下とするのが好ましい。
≪発光デバイスの具体的な構造≫
次に、本発明の一態様である発光デバイスの具体的な構造について説明する。また、ここでは、タンデム構造を有する図1(D)を用いて説明する。なお、図1(A)および図1(C)に示すシングル構造の発光デバイスについてもEL層の構成については同様とする。また、図1(D)に示す発光デバイスがマイクロキャビティ構造を有する場合は、第1の電極101を反射電極として形成し、第2の電極102を半透過・半反射電極として形成する。従って、所望の電極材料を単数または複数用い、単層または積層して形成することができる。なお、第2の電極102は、EL層103bを形成した後、上記と同様に材料を選択して形成する。
<第1の電極および第2の電極>
第1の電極101および第2の電極102を形成する材料としては、上述した両電極の機能が満たせるのであれば、以下に示す材料を適宜組み合わせて用いることができる。例えば、金属、合金、電気伝導性化合物、およびこれらの混合物などを適宜用いることができる。具体的には、In-Sn酸化物(ITOともいう)、In-Si-Sn酸化物(ITSOともいう)、In-Zn酸化物、In-W-Zn酸化物が挙げられる。その他、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ガリウム(Ga)、亜鉛(Zn)、インジウム(In)、スズ(Sn)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、パラジウム(Pd)、金(Au)、白金(Pt)、銀(Ag)、イットリウム(Y)、ネオジム(Nd)などの金属、およびこれらを適宜組み合わせて含む合金を用いることもできる。その他、上記例示のない元素周期表の第1族または第2族に属する元素(例えば、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、ストロンチウム(Sr))、ユウロピウム(Eu)、イッテルビウム(Yb)などの希土類金属およびこれらを適宜組み合わせて含む合金、その他グラフェン等を用いることができる。
図1(D)に示す発光デバイスにおいて、第1の電極101が陽極である場合、第1の電極101上にEL層103aの正孔注入層111aおよび正孔輸送層112aが真空蒸着法により順次積層形成される。EL層103aおよび電荷発生層106が形成された後、電荷発生層106上にEL層103bの正孔注入層111bおよび正孔輸送層112bが同様に順次積層形成される。
<正孔注入層>
正孔注入層(111、111a、111b)は、陽極である第1の電極101または電荷発生層(106、106a、106b)からEL層(103、103a、103b)に正孔(ホール)を注入する層であり、有機アクセプタ材料または正孔注入性の高い材料を含む層である。
有機アクセプタ材料は、そのLUMO準位の値とHOMO準位の値が近い他の有機化合物との間で電荷分離させることにより、当該有機化合物に正孔(ホール)を発生させることができる材料である。従って、有機アクセプタ材料としては、キノジメタン誘導体、クロラニル誘導体、ヘキサアザトリフェニレン誘導体などの電子吸引基(ハロゲン基またはシアノ基)を有する化合物を用いることができる。例えば、7,7,8,8-テトラシアノ-2,3,5,6-テトラフルオロキノジメタン(略称:F-TCNQ)、3,6-ジフルオロ-2,5,7,7,8,8-ヘキサシアノキノジメタン、クロラニル、2,3,6,7,10,11-ヘキサシアノ-1,4,5,8,9,12-ヘキサアザトリフェニレン(略称:HAT-CN)、1,3,4,5,7,8-ヘキサフルオロテトラシアノ-ナフトキノジメタン(略称:F6-TCNNQ)、2-(7-ジシアノメチレン-1,3,4,5,6,8,9,10-オクタフルオロ-7H-ピレン-2-イリデン)マロノニトリル等を用いることができる。なお、有機アクセプタ材料の中でも特にHAT-CNのように複素原子を複数有する縮合芳香環に電子吸引基が結合している化合物は、アクセプタ性が高く、熱に対して膜質が安定であるため好適である。その他にも、電子吸引基(特にフルオロ基のようなハロゲン基またはシアノ基)を有する[3]ラジアレン誘導体は、電子受容性が非常に高いため好ましく、具体的にはα,α’,α’’-1,2,3-シクロプロパントリイリデントリス[4-シアノ-2,3,5,6-テトラフルオロベンゼンアセトニトリル]、α,α’,α’’-1,2,3-シクロプロパントリイリデントリス[2,6-ジクロロ-3,5-ジフルオロ-4-(トリフルオロメチル)ベンゼンアセトニトリル]、α,α’,α’’-1,2,3-シクロプロパントリイリデントリス[2,3,4,5,6-ペンタフルオロベンゼンアセトニトリル]などを用いることができる。
また、正孔注入性の高い材料としては、元素周期表における第4族乃至第8族に属する金属の酸化物(モリブデン酸化物、バナジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化物等の遷移金属酸化物等)を用いることができる。具体的には、酸化モリブデン、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化タングステン、酸化マンガン、酸化レニウムが挙げられる。上記の中でも、酸化モリブデンは大気中で安定であり、吸湿性が低く、扱いやすいため好ましい。この他、フタロシアニン(略称:HPc)、銅フタロシアニン(略称:CuPc)等のフタロシアニン系の化合物、等を用いることができる。
また、上記材料に加えて低分子化合物である、4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、N,N’-ビス{4-[ビス(3-メチルフェニル)アミノ]フェニル}-N,N’-ジフェニル-(1,1’-ビフェニル)-4,4’-ジアミン(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物、等を用いることができる。
また、高分子化合物(オリゴマー、デンドリマー、ポリマー等)である、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)等を用いることができる。または、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(略称:PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子系化合物、等を用いることもできる。
また、正孔注入性の高い材料としては、正孔輸送性材料と、上述した有機アクセプタ材料(電子受容性材料)を含む混合材料を用いることもできる。この場合、有機アクセプタ材料により正孔輸送性材料から電子が引き抜かれて正孔注入層111で正孔が発生し、正孔輸送層112を介して発光層113に正孔が注入される。なお、正孔注入層111は、正孔輸送性材料と有機アクセプタ材料(電子受容性材料)を含む混合材料からなる単層で形成しても良いが、正孔輸送性材料と有機アクセプタ材料(電子受容性材料)とをそれぞれ別の層で積層して形成しても良い。
正孔輸送性材料として、実施の形態1で示す有機化合物を用いることが好ましい。また、正孔輸送性材料として、電界強度[V/cm]の平方根が600における正孔移動度が、1×10-6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いることができる。
また、正孔輸送性材料としては、π電子過剰型複素芳香環を有する化合物(例えばカルバゾール誘導体、フラン誘導体、またはチオフェン誘導体)、芳香族アミン(芳香族アミン骨格を有する有機化合物)等の正孔輸送性の高い材料が好ましい。
なお、上記カルバゾール誘導体(カルバゾール環を有する有機化合物)としては、ビカルバゾール誘導体(例えば、3,3’-ビカルバゾール誘導体)、カルバゾリル基を有する芳香族アミン等が挙げられる。
また、上記ビカルバゾール誘導体(例えば、3,3’-ビカルバゾール誘導体)としては、具体的には、3,3’-ビス(9-フェニル-9H-カルバゾール)(略称:PCCP)、9,9’-ビス(ビフェニル-4-イル)-3,3’-ビ-9H-カルバゾール(略称:BisBPCz)、9,9’-ビス(1,1’-ビフェニル-3-イル)-3,3’-ビ-9H-カルバゾール(略称:BismBPCz)、9-(1,1’-ビフェニル-3-イル)-9’-(1,1’-ビフェニル-4-イル)-9H,9’H-3,3’-ビカルバゾール(略称:mBPCCBP)、9-(2-ナフチル)-9’-フェニル-9H,9’H-3,3’-ビカルバゾール(略称:βNCCP)などが挙げられる。
また、上記カルバゾリル基を有する芳香族アミンとしては、具体的には、4-フェニル-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBA1BP)、N-(4-ビフェニル)-N-(9,9-ジメチル-9H-フルオレン-2-イル)-9-フェニル-9H-カルバゾール-3-アミン(略称:PCBiF)、N-(1,1’-ビフェニル-4-イル)-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-9,9-ジメチル-9H-フルオレン-2-アミン(略称:PCBBiF)、4,4’-ジフェニル-4’’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBBi1BP)、4-(1-ナフチル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBANB)、4,4’-ジ(1-ナフチル)-4’’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBNBB)、4-フェニルジフェニル-(9-フェニル-9H-カルバゾール-3-イル)アミン(略称:PCA1BP)、N,N’-ビス(9-フェニルカルバゾール-3-イル)-N,N’-ジフェニルベンゼン-1,3-ジアミン(略称:PCA2B)、N,N’,N’’-トリフェニル-N,N’,N’’-トリス(9-フェニルカルバゾール-3-イル)ベンゼン-1,3,5-トリアミン(略称:PCA3B)、9,9-ジメチル-N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]フルオレン-2-アミン(略称:PCBAF)、N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]スピロ-9,9’-ビフルオレン-2-アミン(略称:PCBASF)、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)、3-[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzDPA1)、3,6-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzDPA2)、3,6-ビス[N-(4-ジフェニルアミノフェニル)-N-(1-ナフチル)アミノ]-9-フェニルカルバゾール(略称:PCzTPN2)、2-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]スピロ-9,9’-ビフルオレン(略称:PCASF)、N-[4-(9H-カルバゾール-9-イル)フェニル]-N-(4-フェニル)フェニルアニリン(略称:YGA1BP)、N,N’-ビス[4-(カルバゾール-9-イル)フェニル]-N,N’-ジフェニル-9,9-ジメチルフルオレン-2,7-ジアミン(略称:YGA2F)、4,4’,4’’-トリス(カルバゾール-9-イル)トリフェニルアミン(略称:TCTA)などが挙げられる。
なお、カルバゾール誘導体としては、上記に加えて、3-[4-(9-フェナントリル)-フェニル]-9-フェニル-9H-カルバゾール(略称:PCPPn)、3-[4-(1-ナフチル)-フェニル]-9-フェニル-9H-カルバゾール(略称:PCPN)、1,3-ビス(N-カルバゾリル)ベンゼン(略称:mCP)、4,4’-ジ(N-カルバゾリル)ビフェニル(略称:CBP)、3,6-ビス(3,5-ジフェニルフェニル)-9-フェニルカルバゾール(略称:CzTP)、1,3,5-トリス[4-(N-カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9-[4-(10-フェニル-9-アントラセニル)フェニル]-9H-カルバゾール(略称:CzPA)等が挙げられる。
また、上記フラン誘導体(フラン環を有する有機化合物)としては、具体的には、4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾフラン)(略称:DBF3P-II)、4-{3-[3-(9-フェニル-9H-フルオレン-9-イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi-II)等が挙げられる。
また、上記チオフェン誘導体(チオフェン環を有する有機化合物)としては、具体的には、4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P-II)、2,8-ジフェニル-4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]ジベンゾチオフェン(略称:DBTFLP-III)、4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]-6-フェニルジベンゾチオフェン(略称:DBTFLP-IV)などのチオフェン環を有する有機化合物等が挙げられる。
また、上記芳香族アミンとしては、具体的には、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPBまたはα-NPD)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:BSPB)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BPAFLP)、4-フェニル-3’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:mBPAFLP)、N-(9,9-ジメチル-9H-フルオレン-2-イル)-N-{9,9-ジメチル-2-[N’-フェニル-N’-(9,9-ジメチル-9H-フルオレン-2-イル)アミノ]-9H-フルオレン-7-イル}フェニルアミン(略称:DFLADFL)、N-(9,9-ジメチル-2-ジフェニルアミノ-9H-フルオレン-7-イル)ジフェニルアミン(略称:DPNF)、2-[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]スピロ-9,9’-ビフルオレン(略称:DPASF)、2,7-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]-スピロ-9,9’-ビフルオレン(略称:DPA2SF)、4,4’,4’’-トリス[N-(1-ナフチル)-N-フェニルアミノ]トリフェニルアミン(略称:1’-TNATA)、4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:m-MTDATA)、N,N’-ジ(p-トリル)-N,N’-ジフェニル-p-フェニレンジアミン(略称:DTDPPA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、DNTPD、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、N-(4-ビフェニル)-6,N-ジフェニルベンゾ[b]ナフト[1,2-d]フラン-8-アミン(略称:BnfABP)、N,N-ビス(4-ビフェニル)-6-フェニルベンゾ[b]ナフト[1,2-d]フラン-8-アミン(略称:BBABnf)、4,4’-ビス(6-フェニルベンゾ[b]ナフト[1,2-d]フラン-8-イル)-4’’-フェニルトリフェニルアミン(略称:BnfBB1BP)、N,N-ビス(4-ビフェニル)ベンゾ[b]ナフト[1,2-d]フラン-6-アミン(略称:BBABnf(6))、N,N-ビス(4-ビフェニル)ベンゾ[b]ナフト[1,2-d]フラン-8-アミン(略称:BBABnf(8))、N,N-ビス(4-ビフェニル)ベンゾ[b]ナフト[2,3-d]フラン-4-アミン(略称:BBABnf(II)(4))、N,N-ビス[4-(ジベンゾフラン-4-イル)フェニル]-4-アミノ-p-ターフェニル(略称:DBfBB1TP)、N-[4-(ジベンゾチオフェン-4-イル)フェニル]-N-フェニル-4-ビフェニルアミン(略称:ThBA1BP)、4-(2-ナフチル)-4’,4’’-ジフェニルトリフェニルアミン(略称:BBAβNB)、4-[4-(2-ナフチル)フェニル]-4’,4’’-ジフェニルトリフェニルアミン(略称:BBAβNBi)、4,4’-ジフェニル-4’’-(6;1’-ビナフチル-2-イル)トリフェニルアミン(略称:BBAαNβNB)、4,4’-ジフェニル-4’’-(7;1’-ビナフチル-2-イル)トリフェニルアミン(略称:BBAαNβNB-03)、4,4’-ジフェニル-4’’-(7-フェニル)ナフチル-2-イルトリフェニルアミン(略称:BBAPβNB-03)、4,4’-ジフェニル-4’’-(6;2’-ビナフチル-2-イル)トリフェニルアミン(略称:BBA(βN2)B)、4,4’-ジフェニル-4’’-(7;2’-ビナフチル-2-イル)トリフェニルアミン(略称:BBA(βN2)B-03)、4,4’-ジフェニル-4’’-(4;2’-ビナフチル-1-イル)トリフェニルアミン(略称:BBAβNαNB)、4,4’-ジフェニル-4’’-(5;2’-ビナフチル-1-イル)トリフェニルアミン(略称:BBAβNαNB-02)、4-(4-ビフェニリル)-4’-(2-ナフチル)-4’’-フェニルトリフェニルアミン(略称:TPBiAβNB)、4-(3-ビフェニリル)-4’-[4-(2-ナフチル)フェニル]-4’’-フェニルトリフェニルアミン(略称:mTPBiAβNBi)、4-(4-ビフェニリル)-4’-[4-(2-ナフチル)フェニル]-4’’-フェニルトリフェニルアミン(略称:TPBiAβNBi)、4-フェニル-4’-(1-ナフチル)トリフェニルアミン(略称:αNBA1BP)、4,4’-ビス(1-ナフチル)トリフェニルアミン(略称:αNBB1BP)、4,4’-ジフェニル-4’’-[4’-(カルバゾール-9-イル)ビフェニル-4-イル]トリフェニルアミン(略称:YGTBi1BP)、4’-[4-(3-フェニル-9H-カルバゾール-9-イル)フェニル]トリス(1,1’-ビフェニル-4-イル)アミン(略称:YGTBi1BP-02)、4-[4’-(カルバゾール-9-イル)ビフェニル-4-イル]-4’-(2-ナフチル)-4’’-フェニルトリフェニルアミン(略称:YGTBiβNB)、N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-N-[4-(1-ナフチル)フェニル]-9,9’-スピロビ[9H-フルオレン]-2-アミン(略称:PCBNBSF)、N,N-ビス([1,1’-ビフェニル]-4-イル)-9,9’-スピロビ[9H-フルオレン]-2-アミン(略称:BBASF)、N,N-ビス([1,1’-ビフェニル]-4-イル)-9,9’-スピロビ[9H-フルオレン]-4-アミン(略称:BBASF(4))、N-(1,1’-ビフェニル-2-イル)-N-(9,9-ジメチル-9H-フルオレン-2-イル)-9,9’-スピロビ[9H-フルオレン]-4-アミン(略称:oFBiSF)、N-(4-ビフェニル)-N-(9,9-ジメチル-9H-フルオレン-2-イル)ジベンゾフラン-4-アミン(略称:FrBiF)、N-[4-(1-ナフチル)フェニル]-N-[3-(6-フェニルジベンゾフラン-4-イル)フェニル]-1-ナフチルアミン(略称:mPDBfBNBN)、4-フェニル-4’-[4-(9-フェニルフルオレン-9-イル)フェニル]トリフェニルアミン(略称:BPAFLBi)、N,N-ビス(9,9-ジメチル-9H-フルオレン-2-イル)-9,9’-スピロビ-9H-フルオレン-4-アミン、N,N-ビス(9,9-ジメチル-9H-フルオレン-2-イル)-9,9’-スピロビ-9H-フルオレン-3-アミン、N,N-ビス(9,9-ジメチル-9H-フルオレン-2-イル)-9,9’-スピロビ-9H-フルオレン-2-アミン、N,N-ビス(9,9-ジメチル-9H-フルオレン-2-イル)-9,9’-スピロビ-9H-フルオレン-1-アミン、等が挙げられる。
その他にも、正孔輸送性材料として、高分子化合物(オリゴマー、デンドリマー、ポリマー等)である、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)等を用いることができる。または、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(略称:PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子系化合物、等を用いることもできる。
但し、正孔輸送性材料は、上記に限られることなく公知の様々な材料を1種または複数種組み合わせて正孔輸送性材料として用いてもよい。
なお、正孔注入層(111、111a、111b)は、公知の様々な成膜方法を用いて形成することができるが、例えば、真空蒸着法を用いて形成することができる。
<正孔輸送層>
正孔輸送層(112、112a、112b)は、正孔注入層(111、111a、111b)によって、第1の電極101から注入された正孔を発光層(113、113a、113b)に輸送する層である。なお、正孔輸送層(112、112a、112b)は、正孔輸送性材料を含む層である。従って、正孔輸送層(112、112a、112b)には、正孔注入層(111、111a、111b)に用いることができる正孔輸送性材料を用いることができる。
なお、本実施の形態で示す発光デバイスにおいて、正孔輸送層(112、112a、112b)と同じ有機化合物を発光層(113、113a、113b)に用いることができる。正孔輸送層(112、112a、112b)と発光層(113、113a、113b)に同じ有機化合物を用いると、正孔輸送層(112、112a、112b)から発光層(113、113a、113b)へのホールの輸送が効率よく行えるため、より好ましい。
<発光層>
発光層(113、113a、113b)は、発光物質を含む層である。なお、発光層(113、113a、113b)に用いることができる発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色を呈する物質を適宜用いることができる。また、発光層を複数有する場合には、各発光層に異なる発光物質を用いることにより異なる発光色を呈する構成(例えば、補色の関係にある発光色を組み合わせて得られる白色発光)とすることができる。さらに、一つの発光層が異なる発光物質を有する積層構造としてもよい。
また、発光層(113、113a、113b)は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料等)を有していても良い。
なお、発光層(113、113a、113b)にホスト材料を複数用いる場合、新たに加える第2のホスト材料として、既存のゲスト材料および第1のホスト材料のエネルギーギャップよりも大きなエネルギーギャップを有する物質を用いるのが好ましい。また、第2のホスト材料の最低一重項励起エネルギー準位(S1準位)は、第1のホスト材料のS1準位よりも高く、第2のホスト材料の最低三重項励起エネルギー準位(T1準位)は、ゲスト材料のT1準位よりも高いことが好ましい。また、第2のホスト材料の最低三重項励起エネルギー準位(T1準位)は、第1のホスト材料のT1準位よりも高いことが好ましい。このような構成とすることにより、2種類のホスト材料による励起錯体を形成することができる。なお、効率よく励起錯体を形成するためには、正孔を受け取りやすい化合物(正孔輸送性材料)と、電子を受け取りやすい化合物(電子輸送性材料)とを組み合わせることが特に好ましい。また、この構成により、高効率、低電圧、長寿命を同時に実現することができる。
なお、上記のホスト材料(第1のホスト材料および第2のホスト材料を含む)として用いる有機化合物としては、発光層に用いるホスト材料としての条件を満たせば、前述の正孔輸送層(112、112a、112b)に用いることができる正孔輸送性材料、および後述の電子輸送層(114、114a、114b)に用いることができる電子輸送性材料、等の有機化合物が挙げられ、複数種の有機化合物(上記、第1のホスト材料および第2のホスト材料)からなる励起錯体であっても良い。なお、複数種の有機化合物で励起状態を形成する励起錯体(エキサイプレックス、エキシプレックスまたはExciplexともいう)は、S1準位とT1準位との差が極めて小さく、三重項励起エネルギーを一重項励起エネルギーに変換することが可能なTADF材料としての機能を有する。また、励起錯体を形成する複数種の有機化合物の組み合わせとしては、例えば一方がπ電子不足型複素芳香環を有し、他方がπ電子過剰型複素芳香環を有すると好ましい。なお、励起錯体を形成する組み合わせとして、一方にイリジウム、ロジウム、または白金系の有機金属錯体、あるいは金属錯体等の燐光発光物質を用いても良い。
発光層(113、113a、113b)に用いることができる発光物質として、特に限定は無く、一重項励起エネルギーを可視光領域の発光に変える発光物質、または三重項励起エネルギーを可視光領域の発光に変える発光物質を用いることができる。
≪一重項励起エネルギーを発光に変える発光物質≫
発光層113に用いることのできる、一重項励起エネルギーを発光に変える発光物質としては、以下に示す蛍光を発する物質(蛍光発光物質)が挙げられる。例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体などが挙げられる。特にピレン誘導体は発光量子収率が高いので好ましい。ピレン誘導体の具体例としては、N,N’-ビス(3-メチルフェニル)-N,N’-ビス[3-(9-フェニル-9H-フルオレン-9-イル)フェニル]ピレン-1,6-ジアミン(略称:1,6mMemFLPAPrn)、(N,N’-ジフェニル-N,N’-ビス[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]ピレン-1,6-ジアミン)(略称:1,6FLPAPrn)、N,N’-ビス(ジベンゾフラン-2-イル)-N,N’-ジフェニルピレン-1,6-ジアミン(略称:1,6FrAPrn)、N,N’-ビス(ジベンゾチオフェン-2-イル)-N,N’-ジフェニルピレン-1,6-ジアミン(略称:1,6ThAPrn)、N,N’-(ピレン-1,6-ジイル)ビス[(N-フェニルベンゾ[b]ナフト[1,2-d]フラン)-6-アミン](略称:1,6BnfAPrn)、N,N’-(ピレン-1,6-ジイル)ビス[(N-フェニルベンゾ[b]ナフト[1,2-d]フラン)-8-アミン](略称:1,6BnfAPrn-02)、N,N’-(ピレン-1,6-ジイル)ビス[(6,N-ジフェニルベンゾ[b]ナフト[1,2-d]フラン)-8-アミン](略称:1,6BnfAPrn-03)などが挙げられる。
また、5,6-ビス[4-(10-フェニル-9-アントリル)フェニル]-2,2’-ビピリジン(略称:PAP2BPy)、5,6-ビス[4’-(10-フェニル-9-アントリル)ビフェニル-4-イル]-2,2’-ビピリジン(略称:PAPP2BPy)、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’-ジフェニルスチルベン-4,4’-ジアミン(略称:YGA2S)、4-(9H-カルバゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン(略称:YGAPA)、4-(9H-カルバゾール-9-イル)-4’-(9,10-ジフェニル-2-アントリル)トリフェニルアミン(略称:2YGAPPA)、N,9-ジフェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:PCAPA)、4-(10-フェニル-9-アントリル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBAPA)、4-[4-(10-フェニル-9-アントリル)フェニル]-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBAPBA)、ペリレン、2,5,8,11-テトラ-tert-ブチルペリレン(略称:TBP)、N,N’’-(2-tert-ブチルアントラセン-9,10-ジイルジ-4,1-フェニレン)ビス[N,N’,N’-トリフェニル-1,4-フェニレンジアミン](略称:DPABPA)、N,9-ジフェニル-N-[4-(9,10-ジフェニル-2-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:2PCAPPA)、N-[4-(9,10-ジフェニル-2-アントリル)フェニル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPPA)等を用いることができる。
