JP2022157886A - Battery electrode manufacturing device - Google Patents

Battery electrode manufacturing device Download PDF

Info

Publication number
JP2022157886A
JP2022157886A JP2021062365A JP2021062365A JP2022157886A JP 2022157886 A JP2022157886 A JP 2022157886A JP 2021062365 A JP2021062365 A JP 2021062365A JP 2021062365 A JP2021062365 A JP 2021062365A JP 2022157886 A JP2022157886 A JP 2022157886A
Authority
JP
Japan
Prior art keywords
slit
current collector
frame
inflow
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021062365A
Other languages
Japanese (ja)
Inventor
英明 堀江
Hideaki Horie
健一郎 榎
Kenichiro Enoki
勇輔 中嶋
Yusuke Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
APB Corp
Original Assignee
Sanyo Chemical Industries Ltd
APB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd, APB Corp filed Critical Sanyo Chemical Industries Ltd
Priority to JP2021062365A priority Critical patent/JP2022157886A/en
Priority to PCT/JP2022/016270 priority patent/WO2022210966A1/en
Publication of JP2022157886A publication Critical patent/JP2022157886A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a battery electrode manufacturing device capable of suppressing the inflow of air into a chamber through a slit.SOLUTION: A battery electrode manufacturing device includes: a chamber whose interior space is decompressed lower than the atmospheric pressure; a slit in which a member sheet in which a plurality of members each including a base film layer formed by dividing a belt-shaped base film into predetermined units and a mask layer placed on a surface of the base film layer are connected have an opening shape for a sheet to pass from an outer space of the chamber to the inner space,the slit being formed in the chamber; and an inflow suppression mechanism that suppresses inflow of air into the internal space through the slit.SELECTED DRAWING: Figure 2

Description

本発明は、電池用電極製造装置に関する。 The present invention relates to a battery electrode manufacturing apparatus.

近年、電池の製造工程において、基材フィルムへの活物質の供給が行われる場合がある。例えば、特許文献1及び2参照のように、集電体への活物質の供給が行われる場合がある。例えば、正極及び負極のいずれか一方の集電体上に、正極活物質、セパレータ、負極活物質、もう一方の集電体、及び、枠体を配置することで、電池用電極が製造される。なお、正極集電体、正極活物質、セパレータ、負極活物質、及び、負極集電体は、所定の順番で積層される。また、枠体は、集電体層の縁部に設けられ、セパレータや活物質層の外周を囲うように構成される。 In recent years, there are cases in which an active material is supplied to a base film in the manufacturing process of a battery. For example, as disclosed in Patent Documents 1 and 2, an active material may be supplied to a current collector. For example, a battery electrode is manufactured by arranging a positive electrode active material, a separator, a negative electrode active material, the other current collector, and a frame on one of the current collectors of the positive electrode and the negative electrode. . In addition, the positive electrode current collector, the positive electrode active material, the separator, the negative electrode active material, and the negative electrode current collector are laminated in a predetermined order. Also, the frame is provided at the edge of the current collector layer, and configured to surround the outer periphery of the separator and the active material layer.

特許第6633866号公報Japanese Patent No. 6633866 特開2019-207750号公報JP 2019-207750 A

ここで、基材フィルムへの活物質の供給を、内部空間が大気圧よりも減圧されたチャンバ内で行なうという考え方がある。これにより、不純物の混入等を予防して、電池用電極の品質を向上させることができる。 Here, there is an idea that the active material is supplied to the base film in a chamber whose internal space is reduced below atmospheric pressure. As a result, the quality of the battery electrode can be improved by preventing the contamination of impurities and the like.

上記チャンバ内で電池用電極を製造する場合に当該製造の効率を向上させるためには、例えば、チャンバ外(常圧環境下)からチャンバ内(減圧環境下)に基材フィルムを連続的に供給する必要がある。本発明者らは、内部空間が大気圧よりも減圧されたチャンバにスリットを設け、当該スリットを介して、チャンバの外部空間から内部空間に、基材フィルムを含む部材(例えば、基材フィルム上にマスクを載置した部材)を搬送する構成を見出した。この構成とした場合、スリットを介してチャンバ内に空気が多量に流入すると、例えばチャンバ内の減圧状態に支障が生じる等の問題が生じるおそれがあるため、スリットを介した空気の流入は抑制されることが好ましい。 In order to improve the efficiency of the production when producing a battery electrode in the chamber, for example, a substrate film is continuously supplied from outside the chamber (under normal pressure environment) into the chamber (under reduced pressure environment). There is a need to. The present inventors provide a slit in a chamber whose internal space is reduced below atmospheric pressure, and through the slit, a member containing a base film (e.g., a base film on the base film A member on which a mask is placed on the surface) has been found to be transported. With this configuration, if a large amount of air flows into the chamber through the slit, problems may arise, such as the decompression state in the chamber being hindered. Therefore, the inflow of air through the slit is suppressed. preferably.

本発明は、スリットを介したチャンバ内への空気の流入を抑制することができる電池用電極製造装置を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a battery electrode manufacturing apparatus capable of suppressing the inflow of air into a chamber through a slit.

本発明は、内部空間が大気圧よりも減圧されるチャンバと、前記チャンバに形成され、帯状の基材フィルムを所定単位ごとに分割して形成される基材フィルム層と当該基材フィルム層の表面に載置されるマスク層とを含む部材が複数連なった部材シートが、前記チャンバの外部空間から前記内部空間へ通過するための開口形状を有するスリットと、前記スリットを介した前記内部空間への空気の流入を抑制する流入抑制機構とを備える、電池用電極製造装置である。 The present invention provides a chamber whose internal space is reduced below atmospheric pressure, a base film layer formed in the chamber and formed by dividing a belt-shaped base film into predetermined units, and a base film layer. A slit having an opening shape for a member sheet in which a plurality of members including a mask layer to be placed on the surface is connected to pass from the outer space of the chamber to the inner space, and to the inner space through the slit. and an inflow suppression mechanism for suppressing the inflow of air.

本発明の電池用電極製造装置によれば、スリットを介したチャンバ内への空気の流入を抑制することができる。 According to the battery electrode manufacturing apparatus of the present invention, it is possible to suppress the inflow of air into the chamber through the slit.

図1は、単電池の概略構成図である。FIG. 1 is a schematic configuration diagram of a cell. 図2は、実施形態に係る電池用電極製造装置の概略構成図である。FIG. 2 is a schematic configuration diagram of the battery electrode manufacturing apparatus according to the embodiment. 図3Aは、チャンバの内部空間への空気の流入について説明するための図である。FIG. 3A is a diagram for explaining the inflow of air into the internal space of the chamber. 図3Bは、チャンバの内部空間への空気の流入について説明するための図である。FIG. 3B is a diagram for explaining the inflow of air into the internal space of the chamber. 図4は、実施形態に係る流入抑制機構の一例を示す図である。FIG. 4 is a diagram illustrating an example of an inflow suppression mechanism according to the embodiment; 図5Aは、実施形態に係る流入抑制機構の一例を示す図である。FIG. 5A is a diagram illustrating an example of an inflow suppression mechanism according to the embodiment; 図5Bは、実施形態に係る流入抑制機構の一例を示す図である。FIG. 5B is a diagram illustrating an example of an inflow suppression mechanism according to the embodiment; 図6は、実施形態に係る流入抑制機構の一例を示す図である。FIG. 6 is a diagram illustrating an example of an inflow suppression mechanism according to the embodiment; 図7は、実施形態に係る流入抑制機構の一例を示す図である。FIG. 7 is a diagram illustrating an example of an inflow suppression mechanism according to the embodiment;

以下に、本発明の実施形態に係る電池用電極製造装置につき図面を参照しつつ詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記の実施形態における構成要素には、当業者が容易に想定できるものあるいは実質的に同一のものが含まれる。 A battery electrode manufacturing apparatus according to an embodiment of the present invention will be described in detail below with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, components in the following embodiments include those that can be easily assumed by those skilled in the art or substantially the same components.

[実施形態]
図2に示す本実施形態に係る電池用電極製造装置1000は、図1に示す単電池10に適用される電極20を製造するための電池用電極製造装置である。以下では、まず、図1を参照して単電池10、電極20の基本的な構成について説明した後、図2等を参照して電池用電極製造装置1000について詳細に説明する。
[Embodiment]
A battery electrode manufacturing apparatus 1000 according to the present embodiment shown in FIG. 2 is a battery electrode manufacturing apparatus for manufacturing the electrode 20 applied to the unit cell 10 shown in FIG. Hereinafter, first, the basic configuration of the cell 10 and the electrode 20 will be described with reference to FIG. 1, and then the battery electrode manufacturing apparatus 1000 will be described in detail with reference to FIG.

<単電池>
単電池10は、本実施形態では、非水電解質二次電池の1種であるリチウムイオン二次電池である。リチウムイオン二次電池は、正極20aと負極20bとの間をリチウムイオンが移動することで充電や放電を行う二次電池である。
<Single battery>
The cell 10 is a lithium-ion secondary battery, which is a type of non-aqueous electrolyte secondary battery, in this embodiment. A lithium ion secondary battery is a secondary battery that charges and discharges by moving lithium ions between a positive electrode 20a and a negative electrode 20b.

