WO2023190940A1 - Battery electrode manufacturing device and battery electrode manufacturing method - Google Patents

Battery electrode manufacturing device and battery electrode manufacturing method Download PDF

Info

Publication number
WO2023190940A1
WO2023190940A1 PCT/JP2023/013319 JP2023013319W WO2023190940A1 WO 2023190940 A1 WO2023190940 A1 WO 2023190940A1 JP 2023013319 W JP2023013319 W JP 2023013319W WO 2023190940 A1 WO2023190940 A1 WO 2023190940A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode composition
current collector
battery
active material
Prior art date
Application number
PCT/JP2023/013319
Other languages
French (fr)
Japanese (ja)
Inventor
英明 堀江
健一郎 榎
勇輔 中嶋
浩太郎 那須
Original Assignee
Apb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apb株式会社 filed Critical Apb株式会社
Publication of WO2023190940A1 publication Critical patent/WO2023190940A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C15/00Enclosures for apparatus; Booths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery electrode manufacturing apparatus and a battery electrode manufacturing method.
  • Lithium-ion batteries are high-capacity secondary batteries that have been used for a variety of purposes in recent years.
  • the electrode of a lithium ion battery is composed of an active material layer, a current collector layer, a separator, a frame that encloses the active material layer, and the like (see, for example, Patent Document 1).
  • the active material layer in a lithium ion battery can be formed, for example, by supplying an electrode composition to a strip-shaped base film and compressing it using a roll press or the like.
  • the electrode composition When supplying the electrode composition to the base film, it is preferable to supply the electrode composition accurately to a specified position on the base film, but it is possible that the electrode composition may spill from the specified position. Ru. Such excess electrode composition may cause malfunctions in lithium ion batteries.
  • Patent Document 2 describes detecting and suctioning a defective object to remove the defective object.
  • the behavior of the electrode composition used in the manufacture of lithium ion batteries is difficult to control, and even if the composition is simply suctioned, it may not be able to be completely removed from the base film.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a battery electrode manufacturing apparatus and a battery electrode manufacturing method that can remove excess electrode composition from a base film. shall be.
  • the battery electrode manufacturing apparatus includes a transport unit that transports a strip-shaped base film, and an electrode containing an active material at a specified position on the base film to be transported. a supply unit that supplies the composition; a detection unit that detects the electrode composition supplied to a position different from the specified position on the base film; and a detection unit that removes the electrode composition supplied to the different position. and a removing section.
  • excess electrode composition can be removed from the base film.
  • FIG. 1 is a schematic cross-sectional view of a single cell of a battery manufactured using the battery electrode manufacturing apparatus of the embodiment.
  • FIG. 2 is a schematic diagram of a battery electrode manufacturing apparatus according to an embodiment.
  • FIG. 3 is a diagram showing an example of the detection device of the embodiment.
  • FIG. 4A is a diagram illustrating an example of the removal device of the embodiment.
  • FIG. 4B is a diagram showing an example of the removal device of the embodiment.
  • FIG. 5 is a diagram showing an example of the removal device of the embodiment.
  • FIG. 6 is a diagram illustrating an example of the removal device of the embodiment.
  • FIG. 7A is a diagram illustrating an example of a removal device according to an embodiment.
  • FIG. 7B is a diagram illustrating an example of the removal device of the embodiment.
  • FIG. 8 is a diagram illustrating an example of the removal device of the embodiment.
  • FIG. 9 is a diagram illustrating an example of the removal device of the embodiment.
  • FIG. 10 is a
  • a lithium-ion battery is an assembled battery that is made into a module by combining multiple lithium-ion single cells (also referred to as single cells or battery cells), or a battery pack that is made by combining multiple such assembled batteries to adjust the voltage and capacity. used in form.
  • a lithium ion secondary battery is shown below, the type of secondary battery according to the present invention is not limited to a lithium ion secondary battery, and includes other secondary batteries.
  • the lithium ion battery in this specification refers to a secondary battery that uses lithium ions as charge carriers and is charged and discharged by movement of lithium ions between positive and negative electrodes.
  • the lithium ion battery (secondary battery) includes a battery using a liquid material as an electrolyte, and a battery using a solid material as an electrolyte (so-called all-solid-state battery).
  • the lithium ion battery in this embodiment includes a battery having a metal foil (metal current collector foil) as a current collector, and instead of the metal foil, the lithium ion battery includes a so-called resin current collector made of resin to which a conductive material is added. Including a battery with a body.
  • the lithium ion battery in this embodiment includes one in which an electrode is formed by applying a positive electrode or negative electrode active material or the like to a positive electrode or negative electrode current collector using a binder, and in the case of a bipolar type battery, is a bipolar electrode that has a positive electrode layer by applying a positive active material etc. using a binder to one side of the current collector, and a negative electrode layer by applying a negative active material etc. using a binder to the opposite side. Including those made up of.
  • the method of stacking the assembled battery is arbitrary.
  • a single cell having a positive electrode resin current collector on the first surface and a negative electrode resin current collector on the second surface is stacked on the first surface (positive electrode side) and the first surface (positive electrode side) of a pair of adjacent single cells. It may be a stacked battery in which a plurality of batteries are stacked in series so that the two sides (negative electrode side) are adjacent to each other.
  • a single cell in which a positive electrode layer is provided on one side of a single resin current collector and a negative electrode layer is provided on the other side of the resin current collector can be used as a stacked battery in which multiple cells are stacked with an electrolyte layer interposed in between. good.
  • FIG. 1 is a schematic cross-sectional view of a single cell 10. It is possible to produce the above assembled battery by combining a plurality of single cells 10.
  • the single cell 10 includes a positive electrode 20a and a negative electrode 20b as two electrodes 20 (battery electrodes), and a separator 30.
  • the separator 30 is placed between the positive electrode 20a and the negative electrode 20b.
  • a plurality of single cells 10 are stacked with the positive electrode 20a and the negative electrode 20b facing in the same direction.
  • the separator 30 holds an electrolyte. Thereby, separator 30 functions as an electrolyte layer.
  • the separator 30 is arranged between the electrode active material layers 22 of the positive electrode 20a and the negative electrode 20b, and prevents them from coming into contact with each other. Thereby, the separator 30 functions as a partition between the positive electrode 20a and the negative electrode 20b.
  • Examples of the electrolyte held in the separator 30 include an electrolytic solution or a gel polymer electrolyte. By using these electrolytes, high lithium ion conductivity is ensured.
  • Examples of the form of the separator include a porous sheet separator made of a polymer or fiber that absorbs and retains the electrolyte, a nonwoven fabric separator, and the like.
  • the positive electrode 20a and the negative electrode 20b each include a current collector 21, an electrode active material layer 22, and a frame 35.
  • the electrode active material layer 22 and the current collector 21 are arranged in this order from the separator 30 side.
  • the frame 35 is frame-shaped (annular).
  • the frame 35 surrounds the electrode active material layer 22 .
  • the frame 35 of the positive electrode 20a and the frame 35 of the negative electrode 20b are welded together and integrated.
  • the electrode active material layers 22 of the positive electrode 20a and the negative electrode 20b are to be distinguished from each other, they will be referred to as a positive electrode active material layer 22a and a negative electrode active material layer 22b, respectively.
  • positive electrode current collector As the positive electrode current collector constituting the positive electrode current collector layer 21a, a current collector used in a known lithium ion cell can be used, for example, a current collector made of a known metal current collector, a conductive material, and a resin. (Resin current collectors described in JP 2012-150905 A, WO 2015/005116, etc.) can be used.
  • the positive electrode current collector constituting the positive electrode current collector layer 21a is preferably a resin current collector from the viewpoint of battery characteristics and the like.
  • metal current collectors include copper, aluminum, titanium, nickel, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, alloys containing one or more of these metals, and stainless steel alloys.
  • a substrate made of a material other than the above-described metal material on which the above-mentioned metal material is formed by sputtering, electrodeposition, coating, or the like may be used as the metal current collector.
  • the resin current collector preferably contains a conductive filler and a matrix resin.
  • the matrix resin include, but are not particularly limited to, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), and the like.
  • the conductive filler is not particularly limited as long as it is selected from materials having conductivity.
  • the conductive filler may be a conductive fiber having a fibrous shape.
  • the resin current collector may contain other components (dispersant, crosslinking accelerator, crosslinking agent, coloring agent, ultraviolet absorber, plasticizer, etc.). Further, a plurality of resin current collectors may be stacked and used, or a resin current collector and a metal foil may be stacked and used.
  • the thickness of the positive electrode current collector layer 21a is not particularly limited, but is preferably 5 to 150 ⁇ m. When a plurality of resin current collectors are laminated and used as the positive electrode current collector layer 21a, the total thickness after lamination is preferably 5 to 150 ⁇ m.
  • the positive electrode current collector layer 21a can be obtained, for example, by molding a conductive resin composition obtained by melt-kneading a matrix resin, a conductive filler, and an optional filler dispersant into a film by a known method. I can do it.
  • the positive electrode active material layer 22a is preferably a non-bound body of a mixture containing the positive electrode active material.
  • a non-bound body means that the position of the positive electrode active material in the positive electrode active material layer is not fixed, and the positive electrode active materials and the positive electrode active material and the current collector are not irreversibly fixed. means.
  • the positive electrode active material layer 22a is a non-binding body, the positive electrode active materials are not irreversibly fixed to each other, and therefore can be separated without mechanically destroying the interface between the positive electrode active materials. This is preferable because even when stress is applied to the material layer 22a, the movement of the positive electrode active material prevents the destruction of the positive electrode active material layer 22a.
  • the positive electrode active material layer 22a which is a non-binding body, can be obtained by a method such as changing the positive electrode active material layer 22a to a positive electrode active material layer 22a containing a positive electrode active material and an electrolyte and not containing a binder.
  • binder refers to a chemical that cannot reversibly fix the positive electrode active materials to each other or the positive electrode active material and the current collector, and includes starch, polyvinylidene fluoride, polyvinyl alcohol, carboxylic acid, etc.
  • Examples include known solvent-dried binders for lithium ion batteries such as methylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene and polypropylene. These binders are used by being dissolved or dispersed in a solvent, and when the solvent is volatilized or distilled off, the surface becomes solid without exhibiting stickiness, so that the positive electrode active materials can be bonded to each other and the positive electrode active material and the current collector. cannot be fixed reversibly.
  • solvent-dried binders for lithium ion batteries such as methylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene and polypropylene. These binders are used by being dissolved or dispersed in a solvent, and when the solvent is volatilized or distilled off, the surface becomes solid without exhibiting stickiness, so that the positive electrode active materials can be bonded to
  • positive electrode active materials include, but are not particularly limited to, composite oxides of lithium and transition metals, composite oxides containing two types of transition metal elements, composite oxides containing three or more types of metal elements, etc. .
  • the positive electrode active material may be a coated positive electrode active material in which at least a portion of the surface thereof is covered with a coating material containing a polymer compound.
  • a coating material containing a polymer compound When the periphery of the positive electrode active material is covered with a coating material, volume change of the positive electrode is alleviated, and expansion of the positive electrode can be suppressed.
  • polymer compound constituting the coating material those described as active material coating resins in JP2017-054703A, WO2015/005117, etc. can be suitably used.
  • the coating material may contain a conductive agent.
  • the conductive agent the same conductive filler as that contained in the positive electrode current collector layer 21a can be suitably used.
  • the positive electrode active material layer 22a may contain adhesive resin.
  • the adhesive resin for example, a non-aqueous secondary battery active material coating resin described in JP 2017-054703 A is mixed with a small amount of an organic solvent to adjust its glass transition temperature to below room temperature; Also, those described as adhesives in JP-A-10-255805 can be suitably used.
  • Adhesive resin is a resin that does not solidify even if the solvent component is evaporated and dried, but has adhesive properties (the property of adhering by applying slight pressure without using water, solvent, heat, etc.) means.
  • a solution-drying electrode binder used as a binder is one that dries and solidifies by volatilizing the solvent component, thereby firmly adhering and fixing active materials to each other. Therefore, the above-mentioned binder (solution-dried electrode binder) and adhesive resin are different materials.
  • the positive electrode active material layer 22a may contain an electrolytic solution containing an electrolyte and a nonaqueous solvent.
  • electrolyte those used in known electrolytes can be used.
  • non-aqueous solvent those used in known electrolytic solutions (for example, phosphoric acid esters, nitrile compounds, etc., mixtures thereof, etc.) can be used.
  • a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) or a mixture of ethylene carbonate (EC) and propylene carbonate (PC) can be used.
  • the positive electrode active material layer 22a may contain a conductive additive.
  • a conductive material similar to the conductive filler contained in the positive electrode current collector layer 21a can be suitably used.
  • the thickness of the positive electrode active material layer 22a is not particularly limited, but from the viewpoint of battery performance, it is preferably 150 to 600 ⁇ m, more preferably 200 to 450 ⁇ m.
  • the positive electrode composition supplied to form the positive electrode active material layer 22a may be a wet powder containing a positive electrode active material and a non-aqueous electrolyte. In this case, it is more preferable that the wet powder is in a pendular state or a funicular state.
  • the proportion of the non-aqueous electrolyte in the wet powder is not particularly limited, but in the case of a positive electrode, the proportion of the non-aqueous electrolyte in the whole wet powder should be 0.5 to 0.5 to 100% in order to obtain a pendular state or a funicular state.
  • the content is preferably 15% by weight.
  • the negative electrode current collector layer 21b is preferably a resin current collector from the viewpoint of battery characteristics and the like.
  • the thickness of the negative electrode current collector layer 21b is not particularly limited, but is preferably 5 to 150 ⁇ m.
  • the negative electrode active material layer 22b is preferably a non-bound body of a mixture containing negative electrode active materials.
  • the negative electrode active material for example, carbon-based materials, silicon-based materials, mixtures thereof, etc. can be used, but there is no particular limitation.