また、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCABPhA)、N-(9,10-ジフェニル-2-アントリル)-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPABPhA)、9,10-ビス(1,1’-ビフェニル-2-イル)-N-[4-(9H-カルバゾール-9-イル)フェニル]-N-フェニルアントラセン-2-アミン(略称:2YGABPhA)、N,N,9-トリフェニルアントラセン-9-アミン(略称:DPhAPhA)、クマリン545T、N,N’-ジフェニルキナクリドン、(略称:DPQd)、ルブレン、5,12-ビス(1,1’-ビフェニル-4-イル)-6,11-ジフェニルテトラセン(略称:BPT)、2-(2-{2-[4-(ジメチルアミノ)フェニル]エテニル}-6-メチル-4H-ピラン-4-イリデン)プロパンジニトリル(略称:DCM1)、2-{2-メチル-6-[2-(2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略称:DCM2)、N,N,N’,N’-テトラキス(4-メチルフェニル)テトラセン-5,11-ジアミン(略称:p-mPhTD)、7,14-ジフェニル-N,N,N’,N’-テトラキス(4-メチルフェニル)アセナフト[1,2-a]フルオランテン-3,10-ジアミン(略称:p-mPhAFD)、2-{2-イソプロピル-6-[2-(1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略称:DCJTI)、2-{2-tert-ブチル-6-[2-(1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略称:DCJTB)、2-(2,6-ビス{2-[4-(ジメチルアミノ)フェニル]エテニル}-4H-ピラン-4-イリデン)プロパンジニトリル(略称:BisDCM)、2-{2,6-ビス[2-(8-メトキシ-1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略称:BisDCJTM)、1,6BnfAPrn-03、3,10-ビス[N-(9-フェニル-9H-カルバゾール-2-イル)-N-フェニルアミノ]ナフト[2,3-b;6,7-b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)-02)、3,10-ビス[N-(ジベンゾフラン-3-イル)-N-フェニルアミノ]ナフト[2,3-b;6,7-b’]ビスベンゾフラン(略称:3,10FrA2Nbf(IV)-02)などが挙げられる。特に、1,6FLPAPrn、1,6mMemFLPAPrn、1,6BnfAPrn-03のようなピレンジアミン化合物、等を用いることができる。
≪三重項励起エネルギーを発光に変える発光物質≫
次に、発光層113に用いることのできる、三重項励起エネルギーを発光に変える発光物質としては、例えば、燐光を発する物質(燐光発光物質)または熱活性化遅延蛍光を示す熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料が挙げられる。
燐光発光物質とは、低温(例えば77K)以上室温以下の温度範囲(すなわち、77K以上313K以下)のいずれかにおいて、燐光を呈し、且つ蛍光を呈さない化合物のことをいう。該燐光発光物質としては、スピン軌道相互作用の大きい金属元素を有すると好ましく、有機金属錯体、金属錯体(白金錯体)、希土類金属錯体等が挙げられる。具体的には遷移金属元素が好ましく、特に白金族元素(ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、または白金(Pt))を有することが好ましく、中でもイリジウムを有することで、一重項基底状態と三重項励起状態との間の直接遷移に係わる遷移確率を高めることができ好ましい。
≪燐光発光物質(450nm以上570nm以下:青色または緑色)≫
青色または緑色を呈し、発光スペクトルのピーク波長が450nm以上570nm以下である燐光発光物質としては、以下のような物質が挙げられる。
例えば、トリス{2-[5-(2-メチルフェニル)-4-(2,6-ジメチルフェニル)-4H-1,2,4-トリアゾール-3-イル-κN]フェニル-κC}イリジウム(III)(略称:[Ir(mpptz-dmp)])、トリス(5-メチル-3,4-ジフェニル-4H-1,2,4-トリアゾラト)イリジウム(III)(略称:[Ir(Mptz)])、トリス[4-(3-ビフェニル)-5-イソプロピル-3-フェニル-4H-1,2,4-トリアゾラト]イリジウム(III)(略称:[Ir(iPrptz-3b)])、トリス[3-(5-ビフェニル)-5-イソプロピル-4-フェニル-4H-1,2,4-トリアゾラト]イリジウム(III)(略称:[Ir(iPr5btz)])、のような4H-トリアゾール環を有する有機金属錯体、トリス[3-メチル-1-(2-メチルフェニル)-5-フェニル-1H-1,2,4-トリアゾラト]イリジウム(III)(略称:[Ir(Mptz1-mp)])、トリス(1-メチル-5-フェニル-3-プロピル-1H-1,2,4-トリアゾラト)イリジウム(III)(略称:[Ir(Prptz1-Me)])のような1H-トリアゾール環を有する有機金属錯体、fac-トリス[1-(2,6-ジイソプロピルフェニル)-2-フェニル-1H-イミダゾール]イリジウム(III)(略称:[Ir(iPrpmi)])、トリス[3-(2,6-ジメチルフェニル)-7-メチルイミダゾ[1,2-f]フェナントリジナト]イリジウム(III)(略称:[Ir(dmpimpt-Me)])のようなイミダゾール環を有する有機金属錯体、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)テトラキス(1-ピラゾリル)ボラート(略称:FIr6)、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス{2-[3’,5’-ビス(トリフルオロメチル)フェニル]ピリジナト-N,C2’}イリジウム(III)ピコリナート(略称:[Ir(CFppy)(pic)])、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)アセチルアセトナート(略称:FIr(acac))のように電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体等が挙げられる。
≪燐光発光物質(495nm以上590nm以下:緑色または黄色)≫
緑色または黄色を呈し、発光スペクトルのピーク波長が495nm以上590nm以下である燐光発光物質としては、以下のような物質が挙げられる。
例えば、トリス(4-メチル-6-フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)])、トリス(4-t-ブチル-6-フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)])、(アセチルアセトナト)ビス(6-メチル-4-フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)(acac)])、(アセチルアセトナト)ビス(6-tert-ブチル-4-フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)(acac)])、(アセチルアセトナト)ビス[6-(2-ノルボルニル)-4-フェニルピリミジナト]イリジウム(III)(略称:[Ir(nbppm)(acac)])、(アセチルアセトナト)ビス[5-メチル-6-(2-メチルフェニル)-4-フェニルピリミジナト]イリジウム(III)(略称:[Ir(mpmppm)(acac)])、(アセチルアセトナト)ビス{4,6-ジメチル-2-[6-(2,6-ジメチルフェニル)-4-ピリミジニル-κN3]フェニル-κC}イリジウム(III)(略称:[Ir(dmppm-dmp)(acac)])、(アセチルアセトナト)ビス(4,6-ジフェニルピリミジナト)イリジウム(III)(略称:[Ir(dppm)(acac)])のようなピリミジン環を有する有機金属イリジウム錯体、(アセチルアセトナト)ビス(3,5-ジメチル-2-フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr-Me)(acac)])、(アセチルアセトナト)ビス(5-イソプロピル-3-メチル-2-フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr-iPr)(acac)])のようなピラジン環を有する有機金属イリジウム錯体、トリス(2-フェニルピリジナト-N,C2’)イリジウム(III)(略称:[Ir(ppy)])、ビス(2-フェニルピリジナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(ppy)(acac)])、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:[Ir(bzq)(acac)])、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:[Ir(bzq)])、トリス(2-フェニルキノリナト-N,C2’)イリジウム(III)(略称:[Ir(pq)])、ビス(2-フェニルキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(pq)(acac)])、ビス[2-(2-ピリジニル-κN)フェニル-κC][2-(4-フェニル-2-ピリジニル-κN)フェニル-κC]イリジウム(III)(略称:[Ir(ppy)(4dppy)])、ビス[2-(2-ピリジニル-κN)フェニル-κC][2-(4-メチル-5-フェニル-2-ピリジニル-κN)フェニル-κC]、[2-d-メチル-8-(2-ピリジニル-κN)ベンゾフロ[2,3-b]ピリジン-κC]ビス[2-(5-d-メチル-2-ピリジニル-κN2)フェニル-κC]イリジウム(III)(略称:Ir(5mppy-d(mbfpypy-d))、[2-(メチル-d)-8-[4-(1-メチルエチル-1-d)-2-ピリジニル-κN]ベンゾフロ[2,3-b]ピリジン-7-イル-κC]ビス[5-(メチル-d)-2-[5-(メチル-d)-2-ピリジニル-κN]フェニル-κC]イリジウム(III)(略称:Ir(5mtpy-d(mbfpypy-iPr-d))、[2-d-メチル-(2-ピリジニル-κN)ベンゾフロ[2,3-b]ピリジン-κC]ビス[2-(2-ピリジニル-κN)フェニル-κC]イリジウム(III)(略称:Ir(ppy)(mbfpypy-d))、[2-(4-メチル-5-フェニル-2-ピリジニル-κN)フェニル-κC]ビス[2-(2-ピリジニル-κN)フェニル-κC]イリジウム(III)(略称:Ir(ppy)(mdppy))のようなピリジン環を有する有機金属イリジウム錯体、ビス(2,4-ジフェニル-1,3-オキサゾラト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(dpo)(acac)])、ビス{2-[4’-(パーフルオロフェニル)フェニル]ピリジナト-N,C2’}イリジウム(III)アセチルアセトナート(略称:[Ir(p-PF-ph)(acac)])、ビス(2-フェニルベンゾチアゾラト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(bt)(acac)])などの有機金属錯体の他、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:[Tb(acac)(Phen)])のような希土類金属錯体が挙げられる。
≪燐光発光物質(570nm以上750nm以下:黄色または赤色)≫
黄色または赤色を呈し、発光スペクトルのピーク波長が570nm以上750nm以下である燐光発光物質としては、以下のような物質が挙げられる。
例えば、(ジイソブチリルメタナト)ビス[4,6-ビス(3-メチルフェニル)ピリミジナト]イリジウム(III)(略称:[Ir(5mdppm)(dibm)])、ビス[4,6-ビス(3-メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(5mdppm)(dpm)])、(ジピバロイルメタナト)ビス[4,6-ジ(ナフタレン-1-イル)ピリミジナト]イリジウム(III)(略称:[Ir(d1npm)(dpm)])のようなピリミジン環を有する有機金属錯体、(アセチルアセトナト)ビス(2,3,5-トリフェニルピラジナト)イリジウム(III)(略称:[Ir(tppr)(acac)])、ビス(2,3,5-トリフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:[Ir(tppr)(dpm)])、ビス{4,6-ジメチル-2-[3-(3,5-ジメチルフェニル)-5-フェニル-2-ピラジニル-κN]フェニル-κC}(2,6-ジメチル-3,5-ヘプタンジオナト-κO,O’)イリジウム(III)(略称:[Ir(dmdppr-P)(dibm)])、ビス{4,6-ジメチル-2-[5-(4-シアノ-2,6-ジメチルフェニル)-3-(3,5-ジメチルフェニル)-2-ピラジニル-κN]フェニル-κC}(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト-κO,O’)イリジウム(III)(略称:[Ir(dmdppr-dmCP)(dpm)])、ビス[2-(5-(2,6-ジメチルフェニル)-3-(3,5-ジメチルフェニル)-2-ピラジニル-κN)-4,6-ジメチルフェニル-κC](2,2’,6,6’-テトラメチル-3,5-ヘプタンジオナト-κ2O,O’)イリジウム(III)(略称:[Ir(dmdppr-dmp)(dpm)])、(アセチルアセトナト)ビス[2-メチル-3-フェニルキノキサリナト-N,C2’]イリジウム(III)(略称:[Ir(mpq)(acac)])、(アセチルアセトナト)ビス(2,3-ジフェニルキノキサリナト-N,C2’)イリジウム(III)(略称:[Ir(dpq)(acac)])、(アセチルアセトナト)ビス[2,3-ビス(4-フルオロフェニル)キノキサリナト]イリジウム(III)(略称:[Ir(Fdpq)(acac)])のようなピラジン環を有する有機金属錯体、トリス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)(略称:[Ir(piq)])、ビス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(piq)(acac)])、ビス[4,6-ジメチル-2-(2-キノリニル-κN)フェニル-κC](2,4-ペンタンジオナト-κO,O’)イリジウム(III)(略称:[Ir(dmpqn)(acac)])のようなピリジン環を有する有機金属錯体、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィリン白金(II)(略称:[PtOEP])のような白金錯体、トリス(1,3-ジフェニル-1,3-プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:[Eu(DBM)(Phen)])、トリス[1-(2-テノイル)-3,3,3-トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:[Eu(TTA)(Phen)])のような希土類金属錯体が挙げられる。
≪TADF材料≫
また、TADF材料としては、以下に示す材料を用いることができる。TADF材料とは、S1準位とT1準位との差が小さく(好ましくは、0.2eV以下)、三重項励起状態をわずかな熱エネルギーによって一重項励起状態にアップコンバート(逆項間交差)が可能で、一重項励起状態からの発光(蛍光)を効率よく呈する材料のことである。また、熱活性化遅延蛍光が効率良く得られる条件としては、三重項励起エネルギー準位と一重項励起エネルギー準位のエネルギー差が0eV以上0.2eV以下、好ましくは0eV以上0.1eV以下であることが挙げられる。また、TADF材料における遅延蛍光とは、通常の蛍光と同様のスペクトルを持ちながら、寿命が著しく長い発光をいう。その寿命は、1×10-6秒以上、好ましくは1×10-3秒以上である。
TADF材料としては、例えば、フラーレンおよびその誘導体、プロフラビン等のアクリジン誘導体、エオシン等が挙げられる。また、マグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリンが挙げられる。金属含有ポルフィリンとしては、例えば、プロトポルフィリン-フッ化スズ錯体(略称:SnF(Proto IX))、メソポルフィリン-フッ化スズ錯体(略称:SnF(Meso IX))、ヘマトポルフィリン-フッ化スズ錯体(略称:SnF(Hemato IX))、コプロポルフィリンテトラメチルエステル-フッ化スズ錯体(略称:SnF(Copro III-4Me))、オクタエチルポルフィリン-フッ化スズ錯体(略称:SnF(OEP))、エチオポルフィリン-フッ化スズ錯体(略称:SnF(Etio I))、オクタエチルポルフィリン-塩化白金錯体(略称:PtClOEP)等が挙げられる。
Figure 2022159214000016
その他にも、2-(ビフェニル-4-イル)-4,6-ビス(12-フェニルインドロ[2,3-a]カルバゾール-11-イル)-1,3,5-トリアジン(略称:PIC-TRZ)、2-{4-[3-(N-フェニル-9H-カルバゾール-3-イル)-9H-カルバゾール-9-イル]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(略称:PCCzPTzn)、2-[4-(10H-フェノキサジン-10-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(略称:PXZ-TRZ)、3-[4-(5-フェニル-5,10-ジヒドロフェナジン-10-イル)フェニル]-4,5-ジフェニル-1,2,4-トリアゾール(略称:PPZ-3TPT)、3-(9,9-ジメチル-9H-アクリジン-10-イル)-9H-キサンテン-9-オン(略称:ACRXTN)、ビス[4-(9,9-ジメチル-9,10-ジヒドロアクリジン)フェニル]スルホン(略称:DMAC-DPS)、10-フェニル-10H,10’H-スピロ[アクリジン-9,9’-アントラセン]-10’-オン(略称:ACRSA)、4-(9’-フェニル-3,3’-ビ-9H-カルバゾール-9-イル)ベンゾフロ[3,2-d]ピリミジン(略称:4PCCzBfpm)、4-[4-(9’-フェニル-3,3’-ビ-9H-カルバゾール-9-イル)フェニル]ベンゾフロ[3,2-d]ピリミジン(略称:4PCCzPBfpm)、9-[3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9’-フェニル-2,3’-ビ-9H-カルバゾール(略称:mPCCzPTzn-02)等のπ電子過剰型複素芳香族化合物及びπ電子不足型複素芳香族化合物を有する複素芳香族化合物を用いてもよい。
なお、π電子過剰型複素芳香族化合物とπ電子不足型複素芳香族化合物とが直接結合した物質は、π電子過剰型複素芳香族化合物のドナー性とπ電子不足型複素芳香族化合物のアクセプタ性が共に強くなり、一重項励起状態と三重項励起状態のエネルギー差が小さくなるため、特に好ましい。また、TADF材料として、一重項励起状態と三重項励起状態間が熱平衡状態にあるTADF材料(TADF100)を用いてもよい。このようなTADF材料は発光寿命(励起寿命)が短くなるため、発光素子における高輝度領域での効率低下を抑制することができる。
Figure 2022159214000017
また、上記の他に、三重項励起エネルギーを発光に変換する機能を有する材料としては、ペロブスカイト構造を有する遷移金属化合物のナノ構造体が挙げられる。特に金属ハロゲンペロブスカイト類のナノ構造体がこのましい。該ナノ構造体としては、ナノ粒子、ナノロッドが好ましい。
発光層(113、113a、113b、113c)において、上述した発光物質(ゲスト材料)と組み合わせて用いる有機化合物(ホスト材料等)としては、発光物質(ゲスト材料)のエネルギーギャップより大きなエネルギーギャップを有する物質を、一種もしくは複数種選択して用いればよい。
≪蛍光発光用ホスト材料≫
発光層(113、113a、113b、113c)に用いる発光物質が蛍光発光物質である場合、組み合わせる有機化合物(ホスト材料)として、一重項励起状態のエネルギー準位が大きく、三重項励起状態のエネルギー準位が小さい有機化合物、または蛍光量子収率が高い有機化合物を用いるのが好ましい。したがって、このような条件を満たす有機化合物であれば、本実施の形態で示す、正孔輸送性材料(前述)および電子輸送性材料(後述)等を用いることができる。
一部上述した具体例と重複するが、発光物質(蛍光発光物質)との好ましい組み合わせという観点から、有機化合物(ホスト材料)としては、アントラセン誘導体、テトラセン誘導体、フェナントレン誘導体、ピレン誘導体、クリセン誘導体、ジベンゾ[g,p]クリセン誘導体等の縮合多環芳香族化合物が挙げられる。
なお、蛍光発光物質と組み合わせて用いることが好ましい有機化合物(ホスト材料)の具体例としては、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:PCzPA)、3,6-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:DPCzPA)、3-[4-(1-ナフチル)-フェニル]-9-フェニル-9H-カルバゾール(略称:PCPN)、9,10-ジフェニルアントラセン(略称:DPAnth)、N,N-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:CzA1PA)、4-(10-フェニル-9-アントリル)トリフェニルアミン(略称:DPhPA)、YGAPA、PCAPA、N,9-ジフェニル-N-{4-[4-(10-フェニル-9-アントリル)フェニル]フェニル}-9H-カルバゾール-3-アミン(略称:PCAPBA)、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、6,12-ジメトキシ-5,11-ジフェニルクリセン、N,N,N’,N’,N’’,N’’,N’’’,N’’’-オクタフェニルジベンゾ[g,p]クリセン-2,7,10,15-テトラアミン(略称:DBC1)、9-[4-(10-フェニル-9-アントラセニル)フェニル]-9H-カルバゾール(略称:CzPA)、7-[4-(10-フェニル-9-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)、6-[3-(9,10-ジフェニル-2-アントリル)フェニル]-ベンゾ[b]ナフト[1,2-d]フラン(略称:2mBnfPPA)、9-フェニル-10-{4-(9-フェニル-9H-フルオレン-9-イル)-ビフェニル-4’-イル}-アントラセン(略称:FLPPA)、9,10-ビス(3,5-ジフェニルフェニル)アントラセン(略称:DPPA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、9-(1-ナフチル)-10-(2-ナフチル)アントラセン(略称:α、βADN)、2-(10-フェニルアントラセン-9-イル)ジベンゾフラン、2-(10-フェニル-9-アントラセニル)-ベンゾ[b]ナフト[2,3-d]フラン(略称:Bnf(II)PhA)、9-(1-ナフチル)-10-[4-(2-ナフチル)フェニル]アントラセン(略称:αN-βNPAnth)、9-(2-ナフチル)-10-[3-(2-ナフチル)フェニル]アントラセン(略称:βN-mβNPAnth)、1-[4-(10-[1,1’-ビフェニル]-4-イル-9-アントラセニル)フェニル]-2-エチル-1H-ベンゾイミダゾール(略称:EtBImPBPhA)、9,9’-ビアントリル(略称:BANT)、9,9’-(スチルベン-3,3’-ジイル)ジフェナントレン(略称:DPNS)、9,9’-(スチルベン-4,4’-ジイル)ジフェナントレン(略称:DPNS2)、1,3,5-トリ(1-ピレニル)ベンゼン(略称:TPB3)、5,12-ジフェニルテトラセン、5,12-ビス(ビフェニル-2-イル)テトラセンなどが挙げられる。
≪燐光発光用ホスト材料≫
また、発光層(113、113a、113b、113c)に用いる発光物質が燐光発光物質である場合、組み合わせる有機化合物(ホスト材料)として、発光物質の三重項励起エネルギー(基底状態と三重項励起状態とのエネルギー差)よりも三重項励起エネルギーの大きい有機化合物を選択すれば良い。なお、励起錯体を形成させるべく複数の有機化合物(例えば、第1のホスト材料、および第2のホスト材料(またはアシスト材料)等)を発光物質と組み合わせて用いる場合は、これらの複数の有機化合物を燐光発光物質と混合して用いることが好ましい。
このような構成とすることにより、励起錯体から発光物質へのエネルギー移動であるExTET(Exciplex-Triplet Energy Transfer)を用いた発光を効率よく得ることができる。なお、複数の有機化合物の組み合わせとしては、励起錯体が形成しやすいものが良く、正孔を受け取りやすい化合物(正孔輸送性材料)と、電子を受け取りやすい化合物(電子輸送性材料)とを組み合わせることが特に好ましい。
なお、一部上述した具体例と重複するが、発光物質(燐光発光物質)との好ましい組み合わせという観点から、有機化合物(ホスト材料、アシスト材料)としては、芳香族アミン(芳香族アミン骨格を有する有機化合物)、カルバゾール誘導体(カルバゾール環を有する有機化合物)、ジベンゾチオフェン誘導体(ジベンゾチオフェン環を有する有機化合物)、ジベンゾフラン誘導体(ジベンゾフラン環を有する有機化合物)、オキサジアゾール誘導体(オキサジアゾール環を有する有機化合物)、トリアゾール誘導体(トリアゾール環を有する有機化合物)、ベンゾイミダゾール誘導体(ベンゾイミダゾール環を有する有機化合物)、キノキサリン誘導体(キノキサリン環を有する有機化合物)、ジベンゾキノキサリン誘導体(ジベンゾキノキサリン環を有する有機化合物)、ピリミジン誘導体(ピリミジン環を有する有機化合物)、トリアジン誘導体(トリアジン環を有する有機化合物)、ピリジン誘導体(ピリジン環を有する有機化合物)、ビピリジン誘導体(ビピリジン環を有する有機化合物)、フェナントロリン誘導体(フェナントロリン環を有する有機化合物)、フロジアジン誘導体(フロジアジン環を有する有機化合物)、亜鉛系またはアルミニウム系の金属錯体、等が挙げられる。
なお、上記の有機化合物のうち、正孔輸送性の高い有機化合物である、芳香族アミン、およびカルバゾール誘導体の具体例としては、上述した正孔輸送性材料の具体例と同じものが挙げられ、これらはいずれもホスト材料として好ましい。
また、上記の有機化合物のうち、正孔輸送性の高い有機化合物である、ジベンゾチオフェン誘導体、およびジベンゾフラン誘導体の具体例としては、4-{3-[3-(9-フェニル-9H-フルオレン-9-イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi-II)、4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾフラン)(略称:DBF3P-II)、DBT3P-II、2,8-ジフェニル-4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]ジベンゾチオフェン(略称:DBTFLP-III)、4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]-6-フェニルジベンゾチオフェン(略称:DBTFLP-IV)、4-[3-(トリフェニレン-2-イル)フェニル]ジベンゾチオフェン(略称:mDBTPTp-II)等が挙げられ、これらはいずれもホスト材料として好ましい。
その他、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などのオキサゾール系、チアゾール系配位子を有する金属錯体なども好ましいホスト材料として挙げられる。