なお、以下の説明において「正極20a」と「負極20b」とを特に区別して説明する必要がない場合、単に「電極20」と記載する場合がある。また、「正極集電体層21a」と「負極集電体層21b」とを特に区別して説明する必要がない場合、単に「集電体層21」と記載する場合がある。また、「正極活物質層22a」と「負極活物質層22b」とを特に区別して説明する必要がない場合、単に「活物質層22」と記載する場合がある。 In addition, in the following description, when it is not necessary to distinguish between the “positive electrode 20a” and the “negative electrode 20b”, they may simply be referred to as “the electrode 20”. In addition, when it is not necessary to distinguish between the “positive electrode current collector layer 21a” and the “negative electrode current collector layer 21b”, they may simply be referred to as “the current collector layer 21”. In addition, when it is not necessary to specifically distinguish between the “positive electrode active material layer 22a” and the “negative electrode active material layer 22b”, they may simply be described as the “active material layer 22”.

単電池10は、図1に示すように、正極20aと、負極20bと、セパレータ30と、枠体35とを有する。正極20aは、単電池10を構成する2つの電極(電池用電極)20のうち、一方の電極20である。負極20bは、単電池10を構成する2つの電極20のうち、他方の電極20である。セパレータ30は、正極20aと負極20bとの間に配置される板状の部材である。枠体35は、セパレータ30の周縁部を囲う枠状の部材である。単電池10は、正極20a、セパレータ30、負極20bの順番で積層され、かつ、枠体35がセパレータ30の周縁部を囲う位置関係で一体化される。 The cell 10 has a positive electrode 20a, a negative electrode 20b, a separator 30, and a frame 35, as shown in FIG. The positive electrode 20 a is one electrode 20 of the two electrodes (battery electrodes) 20 that constitute the cell 10 . The negative electrode 20 b is the other electrode 20 of the two electrodes 20 that constitute the cell 10 . The separator 30 is a plate-like member arranged between the positive electrode 20a and the negative electrode 20b. The frame 35 is a frame-shaped member that surrounds the periphery of the separator 30 . In the unit cell 10, the positive electrode 20a, the separator 30, and the negative electrode 20b are stacked in this order, and integrated in a positional relationship in which the frame 35 surrounds the periphery of the separator 30. As shown in FIG.

正極20aは、正極集電体層21aと、正極活物質層22aとを有し、正極集電体層21aの両面のうち、一方の面に正極活物質層22aが電気的に結合している。一方、負極20bは、負極集電体層21bと、負極活物質層22bとを有し、負極集電体層21bの両面のうち、一方の面に負極活物質層22bが電気的に結合している。本実施形態における正極20aおよび負極20bは、矩形板状に形成されている。 The positive electrode 20a has a positive electrode current collector layer 21a and a positive electrode active material layer 22a, and the positive electrode active material layer 22a is electrically coupled to one of both surfaces of the positive electrode current collector layer 21a. . On the other hand, the negative electrode 20b has a negative electrode current collector layer 21b and a negative electrode active material layer 22b, and the negative electrode active material layer 22b is electrically coupled to one of both surfaces of the negative electrode current collector layer 21b. ing. The positive electrode 20a and the negative electrode 20b in this embodiment are formed in a rectangular plate shape.

セパレータ30は、正極20aと負極20bとの間の隔壁として機能し、正極活物質層22aと負極活物質層22bとが互いに接触することを抑制するものである。本実施形態におけるセパレータ30は、正極集電体層21aおよび負極集電体層21bよりも小さい矩形板状に形成されている。 The separator 30 functions as a partition wall between the positive electrode 20a and the negative electrode 20b, and prevents the positive electrode active material layer 22a and the negative electrode active material layer 22b from coming into contact with each other. The separator 30 in this embodiment is formed in a rectangular plate shape smaller than the positive collector layer 21a and the negative collector layer 21b.

枠体35は、単電池10の骨格を形成するものである。枠体35は、正極集電体層21aとセパレータ30との間で正極活物質層22aを封止し、負極集電体層21bとセパレータ30との間で、負極活物質層22bを封止するものである。本実施形態における枠体35は、セパレータ30の外周を囲う額縁状に形成されている。 The frame 35 forms the skeleton of the cell 10 . The frame 35 seals the positive electrode active material layer 22a between the positive electrode current collector layer 21a and the separator 30, and seals the negative electrode active material layer 22b between the negative electrode current collector layer 21b and the separator 30. It is something to do. The frame body 35 in this embodiment is formed in a frame shape surrounding the outer periphery of the separator 30 .

単電池10は、正極集電体層21a、正極活物質層22a、セパレータ30、負極活物質層22b、負極集電体層21bの順番で積層される。つまり、単電池10では、正極集電体層21a及び負極集電体層21bが最外層に配置される。即ち、単電池10では、集電体層21が単電池10の外部に露出する。 The unit cell 10 is laminated in the order of the positive electrode current collector layer 21a, the positive electrode active material layer 22a, the separator 30, the negative electrode active material layer 22b, and the negative electrode current collector layer 21b. That is, in the cell 10, the positive electrode current collector layer 21a and the negative electrode current collector layer 21b are arranged as the outermost layers. That is, in the cell 10 , the collector layer 21 is exposed to the outside of the cell 10 .

なお、図1は、セパレータ30の一部が枠体35に入り込むように構成される場合を示している。すなわち、図1では、セパレータ30は、枠体35に周縁部を囲まれる活物質層22と比較して、幅が若干大きくなっており、その一部が枠体35に食い込んでいる。しかしながら、実施形態はこれに限定されるものではなく、例えば、正極活物質層22a、負極活物質層22b及びセパレータ30の幅が同じになるように構成してもよい。また、図1に示す枠体35は、一体的に製造されてもよいし、正極20a側の枠体35と負極20b側の枠体35とを別個に製造して結合させることにより製造されてもよい。 Note that FIG. 1 shows a case where the separator 30 is configured such that a portion of the separator 30 enters the frame 35 . That is, in FIG. 1 , the separator 30 has a width slightly larger than that of the active material layer 22 surrounded by the frame 35 , and a part of the separator 30 bites into the frame 35 . However, the embodiment is not limited to this, and for example, the positive electrode active material layer 22a, the negative electrode active material layer 22b, and the separator 30 may have the same width. The frame 35 shown in FIG. 1 may be manufactured integrally, or manufactured by separately manufacturing the frame 35 on the side of the positive electrode 20a and the frame 35 on the side of the negative electrode 20b and combining them. good too.

<組電池>
単電池10は、複数組み合わせて、電圧及び容量を調節した組電池、すなわち電池パックの形態で使用することが可能である。組電池は、平板状の複数の単電池10を厚さ方向において積層して構成されている。厚さ方向において隣り合う単電池10は、互いの異なる電極20が接触、すなわち一方の正極20aと他方の負極20bとが接触するように積層される。組電池は、可撓性を有する絶縁材料で構成される外層フィルム、例えばラミネートフィルムにより、内部の単電池10が覆われている。組電池は、複数の単電池10の厚さ方向における両端に位置する正極20aおよび負極20bにそれぞれ電気的に接続される取り出し部が設けられる。取り出し部は、一部が外装フィルムの外部に露出しており、外部において電気的に接続された電気機器に電力が供給される。
<Battery pack>
A plurality of unit cells 10 can be combined and used in the form of an assembled battery in which the voltage and capacity are adjusted, that is, a battery pack. The assembled battery is configured by stacking a plurality of flat unit cells 10 in the thickness direction. Unit cells 10 adjacent in the thickness direction are stacked such that different electrodes 20 are in contact, that is, one positive electrode 20a and the other negative electrode 20b are in contact. In the assembled battery, the single cells 10 inside are covered with an outer layer film made of a flexible insulating material, such as a laminate film. The assembled battery is provided with outlets electrically connected to the positive electrodes 20a and the negative electrodes 20b located at both ends of the plurality of cells 10 in the thickness direction. A part of the extraction part is exposed to the outside of the exterior film, and power is supplied to an electrically connected electrical device on the outside.

<正極集電体の具体例>
正極集電体層21aを構成する正極集電体としては、公知のリチウムイオン単電池に用いられる集電体を用いることができ、例えば、公知の金属集電体及び導電材料と樹脂とから構成されてなる樹脂集電体(特開2012-150905号公報及び国際公開第2015-005116号等に記載の樹脂集電体等)を用いることができる。正極集電体層21aを構成する正極集電体は、電池特性等の観点から、樹脂集電体であることが好ましい。
<Specific example of positive electrode current collector>
As the positive electrode current collector that constitutes the positive electrode current collector layer 21a, a known current collector used in a lithium-ion single battery can be used. A resin current collector (such as the resin current collector described in JP-A-2012-150905 and International Publication No. 2015-005116) can be used. The positive electrode collector constituting the positive electrode collector layer 21a is preferably a resin collector from the viewpoint of battery characteristics and the like.

金属集電体としては、例えば、銅、アルミニウム、チタン、ニッケル、タンタル、ニオブ、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン及びこれらの金属を1種以上含む合金、並びに、ステンレス合金からなる群から選択される一種以上の金属材料が挙げられる。これらの金属材料は、薄板や金属箔等の形態で用いてもよい。また、上記金属材料以外で構成される基材表面にスパッタリング、電着、塗布等の方法により上記金属材料を形成したものを金属集電体として用いてもよい。 Metal current collectors include, for example, copper, aluminum, titanium, nickel, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, alloys containing one or more of these metals, and the group consisting of stainless alloys. and one or more metal materials selected from These metal materials may be used in the form of thin plates, metal foils, or the like. Alternatively, a metal current collector formed by forming the above metal material on the surface of a base material other than the above metal material by sputtering, electrodeposition, coating, or the like may be used.