  • the negative electrode active material may be a coated negative electrode active material in which at least a portion of the surface thereof is covered with a coating material containing a polymer compound.
  • a coating material containing a polymer compound When the periphery of the negative electrode active material is coated with a coating material, the volume change of the negative electrode is alleviated, and expansion of the negative electrode can be suppressed.
  • the same coating material as the coating material constituting the coated positive electrode active material can be suitably used.
  • the negative electrode active material layer 22b contains an electrolyte solution containing an electrolyte and a nonaqueous solvent. Regarding the composition of the electrolytic solution, an electrolytic solution similar to that contained in the positive electrode active material layer 22a can be suitably used.
  • the negative electrode active material layer 22b may contain a conductive additive.
  • a conductive material similar to the conductive filler contained in the positive electrode active material layer 22a can be suitably used.
  • the negative electrode active material layer 22b may contain adhesive resin.
  • the adhesive resin the same adhesive resin as the optional component of the positive electrode active material layer 22a can be suitably used.
  • the thickness of the negative electrode active material layer 22b is not particularly limited, but from the viewpoint of battery performance, it is preferably 150 to 600 ⁇ m, more preferably 200 to 450 ⁇ m.
  • the negative electrode composition supplied to form the negative electrode active material layer 22b may be a wet powder containing a negative electrode active material and a non-aqueous electrolyte. In this case, it is more preferable that the wet powder is in a pendular state or a funicular state.
  • the proportion of the non-aqueous electrolyte in the wet powder is not particularly limited, but in the case of a negative electrode, the proportion of the non-aqueous electrolyte should be 0.5 to 0.5 to the total wet powder in order to obtain a pendular state or a funicular state.
  • the content is preferably 25% by weight.
  • Examples of the electrolyte held in the separator 30 include an electrolytic solution or a gel polymer electrolyte. By using these electrolytes, the separator 30 ensures high lithium ion conductivity.
  • the form of the separator 30 includes, for example, a porous film made of polyethylene or polypropylene, but is not particularly limited.
  • As the separator a sulfide-based or oxide-based inorganic solid electrolyte, a polymer-based organic solid electrolyte, or the like can also be used. By applying a solid electrolyte, an all-solid-state battery can be constructed.
  • the frame 35 is not particularly limited as long as it is made of a material that is durable against the electrolytic solution, but for example, a polymer material is preferable, and a thermosetting polymer material is more preferable.
  • the material constituting the frame 35 may be any material as long as it has insulation properties, sealing properties (liquid tightness), heat resistance under the battery operating temperature, etc., and a resin material is preferably employed. More specifically, examples of the frame 35 include epoxy resin, polyolefin resin, polyurethane resin, polyvinylidene fluoride resin, etc. Epoxy resin is preferred because it is highly durable and easy to handle. preferable.
  • a battery electrode manufacturing apparatus and a battery electrode manufacturing method (hereinafter simply referred to as the manufacturing method) of the present embodiment will be described.
  • a positive electrode 20a and a negative electrode 20b are first manufactured.
  • the method for manufacturing the positive electrode 20a and the method for manufacturing the negative electrode 20b differ mainly in the electrode active material contained in the electrode active material layer 22.
  • methods for manufacturing the positive electrode 20a and the negative electrode 20b will be described together.
  • FIG. 2 is a schematic diagram of the battery electrode manufacturing apparatus 1000.
  • the battery electrode manufacturing apparatus 1000 includes a chamber 100, a transport device 200, an electrode composition supply device 300, a frame supply device 400, a press device 500, a detection device 600, and a removal device 700.
  • belt-shaped current collector 21B is demonstrated as an example.
  • the chamber 100 is a room whose interior can be maintained at a pressure lower than atmospheric pressure.
  • the pressure inside the chamber 100 is reduced below atmospheric pressure by a pressure reduction pump (not shown).
  • the standard atmospheric pressure is approximately 1013 hPa (approximately 105 Pa).
  • a current collector roll 21R is arranged outside the chamber 100, and a band-shaped current collector 21B pulled out from the current collector roll 21R is conveyed into the chamber 100 through a slit.
  • the strip-shaped current collector 21B may be referred to as a current collector 21B.
  • the current collector 21B is the current collector 21 described above before being cut into a predetermined shape.
  • the current collector 21B is transported at a predetermined speed along the transport direction Da.
  • the direction in which the current collector 21B is conveyed is referred to as the downstream side Da1
  • the opposite direction is referred to as the upstream side Da2.
  • the external space of the chamber 100 in which the current collector roll 21R is arranged may be at normal pressure or may be reduced in pressure by a chamber different from the chamber 100.
  • the upper side in the vertical direction Db is Db1
  • the lower side in the vertical direction Db is Db2.
  • the direction perpendicular to the transport direction Da and the vertical direction Db corresponds to the width direction of the current collector 21B and the electrode composition 22c placed on the current collector 21B.
  • the transport device 200 transports the current collector 21B to the downstream side Da1 in the transport direction Da.
  • the transport device 200 transports the current collector 21B to the downstream side Da1 in the transport direction Da by rotating the current collector 21B while sandwiching the current collector 21B between two rollers. Thereby, the transport device 200 transports the current collector 21B into the chamber 100 through the slit.
  • the conveyance device 200 conveys the current collector 21B to the downstream side Da1 in the conveyance direction Da using a belt conveyor that supports the current collector 21B from below.
  • the transportation device 200 transports the current collector 21B on which the electrode composition 22c is placed.
  • the conveyance device 200 conveys the current collector 21B on which the frame body 35 and the electrode composition 22c are placed.
  • the transport device 200 is an example of a transport section.
  • the electrode composition supply device 300 supplies the electrode composition 22c onto the current collector 21B transported within the chamber 100.
  • the electrode composition 22c is a material containing at least an active material (a positive electrode active material or a negative electrode active material).
  • the electrode active material layer 22 (positive electrode active material layer 22a, negative electrode active material layer 22b) is formed by compressing the electrode composition 22c using a press device 500, which will be described later.
  • the electrode composition supply device 300 is composed of a hopper and a shutter.
  • the electrode composition supply device 300 holds the electrode composition 22c inside the hopper 1 having an opening on the lower side Db2 of the vertical direction Db, and also serves as a current collector by opening and closing the opening of the hopper with a shutter.
  • a predetermined amount of electrode composition 22c can be supplied to a predetermined position on 21B.
  • the electrode composition supply device 300 is an example of a supply section.
  • the frame supply device 400 supplies the frame 35 to the current collector 21B being transported.
  • the frame supply device 400 includes a robot arm and places the frame 35 manufactured in advance at a predetermined position on the current collector 21B being transported.
  • the frame supply device 400 may manufacture the frame 35 on the current collector 21B.
  • the frame 35 is formed on the current collector 21B by using the current collector 21B as a base material and discharging or applying a predetermined material in a predetermined shape onto the current collector 21B using a dispenser, coater, etc. can be formed.
  • the press device 500 compresses the electrode composition 22c supplied to the current collector 21B.
  • the press device 500 has an upper roller 501 and a lower roller 502, as shown in FIG.
  • the press device 500 uses an upper roller 501 and a lower roller 502 to sandwich and compress the electrode composition 22c supplied to the current collector 21B. That is, the press device 500 performs roll pressing on the electrode composition 22c.
  • the separator 30 shown in FIG. 1 is further supplied, and the single cell 10 is produced.
  • the separator 30 may be supplied continuously to the current collector 21B and the electrode composition 22c transported along the transport direction Da, or the current collector 21B and the electrode composition 22c may be supplied in predetermined units. After dividing, the process may be performed for each leaf.
  • the electrode composition 22c when the electrode composition 22c is supplied by the electrode composition supply device 300 described above, it is preferable to supply the electrode composition 22c accurately to a prescribed position on the current collector 21B; There may also be cases where the electrode composition 22c spills. Such excess electrode composition 22c may cause problems with the lithium ion battery, so it is preferable to remove it.
  • the behavior of the electrode composition 22c is difficult to control, and even if the electrode composition 22c is simply tried to be sucked, it may not be completely removed from the current collector 21B.
  • the electrode composition 22c may be a wet powder containing an electrode active material (positive electrode active material, negative electrode active material) and an electrolyte (non-aqueous electrolyte). Since the wet powder adheres to the current collector 21B, it is particularly difficult to remove it.
  • the excess electrode composition 22c can be removed from the current collector 21B by the detection device 600 and removal device 700 described below.
  • a camera 610 is illustrated as an example of the detection device 600.
  • the camera 610 photographs the current collector 21B on which the electrode composition 22c is placed, and performs image recognition on the photographed image, thereby detecting the electrode composition 22c supplied to a position different from the specified position.
  • the electrode composition 22c supplied to a position different from the prescribed position is also referred to as an electrode composition 22c'. That is, the electrode composition 22c' is an excess electrode composition 22c and is a target of the removal process by the removal device 700.
  • the detection device 600 is not limited to the camera 610, and any modification is possible as long as it can detect the electrode composition 22c'.
  • detection device 600 may be a depth sensor.
  • the detection device 600 analyzes the surface shape of the current collector 21B to detect the electrode composition 22c'.
  • the detection device 600 may include a light source and detect the electrode composition 22c' from the intensity of light transmitted through the current collector 21B. That is, since the light is attenuated by the presence of the electrode composition 22c', the presence and position of the electrode composition 22c' can be detected by obtaining the intensity distribution of the light transmitted through the current collector 21B. .
  • a removal device 710 including a rail 711, an arm 712, a suction tool 713, and a hose 714 is shown.
  • the removal device 710 removes the electrode composition 22c' supplied to a position different from the prescribed position according to the detection result by the detection device 600.
  • the arm 712 holds the suction tool 713 and the hose 714, and is configured to be movable along the rail 711 in the transport direction Da.
  • the arm 712 is on the downstream side Da1 of the detection device 600 and waits at an end portion of the upstream side Da2 in the transport direction Da within the movable range along the rail 711.
  • the electrode composition 22c' is detected by the detection device 600
  • the detected electrode composition 22c' is transported downstream Da1 to the waiting arm 712 position after a certain period of time.
  • the arm 712 starts moving toward the downstream side Da1 along the rail 711.
  • the arm 712 moves toward the downstream side Da1 at the same speed as the electrode composition 22c' so that the position in the transport direction Da matches the electrode composition 22c'.
  • the electrode composition 22c' is sucked from the tip of the suction tool 713 and discharged through the hose 714.
  • the tip of the suction tool 713 has a constricted shape as shown in FIG. 4B. That is, the suction tool 713 exerts a strong suction force instead of narrowing the target range of suction, and can remove the electrode composition 22c'. Since the position of the electrode composition 22c' can be ascertained by the detection device 600, it is possible to target and suction the electrode composition 22c' even if the target range of suction becomes narrow.
  • the position in the transport direction Da can be adjusted by moving the arm 712 along the rail 711. That is, the removal device 710 removes the electrode composition 22c' supplied to a position different from the prescribed position while moving in synchronization with the current collector 21B being transported.
  • the arm 712 is a robot arm as shown in FIG. 4A
  • the position in the transport direction Da may be finely adjusted by driving the joints of the robot arm.
  • the tip angle of the suction tool 713 may be configured to be changeable to finely adjust the position in the conveyance direction Da.
  • the joints of the robot arm are driven to adjust the position of the tip of the suction tool 713 and the electrode composition 22c' in the vertical direction Db or in the width direction.
  • the tip angle of the suction tool 713 may be configured to be changeable to finely adjust the position in the width direction.
  • FIG. 5 Another example of the removal device 700 is shown in FIG.
  • a removal device 720 including a rotating brush 721, a cup 722, and a suction tool 723 is shown.
  • FIG. 5 a case will be described in which the electrode composition 22c' is spilled over a wide area on the current collector 21B.
  • the rotating brush 721 wipes and removes the electrode composition 22c' spilled onto the current collector 21B.
  • the electrode composition 22c' wiped off by the rotating brush 721 remains attached to the rotating brush 721 or is rolled up into the cup 722.
  • the suction tool 723 suctions the electrode composition 22c' rolled up by the rotating brush 721 together with the gas in the cup 722.
  • the electrode composition 22c' attached to the current collector 21B cannot be removed even if the electrode composition 22c' is simply suctioned, but by directly wiping the electrode composition 22c' with the rotating brush 721, it can be removed from the current collector 21B. can do.
  • the rotating brush 721, cup 722, and suction tool 723 shown in FIG. 5 may be held by the rail 711 and arm 712 shown in FIG. 4A to control their positions with respect to the electrode composition 22c'.
  • FIG. 6 Another example of the removal device 700 is shown in FIG.
  • a removal device 730 including a moving belt 731, a brush 732, a suction tool 733, and a cup 734 is shown.
  • FIG. 6 a case will be described in which the electrode composition 22c' is spilled over a wide area on the current collector 21B.
  • the moving belt 731 While rotating in the direction shown by the arrow in FIG. 6, the moving belt 731 adsorbs the electrode composition 22c' spilled onto the current collector 21B and removes it from the current collector 21B. That is, the moving belt 731 wipes and removes the electrode composition 22c' supplied to a position different from the prescribed position.
  • the brush 732 scrapes off the electrode composition 22c' adhering to the moving belt 731.
  • the electrode composition 22c' scraped off from the moving belt 731 is rolled up into a cup 734 and sucked together with the gas in the cup 734 by a suction tool 733.
  • the electrode composition 22c' attached to the current collector 21B cannot be removed even if the electrode composition 22c' is simply suctioned, but by directly wiping the electrode composition 22c' with the moving belt 731, it can be removed from the current collector 21B. can do.
  • the moving belt 731, brush 732, suction tool 733, and cup 734 shown in FIG. 6 may be held by the rail 711 and arm 712 shown in FIG. 4A to control their positions with respect to the electrode composition 22c'.