また、上記の有機化合物のうち、電子輸送性の高い有機化合物である、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾイミダゾール誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、キナゾリン誘導体、フェナントロリン誘導体等の具体例としては、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、9-[4-(5-フェニル-1,3,4-オキサジアゾール-2-イル)フェニル]-9H-カルバゾール(略称:CO11)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ)、2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(略称:TPBI)、2-[3-(ジベンゾチオフェン-4-イル)フェニル]-1-フェニル-1H-ベンゾイミダゾール(略称:mDBTBIm-II)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)、などのポリアゾール環を有する複素芳香環を含む有機化合物、バソフェナントロリン(略称:Bphen)、バソキュプロイン(略称:BCP)、2,9-ビス(ナフタレン-2-イル)-4,7-ジフェニル-1,10-フェナントロリン(略称:NBphen)、2,2-(1,3-フェニレン)ビス[9-フェニル-1,10-フェナントロリン](略称:mPPhen2P)などのピリジン環を有する複素芳香環を含む有機化合物、2-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq-II)、2-[3’-(ジベンゾチオフェン-4-イル)ビフェニル-3-イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq-II)、2-[3’-(9H-カルバゾール-9-イル)ビフェニル-3-イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、2-[4-(3,6-ジフェニル-9H-カルバゾール-9-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2CzPDBq-III)、7-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq-II)、及び6-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6mDBTPDBq-II)、2-{4-[9,10-ジ(2-ナフチル)-2-アントリル]フェニル}-1-フェニル-1H-ベンゾイミダゾール(略称:ZADN)、2-[4’-(9-フェニル-9H-カルバゾール-3-イル)-3,1’-ビフェニル-1-イル]ジベンゾ[f,h]キノキサリン(略称:2mpPCBPDBq)、等が挙げられ、これらはいずれもホスト材料として好ましい。
また、上記の有機化合物のうち、電子輸送性の高い有機化合物である、ピリジン誘導体、ジアジン誘導体(ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体を含む)、トリアジン誘導体、フロジアジン誘導体の具体例として、4,6-ビス[3-(フェナントレン-9-イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6-ビス[3-(4-ジベンゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm-II)、4,6-ビス[3-(9H-カルバゾール-9-イル)フェニル]ピリミジン(略称:4,6mCzP2Pm)、2-{4-[3-(N-フェニル-9H-カルバゾール-3-イル)-9H-カルバゾール-9-イル]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(略称:PCCzPTzn)、9-[3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9’-フェニル-2,3’-ビ-9H-カルバゾール(略称:mPCCzPTzn-02)、3,5-ビス[3-(9H-カルバゾール-9-イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5-トリ[3-(3-ピリジル)フェニル]ベンゼン(略称:TmPyPB)、9,9’-[ピリミジン-4,6-ジイルビス(ビフェニル-3,3’-ジイル)]ビス(9H-カルバゾール)(略称:4,6mCzBP2Pm)、2-[3’-(9,9-ジメチル-9H-フルオレン-2-イル)-1,1’-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mFBPTzn)、8-(1,1’-ビフェニル-4-イル)-4-[3-(ジベンゾチオフェン-4-イル)フェニル]-[1]ベンゾフロ[3,2-d]ピリミジン(略称:8BP-4mDBtPBfpm)、9-[3’-(ジベンゾチオフェン-4-イル)ビフェニル-3-イル]ナフト[1’,2’:4,5]フロ[2,3-b]ピラジン(略称:9mDBtBPNfpr)、9-[(3’-ジベンゾチオフェン-4-イル)ビフェニル-4-イル]ナフト[1’,2’:4,5]フロ[2,3-b]ピラジン(略称:9pmDBtBPNfpr)、5-[3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-7,7-ジメチル-5H,7H-インデノ[2,1-b]カルバゾール(略称:mINc(II)PTzn)、2-[3’-(トリフェニレン-2-イル)-1,1’-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mTpBPTzn)、2-[(1,1’-ビフェニル)-4-イル]-4-フェニル-6-[9,9’-スピロビ(9H-フルオレン)-2-イル]-1,3,5-トリアジン(略称:BP-SFTzn)、2,6-ビス(4-ナフタレン-1-イルフェニル)-4-[4-(3-ピリジル)フェニル]ピリミジン(略称:2,4NP-6PyPPm)、9-[4-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-2-ジベンゾチオフェニル]-2-フェニル-9H-カルバゾール(略称:PCDBfTzn)、2-[1,1’-ビフェニル]-3-イル-4-フェニル-6-(8-[1,1’:4’,1’’-ターフェニル]-4-イル-1-ジベンゾフラニル)-1,3,5-トリアジン(略称:mBP-TPDBfTzn)、6-(1,1’-ビフェニル-3-イル)-4-[3,5-ビス(9H-カルバゾール-9-イル)フェニル]-2-フェニルピリミジン(略称:6mBP-4Cz2PPm)、4-[3,5-ビス(9H-カルバゾール-9-イル)フェニル]-2-フェニル-6-(1,1’-ビフェニル-4-イル)ピリミジン(略称:6BP-4Cz2PPm)、などのジアジン環を有する複素芳香環を含む有機化合物、などが挙げられ、これらはいずれもホスト材料として好ましい。
また、上記の有機化合物のうち、電子輸送性の高い有機化合物である、金属錯体の具体例としては、亜鉛系またはアルミニウム系の金属錯体である、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム(III)(略称:Almq)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)の他、キノリン環またはベンゾキノリン環を有する金属錯体等が、挙げられ、これらはいずれもホスト材料として好ましい。
その他、ポリ(2,5-ピリジンジイル)(略称:PPy)、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)のような高分子化合物などもホスト材料として好ましい。
さらに、正孔輸送性の高い有機化合物であり、かつ電子輸送性の高い有機化合物である、バイポーラ性の9-フェニル-9’-(4-フェニル-2-キナゾリニル)-3,3’-ビ-9H-カルバゾール(略称:PCCzQz)、2-[4’-(9-フェニル-9H-カルバゾール-3-イル)-3,1’-ビフェニル-1-イル]ジベンゾ[f,h]キノキサリン(略称:2mpPCBPDBq)、5-[3-(4,6-ジフェニル-1,3,5-トリアジン-2イル)フェニル]-7,7-ジメチル-5H,7H-インデノ[2,1-b]カルバゾール(略称:mINc(II)PTzn)、11-(4-[1,1’-ビフェニル]-4-イル-6-フェニル-1,3,5-トリアジン-2-イル)-11,12-ジヒドロ-12-フェニル-インドロ[2,3-a]カルバゾール(略称:BP-Icz(II)Tzn)、7-[4-(9-フェニル-9H-カルバゾール-2-イル)キナゾリン-2-イル]-7H-ジベンゾ[c,g]カルバゾール(略称:PC-cgDBCzQz)などのジアジン環を有する有機化合物等をホスト材料として用いることもできる。
<電子輸送層>
電子輸送層(114、114a、114b)は、後述する電子注入層(115、115a、115b)によって第2の電極102または電荷発生層(106、106a、106b)から注入された電子を発光層(113、113a、113b、113c)に輸送する層である。電子輸送層(114、114a、114b)に用いる電子輸送性材料は、電界強度[V/cm]の平方根が600における電子移動度が、1×10-6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものを用いることができる。また、電子輸送層(114、114a、114b)は、単層でも機能するが、2層以上の積層構造としてもよい。なお、上記の混合材料は、耐熱性を有するため、これを用いた電子輸送層上でフォトリソ工程を行うことにより、熱工程によるデバイス特性への影響を抑制することができる。
≪電子輸送性材料≫
電子輸送層(114、114a、114b)に用いることができる電子輸送性材料としては、電子輸送性の高い有機化合物を用いることができ、例えば複素芳香族化合物を用いることができる。なお、複素芳香族化合物とは、環の中に少なくとも2種類の異なる元素を含む環式化合物である。なお、環構造としては、3員環、4員環、5員環、6員環等が含まれるが、特に5員環、または、6員環が好ましく、含まれる元素としては、炭素の他に窒素、酸素、または硫黄などのいずれか一又は複数を含む複素芳香族化合物が好ましい。特に窒素を含む複素芳香族化合物(含窒素複素芳香族化合物)が好ましく、含窒素複素芳香族化合物、またはこれを含むπ電子不足型複素芳香族化合物等の電子輸送性の高い材料(電子輸送性材料)を用いることが好ましい。
複素芳香族化合物は、少なくとも1つの複素芳香環を有する有機化合物である。
なお、複素芳香環は、ピリジン環、ジアジン環、トリアジン環、またはポリアゾール環、オキサゾール環、またはチアゾール環等のいずれか一を有する。また、ジアジン環を有する複素芳香環には、ピリミジン環、ピラジン環、またはピリダジン環などを有する複素芳香環が含まれる。また、ポリアゾール環を有する複素芳香環には、イミダゾール環、トリアゾール環、オキサジアゾール環を有する複素芳香環が含まれる。
また、複素芳香環は、縮環構造を有する縮合複素芳香環を含む。なお、縮合複素芳香環としては、キノリン環、ベンゾキノリン環、キノキサリン環、ジベンゾキノキサリン環、キナゾリン環、ベンゾキナゾリン環、ジベンゾキナゾリン環、フェナントロリン環、フロジアジン環、ベンゾイミダゾール環、などが挙げられる。
なお、複素芳香族化合物としては、例えば、炭素の他に窒素、酸素、または硫黄などのいずれか一又は複数を含む複素芳香族化合物のうち、5員環構造を有する複素芳香族化合物としては、イミダゾール環を有する複素芳香族化合物、トリアゾール環を有する複素芳香族化合物、オキサゾール環を有する複素芳香族化合物、オキサジアゾール環を有する複素芳香族化合物、チアゾール環を有する複素芳香族化合物、ベンゾイミダゾール環を有する複素芳香族化合物などが挙げられる。
また、例えば、炭素の他に窒素、酸素、または硫黄などのいずれか一又は複数を含む複素芳香族化合物のうち、6員環構造を有する複素芳香族化合物としては、ピリジン環、ジアジン環(ピリミジン環、ピラジン環、ピリダジン環などを含む)、トリアジン環、ポリアゾール環などの複素芳香環を有する複素芳香族化合物などが挙げられる。なお、ピリジン環が連結した構造である複素芳香族化合物に含まれるが、ビピリジン構造を有する複素芳香族化合物、ターピリジン構造を有する複素芳香族化合物などが挙げられる。
さらに、上記6員環構造を一部に含む縮環構造を有する複素芳香族化合物としては、キノリン環、ベンゾキノリン環、キノキサリン環、ジベンゾキノキサリン環、フェナントロリン環、フロジアジン環(フロジアジン環のフラン環に芳香環が縮合した構造を含む)、ベンゾイミダゾール環などの縮合複素芳香環を有する複素芳香族化合物、などが挙げられる。
上記、5員環構造(ポリアゾール環(イミダゾール環、トリアゾール環、オキサジアゾール環を含む)、オキサゾール環、チアゾール環、ベンゾイミダゾール環など)を有する複素芳香族化合物の具体例としては、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、9-[4-(5-フェニル-1,3,4-オキサジアゾール-2-イル)フェニル]-9H-カルバゾール(略称:CO11)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(略称:TPBI)、2-[3-(ジベンゾチオフェン-4-イル)フェニル]-1-フェニル-1H-ベンゾイミダゾール(略称:mDBTBIm-II)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)などが挙げられる。
上記、6員環構造(ピリジン環、ジアジン環、トリアジン環などを有する複素芳香環を含む)を有する複素芳香族化合物の具体例としては、3,5-ビス[3-(9H-カルバゾール-9-イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5-トリ[3-(3-ピリジル)フェニル]ベンゼン(略称:TmPyPB)、などのピリジン環を有する複素芳香環を含む複素芳香族化合物、2-{4-[3-(N-フェニル-9H-カルバゾール-3-イル)-9H-カルバゾール-9-イル]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(略称:PCCzPTzn)、9-[3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9’-フェニル-2,3’-ビ-9H-カルバゾール(略称:mPCCzPTzn-02)、5-[3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-7,7-ジメチル-5H,7H-インデノ[2,1-b]カルバゾール(略称:mINc(II)PTzn)、2-[3’-(トリフェニレン-2-イル)-1,1’-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mTpBPTzn)、2-[(1,1’-ビフェニル)-4-イル]-4-フェニル-6-[9,9’-スピロビ(9H-フルオレン)-2-イル]-1,3,5-トリアジン(略称:BP-SFTzn)、2,6-ビス(4-ナフタレン-1-イルフェニル)-4-[4-(3-ピリジル)フェニル]ピリミジン(略称:2,4NP-6PyPPm)、9-[4-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-2-ジベンゾチオフェニル]-2-フェニル-9H-カルバゾール(略称:PCDBfTzn)、2-[1,1’-ビフェニル]-3-イル-4-フェニル-6-(8-[1,1’:4’,1’’-ターフェニル]-4-イル-1-ジベンゾフラニル)-1,3,5-トリアジン(略称:mBP-TPDBfTzn)、2-{3-[3-(ジベンゾチオフェン-4-イル)フェニル]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(略称:mDBtBPTzn)、mFBPTznなどのトリアジン環を有する複素芳香環を含む複素芳香族化合物、4,6-ビス[3-(フェナントレン-9-イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6-ビス[3-(4-ジベンゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm-II)、4,6-ビス[3-(9H-カルバゾール-9-イル)フェニル]ピリミジン(略称:4,6mCzP2Pm)、4,6mCzBP2Pm、6-(1,1’-ビフェニル-3-イル)-4-[3,5-ビス(9H-カルバゾール-9-イル)フェニル]-2-フェニルピリミジン(略称:6mBP-4Cz2PPm)、4-[3,5-ビス(9H-カルバゾール-9-イル)フェニル]-2-フェニル-6-(1,1’-ビフェニル-4-イル)ピリミジン(略称:6BP-4Cz2PPm)、4-[3-(ジベンゾチオフェン-4-イル)フェニル]-8-(ナフタレン-2-イル)-[1]ベンゾフロ[3,2-d]ピリミジン(略称:8βN-4mDBtPBfpm)、8BP-4mDBtPBfpm、9mDBtBPNfpr、9pmDBtBPNfpr、3,8-ビス[3-(ジベンゾチオフェン-4-イル)フェニル]ベンゾフロ[2,3-b]ピラジン(略称:3,8mDBtP2Bfpr)、4,8-ビス[3-(ジベンゾチオフェン-4-イル)フェニル]-[1]ベンゾフロ[3,2-d]ピリミジン(略称:4,8mDBtP2Bfpm)、8-[3’-(ジベンゾチオフェン-4-イル)(1,1’-ビフェニル-3-イル)]ナフト[1’,2’:4,5]フロ[3,2-d]ピリミジン(略称:8mDBtBPNfpm)、8-[(2,2’-ビナフタレン)-6-イル]-4-[3-(ジベンゾチオフェン-4-イル)フェニル]-[1]ベンゾフロ[3,2-d]ピリミジン(略称:8(βN2)-4mDBtPBfpm)などのジアジン(ピリミジン)環を有する複素芳香環を含む複素芳香族化合物、などが挙げられる。なお、上記複素芳香環を含む芳香族化合物には、縮合複素芳香環を有する複素芳香族化合物を含む。
その他にも、2,2’-(ピリジン-2,6-ジイル)ビス(4-フェニルベンゾ[h]キナゾリン)(略称:2,6(P-Bqn)2Py)、2,2’-(2,2’-ビピリジン-6,6’-ジイル)ビス(4-フェニルベンゾ[h]キナゾリン)(略称:6,6’(P-Bqn)2BPy)、2,2’-(ピリジン-2,6-ジイル)ビス{4-[4-(2-ナフチル)フェニル]-6-フェニルピリミジン}(略称:2,6(NP-PPm)2Py)、6-(1,1’-ビフェニル-3-イル)-4-[3,5-ビス(9H-カルバゾール-9-イル)フェニル]-2-フェニルピリミジン(略称:6mBP-4Cz2PPm)、などのジアジン(ピリミジン)環を有する複素芳香環を含む複素芳香族化合物、2,4,6-トリス(3’-(ピリジン-3-イル)ビフェニル-3-イル)-1,3,5-トリアジン(略称:TmPPPyTz)、2,4,6-トリス(2-ピリジル)-1,3,5-トリアジン(略称:2Py3Tz)、2-[3-(2,6-ジメチル-3-ピリジル)-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mPn-mDMePyPTzn)、などのトリアジン環を有する複素芳香環を含む複素芳香族化合物、等が挙げられる。
上記、6員環構造を一部に含む縮環構造を有する複素芳香族化合物(縮環構造を有する複素芳香族化合物)の具体例としては、バソフェナントロリン(略称:Bphen)、バソキュプロイン(略称:BCP)、2,9-ビス(ナフタレン-2-イル)-4,7-ジフェニル-1,10-フェナントロリン(略称:NBphen)、2,2-(1,3-フェニレン)ビス[9-フェニル-1,10-フェナントロリン](略称:mPPhen2P)、2,2’-(ピリジン-2,6-ジイル)ビス(4-フェニルベンゾ[h]キナゾリン)(略称:2,6(P-Bqn)2Py)、2-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq-II)、2-[3’-(ジベンゾチオフェン-4-イル)ビフェニル-3-イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq-II)、2-[3’-(9H-カルバゾール-9-イル)ビフェニル-3-イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、2-[4-(3,6-ジフェニル-9H-カルバゾール-9-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2CzPDBq-III)、7-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq-II)、及び6-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6mDBTPDBq-II)、2mpPCBPDBq、などのキノキサリン環を有する複素芳香族化合物、等が挙げられる。
電子輸送層(114、114a、114b)には、上記に示す複素芳香族化合物の他にも下記に示す金属錯体を用いることができる。トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、Almq、8-キノリノラトリチウム(I)(略称:Liq)、BeBq、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)等のキノリン環またはベンゾキノリン環を有する金属錯体、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)等のオキサゾール環またはチアゾール環を有する金属錯体等が挙げられる。
また、ポリ(2,5-ピリジンジイル)(略称:PPy)、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)のような高分子化合物を電子輸送性材料として用いることもできる。
また、電子輸送層(114、114a、114b)は、単層のものだけでなく、上記物質からなる層が2層以上積層した構造であってもよい。
<電子注入層>
電子注入層(115、115a、115b)は、電子注入性の高い物質を含む層である。また、電子注入層(115、115a、115b)は、第2の電極102からの電子の注入効率を高めるための層であり、第2の電極102に用いる材料の仕事関数の値と、電子注入層(115、115a、115b)に用いる材料のLUMO準位の値とを比較した際、その差が小さい(0.5eV以下)材料を用いることが好ましい。従って、電子注入層115には、リチウム、セシウム、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、8-(キノリノラト)リチウム(略称:Liq)、2-(2-ピリジル)フェノラトリチウム(略称:LiPP)、2-(2-ピリジル)-3-ピリジノラトリチウム(略称:LiPPy)、4-フェニル-2-(2-ピリジル)フェノラトリチウム(略称:LiPPP)、リチウム酸化物(LiO)、炭酸セシウム等のようなアルカリ金属、アルカリ土類金属、またはこれらの化合物を用いることができる。また、フッ化エルビウム(ErF)、イッテルビウム(Yb)のような希土類金属化合物を用いることができる。なお、電子注入層(115、115a、115b)には、上記の材料を複数種混合して形成しても良いし、上記の材料のうち複数種を積層させて形成しても良い。また、電子注入層(115、115a、115b)にエレクトライドを用いてもよい。エレクトライドとしては、例えば、カルシウムとアルミニウムの混合酸化物に電子を高濃度添加した物質等が挙げられる。なお、上述した電子輸送層(114、114a、114b)を構成する物質を用いることもできる。
また、電子注入層(115、115a、115b)に、有機化合物と電子供与体(ドナー)とを混合してなる混合材料を用いてもよい。このような混合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層(114、114a、114b)に用いる電子輸送性材料(金属錯体または複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属、アルカリ土類金属、および希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物およびアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。また、これらの材料を複数、積層して用いても良い。
その他にも、電子注入層(115、115a、115b)に、有機化合物と金属とを混合してなる混合材料を用いても良い。なお、ここで用いる有機化合物としては、LUMO(最低空軌道:Lowest Unoccupied Molecular Orbital)準位が-3.6eV以上-2.3eV以下であると好ましい。また、非共有電子対を有する材料が好ましい。
したがって、上記の混合材料に用いる有機化合物としては、電子輸送層に用いることができるとして上述した、複素芳香族化合物を金属と混合してなる混合材料を用いてもよい。複素芳香族化合物としては、5員環構造(イミダゾール環、トリアゾール環、オキサゾール環、オキサジアゾール環、チアゾール環、ベンゾイミダゾール環など)を有する複素芳香族化合物、6員環構造(ピリジン環、ジアジン環(ピリミジン環、ピラジン環、ピリダジン環などを含む)、トリアジン環、ビピリジン環、ターピリジン環など)を有する複素芳香族化合物、6員環構造を一部に含む縮環構造(キノリン環、ベンゾキノリン環、キノキサリン環、ジベンゾキノキサリン環、フェナントロリン環など)を有する複素芳香族化合物などの非共有電子対を有する材料が好ましい。具体的な材料については、上述したので、ここでの説明は省略する。
また、上記の混合材料に用いる金属としては、周期表における第5族、第7族、第9族または第11族に属する遷移金属または第13族に属する材料を用いることが好ましく、例えば、Ag、Cu、Al、またはIn等が挙げられる。また、この時、有機化合物は、遷移金属との間で半占有軌道(SOMO:Singly Occupied Molecular Orbital)を形成する。
なお、例えば、発光層113bから得られる光を増幅させる場合には、第2の電極102と、発光層113bとの光学距離が、発光層113bが呈する光の波長λの1/4未満となるように形成するのが好ましい。この場合、電子輸送層114bまたは電子注入層115bの膜厚を変えることにより、調整することができる。
また、図1(D)に示す発光デバイスのように、2つのEL層(103a、103b)の間に電荷発生層106を設けることにより、複数のEL層が一対の電極間に積層された構造(タンデム構造ともいう)とすることもできる。
<電荷発生層>
電荷発生層106は、第1の電極(陽極)101と第2の電極(陰極)102との間に電圧を印加したときに、EL層103aに電子を注入し、EL層103bに正孔を注入する機能を有する。なお、電荷発生層106は、正孔輸送性材料に電子受容体(アクセプタ)が添加された構成(P型層ともいう)であっても、電子輸送性材料に電子供与体(ドナー)が添加された構成(電子注入バッファ層ともいう)であってもよい。また、これらの両方の構成が積層されていても良い。さらに、P型層と電子注入バッファ層との間に電子リレー層が設けられていても良い。なお、上述した材料を用いて電荷発生層106を形成することにより、EL層が積層された場合における駆動電圧の上昇を抑制することができる。
電荷発生層106において、有機化合物である正孔輸送性材料に、電子受容体が添加された構成(P型層)とする場合、正孔輸送性材料としては、本実施の形態で示した材料を用いることができる。また、電子受容体としては、7,7,8,8-テトラシアノ-2,3,5,6-テトラフルオロキノジメタン(略称:F-TCNQ)、クロラニル等を挙げることができる。また元素周期表における第4族乃至第8族に属する金属の酸化物を挙げることができる。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化レニウムなどが挙げられる。なお、上述したアクセプタ材料を用いても良い。また、P型層を構成する材料を混合してなる混合膜として用いても、それぞれの材料を含む単膜を積層しても良い。
また、電荷発生層106において、電子輸送性材料に電子供与体が添加された構成(電子注入バッファ層)とする場合、電子輸送性材料としては、本実施の形態で示した材料を用いることができる。また、電子供与体としては、アルカリ金属またはアルカリ土類金属または希土類金属または元素周期表における第2族、第13族に属する金属およびその酸化物、炭酸塩を用いることができる。具体的には、リチウム(Li)、セシウム(Cs)、マグネシウム(Mg)、カルシウム(Ca)、イッテルビウム(Yb)、インジウム(In)、酸化リチウム(LiO)、炭酸セシウムなどを用いることが好ましい。また、テトラチアナフタセンのような有機化合物を電子供与体として用いてもよい。