樹脂集電体としては、導電性フィラーとマトリックス樹脂とを含むことが好ましい。マトリックス樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)等が挙げられるが、特に限定されない。また、導電性フィラーは、導電性を有する材料から選択されれば特に限定されない。導電性フィラーは、その形状が繊維状である導電性繊維であってもよい。 The resin current collector preferably contains a conductive filler and a matrix resin. Examples of the matrix resin include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and the like, but are not particularly limited. Also, the conductive filler is not particularly limited as long as it is selected from materials having conductivity. The conductive filler may be a conductive fiber having a fibrous shape.

樹脂集電体は、マトリックス樹脂及び導電性フィラーのほかに、その他の成分(分散剤、架橋促進剤、架橋剤、着色剤、紫外線吸収剤、可塑剤等)を含んでいてもよい。また、複数の樹脂集電体を積層して用いてもよく、樹脂集電体と金属箔とを積層して用いても良い。 The resin current collector may contain other components (dispersant, cross-linking accelerator, cross-linking agent, colorant, ultraviolet absorber, plasticizer, etc.) in addition to the matrix resin and the conductive filler. Also, a plurality of resin current collectors may be laminated and used, or a resin current collector and a metal foil may be laminated and used.

正極集電体層21aの厚さは、特に限定されないが、5~150μmであることが好ましい。複数の樹脂集電体を積層して正極集電体層21aとして用いる場合には、積層後の全体の厚さが5~150μmであることが好ましい。正極集電体層21aは、例えば、マトリックス樹脂、導電性フィラー及び必要により用いるフィラー用分散剤を溶融混練して得られる導電性樹脂組成物を公知の方法でフィルム状に成形することにより得ることができる。 Although the thickness of the positive electrode current collector layer 21a is not particularly limited, it is preferably 5 to 150 μm. When a plurality of resin current collectors are laminated and used as the positive electrode current collector layer 21a, the total thickness after lamination is preferably 5 to 150 μm. The positive electrode current collector layer 21a can be obtained, for example, by molding a conductive resin composition obtained by melt-kneading a matrix resin, a conductive filler, and a dispersing agent for a filler used if necessary into a film by a known method. can be done.

<正極活物質の具体例>
正極活物質層22aは、正極活物質を含む混合物の非結着体であることが好ましい。ここで、非結着体とは、正極活物質層中において正極活物質の位置が固定されておらず、正極活物質同士及び正極活物質同士及び正極活物質と集電体とが不可逆的に固定されていないことを意味する。正極活物質層22aが非結着体である場合、正極活物質同士は不可逆的に固定されていないため、正極活物質同士の界面を機械的に破壊することなく分離することができ、正極活物質層22aに応力がかかった場合でも正極活物質が移動することで正極活物質層22aの破壊を防止することができ好ましい。非結着体である正極活物質層22aは、正極活物質層22aを、正極活物質と電解液とを含みかつ結着剤を含まない正極活物質層22aにする等の方法で得ることができる。なお、本明細書において、結着剤とは、正極活物質同士及び正極活物質と集電体とを可逆的に固定することができない薬剤を意味し、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、スチレン-ブタジエンゴム、ポリエチレン及びポリプロピレン等の公知の溶剤乾燥型のリチウムイオン電池用結着剤等が挙げられる。これらの結着剤は、溶剤に溶解又は分散して用いられ、溶剤を揮発、留去することで表面が粘着性を示すことなく固体化するので正極活物質同士及び正極活物質と集電体とを可逆的に固定することができない。
<Specific example of positive electrode active material>
The positive electrode active material layer 22a is preferably a non-bound mixture containing a positive electrode active material. Here, the non-bound body means that the position of the positive electrode active material is not fixed in the positive electrode active material layer, and the positive electrode active materials and the positive electrode active materials and the positive electrode active material and the current collector are irreversibly means not fixed. When the positive electrode active material layer 22a is a non-bound body, the positive electrode active materials are not irreversibly fixed to each other. Even when stress is applied to the material layer 22a, the positive electrode active material moves, which is preferable because the destruction of the positive electrode active material layer 22a can be prevented. The positive electrode active material layer 22a, which is a non-binder, can be obtained by a method such as changing the positive electrode active material layer 22a into a positive electrode active material layer 22a containing a positive electrode active material and an electrolytic solution but not containing a binder. can. In this specification, the binder means an agent that cannot reversibly fix the positive electrode active materials together and the positive electrode active material and the current collector, and includes starch, polyvinylidene fluoride, polyvinyl alcohol, carboxyl Known solvent-drying type binders for lithium ion batteries such as methyl cellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene and polypropylene can be used. These binders are used by dissolving or dispersing them in a solvent, and by volatilizing and distilling off the solvent, the surface solidifies without exhibiting adhesiveness, so that the positive electrode active material and the positive electrode active material and the current collector are solidified. cannot be reversibly fixed.

正極活物質としては、例えば、リチウムと遷移金属との複合酸化物、遷移金属元素が2種である複合酸化物、金属元素が3種類以上である複合酸化物等が挙げられるが、特に限定されない。 Examples of the positive electrode active material include, but are not particularly limited to, a composite oxide of lithium and a transition metal, a composite oxide containing two transition metal elements, and a composite oxide containing three or more metal elements. .

正極活物質は、その表面の少なくとも一部が高分子化合物を含む被覆材により被覆された被覆正極活物質であってもよい。正極活物質の周囲が被覆材で被覆されていると、正極の体積変化が緩和され、正極の膨張を抑制することができる。 The positive electrode active material may be a coated positive electrode active material in which at least part of the surface is coated with a coating material containing a polymer compound. When the positive electrode active material is covered with the coating material, the volume change of the positive electrode is moderated, and the expansion of the positive electrode can be suppressed.

被覆材を構成する高分子化合物としては、特開2017-054703号公報及び国際公開第2015-005117号等に活物質被覆用樹脂として記載されたものを好適に用いることができる。 As the polymer compound constituting the coating material, those described as active material coating resins in JP-A-2017-054703 and WO-2015-005117 can be preferably used.

被覆材には、導電剤が含まれていてもよい。導電剤としては、正極集電体層21aに含まれる導電性フィラーと同様のものを好適に用いることができる。 The coating material may contain a conductive agent. As the conductive agent, the same conductive filler as contained in the positive electrode current collector layer 21a can be preferably used.

正極活物質層22aには、粘着性樹脂が含まれていてもよい。粘着性樹脂としては、例えば、特開2017-054703号公報に記載された非水系二次電池活物質被覆用樹脂に少量の有機溶剤を混合してそのガラス転移温度を室温以下に調節したもの、及び、特開平10-255805号公報に粘着剤として記載されたもの等を好適に用いることができる。なお、粘着性樹脂は、溶媒成分を揮発させて乾燥させても固体化せずに粘着性(水、溶剤、熱などを使用せずに僅かな圧力を加えることで接着する性質)を有する樹脂を意味する。一方、結着剤として用いられる溶液乾燥型の電極用バインダーは、溶媒成分を揮発させることで乾燥、固体化して活物質同士を強固に接着固定するものを意味する。したがって、上述した結着剤(溶液乾燥型の電極バインダー)と粘着性樹脂とは、異なる材料である。 The positive electrode active material layer 22a may contain an adhesive resin. As the adhesive resin, for example, a non-aqueous secondary battery active material coating resin described in JP-A-2017-054703 is mixed with a small amount of an organic solvent to adjust its glass transition temperature to room temperature or lower. Also, those described as adhesives in JP-A-10-255805 can be preferably used. In addition, adhesive resin is a resin that does not solidify even if the solvent component is volatilized and dried, and has adhesiveness (the property of adhering by applying a slight pressure without using water, solvent, heat, etc.) means On the other hand, a solution-drying type electrode binder used as a binder is one that dries and solidifies by volatilizing a solvent component, thereby firmly adhering and fixing active materials to each other. Therefore, the binder (solution-drying type electrode binder) and the adhesive resin described above are different materials.

正極活物質層22aには、電解質と非水溶媒を含む電解液が含まれていてもよい。電解質としては、公知の電解液に用いられているもの等が使用できる。非水溶媒としては、公知の電解液に用いられているもの(例えば、リン酸エステル、ニトリル化合物等及びこれらの混合物等)等が使用できる。例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合液、又は、エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合液を用いることができる。 The positive electrode active material layer 22a may contain an electrolytic solution containing an electrolyte and a non-aqueous solvent. As the electrolyte, those used in known electrolytic solutions can be used. As the non-aqueous solvent, those used in known electrolytic solutions (eg, phosphate esters, nitrile compounds, mixtures thereof, etc.) can be used. For example, a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) or a mixture of ethylene carbonate (EC) and propylene carbonate (PC) can be used.

正極活物質層22aには、導電助剤が含まれていてもよい。導電助剤としては、正極集電体層21aに含まれる導電性フィラーと同様の導電性材料を好適に用いることができる。 The positive electrode active material layer 22a may contain a conductive aid. As the conductive aid, a conductive material similar to the conductive filler contained in the positive electrode current collector layer 21a can be preferably used.