  • FIGS. 7A and 7B Other examples of the removal device 700 are shown in FIGS. 7A and 7B.
  • 7A and 7B as an example of the removal device 700, a removal device 740 including a gripping arm 741 and a suction tool 742 is shown. Note that in FIGS. 7A and 7B, a case will be described in which a small lump of the electrode composition 22c' is spilled onto the current collector 21B.
  • the gripping arm 741 grips the electrode composition 22c' supplied to a position different from the specified position and removes it from the current collector 21B.
  • the electrode composition 22c' held by the holding arm 741 is sucked from the tip of the suction tool 742 and discharged to the outside. In some cases, the electrode composition 22c' attached to the current collector 21B cannot be removed even if the electrode composition 22c' is simply suctioned. Can be removed from above.
  • the gripping arm 741 and suction tool 742 shown in FIGS. 7A and 7B may be held by the rail 711 and arm 712 shown in FIG. 4A to control their position with respect to the electrode composition 22c'.
  • FIG. 8 Another example of the removal device 700 is shown in FIG. In FIG. 8, as an example of the removal device 700, a removal device 750 including a blower 751 and a suction tool 752 is shown.
  • the blower 751 blows gas against the electrode composition 22c' to move it in the direction of the suction tool 752.
  • the suction tool 752 suctions the electrode composition 22c' and discharges it to the outside. That is, the removing device 750 in FIG. 8 removes the electrode composition 22c from above the current collector 21B by sucking the electrode composition 22c' while blowing gas onto the electrode composition 22c supplied to a position different from the specified position. 22c' is removed.
  • the electrode composition 22c' attached to the current collector 21B cannot be removed by the suction tool 752 alone, but the electrode composition 22c' may be pulled off from the current collector 21B using the blower 751 and then sucked. This makes it possible to remove the electrode composition 22c'.
  • the gas blown onto the electrode composition 22c' by the blower 751 may be air or an inert gas such as nitrogen.
  • the blower 751 and suction tool 752 shown in FIG. 8 may be held by the rail 711 and arm 712 shown in FIG. 4A to control their positions with respect to the electrode composition 22c'.
  • FIG. 9 Another example of the removal device 700 is shown in FIG. In FIG. 9, a removing device 760 including a blower 761 and a cup 762 is shown as an example of the removing device 700.
  • the blower 761 blows gas onto the electrode composition 22c'.
  • the electrode composition 22c' to which gas has been blown by the blower 761 is rolled up into the cup 762 and discharged to the outside together with the gas in the cup 762. That is, the removing device 760 of FIG. 9 covers the electrode composition 22c' supplied to a position different from the prescribed position with a cup 762, and removes the electrode composition 22c' while blowing gas against the electrode composition 22c' within the cup 762.
  • the electrode composition 22c' is removed from the current collector 21B by suctioning the electrode composition 22c'.
  • the electrode composition 22c' attached to the current collector 21B cannot be removed by simply suctioning it, but by pulling the electrode composition 22c' off the current collector 21B with the blower 761 and then sucking the electrode composition 22c', the electrode composition 22c' can be removed. It becomes possible to remove composition 22c'. Further, by blowing gas onto the electrode composition 22c' within the cup 762, it is possible to avoid a situation where the electrode composition 22c' is blown away without being collected. Note that the gas blown onto the electrode composition 22c' by the blower 761 may be air or an inert gas such as nitrogen. Alternatively, the blower 761 and cup 762 shown in FIG. 9 may be held by the rail 711 and arm 712 shown in FIG. 4A to control their position with respect to the electrode composition 22c'.
  • FIG. 10 Another example of the removal device 700 is shown in FIG. In FIG. 10, as an example of the removal device 700, a removal device 770 including a blower 771 and a cup 772 is shown.
  • the blower 771 blows gas onto the electrode composition 22c'.
  • the electrode composition 22c' to which gas has been blown by the blower 771 is rolled up into the cup 772 and discharged to the outside together with the gas in the cup 772. That is, the removing device 770 in FIG. 10 covers the electrode composition 22c' supplied to a position different from the prescribed position with a cup 772, and removes the electrode composition 22c' while blowing gas against the electrode composition 22c' within the cup 772.
  • the electrode composition 22c' is removed from the current collector 21B by suctioning the electrode composition 22c'.
  • the electrode composition 22c' attached to the current collector 21B cannot be removed by simply suctioning it, but by pulling the electrode composition 22c' off the current collector 21B with the blower 771 and then sucking the electrode composition 22c', the electrode composition 22c' can be removed. It becomes possible to remove composition 22c'. Furthermore, by blowing gas onto the electrode composition 22c' within the cup 772, it is possible to avoid a situation where the electrode composition 22c' is blown away without being collected. Note that the gas blown onto the electrode composition 22c' by the blower 771 may be air or an inert gas such as nitrogen.
  • the blower 771 and cup 772 shown in FIG. 10 may be held by the rail 711 and arm 712 shown in FIG. 4A to control their position with respect to the electrode composition 22c'.
  • the cup 772 may include a film pressing part 772a, as shown in FIG.
  • the relative positions of the blower 771 and cup 772 with respect to the current collector 21B are fixed by the movement of the rail 711, arm 712, etc., but there is a limit to mechanical accuracy, and it is assumed that small wobbles will occur. be done.
  • the film pressing portion 772a contacts the current collector 21B, the relative positions of the blower 771 and the cup 772 with respect to the current collector 21B can be stabilized.
  • the strip-shaped base film on which the electrode composition 22c is placed is the strip-shaped current collector 21B, but the present invention is not limited to this.
  • a strip-shaped separator sheet or a strip-shaped release film may be used as the base film.
  • the above-described removal device 700 can remove excess electrode composition 22c' from the separator sheet or release film.
  • the separator sheet 30 shown in FIG. 1 can be formed by trimming the band-shaped separator sheet later.
  • the electrode composition 22c is supplied on the separator sheet
  • the current collector 21B is supplied on the surface of the electrode composition 22c opposite to the separator sheet
  • the separator sheet and the current collector are By trimming the body 21B into a predetermined shape and further supplying the frame 35, the positive electrode 20a or the negative electrode 20b can be produced.
  • the electrode composition 22c is supplied on the release film, the current collector 21B is supplied to the surface of the electrode composition 22c opposite to the release film, and the release film is After collecting the film, a separator sheet is supplied to the surface opposite to the current collector 21B, the current collector 21B and the separator sheet are trimmed into a predetermined shape, and a frame 35 is further supplied to form the positive electrode 20a.
  • the negative electrode 20b can be produced. Note that instead of supplying the separator sheet and trimming it later, the separator 30 may be supplied to the electrode composition 22c.
  • the electrode composition 22c is supplied onto the release film, a separator sheet is supplied to the surface of the electrode composition 22c opposite to the release film, and after the release film is collected, the surface opposite to the separator sheet is By supplying the current collector 21B, trimming the separator sheet and the current collector 21B into a predetermined shape, and further supplying the frame 35, the positive electrode 20a or the negative electrode 20b can be produced. Note that instead of supplying the current collector 21B and trimming it later, the current collector 21 trimmed into a predetermined shape may be supplied to the electrode composition 22c.
  • the specific configuration is not limited to this embodiment, and modifications, combinations, deletions, etc. of the configuration within the scope of the gist of the present invention, etc. Also included. Furthermore, it goes without saying that the configurations shown in each embodiment can be used in appropriate combinations.
  • the lithium ion secondary battery when using the lithium ion secondary battery exemplified in the above explanation, it includes a battery that uses a liquid material as an electrolyte, and a battery that uses a solid material as an electrolyte (a so-called all-solid-state battery).
  • the battery in this embodiment includes a battery having a metal foil (metal current collector foil) as a current collector, and a so-called resin current collector made of resin to which a conductive material is added instead of the metal foil. Including batteries with.
  • a resin current collector is used as a resin current collector for bipolar electrodes, a positive electrode is formed on one surface of the resin current collector and a negative electrode is formed on the other surface to form a bipolar electrode. It may be something that has been done.
  • the batteries in this embodiment include those in which electrodes are formed by applying a positive electrode or negative electrode active material or the like to a positive electrode or negative electrode current collector using a binder, and in the case of a bipolar type battery, A bipolar electrode is constructed by applying a positive electrode active material etc. using a binder to one side of the current collector to form a positive electrode layer, and applying a negative electrode active material etc. using a binder to the opposite side to form a negative electrode layer. Including those who did.

Abstract

This battery electrode manufacturing device (1000) comprises: a conveyor unit (200) for conveying a band-shaped base material film; a supply unit (300) for supplying an electrode composition including an active material to a prescribed position on the conveyed base material film; a detection unit (600) for detecting the electrode composition supplied to a different position than the prescribed position on the base material film; and a removal unit (700) for removing the electrode composition supplied to the different position.

Description

電池用電極製造装置及び電池用電極製造方法Battery electrode manufacturing device and battery electrode manufacturing method
 本発明は、電池用電極製造装置及び電池用電極製造方法に関する。 The present invention relates to a battery electrode manufacturing apparatus and a battery electrode manufacturing method.
 リチウムイオン電池は高容量の二次電池であり、近年様々な用途で使用されている。リチウムイオン電池の電極は、活物質層、集電体層、セパレータ、及び、活物質層を封入する枠体等によって構成される(例えば、特許文献1参照)。リチウムイオン電池における活物質層は、例えば、帯状の基材フィルムに対して電極組成物を供給し、ロールプレス等によって圧縮することで形成することができる。 Lithium-ion batteries are high-capacity secondary batteries that have been used for a variety of purposes in recent years. The electrode of a lithium ion battery is composed of an active material layer, a current collector layer, a separator, a frame that encloses the active material layer, and the like (see, for example, Patent Document 1). The active material layer in a lithium ion battery can be formed, for example, by supplying an electrode composition to a strip-shaped base film and compressing it using a roll press or the like.
 基材フィルムに対する電極組成物の供給時においては、基材フィルム上の規定位置に対して正確に電極組成物を供給することが好ましいが、規定位置から電極組成物がこぼれてしまうケースも想定される。このような余分な電極組成物は、リチウムイオン電池の不具合の原因となるおそれがある。 When supplying the electrode composition to the base film, it is preferable to supply the electrode composition accurately to a specified position on the base film, but it is possible that the electrode composition may spill from the specified position. Ru. Such excess electrode composition may cause malfunctions in lithium ion batteries.
特許第6633866号公報Patent No. 6633866 特開2001-70891号公報Japanese Patent Application Publication No. 2001-70891
 余分な物質を製造ライン上から除去する技術として、特許文献2には、不良物体を検出して吸引することにより、当該不良物体を除去することについて記載されている。しかしなら、リチウムイオン電池の製造に用いられる電極組成物は挙動の制御が難しく、単に吸引しようとしても基材フィルム上から除去しきれない場合がある。 As a technique for removing excess substances from a production line, Patent Document 2 describes detecting and suctioning a defective object to remove the defective object. However, the behavior of the electrode composition used in the manufacture of lithium ion batteries is difficult to control, and even if the composition is simply suctioned, it may not be able to be completely removed from the base film.
 本発明は、上記の事情に鑑みてなされたものであって、基材フィルム上から余分な電極組成物を除去することができる電池用電極製造装置及び電池用電極製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a battery electrode manufacturing apparatus and a battery electrode manufacturing method that can remove excess electrode composition from a base film. shall be.
 上記目的を達成するために、本発明に係る電池用電極製造装置は、帯状の基材フィルムを搬送する搬送部と、搬送される前記基材フィルムにおける規定位置に対して、活物質を含む電極組成物を供給する供給部と、前記基材フィルムにおける、前記規定位置と異なる位置に供給された前記電極組成物を検出する検出部と、前記異なる位置に供給された前記電極組成物を除去する除去部とを備える。 In order to achieve the above object, the battery electrode manufacturing apparatus according to the present invention includes a transport unit that transports a strip-shaped base film, and an electrode containing an active material at a specified position on the base film to be transported. a supply unit that supplies the composition; a detection unit that detects the electrode composition supplied to a position different from the specified position on the base film; and a detection unit that removes the electrode composition supplied to the different position. and a removing section.
 本発明の電池用電極製造装置及び電池用電極製造方法によれば、基材フィルム上から余分な電極組成物を除去することができる。 According to the battery electrode manufacturing apparatus and battery electrode manufacturing method of the present invention, excess electrode composition can be removed from the base film.
図1は、実施形態の電池用電極製造装置を用いて製造される電池の単セルの断面模式図である。FIG. 1 is a schematic cross-sectional view of a single cell of a battery manufactured using the battery electrode manufacturing apparatus of the embodiment. 図2は、実施形態の電池用電極製造装置の概略図である。FIG. 2 is a schematic diagram of a battery electrode manufacturing apparatus according to an embodiment. 図3は、実施形態の検出装置の一例を示す図である。FIG. 3 is a diagram showing an example of the detection device of the embodiment. 図4Aは、実施形態の除去装置の一例を示す図である。FIG. 4A is a diagram illustrating an example of the removal device of the embodiment. 図4Bは、実施形態の除去装置の一例を示す図である。FIG. 4B is a diagram showing an example of the removal device of the embodiment. 図5は、実施形態の除去装置の一例を示す図である。FIG. 5 is a diagram showing an example of the removal device of the embodiment. 図6は、実施形態の除去装置の一例を示す図である。FIG. 6 is a diagram illustrating an example of the removal device of the embodiment. 図7Aは、実施形態の除去装置の一例を示す図である。FIG. 7A is a diagram illustrating an example of a removal device according to an embodiment. 図7Bは、実施形態の除去装置の一例を示す図である。FIG. 7B is a diagram illustrating an example of the removal device of the embodiment. 図8は、実施形態の除去装置の一例を示す図である。FIG. 8 is a diagram illustrating an example of the removal device of the embodiment. 図9は、実施形態の除去装置の一例を示す図である。FIG. 9 is a diagram illustrating an example of the removal device of the embodiment. 図10は、実施形態の除去装置の一例を示す図である。FIG. 10 is a diagram illustrating an example of the removal device of the embodiment.