電荷発生層106において、P型層と電子注入バッファ層との間に電子リレー層を設ける場合、電子リレー層は少なくとも電子輸送性を有する物質を含み、電子注入バッファ層とP型層との相互作用を防いで電子をスムーズに受け渡す機能を有する。電子リレー層に含まれる電子輸送性を有する物質のLUMO準位は、P型層におけるアクセプタ性物質のLUMO準位と、電荷発生層106に接する電子輸送層に含まれる電子輸送性を有する物質のLUMO準位との間であることが好ましい。電子リレー層に用いられる電子輸送性を有する物質におけるLUMO準位の具体的なエネルギー準位は-5.0eV以上、好ましくは-5.0eV以上-3.0eV以下とするとよい。なお、電子リレー層に用いられる電子輸送性を有する物質としてはフタロシアニン系の材料又は金属-酸素結合と芳香族配位子を有する金属錯体を用いることが好ましい。
なお、図1(D)では、EL層103が2層積層された構成を示したが、異なるEL層の間に電荷発生層を設けることにより3層以上のEL層の積層構造としてもよい。
<基板>
本実施の形態で示した発光デバイスは、様々な基板上に形成することができる。なお、基板の種類は、特定のものに限定されることはない。基板の一例としては、半導体基板(例えば単結晶基板又はシリコン基板)、SOI基板、ガラス基板、石英基板、プラスチック基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、又は基材フィルムなどが挙げられる。
なお、ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又はソーダライムガラスなどが挙げられる。また、可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)に代表されるプラスチック、アクリル等の合成樹脂、ポリプロピレン、ポリエステル、ポリフッ化ビニル、又はポリ塩化ビニル、ポリアミド、ポリイミド、アラミド、エポキシ、無機蒸着フィルム、又は紙類などが挙げられる。
なお、本実施の形態で示す発光デバイスの作製には、蒸着法などの気相法、またはスピンコート法もしくはインクジェット法などの液相法を用いることができる。蒸着法を用いる場合には、スパッタ法、イオンプレーティング法、イオンビーム蒸着法、分子線蒸着法、もしくは真空蒸着法などの物理蒸着法(PVD法)または化学蒸着法(CVD法)等を用いることができる。特に発光デバイスのEL層に含まれる様々な機能を有する層(正孔注入層111、正孔輸送層112、発光層113、電子輸送層114、電子注入層115)については、蒸着法(真空蒸着法等)、塗布法(ディップコート法、ダイコート法、バーコート法、スピンコート法、スプレーコート法等)、印刷法(インクジェット法、スクリーン(孔版印刷)法、オフセット(平版印刷)法、フレキソ(凸版印刷)法、グラビア法、マイクロコンタクト法等)などの方法により形成することができる。
なお、上記塗布法、印刷法などの成膜方法を適用する場合において、高分子化合物(オリゴマー、デンドリマー、ポリマー等)、中分子化合物(低分子と高分子の中間領域の化合物:分子量400以上4000以下)、無機化合物(量子ドット材料等)等を用いることができる。なお、量子ドット材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料などを用いることができる。
本実施の形態で示す発光デバイスのEL層103を構成する各層(正孔注入層111、正孔輸送層112、発光層113、電子輸送層114、電子注入層115)は、本実施の形態において示した材料に限られることはなく、それ以外の材料であっても各層の機能を満たせるものであれば組み合わせて用いることができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができるものとする。
(実施の形態3)
本実施の形態では、本発明の一態様である発光装置(表示パネルともいう)の具体的な構成例、および製造方法について説明する。
<発光装置700の構成例1>
図2(A)に示す発光装置700は、発光デバイス550B、発光デバイス550G、発光デバイス550R、および隔壁528を有する。また、発光デバイス550B、発光デバイス550G、発光デバイス550R、および隔壁528は、第1の基板510上に設けられた機能層520上に形成される。機能層520には、複数のトランジスタで構成された駆動回路GD、駆動回路SDなどの他、これらを電気的に接続する配線等が含まれる。なお、これらの駆動回路は、一例として、発光デバイス550B、発光デバイス550G、および発光デバイス550Rと、それぞれ電気的に接続され、これらを駆動することができる。また、発光装置700は、機能層520、発光デバイス550B、発光デバイス550G、発光デバイス550R、および隔壁528上に絶縁層705を備え、絶縁層705は、第2の基板770と機能層520とを貼り合わせる機能を有する。また、駆動回路GD、駆動回路SDについては、実施の形態4で後述する。
なお、発光デバイス550B、発光デバイス550G、および発光デバイス550Rは、実施の形態2で示したデバイス構造を有する。すなわち、図1(A)に示す構造におけるEL層103が各発光デバイスで異なる場合を示す。
なお、本明細書等において、各色の発光デバイス(例えば青(B)、緑(G)、及び赤(R))で、発光層を作り分ける、または発光層を塗り分ける構造をSBS(Side By Side)構造と呼ぶ場合がある。
図2(A)に示すように、発光デバイス550Bは、電極551B、電極552、およびEL層103Bを有する。なお、各層の具体的な構成は実施の形態2に示す通りである。また、EL層103Bは、発光層を含む複数の機能の異なる層からなる積層構造を有する。図2(A)では、発光層を含むEL層103Bに含まれる層のうち、ホール注入・輸送層104B、電子輸送層108B、および電子注入層109のみを図示するが、本発明はこれに限らない。なお、ホール注入・輸送層104Bは、実施の形態2で示したホール注入層および正孔輸送層の機能を有する層を示し、積層構造を有していても良い。なお、本明細書中では、いずれの発光デバイスにおいてもホール注入・輸送層をこのように読み替えることができるとする。
なお、電子輸送層108Bは、陽極側から発光層を通過して陰極側に移動するホールをブロックするための機能を有していても良い。また、電子注入層109についても一部または全部が異なる材料を用いて形成される積層構造を有していても良いこととする。
また、図2(A)に示すように発光層を含むEL層103Bに含まれる層のうち、ホール注入・輸送層104B、発光層、電子輸送層108Bの側面(または、端部)に絶縁層107Bが形成されていても良い。絶縁層107Bは、EL層103Bの側面(または端部)に接して形成される。これにより、EL層103Bの側面から内部への酸素、水分、またはこれらの構成元素の侵入を抑制することができる。なお、絶縁層107Bには、例えば、酸化アルミニウム、酸化マグネシウム、酸化ハフニウム、酸化ガリウム、インジウムガリウム亜鉛酸化物、窒化シリコン、または窒化酸化シリコンなどを用いることができる。また、絶縁層107Bは、前述の材料を用いて積層して形成されていても良い。また、絶縁層107Bの形成には、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いることができるが、被覆性の良好なALD法がより好ましい。
また、EL層103Bの一部(発光層、ホール注入・輸送層104B、および電子輸送層108Bを含む)および絶縁層107Bを覆って、電子注入層109が形成される。なお、電子注入層109は、層中の電気抵抗が異なる2層以上の積層構造としても良い。
また、電極552は、電子注入層109上に形成される。なお、電極551Bと電極552とは、互いに重なる領域を有する。また、電極551Bと電極552との間にEL層103Bを有する。
また、図2(A)に示すEL層103Bは、実施の形態2で説明したEL層103と同様の構成を有する。また、EL層103Bは、例えば、青色の光を射出することができる。
図2(A)に示すように、発光デバイス550Gは、電極551G、電極552、およびEL層103Gを有する。なお、各層の具体的な構成は実施の形態2に示す通りである。また、EL層103Gは、発光層を含む複数の機能の異なる層からなる積層構造を有する。図2(A)では、発光層を含むEL層103Gに含まれる層のうち、ホール注入・輸送層104G、電子輸送層108G、および電子注入層109のみを図示するが、本発明はこれに限らない。なお、ホール注入・輸送層104Gは、実施の形態2で示したホール注入層および正孔輸送層の機能を有する層を示し、積層構造を有していても良い。
なお、電子輸送層108Gは、陽極側から発光層を通過して陰極側に移動するホールをブロックするための機能を有していても良い。また、電子注入層109についても一部または全部が異なる材料を用いて形成される積層構造を有していても良いこととする。
また、図2(A)に示すように発光層を含むEL層103Gに含まれる層のうち、ホール注入・輸送層104G、発光層、電子輸送層108Gの側面(または、端部)に絶縁層107Gが形成されていても良い。絶縁層107Gは、EL層103Gの側面(または端部)に接して形成される。これにより、EL層103Gの側面から内部への酸素、水分、またはこれらの構成元素の侵入を抑制することができる。なお、絶縁層107Gには、例えば、酸化アルミニウム、酸化マグネシウム、酸化ハフニウム、酸化ガリウム、インジウムガリウム亜鉛酸化物、窒化シリコン、または窒化酸化シリコンなどを用いることができる。また、絶縁層107Gは、前述の材料を用いて積層して形成されていても良い。また、絶縁層107Gの形成には、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いることができるが、被覆性の良好なALD法がより好ましい。
また、EL層103Gの一部(発光層、ホール注入・輸送層104G、および電子輸送層108Gを含む)および絶縁層107Gを覆って、電子注入層109が形成される。なお、電子注入層109は、層中の電気抵抗が異なる2層以上の積層構造としても良い。
また、電極552は、電子注入層109上に形成される。なお、電極551Gと電極552とは、互いに重なる領域を有する。また、電極551Gと電極552との間にEL層103Gを有する。
また、図2(A)に示すEL層103Gは、実施の形態2で説明したEL層103と同様の構成を有する。また、EL層103Gは、例えば、緑色の光を射出することができる。
図2(A)に示すように、発光デバイス550Rは、電極551R、電極552、およびEL層103Rを有する。なお、各層の具体的な構成は実施の形態2に示す通りである。また、EL層103Rは、発光層を含む複数の機能の異なる層からなる積層構造を有する。図2(A)では、発光層を含むEL層103Rに含まれる層のうち、ホール注入・輸送層104R、電子輸送層108R、および電子注入層109のみを図示するが、本発明はこれに限らない。なお、ホール注入・輸送層104Rは、実施の形態2で示したホール注入層および正孔輸送層の機能を有する層を示し、積層構造を有していても良い。
なお、電子輸送層108Rには、陽極側から発光層を通過して陰極側に移動するホールをブロックするための機能を有していても良い。また、電子注入層109についても一部または全部が異なる材料を用いて形成される積層構造を有していても良いこととする。
また、図2(A)に示すように発光層を含むEL層103Rに含まれる層のうち、ホール注入・輸送層104R、発光層、電子輸送層108Rの側面(または、端部)に絶縁層107Rが形成されていても良い。絶縁層107Rは、EL層103Rの側面(または端部)に接して形成される。これにより、EL層103Rの側面から内部への酸素、水分、またはこれらの構成元素の侵入を抑制することができる。なお、絶縁層107Rには、例えば、酸化アルミニウム、酸化マグネシウム、酸化ハフニウム、酸化ガリウム、インジウムガリウム亜鉛酸化物、窒化シリコン、または窒化酸化シリコンなどを用いることができる。また、絶縁層107Rは、前述の材料を用いて積層して形成されていても良い。また、絶縁層107Rの形成には、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いることができるが、被覆性の良好なALD法がより好ましい。
また、EL層103Rの一部(発光層、ホール注入・輸送層104R、および電子輸送層108Rを含む)および絶縁層107Rを覆って、電子注入層109が形成される。なお、電子注入層109は、層中の電気抵抗が異なる2層以上の積層構造としても良い。
また、電極552は、電子注入層109上に形成される。なお、電極551Rと電極552とは、互いに重なる領域を有する。また、電極551Rと電極552との間にEL層103Rを有する。
また、図2(A)に示すEL層103Rは、実施の形態2で説明したEL層103と同様の構成を有する。また、EL層103Rは、例えば、赤色の光を射出することができる。
EL層103B、EL層103G、およびEL層103Rの間には、それぞれ隔壁528を有する。なお、図2(A)に示すように、各発光デバイスのEL層(EL層103B、EL層103G、EL層103R)と隔壁528とは、絶縁層(107B、107G、107R)を介して側面(または端部)で接する。
各EL層において、特に陽極と発光層との間に位置する正孔輸送領域に含まれる正孔注入層は、導電率が高いことが多いため、隣り合う発光デバイスに共通する層として形成されると、クロストークの原因となる場合がある。したがって、本構成例で示すように各EL層の間に、絶縁材料からなる隔壁528を設けることにより、隣り合う発光デバイス間で生じるクロストークの発生を抑制することが可能となる。
また、本実施の形態で説明する製造方法においては、パターニング工程によりEL層の側面(または端部)が、工程の途中で露出する。そのためEL層の側面(または端部)からの酸素および水などの侵入により、EL層の劣化が進行しやすくなる。したがって、隔壁528を設けることにより、製造プロセスにおけるEL層の劣化を抑制することが可能となる。
また、隔壁528を設けることにより、隣接する発光デバイス間に形成された凹部を平坦化することも可能である。なお、凹部が平坦化されることで各EL層上に形成される電極552の断線を抑制することが可能である。なお、隔壁528の形成に用いる絶縁材料としては、例えば、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、イミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シリコーン樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等の有機材料を適用することができる。また、ポリビニルアルコール(PVA)、ポリビニルブチラル、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、またはアルコール可溶性のポリアミド樹脂などの有機材料を用いてもよい。また、フォトレジストなどの感光性の樹脂を用いることができる。なお、感光性の樹脂は、ポジ型の材料、またはネガ型の材料を用いることができる。
また、隔壁528の上面の高さと、EL層103B、EL層103G、およびEL層103Rのいずれかの上面の高さとの差が、例えば、隔壁528の厚さの0.5倍以下が好ましく、0.3倍以下がより好ましい。また、例えば、EL層103B、EL層103G、およびEL層103Rのいずれかの上面が隔壁528の上面よりも高くなるように、隔壁528を設けてもよい。また、例えば、隔壁528の上面が、EL層103B、EL層103G、およびEL層103Rが有する発光層の上面よりも高くなるように、隔壁528を設けてもよい。
1000ppiを超える高精細な発光装置(表示パネル)において、EL層103B、EL層103G、およびEL層103Rとの間に電気的な導通が認められると、クロストーク現象が発生し、発光装置の表示可能な色域が狭くなってしまう。1000ppiを超える高精細な表示パネル、好ましくは2000ppiを超える高精細な表示パネル、より好ましくは5000ppiを超える超高精細な表示パネルに隔壁528を設けることで、鮮やかな色彩を表示可能な表示パネルを提供できる。
また、図2(B)は、図2(A)の断面図中の一点鎖線Ya-Ybに対応する発光装置700の上面概略図を示す。なお、図2(B)は、Y方向に同一の色の発光デバイスが配列する、いわゆるストライプ配列を示している。また、Y方向と交差するX方向には、同じ色の発光デバイスが配列している。すなわち、発光デバイス550B、発光デバイス550G、及び発光デバイス550Rは、それぞれマトリクス状に配列している。なお、発光デバイスの配列方法はこれに限られず、デルタ配列、ジグザグ配列などの配列方法を適用してもよいし、ペンタイル配列、ダイヤモンド配列等を用いることもできる。
なお、各EL層(EL層103B、EL層103G、およびEL層103R)の分離加工において、フォトリソグラフィ法を用いたパターン形成を行っているため、高精細な発光装置(表示パネル)を作製することができる。また、フォトリソグラフィ法を用いたパターン形成により加工されたEL層の端部(側面)は、概略同一表面を有する(または、概略同一平面上に位置する)形状となる。また、この時、各EL層間の間隙580の幅(SE)は、5μm以下が好ましく、1μm以下がより好ましい。
EL層において、特に陽極と発光層との間に位置する正孔輸送領域に含まれる正孔注入層は、導電率が高いことが多いため、隣り合う発光デバイスに共通する層として形成されると、クロストークの原因となる場合がある。したがって、本構成例で示すようにフォトリソグラフィ法を用いたパターン形成によりEL層を分離加工することにより、隣り合う発光デバイス間で生じるクロストークの発生を抑制することが可能となる。
また、図2(C)は、図2(B)中の一点鎖線C1-C2に対応する断面概略図である。図2(C)には、接続電極551Cと電極552とが電気的に接続する接続部130を示している。接続部130では、接続電極551C上に電極552が接して設けられている。また、接続電極551Cの端部を覆って隔壁528が設けられている。
<発光装置の製造方法の例1>
図3(A)に示すように、電極551B、電極551G、および電極551Rを形成する。例えば、第1の基板510上に形成された機能層520上に導電膜を形成し、フォトリソグラフィ法を用いて、所定の形状に加工する。
なお、導電膜の形成には、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、真空蒸着法、パルスレーザー堆積(PLD:Pulsed Laser Deposition)法、原子層堆積(ALD:Atomic Layer Deposition)法等を用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced CVD)法、または熱CVD法などがある。また、熱CVD法のひとつに、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法がある。
また、導電膜の加工には、上述したフォトリソグラフィ法以外に、ナノインプリント法、サンドブラスト法、リフトオフ法などにより薄膜を加工してもよい。また、メタルマスクなどの遮蔽マスクを用いた成膜方法により、島状の薄膜を直接形成してもよい。
フォトリソグラフィ法を用いた加工方法としては、代表的には以下の2つの方法がある。一つは、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法である。もう一つは、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法である。なお、前者の方法を行う場合、レジスト塗布後の加熱(PAB:Pre Applied Bake)、および露光後の加熱(PEB:Post Exposure Bake)などの熱処理工程がある。本発明の一態様では、導電膜の加工だけでなく、EL層の形成に用いる薄膜(有機化合物からなる膜、または有機化合物を一部に含む膜)の加工にもリソグラフィー法を用いる。
フォトリソグラフィ法において、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線、KrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外(EUV:Extreme Ultra-violet)光またはX線を用いてもよい。また、露光に用いる光に代えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。
レジストマスクを用いた薄膜のエッチングには、ドライエッチング法、ウェットエッチング法、サンドブラスト法などを用いることができる。
次に、図3(B)に示すように、電極551B、電極551G、および電極551R上にEL層103Bを形成する。なお、図3(B)において、EL層103Bに含まれる、ホール注入・輸送層104B、発光層、および電子輸送層108Bまでが形成されている。例えば、真空蒸着法を用いて、電極551B、電極551G、および電極551R上に、これらを覆うようにEL層103Bを形成する。さらに、EL層103B上に犠牲層110Bを形成する。
犠牲層110Bは、EL層103Bのエッチング処理に対する耐性の高い膜、すなわちエッチングの選択比の大きい膜を用いることができる。また、犠牲層110Bは、エッチングの選択比の異なる、第1の犠牲層と第2の犠牲層との積層構造であることが好ましい。また、犠牲層110Bは、EL層103Bへのダメージの少ないウェットエッチング法により除去可能な膜を用いることができる。ウェットエッチングに用いるエッチング材料としては、シュウ酸などを用いることができる。なお、本明細書等において、犠牲層をマスク層と呼称してもよい。
犠牲層110Bとしては、例えば、金属膜、合金膜、金属酸化物膜、半導体膜、無機絶縁膜などの無機膜を用いることができる。また、犠牲層110Bは、スパッタリング法、蒸着法、CVD法、ALD法などの各種成膜方法により形成することができる。
犠牲層110Bとしては、例えば金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、チタン、アルミニウム、イットリウム、ジルコニウム、及びタンタルなどの金属材料、または該金属材料を含む合金材料を用いることができる。特に、アルミニウムまたは銀などの低融点材料を用いることが好ましい。
また、犠牲層110Bとしては、インジウムガリウム亜鉛酸化物(In-Ga-Zn酸化物、IGZOとも表記する)などの金属酸化物を用いることができる。さらに、酸化インジウム、インジウム亜鉛酸化物(In-Zn酸化物)、インジウムスズ酸化物(In-Sn酸化物)、インジウムチタン酸化物(In-Ti酸化物)、インジウムスズ亜鉛酸化物(In-Sn-Zn酸化物)、インジウムチタン亜鉛酸化物(In-Ti-Zn酸化物)、インジウムガリウムスズ亜鉛酸化物(In-Ga-Sn-Zn酸化物)などを用いることができる。またはシリコンを含むインジウムスズ酸化物などを用いることもできる。
なお、上記ガリウムに代えて元素M(Mは、アルミニウム、シリコン、ホウ素、イットリウム、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムから選ばれた一種または複数種)を用いることもできる。特に、Mは、ガリウム、アルミニウム、またはイットリウムから選ばれた一種または複数種とすることが好ましい。
また、犠牲層110Bとしては、酸化アルミニウム、酸化ハフニウム、酸化シリコンなどの無機絶縁材料を用いることができる。
また、犠牲層110Bとしては、少なくともEL層103Bの最上部に位置する膜(電子輸送層108B)に対して化学的に影響を及ぼしにくい溶媒に溶解しうる材料を用いることが好ましい。特に、水またはアルコールに溶解する材料を、犠牲層110Bに好適に用いることができる。犠牲層110Bを成膜する際には、水またはアルコールなどの溶媒に溶解させた状態で、湿式の成膜方法で塗布した後に、溶媒を蒸発させるための加熱処理を行うことが好ましい。このとき、減圧雰囲気下での加熱処理を行うことで、低温且つ短時間で溶媒を除去できるため、EL層103Bへの熱的なダメージを低減することができ、好ましい。
なお、犠牲層110Bを積層構造にする場合には、上述した材料で形成される層を第1の犠牲層とし、その上に第2の犠牲層を形成して積層構造とすることができる。
この場合の第2の犠牲層は、第1の犠牲層をエッチングする際のハードマスクとして用いる膜である。また、第2の犠牲層の加工時には、第1の犠牲層が露出する。したがって、第1の犠牲層と第2の犠牲層とは、エッチングの選択比の大きい膜の組み合わせを選択する。そのため、第1の犠牲層のエッチング条件、及び第2の犠牲層のエッチング条件に応じて、第2の犠牲層に用いることのできる膜を選択することができる。
例えば、第2の犠牲層のエッチングに、フッ素を含むガス(フッ素系ガスともいう)を用いたドライエッチングを用いる場合には、シリコン、窒化シリコン、酸化シリコン、タングステン、チタン、モリブデン、タンタル、窒化タンタル、モリブデンとニオブを含む合金、またはモリブデンとタングステンを含む合金などを、第2の犠牲層に用いることができる。ここで、上記フッ素系ガスを用いたドライエッチングに対して、エッチングの選択比を大きくとれる(すなわち、エッチング速度を遅くできる)膜としては、IGZO、ITOなどの金属酸化物膜などがあり、これを第1の犠牲層に用いることができる。
なお、これに限られず、第2の犠牲層は、様々な材料の中から、第1の犠牲層のエッチング条件、及び第2の犠牲層のエッチング条件に応じて、選択することができる。例えば、上記第1の犠牲層に用いることのできる膜の中から選択することもできる。
また、第2の犠牲層としては、例えば窒化物膜を用いることができる。具体的には、窒化シリコン、窒化アルミニウム、窒化ハフニウム、窒化チタン、窒化タンタル、窒化タングステン、窒化ガリウム、窒化ゲルマニウムなどの窒化物を用いることもできる。
または、第2の犠牲層として、酸化物膜を用いることができる。代表的には、酸化シリコン、酸化窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウムなどの酸化物膜または酸窒化物膜を用いることもできる。
次に、図3(C)に示すように犠牲層110B上にレジストを塗布し、フォトリソグラフィ法を用いてレジストを所望の形状(レジストマスク:REG)に形成する。なお、このような方法を行う場合、レジスト塗布後の加熱(PAB:Pre Applied Bake)、および露光後の加熱(PEB:Post Exposure Bake)などの熱処理工程がある。例えば、PAB温度は、100℃前後、PEB温度は120℃前後になる。そのため、これらの処理温度に耐えうる発光デバイスであることが必要である。
次に、得られたレジストマスクREGを用い、レジストマスクREGに覆われない犠牲層110Bの一部をエッチングにより除去し、レジストマスクREGを除去した後、犠牲層110Bに覆われないEL層103Bの一部をエッチングにより除去し、電極551G上のEL層103Bおよび電極551R上のEL層103Bをエッチングにより取り除いて、側面を有する(または側面が露出する)形状、または紙面と交差する方向に延びる帯状の形状、に加工する。具体的には、電極551Bと重なるEL層103B上にパターン形成した犠牲層110Bを用い、ドライエッチングを行う。なお、犠牲層110Bが上記の第1の犠牲層および第2の犠牲層との積層構造を有する場合には、レジストマスクREGにより第2の犠牲層の一部をエッチングした後、レジストマスクREGを除去し、第2の犠牲層をマスクとして、第1の犠牲層の一部をエッチングし、EL層103Bを所定の形状に加工しても良い。これらのエッチング処理により、図4(A)の形状を得る。
次に、図4(B)に示すように、犠牲層110B、電極551G、および電極551R上にEL層103Gを形成する。なお、図4(B)において、EL層103Gに含まれる、ホール注入・輸送層104G、発光層、および電子輸送層108Gまでが形成されている。例えば、真空蒸着法を用いて、犠牲層110B、電極551G、および電極551R上に、これらを覆うようにEL層103Gを形成する。
次に、図4(C)に示すように、EL層103G上に犠牲層110Gを形成し、犠牲層110Gの上にレジストを塗布し、フォトリソグラフィ法を用いてレジストを所望の形状(レジストマスク:REG)に形成し、得られたレジストマスクに覆われない犠牲層110Gの一部をエッチングにより除去し、レジストマスクを除去した後、犠牲層110Gに覆われないEL層103Gの一部をエッチングにより除去し、電極551B上のEL層103Gおよび電極551R上のEL層103Gをエッチングにより取り除いて、図5(A)に示すような、側面を有する(または側面が露出する)形状、または紙面と交差する方向に延びる帯状の形状、に加工する。なお、犠牲層110Gが上記の第1の犠牲層および第2の犠牲層との積層構造を有する場合には、レジストマスクにより第2の犠牲層の一部をエッチングした後、レジストマスクを除去し、第2の犠牲層をマスクとして、第1の犠牲層の一部をエッチングし、EL層103Gを所定の形状に加工しても良い。