正極活物質層22aの厚さは、特に限定されるものではないが、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。 Although the thickness of the positive electrode active material layer 22a is not particularly limited, it is preferably 150 to 600 μm, more preferably 200 to 450 μm, from the viewpoint of battery performance.

<負極集電体の具体例>
負極集電体層21bを構成する負極集電体としては、正極集電体で記載した構成と同様のものを適宜選択して用いることができ、同様の方法により得ることができる。負極集電体層21bは、電池特性等の観点から、樹脂集電体であることが好ましい。負極集電体層21bの厚さは、特に限定されないが、5~150μmであることが好ましい。
<Specific example of negative electrode current collector>
As the negative electrode current collector constituting the negative electrode current collector layer 21b, the same one as the positive electrode current collector can be appropriately selected and used, and can be obtained by the same method. The negative electrode current collector layer 21b is preferably a resin current collector from the viewpoint of battery characteristics and the like. Although the thickness of the negative electrode current collector layer 21b is not particularly limited, it is preferably 5 to 150 μm.

<負極活物質の具体例>
負極活物質層22bは、負極活物質を含む混合物の非結着体であることが好ましい。負極活物質層が非結着体であることが好ましい理由、及び非結着体である負極活物質層22bを得る方法等は、正極活物質層22aが非結着体であることが好ましい理由、及び非結着体である正極活物質層22aを得る方法と同様である。
<Specific example of negative electrode active material>
The negative electrode active material layer 22b is preferably a non-bonded mixture containing a negative electrode active material. The reason why the negative electrode active material layer is preferably a non-binder and the reason why the positive electrode active material layer 22a is preferably a non-binder is the method for obtaining the negative electrode active material layer 22b which is a non-binder. , and the method for obtaining the positive electrode active material layer 22a which is a non-binder.

負極活物質としては、例えば、炭素系材料、珪素系材料及びこれらの混合物などを用いることができるが、特に限定されない。 As the negative electrode active material, for example, a carbon-based material, a silicon-based material, a mixture thereof, or the like can be used, but the material is not particularly limited.

負極活物質は、その表面の少なくとも一部が高分子化合物を含む被覆材により被覆された被覆負極活物質であってもよい。負極活物質の周囲が被覆材で被覆されていると、負極の体積変化が緩和され、負極の膨張を抑制することができる。 The negative electrode active material may be a coated negative electrode active material in which at least part of the surface is coated with a coating material containing a polymer compound. When the periphery of the negative electrode active material is covered with the coating material, the volume change of the negative electrode is moderated, and the expansion of the negative electrode can be suppressed.

被覆材としては、被覆正極活物質を構成する被覆材と同様のものを好適に用いることができる。 As the coating material, the same coating material as that constituting the coated positive electrode active material can be suitably used.

負極活物質層22bは、電解質と非水溶媒を含む電解液を含有する。電解液の組成は、正極活物質層22aに含まれる電解液と同様の電解液を好適に用いることができる。 The negative electrode active material layer 22b contains an electrolytic solution containing an electrolyte and a non-aqueous solvent. As for the composition of the electrolytic solution, an electrolytic solution similar to the electrolytic solution contained in the positive electrode active material layer 22a can be suitably used.

負極活物質層22bには、導電助剤が含まれていてもよい。導電助剤としては、正極活物質層22aに含まれる導電性フィラーと同様の導電性材料を好適に用いることができる。 The negative electrode active material layer 22b may contain a conductive aid. As the conductive aid, a conductive material similar to the conductive filler contained in the positive electrode active material layer 22a can be preferably used.

負極活物質層22bには、粘着性樹脂が含まれていてもよい。粘着性樹脂としては、正極活物質層22aの任意成分である粘着性樹脂と同様のものを好適に用いることができる。 The negative electrode active material layer 22b may contain an adhesive resin. As the adhesive resin, the same adhesive resin as an optional component of the positive electrode active material layer 22a can be preferably used.

負極活物質層22bの厚さは、特に限定されるものではないが、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。 Although the thickness of the negative electrode active material layer 22b is not particularly limited, it is preferably 150 to 600 μm, more preferably 200 to 450 μm, from the viewpoint of battery performance.

<セパレータの具体例>
セパレータ30に保持される電解質としては、例えば、電解液又はゲルポリマー電解質などが挙げられる。セパレータ30は、これらの電解質を用いることで、高いリチウムイオン伝導性が確保される。セパレータ30の形態としては、例えば、ポリエチレン又はポリプロピレン製の多孔性フィルム等が挙げられるが、特に限定されない。
<Specific example of separator>
Examples of the electrolyte retained in the separator 30 include an electrolytic solution and a gel polymer electrolyte. By using these electrolytes, the separator 30 ensures high lithium ion conductivity. Examples of the form of the separator 30 include, but are not particularly limited to, polyethylene or polypropylene porous films.

<枠体の具体例>
枠体35としては、電解液に対して耐久性のある材料であれば特に限定されないが、例えば、高分子材料が好ましく、熱硬化性高分子材料がより好ましい。枠体35を構成する材料としては、絶縁性、シール性(液密性)、電池動作温度下での耐熱性等を有するものであればよく、樹脂材料が好適に採用される。より具体的には、枠体35としては、例えば、エポキシ系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂及びポリフッ化ビニリデン樹脂等が挙げられ、耐久性が高く取り扱いが容易であることからエポキシ系樹脂が好ましい。
<Specific example of frame>
The material for the frame 35 is not particularly limited as long as it is a material that is durable against the electrolytic solution. For example, a polymer material is preferable, and a thermosetting polymer material is more preferable. As a material for forming the frame 35, any material having insulating properties, sealing properties (liquid-tightness), heat resistance under the battery operating temperature, and the like may be used, and a resin material is preferably employed. More specifically, examples of the frame 35 include epoxy-based resins, polyolefin-based resins, polyurethane-based resins, and polyvinylidene fluoride resins. preferable.

<製造装置>
次に、電池用電極製造装置1000について説明する。図2は、電池用電極製造装置1000の概略図である。例えば、電池用電極製造装置1000は、チャンバ100、枠体供給装置200、活物質供給装置300、ロールプレス400、及び、流入抑制機構500を含む。
<Manufacturing equipment>
Next, the battery electrode manufacturing apparatus 1000 will be described. FIG. 2 is a schematic diagram of the battery electrode manufacturing apparatus 1000. As shown in FIG. For example, the battery electrode manufacturing apparatus 1000 includes a chamber 100 , a frame supply device 200 , an active material supply device 300 , a roll press 400 and an inflow suppression mechanism 500 .

なお、以下では、基材フィルムが帯状の集電体21Bである場合を一例として説明する。即ち、以下では、電池用電極製造装置1000として、集電体への活物質の供給を行なう装置について説明する。但し、実施形態はこれに限定されるものではない。例えば、基材フィルムは、集電体、セパレータ、転写用のフィルムのいずれでもよい。基材フィルムがセパレータや転写用のフィルムである場合でも、以下で説明する実施形態は同様に適用が可能である。 In addition, below, the case where a base film is the strip|belt-shaped collector 21B is demonstrated as an example. That is, hereinafter, an apparatus for supplying an active material to a current collector will be described as the battery electrode manufacturing apparatus 1000 . However, embodiments are not limited to this. For example, the base film may be a current collector, a separator, or a transfer film. Even when the base film is a separator or a film for transfer, the embodiments described below are similarly applicable.

また、以下では、集電体層21と枠体35とを含む部材が複数連なった部材シートがチャンバ100の内部に搬送される場合について説明する。即ち、以下では、基材フィルムと、当該基材フィルムの表面に載置される枠体35とを含む部材が複数連なった部材シートがチャンバ100の内部に搬送される場合について説明する。しかしながら実施形態はこれに限定されるものではなく、基材フィルムと、当該基材フィルムの表面に載置されるマスク層とを含む部材が複数連なった部材シートがチャンバ100の内部に搬送される場合であれば同様に適用が可能である。 Further, the case where a member sheet in which a plurality of members including the current collector layer 21 and the frame 35 are connected is conveyed into the chamber 100 will be described below. That is, hereinafter, a case will be described in which a member sheet in which a plurality of members including a base film and a frame body 35 placed on the surface of the base film are connected is conveyed into the chamber 100 . However, the embodiment is not limited to this, and a member sheet in which a plurality of members including a base film and a mask layer placed on the surface of the base film are connected is conveyed into the chamber 100. The same can be applied in any case.

マスク層は、マスク、枠体35のいずれでもよく、基材フィルムが例えば集電体21Bである場合は枠体35(枠体付き集電体)が用いられ、基材フィルムが例えば転写用のフィルムである場合は、マスク(マスク付き基材フィルム)が用いられる。基材フィルム層の表面にマスク層が載置された部材シートを用いる場合には、部材シート上に形成した活物質層(電極組成物層)を、集電体もしくは枠付き集電体へ転写して使用することができ、これにより、リチウムイオン電池用電極を得ることができる。 The mask layer may be either a mask or a frame 35. When the base film is, for example, the current collector 21B, the frame 35 (framed current collector) is used, and the base film is used for transfer, for example. When it is a film, a mask (base film with a mask) is used. When using a member sheet in which a mask layer is placed on the surface of the base film layer, the active material layer (electrode composition layer) formed on the member sheet is transferred to the current collector or the framed current collector. It is possible to obtain an electrode for a lithium ion battery.