(実施形態)
 以下、図面を参照して、本発明を適用した実施形態について説明する。なお、以下の説明で用いる図面は、特徴部分を強調する目的で、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。また、同様の目的で、一部を省略して図示している場合がある。
(Embodiment)
Embodiments to which the present invention is applied will be described below with reference to the drawings. Note that the drawings used in the following explanations may show characteristic parts enlarged for convenience in order to emphasize them, and the dimensional ratios of each component may not be the same as in reality. do not have. Further, for the same purpose, some parts may be omitted from illustration.
 <組電池(二次電池)>
 実施形態の電池用電極製造装置及び電池用電極製造方法は、例えば、リチウムイオン電池の製造に適用される。リチウムイオン電池は、複数のリチウムイオン単電池(単セル又は電池セルとも記載する)を組み合わせてモジュール化した組電池、或いは、このような組電池を複数組み合わせて電圧及び容量を調整した電池パックの形態で使用される。以下では、リチウムイオン二次電池の例を示すが、本発明に係る二次電池の種類としてリチウムイオン二次電池に限定されず、他の二次電池を含む。
<Assembled battery (secondary battery)>
The battery electrode manufacturing apparatus and battery electrode manufacturing method of the embodiments are applied, for example, to manufacturing lithium ion batteries. A lithium-ion battery is an assembled battery that is made into a module by combining multiple lithium-ion single cells (also referred to as single cells or battery cells), or a battery pack that is made by combining multiple such assembled batteries to adjust the voltage and capacity. used in form. Although an example of a lithium ion secondary battery is shown below, the type of secondary battery according to the present invention is not limited to a lithium ion secondary battery, and includes other secondary batteries.
 本明細書におけるリチウムイオン電池は、電荷担体としてリチウムイオンを利用し、正負極間のリチウムイオンの移動により充放電が行われる二次電池をいう。当該リチウムイオン電池(二次電池)は、電解質に液体材料を使用した電池を含み、電解質に固体材料を使用した電池(いわゆる全固体電池)を含む。また本実施形態におけるリチウムイオン電池は、集電体として金属箔(金属集電箔)を有する電池を含み、金属箔に代わって導電性材料が添加された樹脂から構成される、いわゆる樹脂集電体を有する電池を含む。当該樹脂集電体を、後述するバイポーラ電極用樹脂集電体として用いる場合には、当該樹脂集電体の一方の面に正極を形成し、もう一方の面に負極を形成して双極型電極を構成したものであってもよい。なお、本実施形態におけるリチウムイオン電池は、バインダを用いて正極または負極活物質等を正極用または負極用集電体にそれぞれ塗布して電極を構成したものを含み、双極型の電池の場合には、集電体の一方の面にバインダを用いて正極活物質等を塗布して正極層を、反対側の面にバインダを用いて負極活物質等を塗布して負極層を有する双極型電極を構成したものを含む。 The lithium ion battery in this specification refers to a secondary battery that uses lithium ions as charge carriers and is charged and discharged by movement of lithium ions between positive and negative electrodes. The lithium ion battery (secondary battery) includes a battery using a liquid material as an electrolyte, and a battery using a solid material as an electrolyte (so-called all-solid-state battery). In addition, the lithium ion battery in this embodiment includes a battery having a metal foil (metal current collector foil) as a current collector, and instead of the metal foil, the lithium ion battery includes a so-called resin current collector made of resin to which a conductive material is added. Including a battery with a body. When the resin current collector is used as a resin current collector for a bipolar electrode, which will be described later, a positive electrode is formed on one surface of the resin current collector, and a negative electrode is formed on the other surface to form a bipolar electrode. It may be composed of Note that the lithium ion battery in this embodiment includes one in which an electrode is formed by applying a positive electrode or negative electrode active material or the like to a positive electrode or negative electrode current collector using a binder, and in the case of a bipolar type battery, is a bipolar electrode that has a positive electrode layer by applying a positive active material etc. using a binder to one side of the current collector, and a negative electrode layer by applying a negative active material etc. using a binder to the opposite side. Including those made up of.
 組電池の積層方法は、任意である。積層方法の一例として、第1面に正極樹脂集電体を有し、第2面に負極樹脂集電体を有する単セルを、隣り合う一対の単セルの第1面(正極側)と第2面(負極側)とが隣接するように直列に複数積層した積層電池としても良い。別の一例として、一枚の樹脂集電体の片面に正極層を設け、樹脂集電体の他方の面に負極層を設けた単セルを、電解質層を介して複数積層した積層電池としても良い。 The method of stacking the assembled battery is arbitrary. As an example of a stacking method, a single cell having a positive electrode resin current collector on the first surface and a negative electrode resin current collector on the second surface is stacked on the first surface (positive electrode side) and the first surface (positive electrode side) of a pair of adjacent single cells. It may be a stacked battery in which a plurality of batteries are stacked in series so that the two sides (negative electrode side) are adjacent to each other. As another example, a single cell in which a positive electrode layer is provided on one side of a single resin current collector and a negative electrode layer is provided on the other side of the resin current collector can be used as a stacked battery in which multiple cells are stacked with an electrolyte layer interposed in between. good.
 <単セル(電池セル)>
 図1は、単セル10の断面模式図である。単セル10を複数組み合わせることで上記の組電池を作製することが可能である。例えば、単セル10は、2つの電極20(電池用電極)としての正極20a及び負極20bと、セパレータ30とを有する。
<Single cell (battery cell)>
FIG. 1 is a schematic cross-sectional view of a single cell 10. It is possible to produce the above assembled battery by combining a plurality of single cells 10. For example, the single cell 10 includes a positive electrode 20a and a negative electrode 20b as two electrodes 20 (battery electrodes), and a separator 30.
 セパレータ30は、正極20aと負極20bとの間に配置される。組電池において、複数の単セル10は、正極20aと負極20bとを同方向に向けて積層される。 The separator 30 is placed between the positive electrode 20a and the negative electrode 20b. In the assembled battery, a plurality of single cells 10 are stacked with the positive electrode 20a and the negative electrode 20b facing in the same direction.
 セパレータ30には、電解質が保持される。これにより、セパレータ30は、電解質層として機能する。セパレータ30は、正極20a及び負極20bの電極活物質層22の間に配置され、これらが互いに接触することを抑制する。これにより、セパレータ30は、正極20aと負極20bとの間の隔壁として機能する。 The separator 30 holds an electrolyte. Thereby, separator 30 functions as an electrolyte layer. The separator 30 is arranged between the electrode active material layers 22 of the positive electrode 20a and the negative electrode 20b, and prevents them from coming into contact with each other. Thereby, the separator 30 functions as a partition between the positive electrode 20a and the negative electrode 20b.
 セパレータ30に保持される電解質としては、例えば、電解液またはゲルポリマー電解質等が挙げられる。これらの電解質を用いることで、高いリチウムイオン伝導性が確保される。セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。 Examples of the electrolyte held in the separator 30 include an electrolytic solution or a gel polymer electrolyte. By using these electrolytes, high lithium ion conductivity is ensured. Examples of the form of the separator include a porous sheet separator made of a polymer or fiber that absorbs and retains the electrolyte, a nonwoven fabric separator, and the like.
 正極20a及び負極20bは、それぞれ、集電体21と、電極活物質層22と、枠体35とを有する。電極活物質層22と集電体21とは、セパレータ30側からこの順に並ぶ。枠体35は、額縁状(環状)である。枠体35は、電極活物質層22の周囲を囲む。正極20aの枠体35と負極20bの枠体35とは、互いに溶着され一体化されている。以下の説明において、正極20a及び負極20bの電極活物質層22を互いに区別する場合、これらをそれぞれ正極活物質層22a、負極活物質層22bと呼ぶ。 The positive electrode 20a and the negative electrode 20b each include a current collector 21, an electrode active material layer 22, and a frame 35. The electrode active material layer 22 and the current collector 21 are arranged in this order from the separator 30 side. The frame 35 is frame-shaped (annular). The frame 35 surrounds the electrode active material layer 22 . The frame 35 of the positive electrode 20a and the frame 35 of the negative electrode 20b are welded together and integrated. In the following description, when the electrode active material layers 22 of the positive electrode 20a and the negative electrode 20b are to be distinguished from each other, they will be referred to as a positive electrode active material layer 22a and a negative electrode active material layer 22b, respectively.
<正極集電体の具体例>
 正極集電体層21aを構成する正極集電体としては、公知のリチウムイオン単電池に用いられる集電体を用いることができ、例えば、公知の金属集電体及び導電材料と樹脂とから構成されてなる樹脂集電体(特開2012-150905号公報及び国際公開第2015/005116号等に記載の樹脂集電体等)を用いることができる。正極集電体層21aを構成する正極集電体は、電池特性等の観点から、樹脂集電体であることが好ましい。
<Specific example of positive electrode current collector>
As the positive electrode current collector constituting the positive electrode current collector layer 21a, a current collector used in a known lithium ion cell can be used, for example, a current collector made of a known metal current collector, a conductive material, and a resin. (Resin current collectors described in JP 2012-150905 A, WO 2015/005116, etc.) can be used. The positive electrode current collector constituting the positive electrode current collector layer 21a is preferably a resin current collector from the viewpoint of battery characteristics and the like.
 金属集電体としては、例えば、銅、アルミニウム、チタン、ニッケル、タンタル、ニオブ、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン及びこれらの金属を1種以上含む合金、並びに、ステンレス合金からなる群から選択される一種以上の金属材料が挙げられる。これらの金属材料は、薄板や金属箔等の形態で用いてもよい。また、上記金属材料以外で構成される基材表面にスパッタリング、電着、塗布等の方法により上記金属材料を形成したものを金属集電体として用いてもよい。 Examples of metal current collectors include copper, aluminum, titanium, nickel, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, alloys containing one or more of these metals, and stainless steel alloys. One or more metal materials selected from: These metal materials may be used in the form of a thin plate, metal foil, or the like. Furthermore, a substrate made of a material other than the above-described metal material on which the above-mentioned metal material is formed by sputtering, electrodeposition, coating, or the like may be used as the metal current collector.
 樹脂集電体としては、導電性フィラーとマトリックス樹脂とを含むことが好ましい。マトリックス樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)等が挙げられるが、特に限定されない。また、導電性フィラーは、導電性を有する材料から選択されれば特に限定されない。導電性フィラーは、その形状が繊維状である導電性繊維であってもよい。 The resin current collector preferably contains a conductive filler and a matrix resin. Examples of the matrix resin include, but are not particularly limited to, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), and the like. Further, the conductive filler is not particularly limited as long as it is selected from materials having conductivity. The conductive filler may be a conductive fiber having a fibrous shape.
 樹脂集電体は、マトリックス樹脂及び導電性フィラーのほかに、その他の成分(分散剤、架橋促進剤、架橋剤、着色剤、紫外線吸収剤、可塑剤等)を含んでいてもよい。また、複数の樹脂集電体を積層して用いてもよく、樹脂集電体と金属箔とを積層して用いても良い。 In addition to the matrix resin and the conductive filler, the resin current collector may contain other components (dispersant, crosslinking accelerator, crosslinking agent, coloring agent, ultraviolet absorber, plasticizer, etc.). Further, a plurality of resin current collectors may be stacked and used, or a resin current collector and a metal foil may be stacked and used.
 正極集電体層21aの厚さは、特に限定されないが、5~150μmであることが好ましい。複数の樹脂集電体を積層して正極集電体層21aとして用いる場合には、積層後の全体の厚さが5~150μmであることが好ましい。正極集電体層21aは、例えば、マトリックス樹脂、導電性フィラー及び必要により用いるフィラー用分散剤を溶融混練して得られる導電性樹脂組成物を公知の方法でフィルム状に成形することにより得ることができる。 The thickness of the positive electrode current collector layer 21a is not particularly limited, but is preferably 5 to 150 μm. When a plurality of resin current collectors are laminated and used as the positive electrode current collector layer 21a, the total thickness after lamination is preferably 5 to 150 μm. The positive electrode current collector layer 21a can be obtained, for example, by molding a conductive resin composition obtained by melt-kneading a matrix resin, a conductive filler, and an optional filler dispersant into a film by a known method. I can do it.