次に、図5(B)に示すように、犠牲層110B、犠牲層110G、および電極551R上にEL層103Rを形成する。なお、図5(B)において、EL層103Rに含まれる、ホール注入・輸送層104R、発光層、および電子輸送層108Rまでが形成されている。例えば、真空蒸着法を用いて、犠牲層110B、犠牲層110G、および電極551R上に、これらを覆うようにEL層103Rを形成する。
次に、図5(C)に示すように、EL層103R上に犠牲層110Rを形成し、犠牲層110Rの上にレジストを塗布し、フォトリソグラフィ法を用いてレジストを所望の形状(レジストマスク:REG)に形成し、得られたレジストマスクに覆われない犠牲層110Rの一部をエッチングにより除去し、レジストマスクを除去した後、犠牲層110Rに覆われないEL層103Rの一部をエッチングにより除去し、電極551B上のEL層103Rおよび電極551G上のEL層103Rをエッチングにより取り除いて、側面を有する(または側面が露出する)形状、または紙面と交差する方向に延びる帯状の形状、に加工する。なお、犠牲層110Rが上記の第1の犠牲層および第2の犠牲層との積層構造を有する場合には、レジストマスクにより第2の犠牲層の一部をエッチングした後、レジストマスクを除去し、第2の犠牲層をマスクとして、第1の犠牲層の一部をエッチングし、EL層103Rを所定の形状に加工しても良い。さらに、EL層(103B、103G、103R)上の犠牲層(110B、110G、110R)、を残したまま、犠牲層(110B、110G、110R)上に絶縁層107を形成し、図6(A)の形状を得る。
なお、絶縁層107の形成には、例えば、ALD法を用いることができる。この場合、絶縁層107は、図6(A)に示すように各EL層(103B、103G、103R)の側面に接して形成される。これにより、各EL層(103B、103G、103R)の側面から内部への酸素、水分、またはこれらの構成元素の侵入を抑制することができる。なお、絶縁層107に用いる材料としては、例えば、酸化アルミニウム、酸化マグネシウム、酸化ハフニウム、酸化ガリウム、インジウムガリウム亜鉛酸化物、窒化シリコン、または窒化酸化シリコンなどを用いることができる。
次に、図6(B)に示すように、犠牲層(110B、110G、110R)を除去した後、絶縁層107の一部を除去することにより絶縁層(107B、107G、107R)を形成した後、EL層(103B、103G、103R)上に電子注入層109を形成する。電子注入層109は、例えば、真空蒸着法を用いて形成する。なお、電子注入層109は、電子輸送層(108B、108G、108R)上に形成される。なお、電子注入層109は、各EL層(103B、103G、103R)の他の層(ホール注入・輸送層(104R、104G、104B)、発光層、および電子輸送層(108B、108G、108R))の側面(または端部)で絶縁層(107B、107G、107R)を介して接する構造を有する。
次に、図6(C)に示すように、電極552を形成する。電極552は、例えば、真空蒸着法を用いて形成する。なお、電極552は、電子注入層109上に形成される。なお、電極552は、電子注入層109および絶縁層(107B、107G、107R)を介して各EL層(103B、103G、103R)(但し、図6(C)に示すEL層(103B、103G、103R)は、ホール注入・輸送層(104R、104G、104B)、発光層、および電子輸送層(108B、108G、108R)を含む。)の側面(または端部)と接する構造を有する。これにより、各EL層(103B、103G、103R)と電極552、より具体的には、各EL層(103B、103G、103R)がそれぞれ有するホール注入・輸送層(104B、104G、104R)と電極552とが、電気的に短絡することを防ぐことができる。
以上の工程により、発光デバイス550B、発光デバイス550G、および発光デバイス550Rにおける、EL層103B、EL層103G、およびEL層103Rをそれぞれ分離加工することができる。
なお、これらのEL層(EL層103B、EL層103G、およびEL層103R)の分離加工において、フォトリソグラフィ法を用いたパターン形成を行っているため、高精細な発光装置(表示パネル)を作製することができる。また、フォトリソグラフィ法を用いたパターン形成により加工されたEL層の端部(側面)は、概略同一表面を有する(または、概略同一平面上に位置する)形状となる。
EL層において、特に陽極と発光層との間に位置する正孔輸送領域に含まれる正孔注入層は、導電率が高いことが多いため、隣り合う発光デバイスに共通する層として形成されると、クロストークの原因となる場合がある。したがって、本構成例で示すようにフォトリソグラフィ法を用いたパターン形成によりEL層を分離加工することにより、隣り合う発光デバイス間で生じるクロストークの発生を抑制することが可能となる。
<発光装置700の構成例2>
図7に示す発光装置700は、発光デバイス550B、発光デバイス550G、発光デバイス550R、および絶縁層529を有する。また、発光デバイス550B、発光デバイス550G、発光デバイス550R、および絶縁層529は、第1の基板510上に設けられた機能層520上に形成される。機能層520には、複数のトランジスタで構成された駆動回路GD、駆動回路SDなどの他、これらを電気的に接続する配線等が含まれる。なお、これらの駆動回路は、一例として、発光デバイス550B、発光デバイス550G、および発光デバイス550Rと、それぞれ電気的に接続され、これらを駆動することができる。
なお、発光デバイス550B、発光デバイス550G、および発光デバイス550Rは、実施の形態2で示したデバイス構造を有する。特に、図1(A)に示す構造におけるEL層103が各発光デバイスで異なる場合を示す。
なお、図7に示す各発光デバイスの具体的な構成は、図2で説明した、発光デバイス550B、発光デバイス550G、発光デバイス550Rと同じである。
図7に示すように、各発光デバイス(550B、550G、550R)のEL層(103B、103G、103R)は、それぞれ、ホール注入・輸送層(104B、104G、104R)および電子輸送層(108B、108G、108R)、および電子注入層109を有する。
また、本構成の各EL層(EL層103B、EL層103G、およびEL層103R)は、分離加工において、フォトリソグラフィ法を用いたパターン形成を行っているため、加工されたEL層の端部(側面)が概略同一表面を有する(または、概略同一平面上に位置する)形状となる。
各発光デバイスがそれぞれ有する、EL層103B、EL層103G、およびEL層103Rは、隣り合う発光デバイスとの間に、それぞれ間隙580を有する。なお、ここで、間隙580を隣り合う発光デバイスのEL層の間の距離をSEで表す場合、距離SEが小さいほど開口率を高めること、及び、精細度を高めることができる。一方、距離SEが大きいほど、隣り合う発光デバイスとの作製工程ばらつきの影響を許容できるため、製造歩留まりを高めることができる。本明細書により作製される発光デバイスは微細化プロセスに好適であるため、隣り合う発光デバイスのEL層の間の距離SEは、0.5μm以上5μm以下、好ましくは1μm以上3μm以下、より好ましくは1μm以上2.5μm以下、さらに好ましくは1μm以上2μm以下とすることができる。なお、代表的には、距離SEは1μm以上2μm以下(例えば1.5μmまたはその近傍)であることが好ましい。
EL層において、特に陽極と発光層との間に位置する正孔輸送領域に含まれる正孔注入層は、導電率が高いことが多いため、隣り合う発光デバイスに共通する層として形成されると、クロストークの原因となる場合がある。したがって、本構成例で示すようにフォトリソグラフィ法を用いたパターン形成によりEL層を分離加工することにより、隣り合う発光デバイス間で生じるクロストークの発生を抑制することが可能となる。
なお、本明細書等において、メタルマスク、またはFMM(ファインメタルマスク、高精細なメタルマスク)を用いて作製されるデバイスをMM(メタルマスク)構造のデバイスと呼称する場合がある。また、本明細書等において、メタルマスク、またはFMMを用いることなく作製されるデバイスをMML(メタルマスクレス)構造のデバイスと呼称する場合がある。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができるものとする。
(実施の形態4)
本実施の形態では、本発明の一態様である発光装置について図8(A)乃至図10(B)を用いて説明する。なお、図8(A)乃至図10(B)に示す発光装置700は、実施の形態2で示す発光デバイスを有する。また、本実施の形態で説明する発光装置700は、電子機器などの表示部に適用可能であることから表示パネルと呼ぶこともできる。
本実施の形態で説明する発光装置700は、図8(A)に示す通り、表示領域231を備え、表示領域231は一組の画素703(i,j)を有する。また、図8(B)に示す通り、一組の画素703(i,j)に隣接する一組の画素703(i+1,j)を有する。
なお、画素703(i,j)には、複数の画素を用いることができる。例えば、色相が互いに異なる色を表示する複数の画素を用いることができる。なお、複数の画素のそれぞれを副画素と言い換えることができる。または、複数の副画素を一組にして、画素と言い換えることができる。
これにより、当該複数の画素が表示する色を加法混色または減法混色することができる。または、個々の画素では表示することができない色相の色を、表示することができる。
具体的には、青色を表示する画素702B(i,j)、緑色を表示する画素702G(i,j)および赤色を表示する画素702R(i,j)を画素703(i,j)に用いることができる。また、画素702B(i,j)、画素702G(i,j)および画素702R(i,j)のそれぞれを副画素と言い換えることができる。
また、白色等を表示する画素を上記の一組に加えて、画素703(i,j)に用いてもよい。また、シアンを表示する画素、マゼンタを表示する画素およびイエローを表示する画素のそれぞれを、副画素として画素703(i,j)に用いてもよい。
また、上記の一組に加えて、赤外線を射出する画素を画素703(i,j)に用いてもよい。具体的には、650nm以上1000nm以下の波長を有する光を含む光を射出する画素を、画素703(i,j)に用いることができる。
図8(A)に示す表示領域231の周辺には、駆動回路GDと、駆動回路SDと、を有する。また、駆動回路GD、駆動回路SD等と電気的に接続された端子519を有する。端子519は、例えば、フレキシブルプリント回路FPC1と電気的に接続することができる。
なお、駆動回路GDは、第1の選択信号および第2の選択信号を供給する機能を有する。例えば、駆動回路GDは後述する導電膜G1(i)と電気的に接続され、第1の選択信号を供給し、後述する導電膜G2(i)と電気的に接続され、第2の選択信号を供給する。また、駆動回路SDは、画像信号および制御信号を供給する機能を備え、制御信号は第1のレベルおよび第2のレベルを含む。例えば、駆動回路SDは後述する導電膜S1g(j)と電気的に接続され、画像信号を供給し、後述する導電膜S2g(j)と電気的に接続され、制御信号を供給する。
図10(A)には、図8(A)に示す一点鎖線X1-X2と一点鎖線X3-X4のそれぞれにおける、発光装置の断面図を示している。図10(A)に示す通り、発光装置700は、第1の基板510と、第2の基板770と、の間に機能層520を有する。機能層520には、上述した駆動回路GD、駆動回路SDなどの他、これらを電気的に接続する配線等が含まれる。図10(A)では、機能層520は、画素回路530B(i,j)ならびに画素回路530G(i,j)および駆動回路GDを含む構成を示すが、これに限らない。
また、機能層520が有する各画素回路(例えば、図10(A)に示す画素回路530B(i,j)、画素回路530G(i,j))は、機能層520上に形成される各発光デバイス(例えば、図10(A)に示す発光デバイス550B(i,j)、発光デバイス550G(i,j))と電気的に接続される。具体的には、発光デバイス550B(i,j)は開口部591Bを介して画素回路530B(i,j)に電気的に接続され、発光デバイス550G(i,j)は開口部591Gを介して画素回路530G(i,j)に電気的に接続されている。また、機能層520および各発光デバイス上に絶縁層705が設けられており、絶縁層705は、第2の基板770と機能層520とを貼り合わせる機能を有する。
なお、第2の基板770には、マトリクス状にタッチセンサを備える基板を用いることができる。例えば、静電容量式のタッチセンサまたは光学式のタッチセンサを備えた基板を第2の基板770に用いることができる。これにより、本発明の一態様の発光装置をタッチパネルとして使用することができる。
また、画素回路530G(i,j)の具体的な構成を図9(A)に示す。
図9(A)に示すように、画素回路530G(i,j)は、スイッチSW21、スイッチSW22、トランジスタM21、容量C21およびノードN21を有する。また、画素回路530G(i,j)はノードN22、容量C22およびスイッチSW23を有する。
トランジスタM21は、ノードN21と電気的に接続されるゲート電極と、発光デバイス550G(i,j)と電気的に接続される第1の電極と、導電膜ANOと電気的に接続される第2の電極と、を有する。
スイッチSW21は、ノードN21と電気的に接続される第1の端子と、導電膜S1g(j)と電気的に接続される第2の端子と、を有する。また、スイッチSW21は、導電膜G1(i)の電位に基づいて、導通状態または非導通状態を制御する機能を有する。
スイッチSW22は、導電膜S2g(j)と電気的に接続される第1の端子と、導電膜G2(i)の電位に基づいて、導通状態または非導通状態を制御する機能を有する。
容量C21は、ノードN21と電気的に接続される導電膜と、スイッチSW22の第2の電極と電気的に接続される導電膜を有する。
これにより、画像信号をノードN21に格納することができる。または、ノードN21の電位を、スイッチSW22を用いて、変更することができる。または、発光デバイス550G(i,j)が射出する光の強度を、ノードN21の電位を用いて、制御することができる。
次に、図9(A)で説明した、トランジスタM21の具体的な構造の一例を図9(B)に示す。なお、トランジスタM21としては、ボトムゲート型のトランジスタまたはトップゲート型のトランジスタなどを適宜用いることができる。
図9(B)に示すトランジスタは、半導体膜508、導電膜504、絶縁膜506、導電膜512Aおよび導電膜512Bを有する。トランジスタは、例えば、絶縁膜501C上に形成される。また、当該トランジスタは、絶縁膜516(絶縁膜516A及び絶縁膜516B)、及び絶縁膜518を有する。
半導体膜508は、導電膜512Aと電気的に接続される領域508A、導電膜512Bと電気的に接続される領域508Bを有する。半導体膜508は、領域508Aおよび領域508Bの間に領域508Cを有する。
導電膜504は領域508Cと重なる領域を備え、導電膜504はゲート電極の機能を有する。
絶縁膜506は、半導体膜508および導電膜504の間に挟まれる領域を有する。絶縁膜506は第1のゲート絶縁膜の機能を有する。
導電膜512Aはソース電極の機能またはドレイン電極の機能の一方を備え、導電膜512Bはソース電極の機能またはドレイン電極の機能の他方を有する。
また、導電膜524をトランジスタに用いることができる。導電膜524は、導電膜504との間に半導体膜508を挟む領域を有する。導電膜524は、第2のゲート電極の機能を有する。絶縁膜501Dは半導体膜508および導電膜524の間に挟まれ、第2のゲート絶縁膜の機能を有する。
絶縁膜516は、例えば、半導体膜508を覆う保護膜として機能する。絶縁膜516としては、例えば、具体的には、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜または酸化ネオジム膜を含む膜を用いることができる。
絶縁膜518は、例えば、酸素、水素、水、アルカリ金属、アルカリ土類金属等の拡散を抑制する機能を備える材料を適用することが好ましい。具体的には、絶縁膜518としては、例えば、窒化シリコン、酸化窒化シリコン、窒化アルミニウム、酸化窒化アルミニウム等を用いることができる。また、酸化窒化シリコン、及び酸化窒化アルミニウムのそれぞれに含まれる酸素の原子数と窒素の原子数は、窒素の原子数のほうが多いことが好ましい。
なお、画素回路のトランジスタに用いる半導体膜を形成する工程において、駆動回路のトランジスタに用いる半導体膜を形成することができる。例えば、画素回路のトランジスタに用いる半導体膜と同じ組成の半導体膜を、駆動回路に用いることができる。
また、半導体膜508には、第14族の元素を含む半導体を用いることができる。具体的には、シリコンを含む半導体を半導体膜508に用いることができる。
また、半導体膜508には、水素化アモルファスシリコンを用いることができる。または、微結晶シリコンなどを半導体膜508に用いることができる。これにより、例えば、ポリシリコンを半導体膜508に用いる発光装置(または表示パネル)より、表示ムラが少ない発光装置を提供することができる。または、発光装置の大型化が容易である。
また、半導体膜508には、ポリシリコンを用いることができる。これにより、例えば、水素化アモルファスシリコンを半導体膜508に用いるトランジスタより、トランジスタの電界効果移動度を高くすることができる。または、例えば、水素化アモルファスシリコンを半導体膜508に用いるトランジスタより、駆動能力を高めることができる。または、例えば、水素化アモルファスシリコンを半導体膜508に用いるトランジスタより、画素の開口率を向上することができる。
または、例えば、水素化アモルファスシリコンを半導体膜508に用いるトランジスタより、トランジスタの信頼性を高めることができる。
または、トランジスタの作製に要する温度を、例えば、単結晶シリコンを用いるトランジスタより、低くすることができる。
または、駆動回路のトランジスタに用いる半導体膜を、画素回路のトランジスタに用いる半導体膜と同一の工程で形成することができる。または、画素回路を形成する基板と同一の基板上に駆動回路を形成することができる。または、電子機器を構成する部品数を低減することができる。
また、半導体膜508には、単結晶シリコンを用いることができる。これにより、例えば、水素化アモルファスシリコンを半導体膜508に用いる発光装置(または表示パネル)より、精細度を高めることができる。または、例えば、ポリシリコンを半導体膜508に用いる発光装置より、表示ムラが少ない発光装置を提供することができる。または、例えば、スマートグラスまたはヘッドマウントディスプレイを提供することができる。
また、半導体膜508には、金属酸化物を用いることができる。これにより、アモルファスシリコンを半導体膜に用いたトランジスタを利用する画素回路と比較して、画素回路が画像信号を保持することができる時間を長くすることができる。具体的には、フリッカーの発生を抑制しながら、選択信号を30Hz未満、好ましくは1Hz未満、より好ましくは一分に一回未満の頻度で供給することができる。その結果、電子機器の使用者に蓄積する疲労を低減することができる。また、駆動に伴う消費電力を低減することができる。
また、半導体膜508には、酸化物半導体を用いることができる。具体的には、インジウムを含む酸化物半導体、インジウムとガリウムと亜鉛を含む酸化物半導体またはインジウムとガリウムと亜鉛と錫とを含む酸化物半導体を半導体膜508に用いることができる。
なお、酸化物半導体を半導体膜に用いることで、半導体膜にアモルファスシリコンを用いたトランジスタよりもオフ状態におけるリーク電流が小さいトランジスタを得ることができる。したがって、酸化物半導体を半導体膜に用いたトランジスタをスイッチ等に利用することが好ましい。なお、酸化物半導体を半導体膜に用いたトランジスタをスイッチに利用する回路は、アモルファスシリコンを半導体膜に用いたトランジスタをスイッチに利用する回路よりも、長い時間、フローティングノードの電位を保持することができる。
図10(A)では、第2の基板770側に発光を取り出す構造(トップエミッション型)の発光装置を示したが、図10(B)に示すように第1の基板510側に光を取り出す構造(ボトムエミッション型)の発光装置としても良い。なお、ボトムエミッション型の発光装置の場合には、第1の電極401を半透過・半反射電極として機能するように形成し、第2の電極404を反射電極として機能するように形成する。
また、図10(A)及び図10(B)では、アクティブマトリクス型の発光装置について説明したが、実施の形態2に示す発光デバイスの構成は、図11(A)及び図11(B)に示すパッシブマトリクス型の発光装置に適用しても良い。
なお、図11(A)は、パッシブマトリクス型の発光装置を示す斜視図、図11(B)は図11(A)をX-Yで切断した断面図である。図11(A)、及び図11(B)において、基板951上には、電極952及び電極956が設けられ、電極952と電極956との間にはEL層955が設けられている。電極952の端部は絶縁層953で覆われている。そして、絶縁層953上には隔壁層954が設けられている。隔壁層954の側壁は、基板面に近くなるに伴って、一方の側壁と他方の側壁との間隔が狭くなっていくような傾斜を有する。つまり、隔壁層954の短辺方向の断面は、台形状であり、底辺(絶縁層953の面方向と同様の方向を向き、絶縁層953と接する辺)の方が上辺(絶縁層953の面方向と同様の方向を向き、絶縁層953と接しない辺)よりも短い。このように、隔壁層954を設けることで、静電気等に起因した発光デバイスの不良を防ぐことが出来る。
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができるものとする。
(実施の形態5)
本実施の形態では、本発明の一態様の電子機器の構成について、図12(A)乃至図14(B)により説明する。
図12(A)乃至図14(B)は、本発明の一態様の電子機器の構成を説明する図である。図12(A)は電子機器のブロック図であり、図12(B)乃至図12(E)は電子機器の構成を説明する斜視図である。また、図13(A)乃至図13(E)は電子機器の構成を説明する斜視図である。また、図14(A)および図14(B)は電子機器の構成を説明する斜視図である。
本実施の形態で説明する電子機器5200Bは、演算装置5210と、入出力装置5220と、を有する(図12(A)参照)。
演算装置5210は、操作情報を供給される機能を備え、操作情報に基づいて画像情報を供給する機能を有する。
入出力装置5220は、表示部5230、入力部5240、検知部5250、通信部5290、操作情報を供給する機能および画像情報を供給される機能を有する。また、入出力装置5220は、検知情報を供給する機能、通信情報を供給する機能および通信情報を供給される機能を有する。
入力部5240は操作情報を供給する機能を有する。例えば、入力部5240は、電子機器5200Bの使用者の操作に基づいて操作情報を供給する。
具体的には、キーボード、ハードウェアボタン、ポインティングデバイス、タッチセンサ、照度センサ、撮像装置、音声入力装置、視線入力装置、姿勢検出装置などを、入力部5240に用いることができる。
表示部5230は表示パネルおよび画像情報を表示する機能を有する。例えば、実施の形態2において説明する表示パネルを表示部5230に用いることができる。
検知部5250は検知情報を供給する機能を有する。例えば、電子機器が使用されている周辺の環境を検知して、検知情報として供給する機能を有する。
具体的には、照度センサ、撮像装置、姿勢検出装置、圧力センサ、人感センサなどを検知部5250に用いることができる。
通信部5290は通信情報を供給される機能および供給する機能を有する。例えば、無線通信または有線通信により、他の電子機器または通信網と接続する機能を有する。具体的には、無線構内通信、電話通信、近距離無線通信などの機能を有する。
図12(B)は、円筒状の柱などに沿った外形を有する電子機器を示す。一例として、デジタル・サイネージ等が挙げられる。本発明の一態様である表示パネルは、表示部5230に適用することができる。なお、使用環境の照度に応じて、表示方法を変更する機能を備えていても良い。また、人の存在を検知して、表示内容を変更する機能を有する。これにより、例えば、建物の柱に設置することができる。または、広告または案内等を表示することができる。または、デジタル・サイネージ等に用いることができる。
図12(C)は、使用者が使用するポインタの軌跡に基づいて画像情報を生成する機能を有する電子機器を示す。一例として、電子黒板、電子掲示板、電子看板等が挙げられる。具体的には、対角線の長さが20インチ以上、好ましくは40インチ以上、より好ましくは55インチ以上の表示パネルを用いることができる。または、複数の表示パネルを並べて1つの表示領域に用いることができる。または、複数の表示パネルを並べてマルチスクリーンに用いることができる。
図12(D)は、他の装置から情報を受信して、表示部5230に表示することができる電子機器を示す。一例として、ウェアラブル型電子機器などが挙げられる。具体的には、いくつかの選択肢を表示できる、または、使用者が選択肢からいくつかを選択し、当該情報の送信元に返信することができる。または、例えば、使用環境の照度に応じて、表示方法を変更する機能を有する。これにより、例えば、ウェアラブル型電子機器の消費電力を低減することができる。または、例えば、晴天の屋外等の外光の強い環境においても好適に使用できるように、画像をウェアラブル型電子機器に表示することができる。
図12(E)は、筐体の側面に沿って緩やかに曲がる曲面を備える表示部5230を有する電子機器を示す。一例として、携帯電話などが挙げられる。なお、表示部5230は表示パネルを備え、表示パネルは、例えば、前面、側面、上面および背面に表示する機能を有する。これにより、例えば、携帯電話の前面だけでなく、側面、上面および背面に情報を表示することができる。
図13(A)は、インターネットから情報を受信して、表示部5230に表示することができる電子機器を示す。一例として、スマートフォンなどが挙げられる。例えば、作成したメッセージを表示部5230で確認することができる。または、作成したメッセージを他の装置に送信できる。または、例えば、使用環境の照度に応じて、表示方法を変更する機能を有する。これにより、スマートフォンの消費電力を低減することができる。または、例えば、晴天の屋外等の外光の強い環境においても好適に使用できるように、画像をスマートフォンに表示することができる。
図13(B)は、リモートコントローラーを入力部5240とすることができる電子機器を示す。一例として、テレビジョンシステムなどが挙げられる。または、例えば、放送局またはインターネットから情報を受信して、表示部5230に表示することができる。または、検知部5250を用いて使用者を撮影できる。または、使用者の映像を送信できる。または、使用者の視聴履歴を取得して、クラウド・サービスに提供できる。または、クラウド・サービスから、レコメンド情報を取得して、表示部5230に表示できる。または、レコメンド情報に基づいて、番組または動画を表示できる。または、例えば、使用環境の照度に応じて、表示方法を変更する機能を有する。これにより、晴天の日に屋内に差し込む強い外光が当たっても好適に使用できるように、映像をテレビジョンシステムに表示することができる。
図13(C)は、インターネットから教材を受信して、表示部5230に表示することができる電子機器を示す。一例として、タブレットコンピュータなどが挙げられる。または、入力部5240を用いて、レポートを入力し、インターネットに送信することができる。または、クラウド・サービスから、レポートの添削結果または評価を取得して、表示部5230に表示することができる。または、評価に基づいて、好適な教材を選択し、表示することができる。
例えば、他の電子機器から画像信号を受信して、表示部5230に表示することができる。または、スタンドなどに立てかけて、表示部5230をサブディスプレイに用いることができる。これにより、例えば、晴天の屋外等の外光の強い環境においても好適に使用できるように、画像をタブレットコンピュータに表示することができる。
図13(D)は、複数の表示部5230を有する電子機器を示す。一例として、デジタルカメラなどが挙げられる。例えば、検知部5250で撮影しながら表示部5230に表示することができる。または、撮影した映像を検知部に表示することができる。または、入力部5240を用いて、撮影した映像に装飾を施せる。または、撮影した映像にメッセージを添付できる。または、インターネットに送信できる。または、使用環境の照度に応じて、撮影条件を変更する機能を有する。これにより、例えば、晴天の屋外等の外光の強い環境においても好適に閲覧できるように、被写体をデジタルカメラに表示することができる。