チャンバ100は、内部空間が大気圧よりも減圧される。具体的には、チャンバ100の内部空間は、図示しない減圧ポンプにより大気圧よりも減圧される。なお、標準大気圧は、約1013hPa(約10Pa)である。また、チャンバ100は、内部空間と外部空間とを連通するスリット101を有する。 The internal space of the chamber 100 is evacuated below atmospheric pressure. Specifically, the internal space of the chamber 100 is decompressed below atmospheric pressure by a decompression pump (not shown). The standard atmospheric pressure is approximately 1013 hPa (approximately 10 5 Pa). Also, the chamber 100 has a slit 101 that communicates the internal space and the external space.

例えば、チャンバ100の外部に集電体ロール21Rが配置され、集電体ロール21Rからは帯状の集電体21Bが引き出される。なお、集電体21Bは、集電体層21が所定の形状に切り出される前のものである。即ち、集電体21Bを所定単位ごとに分割することで、図1に示した集電体層21が形成される。集電体21Bは、ベルトコンベア等の搬送装置により、搬送方向Dに沿って所定の速度で搬送される。以下では、集電体21Bが搬送される方向を下流側D1、その反対方向を上流側D2として説明する。 For example, a current collector roll 21R is arranged outside the chamber 100, and a belt-like current collector 21B is pulled out from the current collector roll 21R. Note that the current collector 21B is obtained before the current collector layer 21 is cut into a predetermined shape. That is, the current collector layer 21 shown in FIG. 1 is formed by dividing the current collector 21B into predetermined units. The current collector 21B is transported at a predetermined speed along the transport direction D by a transport device such as a belt conveyor. Hereinafter, the direction in which the current collector 21B is conveyed will be described as the downstream side D1, and the opposite direction as the upstream side D2.

枠体供給装置200は、搬送される集電体21Bに対して枠体35を供給する。例えば、枠体供給装置200は、ロボットアームを有し、事前に製造された枠体35を、搬送される集電体21B上の所定の位置に配置する。なお、枠体35を集電体21Bに配置した後、集電体21B及び枠体35を挟み込むようにロールプレスで圧縮することとしてもよい。 The frame supply device 200 supplies the frame 35 to the conveyed current collector 21B. For example, the frame supply device 200 has a robot arm, and places the pre-manufactured frame 35 at a predetermined position on the transported current collector 21B. After placing the frame 35 on the current collector 21B, the current collector 21B and the frame 35 may be compressed by a roll press so as to be sandwiched between them.

なお、枠体35を製造する方法については特に限定されるものではない。例えば、枠体35は、高分子材料等の所定の材料から成るシート乃至ブロックに対する切削加工によって、所定の形状に形成することができる。一例を挙げると、枠体35は、所定の材料から成る素材シートから打ち抜くことで得られる。 The method for manufacturing the frame 35 is not particularly limited. For example, the frame 35 can be formed into a predetermined shape by cutting a sheet or block made of a predetermined material such as a polymeric material. For example, the frame 35 is obtained by punching out a material sheet made of a predetermined material.

また、例えば、枠体35は、射出成形等の枠型を用いた手法によって、所定の形状に形成することができる。一例を挙げると、所定の形状の内部空間を有する金型が事前に作製され、当該金型に対する射出成形を行なうことにより、枠体35を所定の形状に形成することができる。 Further, for example, the frame body 35 can be formed into a predetermined shape by a method using a frame mold such as injection molding. For example, a mold having an internal space of a predetermined shape is prepared in advance, and the frame body 35 can be formed into a predetermined shape by performing injection molding on the mold.

また、例えば、枠体35は、基材上に所定の材料を吐出したり塗布したりすることで、所定の形状に形成することができる。一例を挙げると、枠体35は、ディスペンサーによって所定の形状に形成することができる。即ち、ディスペンサーによる制御の下、ノズルから基材に対して所定の材料を所定の量だけ吐出させることにより、枠体35を形成することができる。別の例を挙げると、スクリーン印刷機等のコーターによって、基材上に所定の材料を所定の形状に塗布することで、枠体35を形成することができる。 Further, for example, the frame body 35 can be formed into a predetermined shape by discharging or applying a predetermined material onto the base material. For example, the frame 35 can be formed into a predetermined shape by a dispenser. That is, the frame 35 can be formed by discharging a predetermined amount of a predetermined material from a nozzle onto the substrate under the control of the dispenser. To give another example, the frame 35 can be formed by applying a predetermined material in a predetermined shape onto the base material using a coater such as a screen printer.

より具体的には、枠体35は、ディスペンサーやコーター等によって、基材上に、所定の材料を所定の形状となるように吐出又は塗布し、乾燥後に基材から剥離させることで形成することができる。或いは、枠体35は、ディスペンサーやコーター等によって、基材上に、2液硬化樹脂やUV硬化用樹脂といった所定の材料を所定の形状となるように吐出又は塗布し、硬化後に基材から剥離させることで形成することができる。 More specifically, the frame body 35 can be formed by discharging or applying a predetermined material onto the base material in a predetermined shape using a dispenser, a coater, or the like, and peeling it off from the base material after drying. can be done. Alternatively, the frame body 35 is formed by discharging or applying a predetermined material such as a two-liquid curing resin or a UV curing resin onto the base material using a dispenser, a coater, or the like so as to form a predetermined shape, and peeling off from the base material after curing. It can be formed by letting

その他、枠体35は、種々の手法によって所定の形状に形成することが可能である。例えば、所定の形状となるように、所定の材料から成るシート乃至ブロックを組むことによって、枠体35を所定の形状に形成してもよい。また、例えば、所定の材料から成るシートを基材の長手方向に配置し、垂直方向に当該材料を吐出又は塗布することで、枠体35を所定の形状に形成してもよい。或いは、枠体35は、任意方式の3Dプリンタによって製造することもできる。 In addition, the frame body 35 can be formed into a predetermined shape by various methods. For example, the frame 35 may be formed into a predetermined shape by assembling sheets or blocks made of a predetermined material so as to have a predetermined shape. Alternatively, for example, the frame body 35 may be formed into a predetermined shape by arranging a sheet made of a predetermined material in the longitudinal direction of the base material and ejecting or applying the material in the vertical direction. Alternatively, the frame 35 can be manufactured by any type of 3D printer.

また、予め製造された枠体35を集電体21B上に置くものとして説明したが、実施形態はこれに限定されるものではない。例えば、枠体35は、集電体21Bの上で製造されてもよい。一例を挙げると、集電体21Bを基材とし、ディスペンサーやコーター等によって集電体21B上に所定の材料を所定の形状に吐出又は塗布することで、集電体21B上に枠体35を形成することができる。 In addition, although the prefabricated frame 35 is placed on the current collector 21B, the embodiment is not limited to this. For example, the frame 35 may be manufactured on the current collector 21B. As an example, the current collector 21B is used as a base material, and a predetermined material is discharged or applied in a predetermined shape onto the current collector 21B using a dispenser, a coater, or the like, thereby forming the frame 35 on the current collector 21B. can be formed.

図2に示すように、集電体ロール21R及び枠体供給装置200は、チャンバ100の外部空間に配置されている。集電体ロール21R及び枠体供給装置200が配置される空間は、常圧であってもよいし、チャンバ100と異なるチャンバによって減圧されていてもよい。 As shown in FIG. 2, the current collector roll 21R and the frame supply device 200 are arranged in the external space of the chamber 100. As shown in FIG. The space in which the current collector roll 21R and the frame body supply device 200 are arranged may be at normal pressure, or may be evacuated by a chamber different from the chamber 100 .

図2に示すように、集電体21B及び枠体35は、スリット101を介して、チャンバ100の内部空間に搬送される。即ち、集電体21B及び枠体35は、集電体層21と枠体35とを含む部材が複数連なった部材シートの形態で、チャンバ100の内部空間に搬送される。スリット101は、当該部材シートが、チャンバ100の外部空間から内部空間へ通過するための開口形状を有する。 As shown in FIG. 2, the current collector 21B and the frame 35 are transported into the internal space of the chamber 100 through the slit 101. As shown in FIG. That is, the current collector 21B and the frame 35 are conveyed into the internal space of the chamber 100 in the form of a member sheet in which a plurality of members including the current collector layer 21 and the frame 35 are connected. The slit 101 has an opening shape for the member sheet to pass from the outer space of the chamber 100 to the inner space.

ここで、集電体21B及び枠体35がスリット101を介してチャンバ100の内部空間に搬送される際には、スリット101を介して、チャンバ100の内部空間に空気が流入してしまう場合がある。例えば図3Aに示すように、集電体21B上に配置された複数の枠体35の間に隙間がある場合、当該隙間がスリット101に位置している間、当該隙間を通った空気がチャンバ100の内部空間に流入してしまう場合がある。また、枠体35は、後に活物質層22が形成されることとなる内部空間35aを有した部材である。そして、例えば図3Bに示すように、枠体35の内部空間35aがスリット101に位置している間、枠体35の内部空間35aを通った空気がチャンバ100の内部空間に流入してしまう場合がある。 Here, when the current collector 21B and the frame 35 are transported into the internal space of the chamber 100 through the slit 101, air may flow into the internal space of the chamber 100 through the slit 101. be. For example, as shown in FIG. 3A, when there is a gap between a plurality of frames 35 arranged on the current collector 21B, while the gap is located in the slit 101, the air passing through the gap enters the chamber. It may flow into the internal space of 100. Further, the frame 35 is a member having an internal space 35a in which the active material layer 22 will be formed later. Then, for example, as shown in FIG. 3B, when the air passing through the internal space 35a of the frame 35 flows into the internal space of the chamber 100 while the internal space 35a of the frame 35 is positioned in the slit 101. There is

そこで、実施形態に係る電池用電極製造装置1000は、図2に示すように、流入抑制機構500を更に備える。流入抑制機構500は、集電体21B及び枠体35がチャンバ100の内部空間に搬送される際に、スリット101を介した空気の流入を抑制する。流入抑制機構500の具体例については後述する。 Therefore, the battery electrode manufacturing apparatus 1000 according to the embodiment further includes an inflow suppressing mechanism 500 as shown in FIG. The inflow suppression mechanism 500 suppresses the inflow of air through the slit 101 when the current collector 21B and the frame 35 are transported into the internal space of the chamber 100 . A specific example of the inflow suppression mechanism 500 will be described later.