<正極活物質の具体例>
 正極活物質層22aは、正極活物質を含む混合物の非結着体であることが好ましい。ここで、非結着体とは、正極活物質層中において正極活物質の位置が固定されておらず、正極活物質同士及び正極活物質と集電体とが不可逆的に固定されていないことを意味する。正極活物質層22aが非結着体である場合、正極活物質同士は不可逆的に固定されていないため、正極活物質同士の界面を機械的に破壊することなく分離することができ、正極活物質層22aに応力がかかった場合でも正極活物質が移動することで正極活物質層22aの破壊を防止することができ好ましい。非結着体である正極活物質層22aは、正極活物質層22aを、正極活物質と電解液とを含みかつ結着剤を含まない正極活物質層22aにする等の方法で得ることができる。なお、本明細書において、結着剤とは、正極活物質同士及び正極活物質と集電体とを可逆的に固定することができない薬剤を意味し、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、スチレン-ブタジエンゴム、ポリエチレン及びポリプロピレン等の公知の溶剤乾燥型のリチウムイオン電池用結着剤等が挙げられる。これらの結着剤は、溶剤に溶解又は分散して用いられ、溶剤を揮発、留去することで表面が粘着性を示すことなく固体化するので正極活物質同士及び正極活物質と集電体とを可逆的に固定することができない。
<Specific examples of positive electrode active materials>
The positive electrode active material layer 22a is preferably a non-bound body of a mixture containing the positive electrode active material. Here, a non-bound body means that the position of the positive electrode active material in the positive electrode active material layer is not fixed, and the positive electrode active materials and the positive electrode active material and the current collector are not irreversibly fixed. means. When the positive electrode active material layer 22a is a non-binding body, the positive electrode active materials are not irreversibly fixed to each other, and therefore can be separated without mechanically destroying the interface between the positive electrode active materials. This is preferable because even when stress is applied to the material layer 22a, the movement of the positive electrode active material prevents the destruction of the positive electrode active material layer 22a. The positive electrode active material layer 22a, which is a non-binding body, can be obtained by a method such as changing the positive electrode active material layer 22a to a positive electrode active material layer 22a containing a positive electrode active material and an electrolyte and not containing a binder. can. In this specification, the term "binder" refers to a chemical that cannot reversibly fix the positive electrode active materials to each other or the positive electrode active material and the current collector, and includes starch, polyvinylidene fluoride, polyvinyl alcohol, carboxylic acid, etc. Examples include known solvent-dried binders for lithium ion batteries such as methylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene and polypropylene. These binders are used by being dissolved or dispersed in a solvent, and when the solvent is volatilized or distilled off, the surface becomes solid without exhibiting stickiness, so that the positive electrode active materials can be bonded to each other and the positive electrode active material and the current collector. cannot be fixed reversibly.
 正極活物質としては、例えば、リチウムと遷移金属との複合酸化物、遷移金属元素が2種である複合酸化物、金属元素が3種類以上である複合酸化物等が挙げられるが、特に限定されない。 Examples of positive electrode active materials include, but are not particularly limited to, composite oxides of lithium and transition metals, composite oxides containing two types of transition metal elements, composite oxides containing three or more types of metal elements, etc. .
 正極活物質は、その表面の少なくとも一部が高分子化合物を含む被覆材により被覆された被覆正極活物質であってもよい。正極活物質の周囲が被覆材で被覆されていると、正極の体積変化が緩和され、正極の膨張を抑制することができる。 The positive electrode active material may be a coated positive electrode active material in which at least a portion of the surface thereof is covered with a coating material containing a polymer compound. When the periphery of the positive electrode active material is covered with a coating material, volume change of the positive electrode is alleviated, and expansion of the positive electrode can be suppressed.
 被覆材を構成する高分子化合物としては、特開2017-054703号公報及び国際公開第2015/005117号等に活物質被覆用樹脂として記載されたものを好適に用いることができる。 As the polymer compound constituting the coating material, those described as active material coating resins in JP2017-054703A, WO2015/005117, etc. can be suitably used.
 被覆材には、導電剤が含まれていてもよい。導電剤としては、正極集電体層21aに含まれる導電性フィラーと同様のものを好適に用いることができる。 The coating material may contain a conductive agent. As the conductive agent, the same conductive filler as that contained in the positive electrode current collector layer 21a can be suitably used.
 正極活物質層22aには、粘着性樹脂が含まれていてもよい。粘着性樹脂としては、例えば、特開2017-054703号公報に記載された非水系二次電池活物質被覆用樹脂に少量の有機溶剤を混合してそのガラス転移温度を室温以下に調節したもの、及び、特開平10-255805号公報に粘着剤として記載されたもの等を好適に用いることができる。なお、粘着性樹脂は、溶媒成分を揮発させて乾燥させても固体化せずに粘着性(水、溶剤、熱等を使用せずに僅かな圧力を加えることで接着する性質)を有する樹脂を意味する。一方、結着剤として用いられる溶液乾燥型の電極用バインダーは、溶媒成分を揮発させることで乾燥、固体化して活物質同士を強固に接着固定するものを意味する。したがって、上述した結着剤(溶液乾燥型の電極バインダー)と粘着性樹脂とは、異なる材料である。 The positive electrode active material layer 22a may contain adhesive resin. As the adhesive resin, for example, a non-aqueous secondary battery active material coating resin described in JP 2017-054703 A is mixed with a small amount of an organic solvent to adjust its glass transition temperature to below room temperature; Also, those described as adhesives in JP-A-10-255805 can be suitably used. Adhesive resin is a resin that does not solidify even if the solvent component is evaporated and dried, but has adhesive properties (the property of adhering by applying slight pressure without using water, solvent, heat, etc.) means. On the other hand, a solution-drying electrode binder used as a binder is one that dries and solidifies by volatilizing the solvent component, thereby firmly adhering and fixing active materials to each other. Therefore, the above-mentioned binder (solution-dried electrode binder) and adhesive resin are different materials.
 正極活物質層22aには、電解質と非水溶媒を含む電解液が含まれていてもよい。電解質としては、公知の電解液に用いられているもの等が使用できる。非水溶媒としては、公知の電解液に用いられているもの(例えば、リン酸エステル、ニトリル化合物等及びこれらの混合物等)等が使用できる。例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合液、又は、エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合液を用いることができる。 The positive electrode active material layer 22a may contain an electrolytic solution containing an electrolyte and a nonaqueous solvent. As the electrolyte, those used in known electrolytes can be used. As the non-aqueous solvent, those used in known electrolytic solutions (for example, phosphoric acid esters, nitrile compounds, etc., mixtures thereof, etc.) can be used. For example, a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) or a mixture of ethylene carbonate (EC) and propylene carbonate (PC) can be used.
 正極活物質層22aには、導電助剤が含まれていてもよい。導電助剤としては、正極集電体層21aに含まれる導電性フィラーと同様の導電性材料を好適に用いることができる。 The positive electrode active material layer 22a may contain a conductive additive. As the conductive aid, a conductive material similar to the conductive filler contained in the positive electrode current collector layer 21a can be suitably used.
 正極活物質層22aの厚さは、特に限定されるものではないが、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。 The thickness of the positive electrode active material layer 22a is not particularly limited, but from the viewpoint of battery performance, it is preferably 150 to 600 μm, more preferably 200 to 450 μm.
 実施形態において、正極活物質層22aを形成するために供給される正極組成物は、正極活物質と非水電解液を含んでなる湿潤粉体であってもよい。この場合、湿潤粉体はペンデュラー状態又はファニキュラー状態であることがより好ましい。 In the embodiment, the positive electrode composition supplied to form the positive electrode active material layer 22a may be a wet powder containing a positive electrode active material and a non-aqueous electrolyte. In this case, it is more preferable that the wet powder is in a pendular state or a funicular state.
 湿潤粉体における非水電解液の割合は、特に限定されないが、ペンデュラー状態又はファニキュラー状態とするためには、正極の場合には非水電解液の割合を湿潤粉体全体の0.5~15重量%とすることが望ましい。 The proportion of the non-aqueous electrolyte in the wet powder is not particularly limited, but in the case of a positive electrode, the proportion of the non-aqueous electrolyte in the whole wet powder should be 0.5 to 0.5 to 100% in order to obtain a pendular state or a funicular state. The content is preferably 15% by weight.
<負極集電体の具体例>
 負極集電体層21bを構成する負極集電体としては、正極集電体で記載した構成と同様のものを適宜選択して用いることができ、同様の方法により得ることができる。負極集電体層21bは、電池特性等の観点から、樹脂集電体であることが好ましい。負極集電体層21bの厚さは、特に限定されないが、5~150μmであることが好ましい。
<Specific example of negative electrode current collector>
As the negative electrode current collector constituting the negative electrode current collector layer 21b, one having the same structure as that described for the positive electrode current collector can be appropriately selected and used, and it can be obtained by the same method. The negative electrode current collector layer 21b is preferably a resin current collector from the viewpoint of battery characteristics and the like. The thickness of the negative electrode current collector layer 21b is not particularly limited, but is preferably 5 to 150 μm.
<負極活物質の具体例>
 負極活物質層22bは、負極活物質を含む混合物の非結着体であることが好ましい。負極活物質層が非結着体であることが好ましい理由、及び非結着体である負極活物質層22bを得る方法等は、正極活物質層22aが非結着体であることが好ましい理由、及び非結着体である正極活物質層22aを得る方法と同様である。
<Specific examples of negative electrode active materials>
The negative electrode active material layer 22b is preferably a non-bound body of a mixture containing negative electrode active materials. The reason why it is preferable that the negative electrode active material layer is a non-bound body, and the method for obtaining the negative electrode active material layer 22b which is a non-bound body, is the reason why it is preferable that the positive electrode active material layer 22a is a non-bound body. , and the method for obtaining the positive electrode active material layer 22a which is a non-binding body.
 負極活物質としては、例えば、炭素系材料、珪素系材料及びこれらの混合物等を用いることができるが、特に限定されない。 As the negative electrode active material, for example, carbon-based materials, silicon-based materials, mixtures thereof, etc. can be used, but there is no particular limitation.
 負極活物質は、その表面の少なくとも一部が高分子化合物を含む被覆材により被覆された被覆負極活物質であってもよい。負極活物質の周囲が被覆材で被覆されていると、負極の体積変化が緩和され、負極の膨張を抑制することができる。 The negative electrode active material may be a coated negative electrode active material in which at least a portion of the surface thereof is covered with a coating material containing a polymer compound. When the periphery of the negative electrode active material is coated with a coating material, the volume change of the negative electrode is alleviated, and expansion of the negative electrode can be suppressed.
 被覆材としては、被覆正極活物質を構成する被覆材と同様のものを好適に用いることができる。 As the coating material, the same coating material as the coating material constituting the coated positive electrode active material can be suitably used.
 負極活物質層22bは、電解質と非水溶媒を含む電解液を含有する。電解液の組成は、正極活物質層22aに含まれる電解液と同様の電解液を好適に用いることができる。 The negative electrode active material layer 22b contains an electrolyte solution containing an electrolyte and a nonaqueous solvent. Regarding the composition of the electrolytic solution, an electrolytic solution similar to that contained in the positive electrode active material layer 22a can be suitably used.
 負極活物質層22bには、導電助剤が含まれていてもよい。導電助剤としては、正極活物質層22aに含まれる導電性フィラーと同様の導電性材料を好適に用いることができる。 The negative electrode active material layer 22b may contain a conductive additive. As the conductive aid, a conductive material similar to the conductive filler contained in the positive electrode active material layer 22a can be suitably used.
 負極活物質層22bには、粘着性樹脂が含まれていてもよい。粘着性樹脂としては、正極活物質層22aの任意成分である粘着性樹脂と同様のものを好適に用いることができる。 The negative electrode active material layer 22b may contain adhesive resin. As the adhesive resin, the same adhesive resin as the optional component of the positive electrode active material layer 22a can be suitably used.
 負極活物質層22bの厚さは、特に限定されるものではないが、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。 The thickness of the negative electrode active material layer 22b is not particularly limited, but from the viewpoint of battery performance, it is preferably 150 to 600 μm, more preferably 200 to 450 μm.
 実施形態において、負極活物質層22bを形成するために供給される負極組成物は、負極活物質と非水電解液を含んでなる湿潤粉体であってもよい。この場合、湿潤粉体はペンデュラー状態又はファニキュラー状態であることがより好ましい。 In the embodiment, the negative electrode composition supplied to form the negative electrode active material layer 22b may be a wet powder containing a negative electrode active material and a non-aqueous electrolyte. In this case, it is more preferable that the wet powder is in a pendular state or a funicular state.
 湿潤粉体における非水電解液の割合は、特に限定されないが、ペンデュラー状態又はファニキュラー状態とするためには、負極の場合には非水電解液の割合を湿潤粉体全体の0.5~25重量%とすることが望ましい。 The proportion of the non-aqueous electrolyte in the wet powder is not particularly limited, but in the case of a negative electrode, the proportion of the non-aqueous electrolyte should be 0.5 to 0.5 to the total wet powder in order to obtain a pendular state or a funicular state. The content is preferably 25% by weight.
<セパレータの具体例>
 セパレータ30に保持される電解質としては、例えば、電解液又はゲルポリマー電解質等が挙げられる。セパレータ30は、これらの電解質を用いることで、高いリチウムイオン伝導性が確保される。セパレータ30の形態としては、例えば、ポリエチレン又はポリプロピレン製の多孔性フィルム等が挙げられるが、特に限定されない。セパレータとして、硫化物系、酸化物系の無機系固体電解質、または高分子系の有機系固体電解質などを適用することもできる。固体電解質の適用により、全固体電池を構成することができる。
<Specific example of separator>
Examples of the electrolyte held in the separator 30 include an electrolytic solution or a gel polymer electrolyte. By using these electrolytes, the separator 30 ensures high lithium ion conductivity. The form of the separator 30 includes, for example, a porous film made of polyethylene or polypropylene, but is not particularly limited. As the separator, a sulfide-based or oxide-based inorganic solid electrolyte, a polymer-based organic solid electrolyte, or the like can also be used. By applying a solid electrolyte, an all-solid-state battery can be constructed.
<枠体の具体例>
 枠体35としては、電解液に対して耐久性のある材料であれば特に限定されないが、例えば、高分子材料が好ましく、熱硬化性高分子材料がより好ましい。枠体35を構成する材料としては、絶縁性、シール性(液密性)、電池動作温度下での耐熱性等を有するものであればよく、樹脂材料が好適に採用される。より具体的には、枠体35としては、例えば、エポキシ系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂及びポリフッ化ビニリデン樹脂等が挙げられ、耐久性が高く取り扱いが容易であることからエポキシ系樹脂が好ましい。
<Specific example of frame>
The frame 35 is not particularly limited as long as it is made of a material that is durable against the electrolytic solution, but for example, a polymer material is preferable, and a thermosetting polymer material is more preferable. The material constituting the frame 35 may be any material as long as it has insulation properties, sealing properties (liquid tightness), heat resistance under the battery operating temperature, etc., and a resin material is preferably employed. More specifically, examples of the frame 35 include epoxy resin, polyolefin resin, polyurethane resin, polyvinylidene fluoride resin, etc. Epoxy resin is preferred because it is highly durable and easy to handle. preferable.