図13(E)は、他の電子機器をスレイブに用い、本実施の形態の電子機器をマスターに用いて、他の電子機器を制御することができる電子機器を示す。一例として、携帯可能なパーソナルコンピュータなどが挙げられる。例えば、画像情報の一部を表示部5230に表示し、画像情報の他の一部を他の電子機器の表示部に表示することができる。または、画像信号を供給することができる。または、通信部5290を用いて、他の電子機器の入力部から書き込む情報を取得できる。これにより、例えば、携帯可能なパーソナルコンピュータを用いて、広い表示領域を利用することができる。
図14(A)は、加速度または方位を検知する検知部5250を有する電子機器を示す。一例として、ゴーグル型の電子機器などが挙げられる。または、検知部5250は、使用者の位置または使用者が向いている方向に係る情報を供給することができる。または、電子機器は、使用者の位置または使用者が向いている方向に基づいて、右目用の画像情報および左目用の画像情報を生成することができる。または、表示部5230は、右目用の表示領域および左目用の表示領域を有する。これにより、例えば、没入感を得られる仮想現実空間の映像を、ゴーグル型の電子機器に表示することができる。
図14(B)は、撮像装置と、加速度または方位を検知する検知部5250と、を有する電子機器を示す。一例として、めがね型の電子機器などが挙げられる。または、検知部5250は、使用者の位置または使用者が向いている方向に係る情報を供給することができる。または、電子機器は、使用者の位置または使用者が向いている方向に基づいて、画像情報を生成することができる。これにより、例えば、現実の風景に情報を添付して表示することができる。または、拡張現実空間の映像を、めがね型の電子機器に表示することができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態6)
本実施の形態では、実施の形態2に記載の発光デバイスを照明装置として用いる構成について、図15により説明する。なお、図15(A)は、図15(B)に示す照明装置の上面図における線分e-fの断面図である。
本実施の形態における照明装置は、支持体である透光性を有する基板400上に、第1の電極401が形成されている。第1の電極401は実施の形態2における第1の電極101に相当する。第1の電極401側から発光を取り出す場合、第1の電極401は透光性を有する材料により形成する。
第2の電極404に電圧を供給するためのパッド412が基板400上に形成される。
第1の電極401上にはEL層403が形成されている。EL層403は実施の形態2におけるEL層103の構成に相当する。なお、これらの構成については当該記載を参照されたい。
EL層403を覆って第2の電極404を形成する。第2の電極404は実施の形態2における第2の電極102に相当する。発光を第1の電極401側から取り出す場合、第2の電極404は反射率の高い材料によって形成される。第2の電極404はパッド412と接続することによって、電圧が供給される。
以上、第1の電極401、EL層403、及び第2の電極404を有する発光デバイスを本実施の形態で示す照明装置は有している。当該発光デバイスは発光効率の高い発光デバイスであるため、本実施の形態における照明装置は消費電力の小さい照明装置とすることができる。
以上の構成を有する発光デバイスが形成された基板400と、封止基板407とをシール材405、406を用いて固着し、封止することによって照明装置が完成する。シール材405、406はどちらか一方でもかまわない。また、内側のシール材406(図15(B)では図示せず)には乾燥剤を混ぜることもでき、これにより、水分を吸着することができ、信頼性の向上につながる。
また、パッド412と第1の電極401の一部をシール材405、406の外に伸張して設けることによって、外部入力端子とすることができる。また、その上にコンバーターなどを搭載したICチップ420などを設けても良い。
(実施の形態7)
本実施の形態では、本発明の一態様である発光装置、またはその一部である発光デバイスを適用して作製される照明装置の応用例について、図16を用いて説明する。
室内の照明装置としては、シーリングライト8001として応用できる。シーリングライト8001には、天井直付型および天井埋め込み型がある。なお、このような照明装置は、発光装置を筐体またはカバーと組み合わせることにより構成される。その他にもコードペンダント型(天井からのコード吊り下げ式)への応用も可能である。
また、足元灯8002は、床面に灯りを照射し、足元の安全性を高めることができる。例えば、寝室、階段、または通路などに使用するのが有効である。その場合、部屋の広さおよび構造に応じて適宜サイズおよび形状を変えることができる。また、発光装置と支持台とを組み合わせて構成される据え置き型の照明装置とすることも可能である。
また、シート状照明8003は、薄型のシート状の照明装置である。壁面に張り付けて使用するため、場所を取らず幅広い用途に用いることができる。なお、大面積化も容易である。なお、曲面を有する壁面または筐体に用いることもできる。
また、光源からの光が所望の方向のみに制御された照明装置8004を用いることもできる。
また、電気スタンド8005は、光源8006を有し、光源8006としては、本発明の一態様である発光装置、またはその一部である発光デバイスを適用することができる。
なお、上記以外にも室内に備えられた家具の一部に本発明の一態様である発光装置、またはその一部である発光デバイスを適用することにより、家具としての機能を備えた照明装置とすることができる。
以上のように、発光装置を適用した様々な照明装置が得られる。なお、これらの照明装置は本発明の一態様に含まれるものとする。
また、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。
(実施の形態8)
本実施の形態では、本発明の一態様である表示装置に適用できる、発光デバイスおよび受光デバイスについて、図17を用いて説明する。
本発明の一態様の表示装置810が有する発光デバイス805a、及び受光デバイス805bの断面概略図を、図17(A)に示す。
発光デバイス805aは、光を発する機能(以下、発光機能とも記す)を有する。発光デバイス805aは、電極801a、EL層803a、及び電極802を有する。発光デバイス805aは、実施の形態2で示した有機ELを利用する発光デバイス(有機ELデバイス)であることが好ましい。したがって電極801aと電極802との間に挟持されるEL層803aは、少なくとも発光層を有する。発光層は、発光物質を有する。電極801aと電極802との間に電圧を印加することにより、EL層803aから光が射出される。EL層803aは、発光層に加えて、正孔注入層、正孔輸送層、電子輸送層、電子注入層、キャリア(正孔または電子)ブロック層、電荷発生層などの様々な層を有していてもよい。なお、発光デバイス805aのEL層803aには、本発明の一態様である有機化合物を用いることができる。
受光デバイス805bは、光を検出する機能(以下、受光機能とも記す)を有する。受光デバイス805bは、例えば、pn型またはpin型のフォトダイオードを用いることができる。受光デバイス805bは、電極801b、受光層803b、及び電極802を有する。電極801bと電極802との間に挟持される受光層803bは、少なくとも活性層を有する。受光デバイス805bは、光電変換デバイスとして機能し、受光層803bに入射する光によって電荷を発生させ、電流として取り出すことができる。この時、電極801bと電極802との間に電圧を印加してもよい。受光層803bに入射する光量に基づき、発生する電荷量が決まる。
受光デバイス805bは、可視光を検出する機能を有する。受光デバイス805bは、可視光に感度を有する。受光デバイス805bは、可視光及び赤外光を検出する機能を有するとさらに好ましい。受光デバイス805bは、可視光、及び赤外光に感度を有することが好ましい。
なお、本明細書等における青色(B)の波長領域とは、400nm以上490nm未満であり、青色(B)の光は、該波長領域に少なくとも一つの発光スペクトルのピークを有するとする。また、緑色(G)の波長領域とは、490nm以上580nm未満であり、緑色(G)の光は、該波長領域に少なくとも一つの発光スペクトルのピークを有するとする。また、赤色(R)の波長領域とは、580nm以上700nm未満であり、赤色(R)の光は、該波長領域に少なくとも一つの発光スペクトルのピークを有するとする。また、本明細書等において、可視光の波長領域とは、400nm以上700nm未満とし、可視光とは、該波長領域に少なくとも一つの発光スペクトルのピークを有するとする。また、赤外(IR)の波長領域とは、700nm以上900nm未満とし、赤外(IR)光は、該波長領域に少なくとも一つの発光スペクトルのピークを有するとする。
受光デバイス805bの活性層には、半導体を含む。当該半導体としては、シリコンなどの無機半導体、及び、有機化合物を含む有機半導体等が挙げられる。受光デバイス805bとしては、活性層に有機半導体を含む、有機半導体デバイス(または有機フォトダイオード)を用いることが好ましい。有機フォトダイオードは、薄型化、軽量化、及び大面積化が容易であり、また、形状及びデザインの自由度が高いため、様々な表示装置に適用できる。また、有機半導体を用いることで、発光デバイス805aが有するEL層803aと、受光デバイス805bが有する受光層803bと、を同じ方法(例えば、真空蒸着法)で形成することができ、共通の製造装置を使用できるため好ましい。なお、受光デバイス805bの受光層803bには、本発明の一態様である有機化合物を用いることができる。
本発明の一態様の表示装置は、発光デバイス805aとして有機ELデバイスを用い、受光デバイス805bとして有機フォトダイオードを好適に用いることができる。有機ELデバイス及び有機フォトダイオードは、同一基板上に形成することができる。したがって、有機ELデバイスを用いた表示装置に有機フォトダイオードを内蔵することができる。本発明の一態様である表示装置は、画像を表示する機能に加えて、撮像機能及びセンシング機能の一方または双方も有する。
電極801a及び電極801bは、同一面上に設けられる。図17(A)は、電極801a及び電極801bが基板800上に設けられる構成を示している。なお、電極801a及び電極801bは、例えば、基板800上に形成された導電膜を島状に加工することにより形成できる。つまり、電極801a及び電極801bは、同じ工程を経て形成することができる。
基板800は、発光デバイス805a及び受光デバイス805bの形成に耐えうる耐熱性を有する基板を用いることができる。基板800として、絶縁性基板を用いる場合には、ガラス基板、石英基板、サファイア基板、セラミック基板、有機樹脂基板などを用いることができる。また、シリコンまたは炭化シリコンなどを材料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、SOI基板などの半導体基板を用いることができる。
特に、基板800として、前述の絶縁性基板または半導体基板上に、トランジスタなどの半導体素子を含む半導体回路が形成された基板を用いることが好ましい。当該半導体回路は、例えば、画素回路、ゲート線駆動回路(ゲートドライバ)、ソース線駆動回路(ソースドライバ)などを構成していることが好ましい。また、上記に加えて演算回路、記憶回路などが構成されていてもよい。
また、電極802は、発光デバイス805a及び受光デバイス805bで共通する層からなる電極である。これらの電極のうち、光を射出させる、または光を入射させる側の電極には、可視光及び赤外光を透過する導電膜を用いる。光を射出させない、または光を入射させない側の電極には、可視光及び赤外光を反射する導電膜を用いることが好ましい。
本発明の一態様である表示装置における電極802は、発光デバイス805aおよび受光デバイス805bのそれぞれの一方の電極として機能する。
図17(B)は、発光デバイス805aの電極801aが、電極802よりも高い電位を有する場合について示す。この時、電極801aは、発光デバイス805aの陽極として機能し、電極802は、陰極として機能する。また、受光デバイス805bの電極801bは、電極802より低い電位を有する。なお、図17(B)では、電流の流れる向きを分かりやすくするため、発光デバイス805aの左側に発光ダイオードの回路記号を示し、受光デバイス805bの右側にフォトダイオードの回路記号を示している。また、キャリア(電子及びホール)の流れる向きを各デバイス中に模式的に矢印で示している。
図17(B)に示す構成の場合、発光デバイス805aにおいて、電極801aに第1の配線を介して第1の電位が供給され、電極802に第2の配線を介して第2の電位を供給され、電極801aに第3の配線を介して第3の電位が供給される時、各電位の大きさの関係は、第1の電位>第2の電位>第3の電位となる。
また、図17(C)は、発光デバイス805aの電極801aが、電極802よりも低い電位を有する場合について示す。この時、電極801aは、発光デバイス805aの陰極として機能し、電極802は、陽極として機能する。また、受光デバイス805bの電極801bは、電極802より低い電位を有し、かつ電極801aよりも高い電位を有する。なお、図17(C)では、電流の流れる向きを分かりやすくするため、発光デバイス805aの左側に発光ダイオードの回路記号を示し、受光デバイス805bの右側にフォトダイオードの回路記号を示している。また、キャリア(電子及びホール)の流れる向きを各デバイス中に模式的に矢印で示している。
図17(C)に示す構成の場合、発光デバイス805aにおいて、電極801aに第1の配線を介して第1の電位が供給され、電極802に第2の配線を介して第2の電位を供給され、電極801aに第3の配線を介して第3の電位が供給される時、各電位の大きさの関係は、第2の電位>第3の電位>第1の電位となる。
なお、本実施の形態で示す受光デバイス805bの精細度としては、100ppi以上、好ましくは200ppi以上、より好ましくは300ppi以上、より好ましくは400ppi以上、さらに好ましくは500ppi以上であって、2000ppi以下、1000ppi以下、または600ppi以下などとすることができる。特に、200ppi以上600ppi以下、好ましくは300ppi以上600ppi以下の精細度で受光デバイス805bを配置することで、指紋の撮像に好適に用いることができる。本発明の一態様の表示装置を用いて指紋認証を行う場合、受光デバイス805bの精細度を高くすることで、例えば、指紋の特徴点(Minutia)を高い精度で抽出でき、指紋認証の精度を高めることができる。また、精細度が、500ppi以上であると、米国国立標準技術研究所(NIST:National Institute of Standards and Technology)などの規格に準拠できるため、好適である。なお、受光デバイスの精細度を500ppiと仮定した場合、1画素あたり50.8μmのサイズとなり、指紋の幅(代表的には、300μm以上500μm以下)を撮像するには、十分な精細度であることがわかる。
また、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。
≪合成例1≫
本実施例では、実施の形態1において構造式(100)として示した有機化合物、N-(3’,5’-ジ-tert-ブチル-1,1’-ビフェニル-4-イル)-ビス(9,9-ジメチル-9H-フルオレン)-2,2’-アミン(略称:mmtBuBiFF)の合成方法について説明する。mmtBuBiFFの構造を以下に示す。
Figure 2022159214000018
<ステップ1:3’,5’-ジ-tert-ブチル-4-クロロ-1,1’-ビフェニルの合成>
三口フラスコに3,5-ジ-tert-ブチル-1-ブロモベンゼン30.0g(114mmol)、4-クロロフェニルボロン酸19.2g(123mmol)、炭酸カリウム46.1g(334mmol)、トルエン550mL、エタノール140mL、水160mLを入れ、減圧下にて脱気処理をした後、フラスコ内を窒素置換した。この混合物に、酢酸パラジウム251mg(1.12mmol)、トリス(2-メチルフェニル)ホスフィン695mg(2.28mmol)を加え、90℃にて約5時間加熱還流させた。その後、室温に戻し有機層と水層を分液した。この有機層に硫酸マグネシウムを加えて水分を乾燥させた後、ろ別した溶液を濃縮して褐色の濃厚溶液を得た。得られた溶液をシリカゲルカラムクロマトグラフィーで精製した。得られた溶液を濃縮し乾固させた。その後、ヘキサンを加え再結晶した。白色固体の析出した混合溶液を氷冷した後、ろ過した。得られた固体を約100℃で真空乾燥させ、目的物である白色固体を29.6g、収率88%で得た。ステップ1の合成スキームを下式に示す。
Figure 2022159214000019
<ステップ2:mmtBuBiFFの合成>
三口フラスコにビス(9,9-ジメチル-9H-フルオレン-2-イル)アミン30.4g(75.7mmol)、3’,5’-ジ-tert-ブチル-4-クロロ-1,1’-ビフェニル22.8g(75.8mmol)、ナトリウム-tert-ブトキシド21.9g(228mmol)、キシレン380mLを入れ、減圧下にて脱気処理をした後、フラスコ内を窒素置換した。この混合物を約60℃まで加熱撹拌した。ここで、アリル塩化パラジウム二量体(II)(略称:(AllylPdCl))283mg(0.773mmol)、ジ-tert-ブチル(1-メチル-2,2-ジフェニルシクロプロピル)ホスフィン(略称:cBRIDP(登録商標))1.05g(2.98mmol)を加え、この混合物を、100℃にて約5時間加熱した。その後、この混合物の温度を約60℃に戻し、水約2mLを加え、固体を析出させた。析出した固体をろ別して溶液を得た。ろ液を濃縮し、得られた溶液をシリカゲルカラムクロマトグラフィーで精製した。得られた溶液を濃縮し、濃厚なトルエン溶液を得た。このトルエン溶液をエタノールに滴下し、再沈殿した。約10℃にて析出物をろ過し、得られた固体を約100℃で減圧乾燥させ、目的物である白色固体を44.2g、収率88%で得た。ステップ2の合成スキームを下に示す。
Figure 2022159214000020
上記ステップ2で得られた白色固体の核磁気共鳴分光法(H-NMR)による分析結果を下に示す。この結果より、本合成例において、N-(3’,5’-ジ-tert-ブチル-1,1’-ビフェニル-4-イル)-ビス(9,9-ジメチル-9H-フルオレン)-2,2’-アミン(略称:mmtBuBiFF)が合成できたことがわかった。
H-NMR(500MHz DMSO-d):δ=7.75(t,4H,J=7.8Hz),7.62(d,2H,J=9.0Hz),7.51(d,2H,J=5.0Hz),7.42(s,2H),7.38(s,1H),7.34-7.25(m,6H),7.18(d,2H,J=8.0Hz,2.0Hz),7.03(dd,2H,J=8.0Hz,2.0Hz),1.37(s,12H),1.34(s,18H).
次に、得られた固体44.0gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力3.02Pa、アルゴン流量12.0mL/minの条件で、275℃で加熱して行った。昇華精製後、微黄白色固体41.1g、回収率94%で得た。
次に、mmtBuBiFFのトルエン溶液の紫外可視吸収スペクトル(以下、単に「吸収スペクトル」という)及び発光スペクトルを測定した。吸収スペクトルの測定には、紫外可視分光光度計((株)日本分光製 V550型)を用い、発光スペクトルの測定には、蛍光光度計((株)浜松ホトニクス製 FS920)を用い、どちらも室温で測定を行った。また、測定用のセルには石英セルを用いた。得られた吸収スペクトル及び発光スペクトルの測定結果を図18に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。図18に示す吸収強度は、トルエン溶液を石英セルに入れて測定した吸収スペクトルから、トルエンのみを石英セルに入れて測定した吸収スペクトルを差し引いた結果を示している。
図18に示す通り、mmtBuBiFFは、399nmに発光ピークを有していた。
次に、mmtBuBiFFを液体クロマトグラフ質量分析(Liquid Chromatography Mass Spectrometry(略称:LC/MS分析))によって質量(MS)分析した。
LC/MS分析は、サーモフィッシャーサイエンティフィック社製Ultimate3000によりLC(液体クロマトグラフィー)分離を行い、サーモフィッシャーサイエンティフィック社製Q ExactiveによりMS分析(質量分析)を行った。
LC分離は、任意のカラムを用いてカラム温度は40℃とし、送液条件は溶媒を適宜選択し、サンプルは任意の濃度のmmtBuBiFFを有機溶媒に溶かして調製し、注入量は5.0μLとした。
並列反応モニタリング(Parallel Reaction Monitoring(PRM))法により、mmtBuBiFFのExact Massであるm/z=665.40のMS/MS測定を行なった。PRMの設定は、ターゲットイオンの質量範囲をm/z=665.40±2.0(isolation window=4)とし、検出はポジティブモードで行った。コリジョンセル内でターゲットイオンを加速するエネルギーNCE(Normalized Collision Energy)を60として測定した。MS/MS測定から得られたMSスペクトルを図19に示す。
図19の結果から、mmtBuBiFFは、水素イオンの有無および同位体の存在に起因し、主としてm/z=665付近にプレカーサーイオンを検出し、m/z=473付近およびm/z=401付近にプロダクトイオンが検出されることがわかった。
なお、m/z=473付近のプロダクトイオンは、mmtBuBiFFにおけるジメチルフルオレニル基が1つ脱離した状態と推定され、mmtBuBiFFが、9,9-ジメチルフルオレニル基を含んでいることを示唆するものである。
また、m/z=401付近のプロダクトイオンは、mmtBuBiFFにおける3,5-ジ-tert-ブチル-1,1’-ビフェニル基が1つ脱離した状態と推定され、mmtBuBiFFが、3,5-ジ-tert-ブチル-1,1’-ビフェニル基を含んでいることを示唆するものである。
また、図20にmmtBuBiFFの屈折率を分光エリプソメーター(ジェー・エー・ウーラム・ジャパン社製M-2000U)を用いて測定した結果を示す。測定には、石英基板上に各層の材料を真空蒸着法により約50nm成膜した膜を使用した。なお、図には、常光線の屈折率であるn,Ordinaryと異常光線の屈折率であるn,Extra-ordinaryとを記載した。
図20より、mmtBuBiFFは、465nmにおける常光屈折率が1.785であり、520nmにおける常光屈折率が1.74であり、633nmにおける常光屈折率が1.70であり、屈折率の低い材料であることがわかった。
次に、mmtBuBiFFのTgを測定した。Tgは、示差走査熱量測定装置((株)パーキンエルマージャパン製、PYRIS1DSC)を用い、アルミセルに粉末を乗せ、測定した。この結果、mmtBuBiFFのTgは122℃であった。
次に、mmtBuBiFFのHOMO準位を測定した。なお、HOMO準位は、サイクリックボルタンメトリ(CV)測定によって調べた。測定には、電気化学アナライザー(ビー・エー・エス(株)製、型番:ALSモデル600Aまたは600C)を用いた。この結果、mmtBuBiFFのHOMO準位は-5.33eVであった。
また、mmtBuBiFFのGSPを求めた。ここで、有機化合物のGSPを求める方法について説明する。
蒸着膜の表面電位が膜厚に比例して増加する現象は、前述のように巨大表面電位と呼ばれる。一般にはケルビンプローブ測定による蒸着膜の表面電位を膜厚方向にプロットしたときの傾きが、巨大表面電位の大きさ、すなわち、GSP(mV/nm)として議論されているが、2つの異なる層が積層されている場合、その界面に蓄積する分極電荷密度(mC/m)がGSPと関連して変化することを利用してGSPを見積もることができる。
野口裕、他2名、”極性分子の配向分極現象と有機薄膜素子の界面特性”(Journal of the Vacuum Society of Japan、2015年、Vol.58、No.3)には、異なる自発分極を持つ有機薄膜(薄膜1および薄膜2。ただし薄膜1が陽極側、薄膜2が陰極側に位置する。)を積層させ電流を流した場合、下記の式が成り立つことが示されている。
Figure 2022159214000021
Figure 2022159214000022
式(1)においてσifは分極電荷密度、Vはホール注入電圧、Vbiは閾値電圧、dは薄膜2の膜厚、εは薄膜2の誘電率である。V、Vbiはデバイスの容量-電圧特性から見積もることができる。また、誘電率は常光屈折率n(633nm)の二乗を用いることができる。このように、容量-電圧特性から見積もったV、Vbiと、屈折率より算出した薄膜2の誘電率ε、および薄膜2の膜厚dより、式(1)を用いて分極電荷密度σifを求めることができる。
続いて、式(2)において、σifは分極電荷密度、Pは薄膜nのGSP、εは薄膜nの誘電率である。ここで、上記式(1)より分極電荷密度σifを求めることができるため、薄膜2としてGSPが既知の物質を用いることで、薄膜1のGSPを見積もることができる。
本明細書においては、薄膜2としてGSPが(48(mV/nm))と既知であるAlqを用い、各薄膜のGSPを求めた。
なお、薄膜1または薄膜2に複数の有機化合物が含まれる場合、主として含まれる(例えば最も多く含まれる)有機化合物のGSPを「層を構成する有機化合物のGSP」とみなすことができる。あるいは、薄膜1または薄膜2に複数の有機化合物が含まれる場合、各々の有機化合物のGSPと含有率を算出し、その加重平均(GSP_ave)を「層を構成する有機化合物のGSP」と定義しても良い。
上記方法によって求めた結果、mmtBuBiFFのGSPは39.5mV/nmであることがわかった。
≪合成例2≫
本実施例では、実施の形態1において構造式(101)として示した有機化合物、N-(3’,5’-ジ-tert-ブチル-1,1’-ビフェニル-4-イル)-N-(9,9-ジメチル-9H-フルオレン-4-イル)-9,9-ジメチル-9H-フルオレン-2-アミン(略称:mmtBuBiFF-02)の合成方法について説明する。mmtBuBiFF-02の構造を以下に示す。
Figure 2022159214000023
<ステップ1:3’,5’-ジ-tert-ブチル-4-ブロモ-1,1’-ビフェニルの合成>
三口フラスコに3,5-ジ-tert-ブチル-ベンゼンボロン酸30.0g(150mmol)、4-ブロモヨードベンゼン50.9g(180mmol)、炭酸カリウム62.2g(450mmol)、トルエン500mL、エタノール125mL、水225mLを入れ、減圧下にて脱気処理をした後、フラスコ内を窒素置換した。この混合物に、テトラキストリフェニルホスフィンパラジウム3.5g(3.0mmol)を加え、約80℃にて約5時間加熱還流させた。その後、室温に戻し有機層と水層を分液した。この有機層に硫酸マグネシウムを加えて水分を乾燥させ、ろ別後に濃縮し、褐色固体を得た。得られた固体をシリカゲルカラムクロマトグラフィーで精製した。得られた溶液を濃縮し乾固させた。その後、ヘキサンを加え再結晶した。白色固体の析出した混合溶液を氷冷した後、ろ過した。得られた固体を約100℃で真空乾燥させ、目的物である白色固体を44.3g、収率86%で得た。ステップ1の合成スキームを下に示す。
Figure 2022159214000024
<ステップ2:N-(9,9-ジメチル-9H-フルオレン-4-イル)-9,9-ジメチル-9H-フルオレン-2-アミンの合成>
三口フラスコに2-アミノ-9,9-ジメチル-9H-フルオレン4.22g(20.2mmol)、4-ブロモ-9,9-ジメチル-9H-フルオレン5.08g(18.6mmol)、ナトリウム-tert-ブトキシド6.60g(68.7mmol)、キシレン90.0mLを入れ、減圧下にて脱気処理をした後、フラスコ内を窒素置換した。この混合物を約40℃まで加熱撹拌した。ここで、アリル塩化パラジウム二量体(II)(略称:(AllylPdCl))78.5mg(0.215mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル(略称:SPhos)307mg(0.748mmol)を加え、この混合物を、100℃にて約6時間加熱した。その後、フラスコの温度を約60℃に戻し、水約1mLを加え、固体を析出させた。析出した固体をろ別した。このろ液を濃縮し、得られた溶液をシリカゲルカラムクロマトグラフィーで精製した。得られた溶液を濃縮し、目的物である赤褐色油状物を7.50g、収率100%で得た。ステップ2の合成スキームを下に示す。
Figure 2022159214000025
<ステップ3:mmtBuBiFF-02の合成>