活物質供給装置300は、チャンバ100の内部空間に配置され、搬送される集電体21B上に粉体状の活物質22cを供給する。なお、活物質22cは、電極活物質及び導電助剤を含む、複数の電極用造粒粒子のことを意味する。 The active material supply device 300 is arranged in the internal space of the chamber 100 and supplies the powdered active material 22c onto the conveyed current collector 21B. The active material 22c means a plurality of electrode granulated particles including an electrode active material and a conductive aid.

例えば、活物質供給装置300は、スクリューコンベアやホッパ、シャッタ等を備える。この場合、活物質22cは、スクリューコンベアによって運搬され、ホッパの内部に収容される。また、ホッパは開口を有し、当該開口はシャッタによって開閉される。例えば、活物質供給装置300は、ホッパの開口の下方に枠体35の内部空間35aが位置する時にシャッタを制御して開口を開くことにより、集電体21B上であって枠体35の内部空間35aの位置に、活物質22cを供給することができる。 For example, the active material supply device 300 includes a screw conveyor, a hopper, a shutter, and the like. In this case, the active material 22c is conveyed by a screw conveyor and accommodated inside the hopper. Also, the hopper has an opening, and the opening is opened and closed by a shutter. For example, when the internal space 35a of the frame 35 is positioned below the opening of the hopper, the active material supply device 300 controls the shutter to open the opening, so that the inside of the frame 35 above the current collector 21B is exposed. The active material 22c can be supplied to the position of the space 35a.

ロールプレス400は、集電体21B上に供給された活物質22cを圧縮する。例えば、ロールプレス400は、一対の圧縮ローラと駆動部とを有する。一対の圧縮ローラの間には、集電体21B、枠体35、及び活物質22cが挟まれる。ロールプレス400は、第1の厚さの活物質22cを、第1の厚さよりも薄い第2の厚さに圧縮する。例えば、第2の厚さは、枠体35の厚さである。これにより、図1に示した活物質層22が形成される。 The roll press 400 compresses the active material 22c supplied onto the current collector 21B. For example, roll press 400 has a pair of compression rollers and a drive. Current collector 21B, frame 35, and active material 22c are sandwiched between the pair of compression rollers. Roll press 400 compresses first thickness active material 22c to a second thickness that is less than the first thickness. For example, the second thickness is the thickness of the frame 35 . Thereby, the active material layer 22 shown in FIG. 1 is formed.

上述した各種工程の後、帯状の集電体21Bを所定単位ごとに分割することで、集電体層21及び活物質層22を含んだ電極20が製造される。また、一対の電極20(すなわち、正極20a及び負極20b)を、セパレータ30を介して互いに向かい合わせに積層するなどして、単電池10が製造される。また、複数の単電池10を厚さ方向に積層し、複数の単電池10を外装体でシーリングするなどして、組電池が製造される。 After the various steps described above, the electrode 20 including the current collector layer 21 and the active material layer 22 is manufactured by dividing the strip-shaped current collector 21B into predetermined units. Also, the unit cell 10 is manufactured by laminating a pair of electrodes 20 (that is, the positive electrode 20a and the negative electrode 20b) so as to face each other with the separator 30 interposed therebetween. In addition, an assembled battery is manufactured by stacking a plurality of unit cells 10 in the thickness direction and sealing the plurality of unit cells 10 with an outer package.

次に、流入抑制機構500の具体例について説明する。まず、図4を用いて、流入抑制機構510について説明する。流入抑制機構510は、図2に示した流入抑制機構500の一例であり、チャンバ100の内部空間への空気の流入路を開閉可能なシャッタ512を含む。流入抑制機構510は、枠体35が通過する際に当該シャッタ512を開くように制御する。 Next, a specific example of the inflow suppression mechanism 500 will be described. First, the inflow suppression mechanism 510 will be described with reference to FIG. The inflow suppression mechanism 510 is an example of the inflow suppression mechanism 500 shown in FIG. The inflow suppressing mechanism 510 controls to open the shutter 512 when the frame 35 passes.

より具体的には、流入抑制機構510は、筒状スリット511と、シャッタ512と、アクチュエータ513と、センサ514とを含む。筒状スリット511は、チャンバ100のスリット101と連続する内部空間を有する。即ち、図4に示す場合、集電体21B及び枠体35は、チャンバ100のスリット101及び筒状スリット511を介して、チャンバ100の内部空間に搬送される。更に、筒状スリット511は、シャッタ512が差し込まれるスリットを有する。シャッタ512は、筒状スリット511の内部空間に差し込まれ、また、搬送方向Dと交差する方向に移動可能に構成される。例えば、図4に示す場合、シャッタ512は、アクチュエータ513によって上下方向に移動される。なお、アクチュエータ513は、例えばモータと駆動機構を有し、シャッタ512を図4に示す上下方向に移動させる。センサ514は、例えば光学センサであり、枠体35を感知する。より具体的には、センサ514は、シャッタ512に対する枠体35の位置を感知する。なお、筒状スリット511やシャッタ512の材質については特に限定されるものではなく、金属や樹脂などの任意の材料を選択することができる。 More specifically, inflow suppression mechanism 510 includes tubular slit 511 , shutter 512 , actuator 513 , and sensor 514 . Cylindrical slit 511 has an internal space that is continuous with slit 101 of chamber 100 . That is, in the case shown in FIG. 4, the current collector 21B and the frame 35 are transported into the internal space of the chamber 100 through the slit 101 and the cylindrical slit 511 of the chamber 100. As shown in FIG. Furthermore, the tubular slit 511 has a slit into which the shutter 512 is inserted. The shutter 512 is inserted into the inner space of the cylindrical slit 511 and configured to be movable in a direction intersecting the transport direction D. As shown in FIG. For example, in the case shown in FIG. 4, the shutter 512 is vertically moved by an actuator 513 . The actuator 513 has, for example, a motor and a driving mechanism, and moves the shutter 512 vertically as shown in FIG. The sensor 514 is, for example, an optical sensor and senses the frame 35 . More specifically, sensor 514 senses the position of frame 35 with respect to shutter 512 . Materials for the tubular slit 511 and the shutter 512 are not particularly limited, and any material such as metal or resin can be selected.

例えば、流入抑制機構510は、センサ514による感知結果に応じて、シャッタ512に対する枠体35の位置を判定する。そして、流入抑制機構510は、枠体35が通過する際にシャッタ512を開くように制御する。 For example, the inflow suppression mechanism 510 determines the position of the frame 35 with respect to the shutter 512 according to the sensing result of the sensor 514 . Then, the inflow suppressing mechanism 510 controls the shutter 512 to open when the frame 35 passes.

より具体的には、図4に示す場合、シャッタ512の位置には、枠体35の間の隙間が位置している。この場合、流入抑制機構510は、アクチュエータ513の動作を制御してシャッタ512を図4に示す下方向に移動させることにより、シャッタ512を閉じる。これにより、枠体35の間の隙間を通った空気がチャンバ100の内部空間に流入してしまうことが回避される。なお、シャッタ512の下方向への移動は、アクチュエータ513でなく、自由落下により実現されてもよい。一方で、枠体35がシャッタ512の直前まで搬送されたことをセンサ514によって感知した場合、流入抑制機構510は、アクチュエータ513の動作を制御してシャッタ512を図4に示す上方向に移動させることにより、シャッタ512を開く。 More specifically, in the case shown in FIG. 4, the gap between the frames 35 is positioned at the position of the shutter 512 . In this case, the inflow suppression mechanism 510 closes the shutter 512 by controlling the operation of the actuator 513 to move the shutter 512 downward as shown in FIG. This prevents the air passing through the gap between the frames 35 from flowing into the internal space of the chamber 100 . Note that the downward movement of the shutter 512 may be realized by free fall instead of the actuator 513 . On the other hand, when the sensor 514 detects that the frame 35 has been transported to just before the shutter 512, the inflow suppressing mechanism 510 controls the operation of the actuator 513 to move the shutter 512 upward as shown in FIG. thereby opening the shutter 512 .

このように、流入抑制機構510は、枠体35が通過する際にシャッタ512を開くように制御することで、チャンバ100の内部空間への空気の流入を抑制する。即ち、流入抑制機構510は、チャンバ100の内部空間への空気の流入路を、枠体35が通過する間は開き、枠体35が通過しない間は閉じることで、チャンバ100の内部空間への空気の流入を抑制することができる。 In this way, the inflow suppression mechanism 510 suppresses the inflow of air into the internal space of the chamber 100 by controlling the shutter 512 to open when the frame 35 passes. That is, the inflow suppressing mechanism 510 opens the air inflow path to the internal space of the chamber 100 while the frame 35 passes and closes it while the frame 35 does not pass, thereby preventing the air from entering the internal space of the chamber 100 . Inflow of air can be suppressed.