 <電池用電極製造装置及び電池用電極製造方法>
 次に、本実施形態の電池用電極製造装置及び電池用電極製造方法(以下、製造方法と略して呼ぶ)について説明する。例えば、電池用電極製造装置及び電池用電極製造方法では、まず正極20a及び負極20bが製造される。正極20aの製造方法と負極20bの製造方法とは、主に電極活物質層22に含まれる電極活物質が異なる。ここでは、電極20の製造方法として、正極20a及び負極20bの製造方法をまとめて説明する。
<Battery electrode manufacturing device and battery electrode manufacturing method>
Next, a battery electrode manufacturing apparatus and a battery electrode manufacturing method (hereinafter simply referred to as the manufacturing method) of the present embodiment will be described. For example, in a battery electrode manufacturing apparatus and a battery electrode manufacturing method, a positive electrode 20a and a negative electrode 20b are first manufactured. The method for manufacturing the positive electrode 20a and the method for manufacturing the negative electrode 20b differ mainly in the electrode active material contained in the electrode active material layer 22. Here, as a method for manufacturing the electrode 20, methods for manufacturing the positive electrode 20a and the negative electrode 20b will be described together.
 図2は、電池用電極製造装置1000の概略図である。例えば、電池用電極製造装置1000は、チャンバ100、搬送装置200、電極組成物供給装置300、枠体供給装置400、プレス装置500、検出装置600及び除去装置700を含む。なお、以下では、帯状の基材フィルムが帯状の集電体21Bである場合を一例として説明する。 FIG. 2 is a schematic diagram of the battery electrode manufacturing apparatus 1000. For example, the battery electrode manufacturing apparatus 1000 includes a chamber 100, a transport device 200, an electrode composition supply device 300, a frame supply device 400, a press device 500, a detection device 600, and a removal device 700. In addition, below, the case where a strip|belt-shaped base film is the strip|belt-shaped current collector 21B is demonstrated as an example.
 チャンバ100は、内部を大気圧よりも減圧された状態に保持できる部屋である。チャンバ100の内部は、図示しない減圧ポンプにより大気圧よりも減圧される。なお、標準大気圧は、約1013hPa(約105Pa)である。 The chamber 100 is a room whose interior can be maintained at a pressure lower than atmospheric pressure. The pressure inside the chamber 100 is reduced below atmospheric pressure by a pressure reduction pump (not shown). Note that the standard atmospheric pressure is approximately 1013 hPa (approximately 105 Pa).
 例えば、チャンバ100の外部に集電体ロール21Rが配置され、集電体ロール21Rから引き出された帯状の集電体21Bが、スリットを通してチャンバ100の内部に搬送される。以下、帯状の集電体21Bを集電体21Bと記載する場合がある。なお、集電体21Bは、上述した集電体21が所定の形状に切り出される前のものである。集電体21Bは、搬送方向Daに沿って所定の速度で搬送される。以下では、集電体21Bが搬送される方向を下流側Da1、その反対方向を上流側Da2として説明する。なお、集電体ロール21Rが配置されるチャンバ100の外部空間は、常圧であってもよいし、チャンバ100と異なるチャンバによって減圧されていてもよい。 For example, a current collector roll 21R is arranged outside the chamber 100, and a band-shaped current collector 21B pulled out from the current collector roll 21R is conveyed into the chamber 100 through a slit. Hereinafter, the strip-shaped current collector 21B may be referred to as a current collector 21B. Note that the current collector 21B is the current collector 21 described above before being cut into a predetermined shape. The current collector 21B is transported at a predetermined speed along the transport direction Da. In the following description, the direction in which the current collector 21B is conveyed is referred to as the downstream side Da1, and the opposite direction is referred to as the upstream side Da2. Note that the external space of the chamber 100 in which the current collector roll 21R is arranged may be at normal pressure or may be reduced in pressure by a chamber different from the chamber 100.
 なお、図2に示す通り、鉛直方向Dbにおける上側をDb1、鉛直方向Dbにおける下側をDb2とする。搬送方向Da及び鉛直方向Dbに対して直交する方向は、集電体21B、及び、集電体21Bに載置される電極組成物22cの幅方向に対応する。 Note that, as shown in FIG. 2, the upper side in the vertical direction Db is Db1, and the lower side in the vertical direction Db is Db2. The direction perpendicular to the transport direction Da and the vertical direction Db corresponds to the width direction of the current collector 21B and the electrode composition 22c placed on the current collector 21B.
 搬送装置200は、集電体21Bを、搬送方向Daの下流側Da1に搬送する。例えば、チャンバ100の外部において、搬送装置200は、2つのローラで集電体21Bを挟み込みつつ当該ローラを回転させることで、集電体21Bを搬送方向Daの下流側Da1に搬送する。これにより、搬送装置200は、スリットを通して集電体21Bをチャンバ100内に搬送する。また、チャンバ100の内部において、搬送装置200は、集電体21Bを下側から支持するベルトコンベアにより、集電体21Bを搬送方向Daの下流側Da1に搬送する。なお、後述の電極組成物供給装置300による電極組成物22cの供給が行なわれた後、搬送装置200は、電極組成物22cを載せた集電体21Bを搬送することとなる。また、後述の枠体供給装置400による枠体35の供給が行なわれた後、搬送装置200は、枠体35及び電極組成物22cを載せた集電体21Bを搬送することとなる。搬送装置200は、搬送部の一例である。 The transport device 200 transports the current collector 21B to the downstream side Da1 in the transport direction Da. For example, outside the chamber 100, the transport device 200 transports the current collector 21B to the downstream side Da1 in the transport direction Da by rotating the current collector 21B while sandwiching the current collector 21B between two rollers. Thereby, the transport device 200 transports the current collector 21B into the chamber 100 through the slit. Further, inside the chamber 100, the conveyance device 200 conveys the current collector 21B to the downstream side Da1 in the conveyance direction Da using a belt conveyor that supports the current collector 21B from below. Note that after the electrode composition 22c is supplied by the electrode composition supply device 300 described below, the transportation device 200 transports the current collector 21B on which the electrode composition 22c is placed. Further, after the frame body 35 is supplied by the frame body supply device 400 described below, the conveyance device 200 conveys the current collector 21B on which the frame body 35 and the electrode composition 22c are placed. The transport device 200 is an example of a transport section.
 電極組成物供給装置300は、図2に示す通り、チャンバ100内で搬送される集電体21B上に電極組成物22cを供給する。電極組成物22cは、少なくとも活物質(正極活物質又は負極活物質)を含む物質である。後述するプレス装置500によって電極組成物22cを圧縮することにより、電極活物質層22(正極活物質層22a、負極活物質層22b)が形成される。 As shown in FIG. 2, the electrode composition supply device 300 supplies the electrode composition 22c onto the current collector 21B transported within the chamber 100. The electrode composition 22c is a material containing at least an active material (a positive electrode active material or a negative electrode active material). The electrode active material layer 22 (positive electrode active material layer 22a, negative electrode active material layer 22b) is formed by compressing the electrode composition 22c using a press device 500, which will be described later.
 一例を挙げると、電極組成物供給装置300は、ホッパ及びシャッタから構成される。この場合、電極組成物供給装置300は、鉛直方向Dbの下側Db2に開口を有するホッパ1の内部に電極組成物22cを保持するとともに、ホッパの開口をシャッタで開閉することにより、集電体21B上の規定位置に対して所定量の電極組成物22cを供給することができる。電極組成物供給装置300は、供給部の一例である。 To give one example, the electrode composition supply device 300 is composed of a hopper and a shutter. In this case, the electrode composition supply device 300 holds the electrode composition 22c inside the hopper 1 having an opening on the lower side Db2 of the vertical direction Db, and also serves as a current collector by opening and closing the opening of the hopper with a shutter. A predetermined amount of electrode composition 22c can be supplied to a predetermined position on 21B. The electrode composition supply device 300 is an example of a supply section.
 枠体供給装置400は、搬送される集電体21Bに対して枠体35を供給する。例えば、枠体供給装置400は、ロボットアームを有し、事前に製造された枠体35を、搬送される集電体21B上の所定の位置に配置する。或いは、枠体供給装置400は、集電体21Bの上で枠体35を製造してもよい。一例を挙げると、集電体21Bを基材とし、ディスペンサーやコーター等によって集電体21B上に所定の材料を所定の形状に吐出又は塗布することで、集電体21B上に枠体35を形成することができる。 The frame supply device 400 supplies the frame 35 to the current collector 21B being transported. For example, the frame supply device 400 includes a robot arm and places the frame 35 manufactured in advance at a predetermined position on the current collector 21B being transported. Alternatively, the frame supply device 400 may manufacture the frame 35 on the current collector 21B. For example, the frame 35 is formed on the current collector 21B by using the current collector 21B as a base material and discharging or applying a predetermined material in a predetermined shape onto the current collector 21B using a dispenser, coater, etc. can be formed.
 プレス装置500は、集電体21Bに供給された電極組成物22cを圧縮する。例えば、プレス装置500は、図2に示す通り、上部ローラ501及び下部ローラ502を有する。プレス装置500は、上部ローラ501及び下部ローラ502により、集電体21Bに供給された電極組成物22cを挟み込んで圧縮する。即ち、プレス装置500は、電極組成物22cに対するロールプレスを実行する。 The press device 500 compresses the electrode composition 22c supplied to the current collector 21B. For example, the press device 500 has an upper roller 501 and a lower roller 502, as shown in FIG. The press device 500 uses an upper roller 501 and a lower roller 502 to sandwich and compress the electrode composition 22c supplied to the current collector 21B. That is, the press device 500 performs roll pressing on the electrode composition 22c.
 プレス装置500による圧縮工程の後、図1に示したセパレータ30が更に供給され、単セル10が作製される。セパレータ30の供給は、搬送方向Daに沿って搬送される集電体21B及び電極組成物22cに対して連続的に行なわれてもよいし、集電体21Bや電極組成物22cを所定単位に分割した後、枚葉に行なってもよい。 After the compression process by the press device 500, the separator 30 shown in FIG. 1 is further supplied, and the single cell 10 is produced. The separator 30 may be supplied continuously to the current collector 21B and the electrode composition 22c transported along the transport direction Da, or the current collector 21B and the electrode composition 22c may be supplied in predetermined units. After dividing, the process may be performed for each leaf.
 ここで、上述した電極組成物供給装置300による電極組成物22cの供給時においては、集電体21B上の規定位置に対して正確に電極組成物22cを供給することが好ましいが、規定位置から電極組成物22cがこぼれてしまうケースも想定される。このような余分な電極組成物22cは、リチウムイオン電池の不具合の原因となるおそれがあるため、除去することが好ましい。 Here, when the electrode composition 22c is supplied by the electrode composition supply device 300 described above, it is preferable to supply the electrode composition 22c accurately to a prescribed position on the current collector 21B; There may also be cases where the electrode composition 22c spills. Such excess electrode composition 22c may cause problems with the lithium ion battery, so it is preferable to remove it.
 しかしながら、電極組成物22cは挙動の制御が難しく、単に吸引しようとしても集電体21B上から除去しきれない場合がある。特に、電極組成物22cは、電極活物質(正極活物質、負極活物質)と電解液(非水電解液)を含んでなる湿潤粉体である場合がある。湿潤粉体は集電体21Bに対して付着してしまうため、除去することが特に難しい。 However, the behavior of the electrode composition 22c is difficult to control, and even if the electrode composition 22c is simply tried to be sucked, it may not be completely removed from the current collector 21B. In particular, the electrode composition 22c may be a wet powder containing an electrode active material (positive electrode active material, negative electrode active material) and an electrolyte (non-aqueous electrolyte). Since the wet powder adheres to the current collector 21B, it is particularly difficult to remove it.
 そこで、実施形態の電池用電極製造装置1000においては、以下で説明する検出装置600及び除去装置700によって、集電体21B上から余分な電極組成物22cを除去することを可能とする。 Therefore, in the battery electrode manufacturing apparatus 1000 of the embodiment, the excess electrode composition 22c can be removed from the current collector 21B by the detection device 600 and removal device 700 described below.
 図3においては、検出装置600の一例として、カメラ610を図示する。カメラ610は、電極組成物22cが載置された集電体21Bを撮影し、撮影画像について画像認識を行なうことにより、規定位置と異なる位置に供給された電極組成物22cを検出する。以下では、規定位置と異なる位置に供給された電極組成物22cを、電極組成物22c’とも記載する。即ち、電極組成物22c’は、余分な電極組成物22cであり、除去装置700による除去処理の対象である。 In FIG. 3, a camera 610 is illustrated as an example of the detection device 600. The camera 610 photographs the current collector 21B on which the electrode composition 22c is placed, and performs image recognition on the photographed image, thereby detecting the electrode composition 22c supplied to a position different from the specified position. Below, the electrode composition 22c supplied to a position different from the prescribed position is also referred to as an electrode composition 22c'. That is, the electrode composition 22c' is an excess electrode composition 22c and is a target of the removal process by the removal device 700.
 検出装置600はカメラ610に限定されるものではなく、電極組成物22c’を検出することが可能であれば任意の変形が可能である。例えば、検出装置600は深度センサであってもよい。この場合、検出装置600は、集電体21Bの表面形状を解析して電極組成物22c’を検出する。また、例えば、検出装置600は光源を含み、集電体21Bを透過した光の強度から電極組成物22c’を検出してもよい。即ち、電極組成物22c’の存在によって光が減衰することから、集電体21Bを透過した光の強度分布を取得することにより、電極組成物22c’の存在及びその位置を検出することができる。 The detection device 600 is not limited to the camera 610, and any modification is possible as long as it can detect the electrode composition 22c'. For example, detection device 600 may be a depth sensor. In this case, the detection device 600 analyzes the surface shape of the current collector 21B to detect the electrode composition 22c'. Further, for example, the detection device 600 may include a light source and detect the electrode composition 22c' from the intensity of light transmitted through the current collector 21B. That is, since the light is attenuated by the presence of the electrode composition 22c', the presence and position of the electrode composition 22c' can be detected by obtaining the intensity distribution of the light transmitted through the current collector 21B. .