三口フラスコにN-(9,9-ジメチル-9H-フルオレン-4-イル)-9,9-ジメチル-9H-フルオレン-2-アミン2.73g(0.680mmol)、3’,5’-ジ-tert-ブチル-4-ブロモ-1,1’-ビフェニル2.36g(0.683mmol)、ナトリウム-tert-ブトキシド1.94g(2.02mmol)、キシレン37.0mLを入れ、減圧下にて脱気処理をした後、フラスコ内を窒素置換した。ここで、アリル塩化パラジウム二量体(II)(略称:(AllylPdCl))29.0mg(0.079mmol)、ジ-tert-ブチル(1-メチル-2,2-ジフェニルシクロプロピル)ホスフィン(略称:cBRIDP(登録商標))88.2mg(0.250mmol)を加え、この混合物を、100℃にて約6時間加熱した。その後、この混合物の温度を約60℃に戻し、水約1mLを加え、固体を析出させた。析出した固体をろ別した。ろ液を濃縮し、得られた濃厚溶液をシリカゲルカラムクロマトグラフィーで精製した。得られた溶液を濃縮し、濃厚なトルエン溶液を得た。このトルエン溶液をエタノールに滴下し、再沈殿した。約10℃にて析出物をろ過し、得られた固体を約100℃で減圧乾燥させ、目的物である白色固体を3.21g、収率71%で得た。ステップ3の合成スキームを下に示す。
Figure 2022159214000026
上記ステップ3で得られた白色固体の核磁気共鳴分光法(H-NMR)による分析結果を下に示す。この結果より、本合成例において、N-(3’,5’-ジ-tert-ブチル-1,1’-ビフェニル-4-イル)-N-(9,9-ジメチル-9H-フルオレン-4-イル)-9,9-ジメチル-9H-フルオレン-2-アミン(略称:mmtBuBiFF-02)が合成できたことがわかった。
H-NMR(500MHz DMSO-d):δ=7.66-7.62(m,3H),7.58-7.52(m,4H),7.47-7.43(m,2H),7.37(s,2H),7.33(br,2H),7.28(t,1H,J=7.0Hz),7.22(dt,2H,J=7.3Hz,3.5Hz),7.13(d,1H,J=7.0Hz),6.89(dd,1H,J=8.0Hz,1.5Hz),1.50(br,6H),1.36(br,6H),1.31(s,18H),1.28(br,6H).
次に、得られた固体3.19gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力2.54Pa、アルゴン流量10.0mL/minの条件で、235℃で加熱して行った。昇華精製後、微黄白色固体2.44g、回収率76%で得た。
次に、mmtBuBiFF-02のトルエン溶液の紫外可視吸収スペクトル(以下、単に「吸収スペクトル」という)及び発光スペクトルを測定した。吸収スペクトルの測定には、紫外可視分光光度計((株)日本分光製 V550型)を用い、発光スペクトルの測定には、蛍光光度計((株)浜松ホトニクス製 FS920)を用い、どちらも室温で測定を行った。また、測定用のセルには石英セルを用いた。得られた吸収スペクトル及び発光スペクトルの測定結果を図21に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。図21に示す吸収強度は、トルエン溶液を石英セルに入れて測定した吸収スペクトルから、トルエンのみを石英セルに入れて測定した吸収スペクトルを差し引いた結果を示している。
図21に示す通り、有機化合物、mmtBuBiFF-02は、399nmに発光ピークを有していた。
次に、有機化合物、mmtBuBiFF-02を液体クロマトグラフ質量分析(Liquid Chromatography Mass Spectrometry(略称:LC/MS分析))によって質量(MS)分析した。
LC/MS分析は、サーモフィッシャーサイエンティフィック社製Ultimate3000によりLC(液体クロマトグラフィー)分離を行い、サーモフィッシャーサイエンティフィック社製Q ExactiveによりMS分析(質量分析)を行った。
LC分離は、任意のカラムを用いてカラム温度は40℃とし、送液条件は溶媒を適宜選択し、サンプルは任意の濃度のmmtBuBiFF-02を有機溶媒に溶かして調製し、注入量は5.0μLとした。
PRM法により、mmtBuBiFF-02のExact Massであるm/z=665.40のMS/MS測定を行なった。PRMの設定は、ターゲットイオンの質量範囲をm/z=665.40±2.0(isolation window=4)とし、検出はポジティブモードで行った。コリジョンセル内でターゲットイオンを加速するエネルギーNCE(Normalized Collision Energy)を60として測定した。MS/MS測定から得られたMSスペクトルを図22に示す。
図22の結果から、mmtBuBiFF-02は、水素イオンの有無および同位体の存在に起因し、主としてm/z=665付近にプレカーサーイオンを検出し、m/z=473付近およびm/z=400付近にプロダクトイオンが検出されることがわかった。
なお、m/z=473付近のプロダクトイオンは、mmtBuBiFF-02におけるジメチルフルオレニル基が1つ脱離した状態と推定され、mmtBuBiFF-02が、9,9-ジメチルフルオレニル基を含んでいることを示唆するものである。
また、m/z=400付近のプロダクトイオンは、mmtBuBiFF-02における3,5-ジ-tert-ブチル-1,1’-ビフェニル基が1つ脱離した状態と推定され、mmtBuBiFF-02が、3,5-ジ-tert-ブチル-1,1’-ビフェニル基を含んでいることを示唆するものである。
また、図23にmmtBuBiFF-02の屈折率を分光エリプソメーター(ジェー・エー・ウーラム・ジャパン社製M-2000U)を用いて測定した結果を示す。測定には、石英基板上に各層の材料を真空蒸着法により約50nm成膜した膜を使用した。なお、図には、常光線の屈折率であるn, Ordinaryと異常光線の屈折率であるn, Extra-ordinaryとを記載した。
この図から、mmtBuBiFF-02は465nmにおける常光屈折率が1.72であり、520nmにおける常光屈折率が1.69であり、633nmにおける常光屈折率が1.65であり、屈折率の低い材料であることがわかった。
次に、mmtBuBiFF-02のTgを測定した。Tgは、示差走査熱量測定装置((株)パーキンエルマージャパン製、PYRIS1DSC)を用い、アルミセルに粉末を乗せ、測定した。この結果、mmtBuBiFF-02のTgは122℃であった。
次に、mmtBuBiFF-02のHOMO準位を測定した。なお、HOMO準位は、サイクリックボルタンメトリ(CV)測定によって調べた。測定には、電気化学アナライザー(ビー・エー・エス(株)製、型番:ALSモデル600Aまたは600C)を用いた。この結果、mmtBuBiFF-02のHOMO準位は-5.46eVであった。
また、実施例1で説明した方法によってmmtBuBiFF-02のGSPを求めた。この結果、mmtBuBiFF-02のGSPは39.5mV/nmであることがわかった。
本実施例では、実施の形態で説明した本発明の一態様の発光デバイスおよび比較発光デバイスについて説明する。本発明の一態様の発光デバイスに用いた有機化合物の構造式を以下に示す。
Figure 2022159214000027
(発光デバイス1-1の作製方法)
本実施例で示す発光デバイス1-1は、図24に示すように基板900上に形成された第1の電極901上に正孔注入層911、正孔輸送層912、発光層913、電子輸送層914および電子注入層915が順次積層され、電子注入層915上に第2の電極903が積層された構造を有する。
まず、ガラス基板900上に、銀(Ag)を100nm成膜して反射電極を形成した。この後、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法にて成膜し、第1の電極901を形成した。なお、その膜厚は10nmとし、電極面積は2mm×2mmとした。
次に、基板上に発光デバイスを形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、第1の電極901が形成された面が下方となるように、第1の電極901が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、第1の電極901上に、抵抗加熱を用いた蒸着法により上記構造式(i)で表されるN-(1,1’-ビフェニル-4-イル)-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-9,9-ジメチル-9H-フルオレン-2-アミン(略称:PCBBiF)と、分子量672でフッ素を含む電子アクセプタ材料(OCHD-003)とを、重量比で1:0.04(=PCBBiF:OCHD-003)となるように10nm共蒸着して正孔注入層911を形成した。
次に、正孔注入層911上に、PCBBiFを膜厚115nmとなるように蒸着した後、分子量672でフッ素を含む電子アクセプタ材料(OCHD-003)を膜厚1nmとなるように蒸着した。さらに、本発明の一態様の有機化合物、N-(3’,5’-ジ-tert-ブチル-1,1’-ビフェニル-4-イル)-ビス(9,9-ジメチル-9H-フルオレン)-2,2’-アミン(略称:mmtBuBiFF)(構造式(100))を膜厚40nmとなるように蒸着して、正孔輸送層912を形成した。
続いて、上記構造式(ii)で表される11-(4-[1,1’-ビフェニル]-4-イル-6-フェニル-1,3,5-トリアジン-2-イル)-11,12-ジヒドロ-12-フェニル-インドロ[2,3-a]カルバゾール(略称:BP-Icz(II)Tzn)と、上記構造式(iii)で表される9-(2-ナフチル)-9’-フェニル-9H,9’H-3,3’-ビカルバゾール(略称:βNCCP)と、上記構造式(iv)で表される[2-d-メチル-(2-ピリジニル-κN)ベンゾフロ[2,3-b]ピリジン-κC]ビス[2-(2-ピリジニル-κN)フェニル-κC]イリジウム(III)(略称:Ir(ppy)(mbfpypy-d))とを、重量比で0.5:0.5:0.10(=BP-Icz(II)Tzn:βNCCP:Ir(ppy)(mbfpypy-d))となるように40nm共蒸着して発光層913を形成した。
その後、発光層913上に、上記構造式(v)で表される2-[3’-(9,9-ジメチル-9H-フルオレン-2-イル)-1,1’-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mFBPTzn)を膜厚10nmとなるように蒸着した後、上記構造式(vi)で表される2-[3-(2,6-ジメチル-3-ピリジニル)-5-(9-フェナントレニル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mPn-mDMePyPTzn)と、上記構造式(vii)で表される8-キノリノラト-リチウム(略称:Liq)とを、重量比で0.5:0.5(=mPn-mDMePyPTzn:Liq)となるように25nm共蒸着して、電子輸送層914を形成した。
電子輸送層914を形成した後、フッ化リチウム(LiF)を、1nm蒸着して電子注入層915を形成し、続いて銀(Ag)と、マグネシウム(Mg)とを、重量比10:1(=Ag:Mg)となるように、15nm共蒸着することで第2の電極903を形成して本実施例の発光デバイス1-1を作製した。なお、第2の電極903は光を反射する機能と光を透過する機能とを有する半透過・半反射電極であり、本実施例の発光デバイスは第2の電極903から光を取り出すトップエミッション型の素子である。また、第2の電極903上には構造式(viii)で表される4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P-II)を70nm蒸着して、取出し効率を向上させている。
(発光デバイス1-2の作製方法)
発光デバイス1-2は、正孔注入層911上に、PCBBiFを膜厚110nmとなるように蒸着した後、OCHD-003を膜厚1nmとなるように蒸着した。さらに、本発明の一態様の有機化合物、N-(3’,5’-ジ-tert-ブチル-1,1’-ビフェニル-4-イル)-N-(9,9-ジメチル-9H-フルオレン-4-イル)-9,9-ジメチル-9H-フルオレン-2-アミン(略称:mmtBuBiFF-02)(構造式(101))を膜厚40nmとなるように蒸着して、正孔輸送層912を形成した他は、発光デバイス1-1と同様に作製した。
次に比較発光デバイスの作製方法を説明する。比較発光デバイスに使用した有機化合物の構造式を以下に示す。
Figure 2022159214000028
(比較発光デバイス1-1の作製方法)
比較発光デバイス1-1は、正孔注入層911上に、PCBBiFを膜厚110nmとなるように蒸着した後、OCHD-003を膜厚1nmとなるように蒸着した。さらに、上記構造式(ix)で表されるN-[2-(9,9-ジフェニル-9H-フルオレン-4-イル)フェニル]-N-(1,1’-ビフェニル-4-イル)-9,9-ジメチル-9H-フルオレン-2-アミン(略称:FBiFLPB)を膜厚40nmとなるように蒸着して、正孔輸送層912を形成した他は、発光デバイス1-1と同様に作製した。
(比較発光デバイス1-2の作製方法)
比較発光デバイス1-2は、正孔注入層911上に、PCBBiFを膜厚110nmとなるように蒸着した後、OCHD-003を膜厚1nmとなるように蒸着した。さらに、上記構造式(x)で表されるN-(1,1’-ビフェニル-2-イル)-N-(9,9-ジメチル-9H-フルオレン-2-イル)-9,9’-スピロビ[9H-フルオレン]-4-アミン(略称:oFBiSF)を膜厚40nmとなるように蒸着して、正孔輸送層912を形成した他は、発光デバイス1-1と同様に作製した。
上記発光デバイスおよび比較発光デバイスの素子構造を以下の表にまとめる。
Figure 2022159214000029
また、正孔輸送層の一部に用いた低屈折率材料と、リファレンスであるFBiFLPBおよびoFBiSFの屈折率の波長依存性を図25に、また、520nmにおける屈折率を下表に示す。
Figure 2022159214000030
上記発光デバイスおよび比較発光デバイスを、窒素雰囲気のグローブボックス内において、発光デバイスが大気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時にUV処理、80℃にて1時間熱処理)を行った後、これら発光デバイスの初期特性について測定を行った。
発光デバイス1-1、発光デバイス1-2、比較発光デバイス1-1、および比較発光デバイス1-2の輝度-電流密度特性を図26に、電流効率-輝度特性を図27に、輝度-電圧特性を図28に、電流-電圧特性を図29に、外部量子効率-輝度特性を図30に、発光スペクトルを図31に示す。また、各発光デバイスの1000cd/m付近における主要な特性を表3に示す。なお、輝度、CIE色度、発光スペクトルの測定には分光放射計(トプコン社製、SR-UL1R)を用いた。また、外部量子効率は、分光放射計を用いて測定した輝度と発光スペクトルを用い、配光特性がランバーシアン型であると仮定し算出した。
Figure 2022159214000031
図26乃至図31より、本発明の一態様の発光デバイスである発光デバイス1-1、発光デバイス1-2は、比較発光デバイス1-1、比較発光デバイス1-2と比較して発光効率が向上したことがわかった。
また、図32に発光デバイス1-1、発光デバイス1-2、比較発光デバイス1-1、および比較発光デバイス1-2に、2mA(50mA/cm)の電流をかけ、定電流駆動を行った際の駆動時間に対する輝度変化を表す図を示す。図32より、各ELデバイスの輝度変化に大きな差は見られず、本発明の一態様の発光デバイスは、良好な寿命を保ったまま、良好な発光効率を示す発光デバイスであることがわかった。
本実施例では、実施の形態で説明した本発明の一態様の発光デバイスおよび比較発光デバイスについて説明する。本発明の一態様の発光デバイスに用いた有機化合物の構造式を以下に示す。
Figure 2022159214000032
(発光デバイス2-1の作製方法)
本実施例で示す発光デバイス2-1は、図24に示すように基板900上に形成された第1の電極901上に正孔注入層911、正孔輸送層912、発光層913、電子輸送層914および電子注入層915が順次積層され、電子注入層915上に第2の電極903が積層された構造を有する。
まず、ガラス基板900上に、銀(Ag)を100nm成膜して反射電極を形成した。この後、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法にて成膜し、第1の電極901を形成した。なお、その膜厚は10nmとし、電極面積は2mm×2mmとした。
次に、基板上に発光デバイスを形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、第1の電極901が形成された面が下方となるように、第1の電極901が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、第1の電極901上に、抵抗加熱を用いた蒸着法により上記構造式(i)で表されるN-(1,1’-ビフェニル-4-イル)-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-9,9-ジメチル-9H-フルオレン-2-アミン(略称:PCBBiF)と、分子量672でフッ素を含む電子アクセプタ材料(OCHD-003)とを、重量比で1:0.04(=PCBBiF:OCHD-003)となるように10nm共蒸着して正孔注入層911を形成した。
次に、正孔注入層911上に、PCBBiFを膜厚115nmとなるように蒸着した後、本発明の一態様の有機化合物、N-(3’,5’-ジ-tert-ブチル-1,1’-ビフェニル-4-イル)-ビス(9,9-ジメチル-9H-フルオレン)-2,2’-アミン(略称:mmtBuBiFF)(構造式(100))を膜厚40nmとなるように蒸着して、正孔輸送層912を形成した。
続いて、上記構造式(ii)で表される11-(4-[1,1’-ビフェニル]-4-イル-6-フェニル-1,3,5-トリアジン-2-イル)-11,12-ジヒドロ-12-フェニル-インドロ[2,3-a]カルバゾール(略称:BP-Icz(II)Tzn)と、上記構造式(iii)で表される9-(2-ナフチル)-9’-フェニル-9H,9’H-3,3’-ビカルバゾール(略称:βNCCP)と、上記構造式(iv)で表される[2-d-メチル-(2-ピリジニル-κN)ベンゾフロ[2,3-b]ピリジン-κC]ビス[2-(2-ピリジニル-κN)フェニル-κC]イリジウム(III)(略称:Ir(ppy)(mbfpypy-d))とを、重量比で0.5:0.5:0.10(=BP-Icz(II)Tzn:βNCCP:Ir(ppy)(mbfpypy-d))となるように40nm共蒸着して発光層913を形成した。
その後、発光層913上に、上記構造式(v)で表される2-[3’-(9,9-ジメチル-9H-フルオレン-2-イル)-1,1’-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mFBPTzn)を膜厚10nmとなるように蒸着した後、上記構造式(vi)で表される2-[3-(2,6-ジメチル-3-ピリジニル)-5-(9-フェナントレニル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mPn-mDMePyPTzn)と、上記構造式(vii)で表される8-キノリノラト-リチウム(略称:Liq)とを、重量比で0.5:0.5(=mPn-mDMePyPTzn:Liq)となるように25nm共蒸着して、電子輸送層914を形成した。
電子輸送層914を形成した後、フッ化リチウム(LiF)を、1nm蒸着して電子注入層915を形成し、続いて銀(Ag)と、マグネシウム(Mg)とを、重量比10:1(=Ag:Mg)となるように、15nm共蒸着することで第2の電極903を形成して本実施例の発光デバイス2-1を作製した。なお、第2の電極903は光を反射する機能と光を透過する機能とを有する半透過・半反射電極であり、本実施例の発光デバイスは第2の電極903から光を取り出すトップエミッション型の素子である。また、第2の電極903上には構造式(viii)で表される4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P-II)を70nm蒸着して、取出し効率を向上させている。
なお、発光デバイス2-1は、正孔輸送層912に分子量672でフッ素を含む電子アクセプタ材料(OCHD-003)を使用しない点において発光デバイス1-1と異なる。
(発光デバイス2-2の作製方法)
発光デバイス2-2は、正孔注入層911上に、PCBBiFを膜厚110nmとなるように蒸着した後、本発明の一態様の有機化合物、N-(3’,5’-ジ-tert-ブチル-1,1’-ビフェニル-4-イル)-N-(9,9-ジメチル-9H-フルオレン-4-イル)-9,9-ジメチル-9H-フルオレン-2-アミン(略称:mmtBuBiFF-02)(構造式(101))を膜厚40nmとなるように蒸着して、正孔輸送層912を形成した他は、発光デバイス2-1と同様に作製した。
なお、発光デバイス2-2は、正孔輸送層912にOCHD-003を使用しない点において発光デバイス1-2と異なる。
次に比較発光デバイスの作製方法を説明する。比較発光デバイスに使用した有機化合物の構造式を以下に示す。
Figure 2022159214000033
(比較発光デバイス2-1の作製方法)
比較発光デバイス2-1は、正孔注入層911上に、PCBBiFを膜厚115nmとなるように蒸着した後、上記構造式(ix)で表されるN-[2-(9,9-ジフェニル-9H-フルオレン-4-イル)フェニル]-N-(1,1’-ビフェニル-4-イル)-9,9-ジメチル-9H-フルオレン-2-アミン(略称:FBiFLPB)を膜厚40nmとなるように蒸着して、正孔輸送層912を形成した他は、発光デバイス2-1と同様に作製した。
なお、比較発光デバイス2-1は、正孔輸送層912においてPCBBiFの膜厚を115nmとし、OCHD-003を使用しない点において比較発光デバイス1-1と異なる。
(比較発光デバイス2-2の作製方法)
比較発光デバイス2-2は、正孔注入層911上に、PCBBiFを膜厚110nmとなるように蒸着した後、上記構造式(x)で表されるN-(1,1’-ビフェニル-2-イル)-N-(9,9-ジメチル-9H-フルオレン-2-イル)-9,9’-スピロビ[9H-フルオレン]-4-アミン(略称:oFBiSF)を膜厚40nmとなるように蒸着して、正孔輸送層912を形成した他は、発光デバイス2-1と同様に作製した。
なお、比較発光デバイス2-2は、正孔輸送層912にOCHD-003を使用しない点において比較発光デバイス1-2と異なる。
上記発光デバイスおよび比較発光デバイスの素子構造を以下の表にまとめる。
Figure 2022159214000034
また、正孔輸送層に用いた材料のGSPを下表に示す。
Figure 2022159214000035
発光デバイス2-1、発光デバイス2-2において正孔輸送層912に用いた本発明の一態様の有機化合物のGSPは20mV/nmを超える高い値を示していた。また、積層構造を有する正孔輸送層912において、発光層913に接する層に使用した材料と、正孔注入層911に接する層に使用した材料と、のGSPを比較すると、比較発光デバイス2-1では、正孔注入層911に接する層に使用した材料と発光層913に接する層に使用した材料とのGSPの差が1.3mV/nmと小さく、比較発光デバイス2-2では、正孔注入層911に接する層に使用した材料よりも発光層913に接する層に使用した材料の方が小さい構成である。一方で、発光デバイス2-1、発光デバイス2-2では正孔注入層911に接する層に使用した材料よりも発光層913に接する層に使用した材料の方がおよそ10mV/nm以上大きい構成である。
上記発光デバイスおよび比較発光デバイスを、窒素雰囲気のグローブボックス内において、発光デバイスが大気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時にUV処理、80℃にて1時間熱処理)を行った後、これら発光デバイスの初期特性について測定を行った。
発光デバイス2-1、発光デバイス2-2、比較発光デバイス2-1、および比較発光デバイス2-2の輝度-電流密度特性を図33に、電流効率-輝度特性を図34に、輝度-電圧特性を図35に、電流-電圧特性を図36に、外部量子効率-輝度特性を図37に、発光スペクトルを図38に示す。また、各発光デバイスの1000cd/m付近における主要な特性を表6に示す。なお、輝度、CIE色度、発光スペクトルの測定には分光放射計(トプコン社製、SR-UL1R)を用いた。また、外部量子効率は、分光放射計を用いて測定した輝度と発光スペクトルを用い、配光特性がランバーシアン型であると仮定し算出した。
Figure 2022159214000036
図33乃至図38より、本発明の一態様の発光デバイスである発光デバイス2-1、発光デバイス2-2は、比較発光デバイス2-1、比較発光デバイス2-2と比較して大きく発光効率が向上したことがわかった。
また、比較発光デバイス2-1、および比較発光デバイス2-2の素子特性は、実施例3で説明した比較発光デバイス1-1および比較発光デバイス1-2の素子特性と比較して、輝度-電圧特性および電流-電圧特性が低下したことがわかる。従って、比較発光デバイスにおいては、正孔輸送層912にOCHD-003を使用しないことにより、消費電力が増加してしまうことがわかった。
しかし、本発明の一態様の発光デバイスにおいては、発光デバイス2-1および発光デバイス2-2を発光デバイス1-1および発光デバイス1-2と比較しても特性の低下は見られない。従って、本発明の一態様の発光デバイスにおいては、正孔輸送層912にOCHD-003を使用しなくても良好な特性を維持することができることがわかった。これは、本発明の一態様の有機化合物のGSPが高いことに起因する。すなわち、GSPの高い本発明の一態様の有機化合物を、積層構造を有する正孔輸送層912の、発光層913に接する層に使用することで、正孔輸送層912内部の積層界面におけるホールの注入が容易になるため、本発明の一態様の発光デバイスにおいては正孔輸送層912にOCHD-003を使用しなくても良好な特性を維持することが可能となった。
従って、本発明の一態様の有機化合物を用いる事で、正孔輸送層912中の層を一層減らすことができるため、生産性の高いデバイスが作製できる事がわかった。
また、図39に発光デバイス2-1、発光デバイス2-2、比較発光デバイス2-1、および比較発光デバイス2-2に、2mA(50mA/cm)の電流をかけ、定電流駆動を行った際の駆動時間に対する輝度変化を表す図を示す。図39より、各ELデバイスの輝度変化に大きな差は見られず、本発明の一態様の発光デバイスは、良好な寿命を保ったまま、良好な発光効率を示す発光デバイスであることがわかった。
101 第1の電極
102 第2の電極
103 EL層
103a EL層
103b EL層
103B EL層
103G EL層
103R EL層
104B ホール注入・輸送層
104G ホール注入・輸送層
104R ホール注入・輸送層
107 絶縁層
107B 絶縁層
107G 絶縁層
107R 絶縁層
108B 電子輸送層
108G 電子輸送層
108R 電子輸送層
109 電子注入層
111 正孔注入層
111a 正孔注入層
111b 正孔注入層
112 正孔輸送層
112a 正孔輸送層
112b 正孔輸送層
113 発光層
113a 発光層
113b 発光層
113c 発光層
114 電子輸送層
114a 電子輸送層
114b 電子輸送層
115 電子注入層
115a 電子注入層
115b 電子注入層
231 表示領域
400 基板
401 第1の電極
403 EL層
404 第2の電極
405 シール材
406 シール材
407 封止基板
412 パッド
420 ICチップ
501C 絶縁膜
501D 絶縁膜
504 導電膜
506 絶縁膜
508 半導体膜
508A 領域
508B 領域
508C 領域
510 第1の基板
512A 導電膜
512B 導電膜
519 端子
516 絶縁膜
516A 絶縁膜
516B 絶縁膜
518 絶縁膜
520 機能層
524 導電膜
528 隔壁
529 絶縁層
530B 画素回路
530G 画素回路
550B 発光デバイス
550G 発光デバイス
550R 発光デバイス
551B 電極
551G 電極
551R 電極
552 電極
580 間隙
591G 開口部
591B 開口部
700 発光装置
702B 画素
702G 画素
702R 画素
703 画素
705 絶縁層
770 基板
800 基板
801a 電極
801b 電極
802 電極
803a EL層
803b 受光層
805a 発光デバイス
805b 受光デバイス
810 表示装置
900 基板
901 第1の電極
903 第2の電極
911 正孔注入層
912 正孔輸送層
913 発光層
914 電子輸送層
915 電子注入層
951 基板
952 電極
953 絶縁層
954 隔壁層
955 EL層
956 電極
5200B 電子機器
5210 演算装置
5220 入出力装置
5230 表示部
5240 入力部
5250 検知部
5290 通信部
8001 シーリングライト
8002 足元灯
8003 シート状照明
8004 照明装置
8005 電気スタンド
8006 光源