次に、図5A及び図5Bを用いて、流入抑制機構520について説明する。流入抑制機構520は、図2に示した流入抑制機構500の一例であり、チャンバ100の内部空間への空気の流入路を開閉可能なシャッタ522を含む。流入抑制機構510は、枠体35が通過する際に当該シャッタ522を開くように制御する。なお、図5A及び図5Bでは、枠体35が集電体21B上に隙間なく配置される場合を示すが、枠体35の間に隙間が設けられる場合であっても同様に適用が可能である。 Next, the inflow suppression mechanism 520 will be described with reference to FIGS. 5A and 5B. The inflow suppression mechanism 520 is an example of the inflow suppression mechanism 500 shown in FIG. The inflow suppression mechanism 510 controls to open the shutter 522 when the frame 35 passes. Note that FIGS. 5A and 5B show the case where the frame 35 is arranged on the current collector 21B without a gap, but the case where the frame 35 is provided with a gap can be similarly applied. be.

より具体的には、流入抑制機構520は、筒状スリット521と、シャッタ522とを含む。筒状スリット521は、チャンバ100のスリット101と連続する内部空間を有する。即ち、図5A及び図5Bに示す場合、集電体21B及び枠体35は、チャンバ100のスリット101及び筒状スリット521を介して、チャンバ100の内部空間に搬送される。 More specifically, inflow suppression mechanism 520 includes a tubular slit 521 and a shutter 522 . Cylindrical slit 521 has an internal space that is continuous with slit 101 of chamber 100 . 5A and 5B, the current collector 21B and the frame 35 are transported into the internal space of the chamber 100 through the slit 101 and the cylindrical slit 521 of the chamber 100. FIG.

なお、図5A及び図5Bには、集電体21B及び枠体35を挟み込むように配置されたローラを示している。当該ローラは、集電体21Bを下流側D1に搬送させるための搬送機構であってもよいし、集電体21Bが縒れないようにテンションを付加するテンションローラであってもよいし、集電体21Bと枠体35とを圧着させるための圧縮ローラであってもよい。スリット101の近傍にはこのようなローラが配置される場合があるところ、筒状スリット521の形状は、ローラの位置やサイズを考慮して適宜変更することができる。図示は省略したが、図4の筒状スリット511についても同様である。 5A and 5B show rollers arranged so as to sandwich the current collector 21B and the frame 35. As shown in FIG. The roller may be a transport mechanism for transporting the current collector 21B to the downstream side D1, or may be a tension roller that applies tension so that the current collector 21B is not twisted. A compression roller for pressing the electric body 21B and the frame 35 may be used. Although such a roller may be arranged near the slit 101, the shape of the cylindrical slit 521 can be appropriately changed in consideration of the position and size of the roller. Although not shown, the same applies to the tubular slit 511 in FIG.

シャッタ522は、筒状スリット521の内部空間に配置され、回転移動できるように構成される。図5A及び図5Bに示す場合、シャッタ522は、奥行き方向を回転軸として回転可能に構成される。なお、筒状スリット521やシャッタ522の材質については特に限定されるものではなく、金属や樹脂などの任意の材料を選択することができる。 The shutter 522 is arranged in the inner space of the tubular slit 521 and configured to be rotatable. In the case shown in FIGS. 5A and 5B, the shutter 522 is rotatable with the depth direction as the axis of rotation. Materials for the cylindrical slit 521 and the shutter 522 are not particularly limited, and arbitrary materials such as metal and resin can be selected.

流入抑制機構520は、枠体35が通過する際にシャッタ522を開くように制御する。より具体的には、図5Aに示す場合、シャッタ522の位置には枠体35の内部空間35aが位置しており、シャッタ522は、当該内部空間35aを遮蔽する。これにより、内部空間35aを通った空気がチャンバ100の内部空間に流入してしまうことが回避される。また、図5Bに示ように、シャッタ522の位置まで枠体35が搬送された場合、シャッタ522は、当該枠体35によって押し開かれる。 The inflow suppression mechanism 520 controls to open the shutter 522 when the frame 35 passes. More specifically, in the case shown in FIG. 5A, the internal space 35a of the frame 35 is located at the position of the shutter 522, and the shutter 522 shields the internal space 35a. This prevents the air passing through the internal space 35 a from flowing into the internal space of the chamber 100 . Further, as shown in FIG. 5B , when the frame 35 is transported to the position of the shutter 522 , the shutter 522 is pushed open by the frame 35 .

このように、流入抑制機構520は、枠体35が通過する際にシャッタ522を開くように制御することで、チャンバ100の内部空間への空気の流入を抑制する。即ち、流入抑制機構520は、チャンバ100の内部空間への空気の流入路を、枠体35が通過する間は開き、枠体35が通過しない間は閉じることで、チャンバ100の内部空間への空気の流入を抑制することができる。 In this way, the inflow suppression mechanism 520 suppresses the inflow of air into the internal space of the chamber 100 by controlling the shutter 522 to open when the frame 35 passes. That is, the inflow suppressing mechanism 520 opens the inflow path of air to the internal space of the chamber 100 while the frame 35 passes and closes it while the frame 35 does not pass, thereby preventing air from entering the internal space of the chamber 100 . Inflow of air can be suppressed.

次に、図6を用いて、筒状スリット530について説明する。筒状スリット530は、図2に示した流入抑制機構500の一例である。筒状スリット530は、チャンバ100のスリット101と連続する内部空間を有する。即ち、図6に示す場合、集電体21B及び枠体35は、チャンバ100のスリット101及び筒状スリット530を介して、チャンバ100の内部空間に搬送される。なお、筒状スリット530の材質については特に限定されるものではなく、金属や樹脂などの任意の材料を選択することができる。 Next, the tubular slit 530 will be described with reference to FIG. Cylindrical slit 530 is an example of inflow suppression mechanism 500 shown in FIG. Cylindrical slit 530 has an internal space that is continuous with slit 101 of chamber 100 . That is, in the case shown in FIG. 6, the current collector 21B and the frame 35 are transported into the internal space of the chamber 100 through the slit 101 and the cylindrical slit 530 of the chamber 100. As shown in FIG. The material of the tubular slit 530 is not particularly limited, and any material such as metal or resin can be selected.

筒状スリット530は、搬送される枠体35の少なくとも1つが、常時、スリット101及び筒状スリット530により形成される内部空間に位置するように、搬送方向Dの長さが調整される。具体的には、筒状スリット530は、集電体21B及び枠体35を含む部材シートにおいて、枠体35が配置される間隔と、枠体35の搬送方向Dの寸法との差よりも、スリット101及び筒状スリット530により形成される内部空間が搬送方向Dに長くなるように構成される。これにより、スリット101及び筒状スリット530により形成される内部空間から1つの枠体35が下流側D1に排出されるよりも前に、他の枠体35が上流側D2から当該内部空間に搬入され、少なくとも1つの枠体35が常時当該内部空間に位置することとなる。即ち、スリット101及び筒状スリット530により形成される内部空間は、少なくとも1つの枠体35によって常時閉じられた状態となる。このように、筒状スリット530は、チャンバ100の内部空間への空気の流入を抑制することができる。 The length of the cylindrical slit 530 in the conveying direction D is adjusted so that at least one of the conveyed frames 35 is always positioned in the internal space formed by the slit 101 and the cylindrical slit 530 . Specifically, in the member sheet including the current collector 21B and the frame 35, the cylindrical slit 530 is more The internal space formed by the slit 101 and the cylindrical slit 530 is configured to be elongated in the transport direction D. As shown in FIG. As a result, before one frame 35 is discharged to the downstream side D1 from the internal space formed by the slit 101 and the cylindrical slit 530, the other frame 35 is carried into the internal space from the upstream side D2. , and at least one frame 35 is always positioned in the internal space. That is, the internal space formed by the slit 101 and the cylindrical slit 530 is always closed by at least one frame 35 . Thus, the tubular slit 530 can suppress the inflow of air into the internal space of the chamber 100 .

図7は、スリット101の近傍にローラが配置される場合を示す。この場合、電池用電極製造装置1000は、筒状スリット540によって、筒状スリット530と同様にチャンバ100の内部空間への空気の流入を抑制することができる。即ち、筒状スリット540は、搬送される枠体35の少なくとも1つが、常時、スリット101及び筒状スリット540により形成される内部空間に位置するように、搬送方向Dの長さが調整される。
なお、図7に示すローラは、集電体21Bを下流側D1に搬送させるための搬送機構であってもよいし、集電体21Bが縒れないようにテンションを付加するテンションローラであってもよいし、集電体21Bと枠体35とを圧着させるための圧縮ローラであってもよい。また、筒状スリット540の材質については特に限定されるものではなく、金属や樹脂などの任意の材料を選択することができる。
FIG. 7 shows a case where rollers are arranged near the slit 101 . In this case, the battery electrode manufacturing apparatus 1000 can suppress the inflow of air into the internal space of the chamber 100 by the tubular slit 540 in the same manner as the tubular slit 530 . That is, the length of the cylindrical slit 540 in the conveying direction D is adjusted so that at least one of the conveyed frames 35 is always positioned in the internal space formed by the slit 101 and the cylindrical slit 540. .
The roller shown in FIG. 7 may be a transport mechanism for transporting the current collector 21B to the downstream side D1, or may be a tension roller that applies tension so that the current collector 21B is not twisted. Alternatively, it may be a compression roller for pressing the current collector 21B and the frame 35 together. Moreover, the material of the tubular slit 540 is not particularly limited, and any material such as metal or resin can be selected.