 図4A及び図4Bにおいては、除去装置700の一例として、レール711、アーム712、吸引具713及びホース714を備えた除去装置710を示す。除去装置710は、検出装置600による検出結果に従い、規定位置と異なる位置に供給された電極組成物22c’を除去する。 4A and 4B, as an example of the removal device 700, a removal device 710 including a rail 711, an arm 712, a suction tool 713, and a hose 714 is shown. The removal device 710 removes the electrode composition 22c' supplied to a position different from the prescribed position according to the detection result by the detection device 600.
 アーム712は、吸引具713及びホース714を保持するとともに、レール711に沿って搬送方向Daに移動可能に構成される。例えば、アーム712は、検出装置600より下流側Da1であって、レール711に沿った可動域のうち搬送方向Daの上流側Da2の端部にて待機する。検出装置600により電極組成物22c’が検出された場合、検出された電極組成物22c’は、一定時間後、待機するアーム712の位置まで下流側Da1に搬送される。ここで、アーム712は、レール711に沿った下流側Da1への移動を開始する。具体的には、アーム712は、搬送方向Daの位置が電極組成物22c’と一致するように、電極組成物22c’と同じ速度で下流側Da1に移動する。 The arm 712 holds the suction tool 713 and the hose 714, and is configured to be movable along the rail 711 in the transport direction Da. For example, the arm 712 is on the downstream side Da1 of the detection device 600 and waits at an end portion of the upstream side Da2 in the transport direction Da within the movable range along the rail 711. When the electrode composition 22c' is detected by the detection device 600, the detected electrode composition 22c' is transported downstream Da1 to the waiting arm 712 position after a certain period of time. Here, the arm 712 starts moving toward the downstream side Da1 along the rail 711. Specifically, the arm 712 moves toward the downstream side Da1 at the same speed as the electrode composition 22c' so that the position in the transport direction Da matches the electrode composition 22c'.
 電極組成物22c’は、吸引具713の先端から吸引され、ホース714を通って排出される。ここで、吸引具713の先端は、図4Bに示す通り絞られた形状を有している。即ち、吸引具713は、吸引の対象範囲を狭める代わりに強い吸引力を発揮し、電極組成物22c’を除去することができる。電極組成物22c’の位置については検出装置600により把握できるため、吸引の対象範囲が狭くなっても電極組成物22c’を狙って吸引することが可能である。 The electrode composition 22c' is sucked from the tip of the suction tool 713 and discharged through the hose 714. Here, the tip of the suction tool 713 has a constricted shape as shown in FIG. 4B. That is, the suction tool 713 exerts a strong suction force instead of narrowing the target range of suction, and can remove the electrode composition 22c'. Since the position of the electrode composition 22c' can be ascertained by the detection device 600, it is possible to target and suction the electrode composition 22c' even if the target range of suction becomes narrow.
 吸引具713の先端を電極組成物22c’の位置に合わせる方法について説明する。まず、搬送方向Daの位置については、レール711に沿ってアーム712が移動することにより調整することができる。即ち、除去装置710は、搬送される集電体21Bに同期して移動しつつ、規定位置と異なる位置に供給された電極組成物22c’を除去する。なお、図4Aに示す通りアーム712がロボットアームである場合、ロボットアームの関節部を駆動させて、搬送方向Daの位置を微調整してもよい。また、吸引具713における先端角度を変更可能に構成して、搬送方向Daの位置を微調整してもよい。 A method for aligning the tip of the suction tool 713 with the position of the electrode composition 22c' will be explained. First, the position in the transport direction Da can be adjusted by moving the arm 712 along the rail 711. That is, the removal device 710 removes the electrode composition 22c' supplied to a position different from the prescribed position while moving in synchronization with the current collector 21B being transported. Note that when the arm 712 is a robot arm as shown in FIG. 4A, the position in the transport direction Da may be finely adjusted by driving the joints of the robot arm. Further, the tip angle of the suction tool 713 may be configured to be changeable to finely adjust the position in the conveyance direction Da.
 また、図4Aに示す通りアーム712がロボットアームである場合、ロボットアームの関節部を駆動させて、吸引具713の先端と電極組成物22c’との鉛直方向Dbの位置や、幅方向の位置を合わせることができる。また、吸引具713における先端角度を変更可能に構成して、幅方向の位置を微調整することとしてもよい。 In addition, when the arm 712 is a robot arm as shown in FIG. 4A, the joints of the robot arm are driven to adjust the position of the tip of the suction tool 713 and the electrode composition 22c' in the vertical direction Db or in the width direction. can be matched. Further, the tip angle of the suction tool 713 may be configured to be changeable to finely adjust the position in the width direction.
 除去装置700の他の例を図5に示す。図5においては、除去装置700の一例として、回転ブラシ721、カップ722及び吸引具723を備えた除去装置720を示す。なお、図5においては、集電体21B上の広い範囲に電極組成物22c’がこぼれたケースについて説明する。 Another example of the removal device 700 is shown in FIG. In FIG. 5, as an example of the removal device 700, a removal device 720 including a rotating brush 721, a cup 722, and a suction tool 723 is shown. In FIG. 5, a case will be described in which the electrode composition 22c' is spilled over a wide area on the current collector 21B.
 回転ブラシ721は、集電体21B上にこぼれた電極組成物22c’を拭き取って除去する。回転ブラシ721により拭き取られた電極組成物22c’は、回転ブラシ721に付着したままになるか、或いはカップ722内に巻き上げられる。吸引具723は、回転ブラシ721により巻き上げられた電極組成物22c’を、カップ722内の気体とともに吸引する。集電体21Bに付着した電極組成物22c’については単に吸引しようとしても除去できないケースがあるところ、回転ブラシ721によって直接的に電極組成物22c’を拭き取ることによって、集電体21B上から除去することができる。なお、図5に示す回転ブラシ721、カップ722及び吸引具723を、図4Aに示したレール711及びアーム712により保持して、電極組成物22c’に対する位置を制御してもよい。 The rotating brush 721 wipes and removes the electrode composition 22c' spilled onto the current collector 21B. The electrode composition 22c' wiped off by the rotating brush 721 remains attached to the rotating brush 721 or is rolled up into the cup 722. The suction tool 723 suctions the electrode composition 22c' rolled up by the rotating brush 721 together with the gas in the cup 722. In some cases, the electrode composition 22c' attached to the current collector 21B cannot be removed even if the electrode composition 22c' is simply suctioned, but by directly wiping the electrode composition 22c' with the rotating brush 721, it can be removed from the current collector 21B. can do. Note that the rotating brush 721, cup 722, and suction tool 723 shown in FIG. 5 may be held by the rail 711 and arm 712 shown in FIG. 4A to control their positions with respect to the electrode composition 22c'.
 除去装置700の他の例を図6に示す。図6においては、除去装置700の一例として、ムービングベルト731、ブラシ732、吸引具733及びカップ734を備えた除去装置730を示す。なお、図6においては、集電体21B上の広い範囲に電極組成物22c’がこぼれたケースについて説明する。 Another example of the removal device 700 is shown in FIG. In FIG. 6, as an example of the removal device 700, a removal device 730 including a moving belt 731, a brush 732, a suction tool 733, and a cup 734 is shown. In FIG. 6, a case will be described in which the electrode composition 22c' is spilled over a wide area on the current collector 21B.
 ムービングベルト731は、図6の矢印に示す方向に回転しつつ、集電体21B上にこぼれた電極組成物22c’を吸着して、集電体21B上から除去する。即ち、ムービングベルト731は、規定位置と異なる位置に供給された電極組成物22c’を拭き取って除去する。ブラシ732は、ムービングベルト731に付着した電極組成物22c’をこそぎ落とす。ムービングベルト731からこそぎ落とされた電極組成物22c’は、カップ734内に巻き上げられ、カップ734内の気体とともに吸引具733により吸引される。集電体21Bに付着した電極組成物22c’については単に吸引しようとしても除去できないケースがあるところ、ムービングベルト731によって直接的に電極組成物22c’を拭き取ることによって、集電体21B上から除去することができる。なお、図6に示すムービングベルト731、ブラシ732、吸引具733及びカップ734を、図4Aに示したレール711及びアーム712により保持して、電極組成物22c’に対する位置を制御してもよい。 While rotating in the direction shown by the arrow in FIG. 6, the moving belt 731 adsorbs the electrode composition 22c' spilled onto the current collector 21B and removes it from the current collector 21B. That is, the moving belt 731 wipes and removes the electrode composition 22c' supplied to a position different from the prescribed position. The brush 732 scrapes off the electrode composition 22c' adhering to the moving belt 731. The electrode composition 22c' scraped off from the moving belt 731 is rolled up into a cup 734 and sucked together with the gas in the cup 734 by a suction tool 733. In some cases, the electrode composition 22c' attached to the current collector 21B cannot be removed even if the electrode composition 22c' is simply suctioned, but by directly wiping the electrode composition 22c' with the moving belt 731, it can be removed from the current collector 21B. can do. Note that the moving belt 731, brush 732, suction tool 733, and cup 734 shown in FIG. 6 may be held by the rail 711 and arm 712 shown in FIG. 4A to control their positions with respect to the electrode composition 22c'.
 除去装置700の他の例を図7A及び図7Bに示す。図7A及び図7Bにおいては、除去装置700の一例として、把持アーム741及び吸引具742を備えた除去装置740を示す。なお、図7A及び図7Bにおいては、集電体21B上に小塊状の電極組成物22c’がこぼれたケースについて説明する。 Other examples of the removal device 700 are shown in FIGS. 7A and 7B. 7A and 7B, as an example of the removal device 700, a removal device 740 including a gripping arm 741 and a suction tool 742 is shown. Note that in FIGS. 7A and 7B, a case will be described in which a small lump of the electrode composition 22c' is spilled onto the current collector 21B.
 把持アーム741は、規定位置と異なる位置に供給された電極組成物22c’を把持して集電体21B上から除去する。把持アーム741に把持された電極組成物22c’は、吸引具742の先端から吸引されて外部に排出される。集電体21Bに付着した電極組成物22c’については単に吸引しようとしても除去できないケースがあるところ、把持アーム741によって直接的に電極組成物22c’を把持して持ち上げることにより、集電体21B上から除去することができる。なお、図7A及び図7Bに示す把持アーム741及び吸引具742を、図4Aに示したレール711及びアーム712により保持して、電極組成物22c’に対する位置を制御してもよい。 The gripping arm 741 grips the electrode composition 22c' supplied to a position different from the specified position and removes it from the current collector 21B. The electrode composition 22c' held by the holding arm 741 is sucked from the tip of the suction tool 742 and discharged to the outside. In some cases, the electrode composition 22c' attached to the current collector 21B cannot be removed even if the electrode composition 22c' is simply suctioned. Can be removed from above. Note that the gripping arm 741 and suction tool 742 shown in FIGS. 7A and 7B may be held by the rail 711 and arm 712 shown in FIG. 4A to control their position with respect to the electrode composition 22c'.
 除去装置700の他の例を図8に示す。図8においては、除去装置700の一例として、ブロワ751及び吸引具752を備えた除去装置750を示す。 Another example of the removal device 700 is shown in FIG. In FIG. 8, as an example of the removal device 700, a removal device 750 including a blower 751 and a suction tool 752 is shown.
 ブロワ751は、電極組成物22c’に対して気体を吹き付けて、吸引具752の方向に移動させる。吸引具752は、電極組成物22c’を吸引して外部に排出する。即ち、図8の除去装置750は、規定位置と異なる位置に供給された電極組成物22cに対して気体を吹き付けつつ電極組成物22c’を吸引することにより、集電体21B上から電極組成物22c’を除去する。集電体21Bに付着した電極組成物22c’については吸引具752のみによって除去することができないケースがあるところ、ブロワ751により集電体21Bから引き剥がしてから電極組成物22c’を吸引することにより、電極組成物22c’を除去することが可能となる。なお、ブロワ751が電極組成物22c’に対して吹き付ける気体は、空気であってもよいし、窒素等の不活性ガスであってもよい。また、図8に示すブロワ751及び吸引具752を、図4Aに示したレール711及びアーム712により保持して、電極組成物22c’に対する位置を制御してもよい。 The blower 751 blows gas against the electrode composition 22c' to move it in the direction of the suction tool 752. The suction tool 752 suctions the electrode composition 22c' and discharges it to the outside. That is, the removing device 750 in FIG. 8 removes the electrode composition 22c from above the current collector 21B by sucking the electrode composition 22c' while blowing gas onto the electrode composition 22c supplied to a position different from the specified position. 22c' is removed. In some cases, the electrode composition 22c' attached to the current collector 21B cannot be removed by the suction tool 752 alone, but the electrode composition 22c' may be pulled off from the current collector 21B using the blower 751 and then sucked. This makes it possible to remove the electrode composition 22c'. Note that the gas blown onto the electrode composition 22c' by the blower 751 may be air or an inert gas such as nitrogen. Alternatively, the blower 751 and suction tool 752 shown in FIG. 8 may be held by the rail 711 and arm 712 shown in FIG. 4A to control their positions with respect to the electrode composition 22c'.
 除去装置700の他の例を図9に示す。図9においては、除去装置700の一例として、ブロワ761及びカップ762を備えた除去装置760を示す。 Another example of the removal device 700 is shown in FIG. In FIG. 9, a removing device 760 including a blower 761 and a cup 762 is shown as an example of the removing device 700.