Claims (19)

  1. 一般式(G1)で表される有機化合物。
    Figure 2022159214000037

    (式中、Arは置換または無置換の環を形成する炭素の数が6乃至13のアリーレン基を表す。また、nは0または1の整数を表す。また、Arは環を形成する炭素の数が6乃至10のアリール基を表し、炭素数3乃至12の分岐鎖状または環状のアルキル基を少なくとも一つ有する。また、Arが有する前記分岐鎖状または環状のアルキル基の炭素数の総和は、6以上である。また、R乃至Rは各々独立に炭素数1乃至6のアルキル基を表す。また、R11乃至R14は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R15乃至R18のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R21乃至R24は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R25乃至R28のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。)
  2. 一般式(G2)で表される有機化合物。
    Figure 2022159214000038

    (式中、R乃至Rは各々独立に炭素数1乃至6のアルキル基を表す。また、R11乃至R14は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R15乃至R18のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R21乃至R24は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R25乃至R28のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R31乃至R35は各々独立に水素原子または炭素数3乃至12の分岐鎖状または環状のアルキル基を表す。ただし、R31乃至R35が有する総炭素数は、6以上である。また、nは0または1の整数を表す。)
  3. 一般式(G3)で表される有機化合物。
    Figure 2022159214000039

    (式中、R乃至Rは各々独立に炭素数1乃至6のアルキル基を表す。また、R11乃至R14は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R15乃至R18のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R21乃至R24は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R25乃至R28のいずれか一は直接窒素原子に結合する結合手であり、その他は各々独立に水素原子または炭素数1乃至4のアルキル基を表す。また、R31乃至R35は各々独立に水素原子または炭素数3乃至12の分岐鎖状または環状のアルキル基を表す。ただし、R31乃至R35が有する総炭素数は、6以上である。)
  4. 請求項1乃至請求項3のいずれか一項において、
    11乃至R14およびR21乃至R24は水素原子であり、
    15乃至R18のいずれか一は直接窒素原子に結合する結合手であり、その他は水素原子であり、
    25乃至R28のいずれか一は直接窒素原子に結合する結合手であり、その他は水素原子である、有機化合物。
  5. 一般式(G4)で表される有機化合物。
    Figure 2022159214000040

    (式中、R乃至Rは各々独立に炭素数1乃至6のアルキル基を表す。また、R31乃至R35は各々独立に水素原子または炭素数3乃至12の分岐鎖状または環状のアルキル基を表す。ただし、R31乃至R35が有する総炭素数は、6以上である。)
  6. 請求項2乃至請求項5のいずれか一項において、
    31乃至R35の少なくともいずれか一がtert-ブチル基またはシクロヘキシル基である有機化合物。
  7. 請求項2乃至請求項5のいずれか一項において、
    31、R33、R35が水素原子であり、
    32、R34がtert-ブチル基またはシクロヘキシル基である有機化合物。
  8. 請求項2乃至請求項5のいずれか一項において、
    31、R32、R34、R35が水素原子であり、
    33がtert-ブチル基またはシクロヘキシル基である有機化合物。
  9. 請求項1乃至請求項8のいずれか一項において、
    前記有機化合物からなる層の波長465nmの光に対する常光屈折率が1.45以上1.80以下である有機化合物。
  10. 請求項1乃至請求項8のいずれか一項において、
    前記有機化合物からなる層の波長465nmの光に対する常光屈折率が1.50以上1.75以下である有機化合物。
  11. 請求項1乃至請求項10のいずれか一項において、
    前記有機化合物からなる層の波長520nmの光に対する常光屈折率が1.45以上1.75以下である有機化合物。
  12. 請求項1乃至請求項10のいずれか一項において、
    前記有機化合物からなる層の波長520nmの光に対する常光屈折率が1.50以上1.70以下である有機化合物。
  13. 請求項1乃至請求項12のいずれか一項において、
    前記有機化合物からなる層の波長633nmの光に対する常光屈折率が1.40以上1.75以下である有機化合物。
  14. 請求項1乃至請求項12のいずれか一項において、
    前記有機化合物からなる層の波長633nmの光に対する常光屈折率が1.45以上1.70以下である有機化合物。
  15. 構造式(100)または(101)のいずれか一で表される有機化合物。
    Figure 2022159214000041
  16. 請求項1乃至請求項15のいずれか一項に記載の有機化合物を用いた発光デバイス。
  17. 請求項16に記載の発光デバイスと、検知部、入力部、または、通信部と、
    を有する電子機器。
  18. 請求項16に記載の発光デバイスと、トランジスタ、または、基板と、を有する発光装置。
  19. 請求項16に記載の発光デバイスと、筐体と、を有する照明装置。
JP2022059156A 2021-03-31 2022-03-31 有機化合物、発光デバイス、発光装置、電子機器および照明装置 Pending JP2022159214A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060448 2021-03-31
JP2021060448 2021-03-31

Publications (1)

Publication Number Publication Date
JP2022159214A true JP2022159214A (ja) 2022-10-17

Family

ID=83406515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022059156A Pending JP2022159214A (ja) 2021-03-31 2022-03-31 有機化合物、発光デバイス、発光装置、電子機器および照明装置

Country Status (5)

Country Link
US (1) US20220328763A1 (ja)
JP (1) JP2022159214A (ja)
KR (1) KR20220136199A (ja)
CN (1) CN115141108A (ja)
TW (1) TW202246459A (ja)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3838766B2 (ja) * 1997-11-06 2006-10-25 三井化学株式会社 有機電界発光素子
KR100935356B1 (ko) * 2007-11-19 2010-01-06 다우어드밴스드디스플레이머티리얼 유한회사 녹색 발광 화합물 및 이를 발광재료로서 채용하고 있는유기 전기 발광 소자
KR101638074B1 (ko) * 2014-04-21 2016-07-08 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
KR20160066308A (ko) * 2014-12-02 2016-06-10 (주)피엔에이치테크 유기발광 화합물 및 이를 포함하는 유기전계발광소자
DE112016000030T5 (de) * 2015-04-13 2016-12-22 Semiconductor Energy Laboratory Co., Ltd. Anzeigefeld, Datenprozessor und Herstellungsverfahren für ein Anzeigefeld
KR101790321B1 (ko) * 2015-12-31 2017-10-25 머티어리얼사이언스 주식회사 유기 전계 발광 소자
CN112778139A (zh) * 2019-11-11 2021-05-11 北京鼎材科技有限公司 一种化合物及其应用
US20210202843A1 (en) * 2019-12-31 2021-07-01 Nanjing Topto Semiconductor Material Co., Ltd. Novel organic electroluminescent compound and organic electroluminescent device
US20220278292A1 (en) * 2021-02-25 2022-09-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, light-emitting apparatus, electronic device, and lighting device

Also Published As

Publication number Publication date
KR20220136199A (ko) 2022-10-07
CN115141108A (zh) 2022-10-04
US20220328763A1 (en) 2022-10-13
TW202246459A (zh) 2022-12-01

Similar Documents

Publication Publication Date Title
US20240107883A1 (en) Mixed material
JP2023035912A (ja) 発光デバイス、発光装置、電子機器、および照明装置
JP2023016026A (ja) 発光デバイス、発光装置、電子機器、および照明装置
JP2022159081A (ja) 発光デバイス用混合材料
US20220328763A1 (en) Organic compound, light-emitting device, light-emitting apparatus, electronic device, and lighting device
US20220348534A1 (en) Organic compound, light-emitting device, light-emitting apparatus, electronic device, and lighting device
WO2023052905A1 (ja) 有機化合物、発光デバイス、薄膜、発光装置、電子機器、および照明装置
WO2022157599A1 (ja) 有機化合物、発光デバイス、発光装置、電子機器、および照明装置
WO2022172125A1 (ja) 発光デバイス、発光装置、電子機器および照明装置
WO2023100019A1 (ja) 有機化合物、有機デバイス、発光装置および電子機器
WO2022172119A1 (ja) 発光デバイス、発光装置、電子機器および照明装置
WO2022172130A1 (ja) 発光デバイス、発光装置、電子機器および照明装置
WO2022172116A1 (ja) 発光デバイス、発光装置、電子機器および照明装置
WO2023203438A1 (ja) 発光デバイス、有機化合物、発光装置、受発光装置、電子機器および照明装置
WO2023094936A1 (ja) 発光デバイス、発光装置、有機化合物、電子機器、および照明装置
JP2023029303A (ja) 発光デバイス、発光装置、有機化合物、電子機器、および照明装置
JP2023097426A (ja) 有機化合物、発光デバイス、薄膜、発光装置、電子機器、および照明装置
JP2023090678A (ja) 有機化合物、発光デバイス、発光装置、電子機器、および照明装置
JP2023016022A (ja) 発光デバイス、発光装置、受発光装置、電子機器、および照明装置
JP2022115848A (ja) 有機化合物、発光デバイス、発光装置、電子機器および照明装置
JP2023063262A (ja) 有機化合物、発光デバイス、発光装置、電子機器、および照明装置
JP2023007468A (ja) 発光デバイスおよび発光装置
JP2022167859A (ja) 発光デバイス、発光装置、電子機器および照明装置
JP2024007356A (ja) 発光デバイス、発光装置、電子機器、および照明装置
KR20240002706A (ko) 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치