以上説明したように、実施形態の電池用電極製造装置1000は、チャンバ100と、スリット101と、流入抑制機構500とを少なくとも備える。チャンバ100は、内部空間が大気圧よりも減圧される。スリット101は、チャンバ100に形成され、帯状の集電体21Bを所定単位ごとに分割して形成される集電体層21と当該集電体層21の表面に載置される枠体35とを含む部材が複数連なった部材シートが、チャンバ100の外部空間から内部空間へ通過するための開口形状を有する。流入抑制機構500は、スリット101を介したチャンバ100の内部空間への空気の流入を抑制する。これにより、スリット101を介したチャンバ100内への空気の流入を抑制し、チャンバ100内の減圧状態を維持することができる。ひいては、電池用電極製造装置1000により製造される電極20の品質を向上させることができる。 As described above, the battery electrode manufacturing apparatus 1000 of the embodiment includes at least the chamber 100, the slit 101, and the inflow suppressing mechanism 500. The internal space of the chamber 100 is evacuated below atmospheric pressure. The slit 101 is formed in the chamber 100, and consists of a current collector layer 21 formed by dividing a strip-shaped current collector 21B into predetermined units and a frame 35 placed on the surface of the current collector layer 21. A member sheet in which a plurality of members including is continuous has an opening shape for passing from the outer space of the chamber 100 to the inner space. The inflow suppression mechanism 500 suppresses the inflow of air into the internal space of the chamber 100 through the slit 101 . As a result, the inflow of air into the chamber 100 via the slit 101 can be suppressed, and the pressure-reduced state in the chamber 100 can be maintained. As a result, the quality of the electrode 20 manufactured by the battery electrode manufacturing apparatus 1000 can be improved.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。更に、各実施形態で示した構成のそれぞれを適宜組み合わせて利用できることは言うまでもない。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment. is also included. Furthermore, it goes without saying that the configurations shown in the respective embodiments can be appropriately combined and used.

21B 集電体
22c 活物質
35 枠体
100 チャンバ
101 スリット
200 枠体供給装置
300 活物質供給装置
400 ロールプレス
500 流入抑制機構
510 流入抑制機構
511 筒状スリット
512 シャッタ
513 アクチュエータ
514 センサ
520 流入抑制機構
521 筒状スリット
522 シャッタ
530 筒状スリット
540 筒状スリット
1000 電池用電極製造装置
D 搬送方向
D1 下流側
D2 上流側
21B Current collector 22c Active material 35 Frame 100 Chamber 101 Slit 200 Frame supply device 300 Active material supply device 400 Roll press 500 Inflow suppression mechanism 510 Inflow suppression mechanism 511 Cylindrical slit 512 Shutter 513 Actuator 514 Sensor 520 Inflow suppression mechanism 521 Cylindrical slit 522 Shutter 530 Cylindrical slit 540 Cylindrical slit 1000 Battery electrode manufacturing apparatus D Conveying direction D1 Downstream side D2 Upstream side

Claims (6)

内部空間が大気圧よりも減圧されるチャンバと、
前記チャンバに形成され、帯状の基材フィルムを所定単位ごとに分割して形成される基材フィルム層と当該基材フィルム層の表面に載置されるマスク層とを含む部材が複数連なった部材シートが、前記チャンバの外部空間から前記内部空間へ通過するための開口形状を有するスリットと、
前記スリットを介した前記内部空間への空気の流入を抑制する流入抑制機構と
を備える、電池用電極製造装置。
a chamber whose interior space is decompressed below atmospheric pressure;
A member in which a plurality of members including a base film layer formed by dividing a belt-shaped base film into predetermined units and a mask layer placed on the surface of the base film layer are connected. a slit having an opening shape for a sheet to pass from the outer space of the chamber to the inner space;
an inflow suppression mechanism that suppresses an inflow of air into the internal space through the slit.
前記流入抑制機構は、前記スリットを介した前記内部空間への空気の流入路を開閉可能なシャッタを含み、前記マスク層が通過する際に当該シャッタを開くように制御する、請求項1に記載の電池用電極製造装置。 2. The inflow suppression mechanism according to claim 1, wherein the inflow suppression mechanism includes a shutter that can open and close an air inflow path to the internal space through the slit, and controls the shutter to open when the mask layer passes through. battery electrode manufacturing equipment. 前記流入抑制機構は、前記マスク層を感知可能なセンサを含み、前記マスク層が前記シャッタの直前まで搬送されたことを前記センサによって感知した際に前記シャッタを開くように制御する、請求項2に記載の電池用電極製造装置。 3. The inflow suppressing mechanism includes a sensor capable of sensing the mask layer, and controls the shutter to open when the sensor senses that the mask layer has been transported to just before the shutter. The battery electrode manufacturing apparatus according to 1. 前記シャッタは、搬送される前記マスク層によって押し開かれるように構成される、請求項2に記載の電池用電極製造装置。 3. The battery electrode manufacturing apparatus according to claim 2, wherein said shutter is configured to be pushed open by said conveyed mask layer. 前記流入抑制機構は、前記スリットと連続する内部空間を有する筒状スリットを含み、
前記部材シートは、前記スリット及び前記筒状スリットを介して、前記外部空間から前記内部空間に搬送される、請求項1~4のいずれか一項に記載の電池用電極製造装置。
The inflow suppression mechanism includes a cylindrical slit having an internal space continuous with the slit,
The battery electrode manufacturing apparatus according to any one of claims 1 to 4, wherein the member sheet is conveyed from the external space to the internal space via the slit and the cylindrical slit.
前記筒状スリットは、前記部材シートにおいて前記マスク層が配置される間隔と前記マスク層の搬送方向の寸法との差よりも、前記スリット及び前記筒状スリットにより形成される内部空間が当該搬送方向に長くなるように構成される、請求項5に記載の電池用電極製造装置。 In the cylindrical slit, the internal space formed by the slit and the cylindrical slit is larger than the difference between the interval at which the mask layer is arranged in the member sheet and the dimension of the mask layer in the conveying direction. 6. The battery electrode manufacturing apparatus according to claim 5, which is configured to be long.
JP2021062365A 2021-03-31 2021-03-31 Battery electrode manufacturing device Pending JP2022157886A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021062365A JP2022157886A (en) 2021-03-31 2021-03-31 Battery electrode manufacturing device
PCT/JP2022/016270 WO2022210966A1 (en) 2021-03-31 2022-03-30 Battery electrode manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021062365A JP2022157886A (en) 2021-03-31 2021-03-31 Battery electrode manufacturing device

Publications (1)

Publication Number Publication Date
JP2022157886A true JP2022157886A (en) 2022-10-14

Family

ID=83459607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021062365A Pending JP2022157886A (en) 2021-03-31 2021-03-31 Battery electrode manufacturing device

Country Status (2)

Country Link
JP (1) JP2022157886A (en)
WO (1) WO2022210966A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270574A (en) * 1985-09-21 1987-04-01 Kawasaki Steel Corp Differential pressure maintaining device
JPH03179449A (en) * 1989-12-08 1991-08-05 Hakutou Kk Method and laminator for laminating film on substrate
JPH0762536A (en) * 1993-08-27 1995-03-07 Kao Corp Film forming device
JP2003029416A (en) * 2001-07-11 2003-01-29 Toppan Printing Co Ltd Exposure method for photoresist film and exposure device for photoresist film
JP2009266526A (en) * 2008-04-24 2009-11-12 Panasonic Corp Method of forming inorganic thin-film pattern on metal base plate, and method of manufacturing electrode for lithium secondary battery
US11185915B2 (en) * 2019-08-30 2021-11-30 Applied Materials, Inc. Deposition of reactive metals with protection layer for high volume manufacturing

Also Published As

Publication number Publication date
WO2022210966A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
EP3211695B1 (en) Method and apparatus for manufacturing electrode for secondary battery
WO2022210966A1 (en) Battery electrode manufacturing device
WO2023171772A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
WO2023157931A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
WO2023100840A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
WO2023167339A1 (en) Apparatus for producing battery electrode and method for producing battery electrode
JP2023003069A (en) Battery electrode manufacturing device and method for manufacturing battery electrode
JP2023053789A (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023080523A (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023003092A (en) Battery electrode manufacturing device
WO2022270604A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
WO2022210965A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023051209A (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2022157900A (en) Active material supply device, manufacturing apparatus for electrode for battery, and active material supply method
WO2022211102A1 (en) Active material supply device, and method for manufacturing electrode for battery
JP2023003068A (en) Battery electrode manufacturing device and method for manufacturing battery electrode
JP2023053788A (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023148518A (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023128855A (en) Manufacturing device for battery electrode and manufacturing method for battery electrode
JP2023150230A (en) Battery electrode manufacturing device and battery electrode manufacturing method
WO2023190939A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023132707A (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023103563A (en) Battery electrode manufacturing device and battery electrode manufacturing method
WO2023190940A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2022157911A (en) Active material supply device, manufacturing apparatus for electrode for battery, and active material supply method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20240314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240329