 ブロワ761は、電極組成物22c’に対して気体を吹き付ける。ブロワ761により気体が吹き付けられた電極組成物22c’は、カップ762内に巻き上げられるとともに、カップ762内の気体とともに外部に排出される。即ち、図9の除去装置760は、規定位置と異なる位置に供給された電極組成物22c’をカップ762で覆い、カップ762内において、電極組成物22c’に対して気体を吹き付けつつ電極組成物22c’を吸引することにより、集電体21B上から電極組成物22c’を除去する。集電体21Bに付着した電極組成物22c’については単に吸引しただけでは除去できないケースがあるところ、ブロワ761により集電体21Bから引き剥がしてから電極組成物22c’を吸引することにより、電極組成物22c’を除去することが可能となる。また、カップ762内において電極組成物22c’に気体を吹き付けつけることにより、電極組成物22c’が回収されることなく吹き飛ばされるといった事態を回避することができる。なお、ブロワ761が電極組成物22c’に対して吹き付ける気体は、空気であってもよいし、窒素等の不活性ガスであってもよい。また、図9に示すブロワ761及びカップ762を、図4Aに示したレール711及びアーム712により保持して、電極組成物22c’に対する位置を制御してもよい。 The blower 761 blows gas onto the electrode composition 22c'. The electrode composition 22c' to which gas has been blown by the blower 761 is rolled up into the cup 762 and discharged to the outside together with the gas in the cup 762. That is, the removing device 760 of FIG. 9 covers the electrode composition 22c' supplied to a position different from the prescribed position with a cup 762, and removes the electrode composition 22c' while blowing gas against the electrode composition 22c' within the cup 762. The electrode composition 22c' is removed from the current collector 21B by suctioning the electrode composition 22c'. In some cases, the electrode composition 22c' attached to the current collector 21B cannot be removed by simply suctioning it, but by pulling the electrode composition 22c' off the current collector 21B with the blower 761 and then sucking the electrode composition 22c', the electrode composition 22c' can be removed. It becomes possible to remove composition 22c'. Further, by blowing gas onto the electrode composition 22c' within the cup 762, it is possible to avoid a situation where the electrode composition 22c' is blown away without being collected. Note that the gas blown onto the electrode composition 22c' by the blower 761 may be air or an inert gas such as nitrogen. Alternatively, the blower 761 and cup 762 shown in FIG. 9 may be held by the rail 711 and arm 712 shown in FIG. 4A to control their position with respect to the electrode composition 22c'.
 除去装置700の他の例を図10に示す。図10においては、除去装置700の一例として、ブロワ771及びカップ772を備えた除去装置770を示す。 Another example of the removal device 700 is shown in FIG. In FIG. 10, as an example of the removal device 700, a removal device 770 including a blower 771 and a cup 772 is shown.
 ブロワ771は、電極組成物22c’に対して気体を吹き付ける。ブロワ771により気体が吹き付けられた電極組成物22c’は、カップ772内に巻き上げられるとともに、カップ772内の気体とともに外部に排出される。即ち、図10の除去装置770は、規定位置と異なる位置に供給された電極組成物22c’をカップ772で覆い、カップ772内において、電極組成物22c’に対して気体を吹き付けつつ電極組成物22c’を吸引することにより、集電体21B上から電極組成物22c’を除去する。集電体21Bに付着した電極組成物22c’については単に吸引しただけでは除去できないケースがあるところ、ブロワ771により集電体21Bから引き剥がしてから電極組成物22c’を吸引することにより、電極組成物22c’を除去することが可能となる。また、カップ772内において電極組成物22c’に気体を吹き付けつけることにより、電極組成物22c’が回収されることなく吹き飛ばされるといった事態を回避することができる。なお、ブロワ771が電極組成物22c’に対して吹き付ける気体は、空気であってもよいし、窒素等の不活性ガスであってもよい。 The blower 771 blows gas onto the electrode composition 22c'. The electrode composition 22c' to which gas has been blown by the blower 771 is rolled up into the cup 772 and discharged to the outside together with the gas in the cup 772. That is, the removing device 770 in FIG. 10 covers the electrode composition 22c' supplied to a position different from the prescribed position with a cup 772, and removes the electrode composition 22c' while blowing gas against the electrode composition 22c' within the cup 772. The electrode composition 22c' is removed from the current collector 21B by suctioning the electrode composition 22c'. In some cases, the electrode composition 22c' attached to the current collector 21B cannot be removed by simply suctioning it, but by pulling the electrode composition 22c' off the current collector 21B with the blower 771 and then sucking the electrode composition 22c', the electrode composition 22c' can be removed. It becomes possible to remove composition 22c'. Furthermore, by blowing gas onto the electrode composition 22c' within the cup 772, it is possible to avoid a situation where the electrode composition 22c' is blown away without being collected. Note that the gas blown onto the electrode composition 22c' by the blower 771 may be air or an inert gas such as nitrogen.
 また、図10に示すブロワ771及びカップ772を、図4Aに示したレール711及びアーム712により保持して、電極組成物22c’に対する位置を制御してもよい。ここで、カップ772は、図10に示すように、フィルム押さえ部772aを備えてもよい。即ち、集電体21Bに対するブロワ771及びカップ772の相対位置についてはレール711やアーム712等の動作によって固定されるが、機械的な精度には限界があり、細かいがたつきが生じることが想定される。これに対し、フィルム押さえ部772aが集電体21Bに接することにより、集電体21Bに対するブロワ771及びカップ772の相対位置を安定させることができる。 Alternatively, the blower 771 and cup 772 shown in FIG. 10 may be held by the rail 711 and arm 712 shown in FIG. 4A to control their position with respect to the electrode composition 22c'. Here, the cup 772 may include a film pressing part 772a, as shown in FIG. In other words, the relative positions of the blower 771 and cup 772 with respect to the current collector 21B are fixed by the movement of the rail 711, arm 712, etc., but there is a limit to mechanical accuracy, and it is assumed that small wobbles will occur. be done. On the other hand, since the film pressing portion 772a contacts the current collector 21B, the relative positions of the blower 771 and the cup 772 with respect to the current collector 21B can be stabilized.
 上述した実施形態では、電極組成物22cが載置される帯状の基材フィルムが帯状の集電体21Bであるものとして説明したが、これに限定されるものではない。例えば、図2に示した帯状の集電体21Bに代えて、帯状のセパレータシートや、帯状の離形フィルムを基材フィルムとしてもよい。かかる場合、上述の除去装置700は、セパレータシートや離形フィルムから、余分な電極組成物22c’を除去することができる。なお、帯状のセパレータシートは、後にトリミングすることで、図1に示したセパレータ30を形成することができる。 In the embodiment described above, the strip-shaped base film on which the electrode composition 22c is placed is the strip-shaped current collector 21B, but the present invention is not limited to this. For example, instead of the strip-shaped current collector 21B shown in FIG. 2, a strip-shaped separator sheet or a strip-shaped release film may be used as the base film. In such a case, the above-described removal device 700 can remove excess electrode composition 22c' from the separator sheet or release film. Note that the separator sheet 30 shown in FIG. 1 can be formed by trimming the band-shaped separator sheet later.
 例えば、セパレータシートを基材フィルムとする場合、セパレータシート上に電極組成物22cを供給し、電極組成物22cにおけるセパレータシートと反対側の面に集電体21Bを供給し、セパレータシート及び集電体21Bを所定の形状にトリミングし、更に、枠体35を供給することで、正極20a又は負極20bを作製することができる。 For example, when the separator sheet is used as a base film, the electrode composition 22c is supplied on the separator sheet, the current collector 21B is supplied on the surface of the electrode composition 22c opposite to the separator sheet, and the separator sheet and the current collector are By trimming the body 21B into a predetermined shape and further supplying the frame 35, the positive electrode 20a or the negative electrode 20b can be produced.
 また、離形フィルムを基材フィルムとする場合、離形フィルム上に電極組成物22cを供給し、電極組成物22cにおける離形フィルムと反対側の面に集電体21Bを供給し、離形フィルムを回収した後、集電体21Bと反対側の面にセパレータシートを供給し、集電体21B及びセパレータシートを所定の形状にトリミングし、更に、枠体35を供給することで、正極20a又は負極20bを作製することができる。なお、セパレータシートを供給して後にトリミングすることに代え、電極組成物22cに対してセパレータ30を供給することとしても構わない。 In addition, when the release film is used as a base film, the electrode composition 22c is supplied on the release film, the current collector 21B is supplied to the surface of the electrode composition 22c opposite to the release film, and the release film is After collecting the film, a separator sheet is supplied to the surface opposite to the current collector 21B, the current collector 21B and the separator sheet are trimmed into a predetermined shape, and a frame 35 is further supplied to form the positive electrode 20a. Alternatively, the negative electrode 20b can be produced. Note that instead of supplying the separator sheet and trimming it later, the separator 30 may be supplied to the electrode composition 22c.
 或いは、離形フィルム上に電極組成物22cを供給し、電極組成物22cにおける離形フィルムと反対側の面にセパレータシートを供給し、離形フィルムを回収した後、セパレータシートと反対側の面に集電体21Bを供給し、セパレータシート及び集電体21Bを所定の形状にトリミングし、更に、枠体35を供給することで、正極20a又は負極20bを作製することができる。なお、集電体21Bを供給して後にトリミングすることに代え、所定の形状にトリミングされた集電体21を電極組成物22cに対して供給することとしても構わない。 Alternatively, the electrode composition 22c is supplied onto the release film, a separator sheet is supplied to the surface of the electrode composition 22c opposite to the release film, and after the release film is collected, the surface opposite to the separator sheet is By supplying the current collector 21B, trimming the separator sheet and the current collector 21B into a predetermined shape, and further supplying the frame 35, the positive electrode 20a or the negative electrode 20b can be produced. Note that instead of supplying the current collector 21B and trimming it later, the current collector 21 trimmed into a predetermined shape may be supplied to the electrode composition 22c.
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。更に、各実施形態で示した構成のそれぞれを適宜組み合わせて利用できることは、言うまでもない。二次電池のうち、以上の説明で例示したリチウムイオン二次電池を用いる場合は、電解質に液体材料を使用した電池を含み、電解質に固体材料を使用した電池(いわゆる全固体電池)を含む。また本実施形態における電池は、集電体として金属箔(金属集電箔)を有する電池を含み、金属箔に代わって導電性材料が添加された樹脂から構成される、いわゆる樹脂集電体を有する電池を含む。当該樹脂集電体を、バイポーラ電極用樹脂集電体として用いる場合には、当該樹脂集電体の一方の面に正極を形成し、もう一方の面に負極を形成して双極型電極を構成したものであってもよい。なお、本実施形態における電池は、バインダを用いて正極または負極活物質等を正極用または負極用集電体にそれぞれ塗布して電極を構成したものを含み、双極型の電池の場合には、集電体の一方の面にバインダを用いて正極活物質等を塗布して正極層を、反対側の面にバインダを用いて負極活物質等を塗布して負極層を有する双極型電極を構成したものを含む。 Although the embodiment of the present invention has been described in detail with reference to the drawings above, the specific configuration is not limited to this embodiment, and modifications, combinations, deletions, etc. of the configuration within the scope of the gist of the present invention, etc. Also included. Furthermore, it goes without saying that the configurations shown in each embodiment can be used in appropriate combinations. Among secondary batteries, when using the lithium ion secondary battery exemplified in the above explanation, it includes a battery that uses a liquid material as an electrolyte, and a battery that uses a solid material as an electrolyte (a so-called all-solid-state battery). Furthermore, the battery in this embodiment includes a battery having a metal foil (metal current collector foil) as a current collector, and a so-called resin current collector made of resin to which a conductive material is added instead of the metal foil. Including batteries with. When the resin current collector is used as a resin current collector for bipolar electrodes, a positive electrode is formed on one surface of the resin current collector and a negative electrode is formed on the other surface to form a bipolar electrode. It may be something that has been done. Note that the batteries in this embodiment include those in which electrodes are formed by applying a positive electrode or negative electrode active material or the like to a positive electrode or negative electrode current collector using a binder, and in the case of a bipolar type battery, A bipolar electrode is constructed by applying a positive electrode active material etc. using a binder to one side of the current collector to form a positive electrode layer, and applying a negative electrode active material etc. using a binder to the opposite side to form a negative electrode layer. Including those who did.

Claims (9)

  1.  帯状の基材フィルムを搬送する搬送部と、
     搬送される前記基材フィルムにおける規定位置に対して、活物質を含む電極組成物を供給する供給部と、
     前記基材フィルムにおける、前記規定位置と異なる位置に供給された前記電極組成物を検出する検出部と、
     前記異なる位置に供給された前記電極組成物を除去する除去部と
     を備えた電池用電極製造装置。
    a conveyance unit that conveys a strip-shaped base film;
    a supply unit that supplies an electrode composition containing an active material to a specified position on the base film being transported;
    a detection unit that detects the electrode composition supplied to a position different from the specified position in the base film;
    and a removing section that removes the electrode composition supplied to the different positions.
  2.  内部が大気圧よりも減圧されたチャンバを備え、
     前記搬送部は、前記チャンバの内部において、前記基材フィルムを搬送する、
     請求項1に記載の電池用電極製造装置。
    Equipped with a chamber whose internal pressure is lower than atmospheric pressure,
    The transport unit transports the base film inside the chamber.
    The battery electrode manufacturing apparatus according to claim 1.
  3.  前記除去部は、搬送される前記基材フィルムに同期して移動しつつ、前記異なる位置に供給された前記電極組成物を除去する、請求項1に記載の電池用電極製造装置。 The battery electrode manufacturing apparatus according to claim 1, wherein the removing section removes the electrode composition supplied to the different positions while moving in synchronization with the conveyed base film.
  4.  前記除去部は、前記異なる位置に供給された前記電極組成物に対して気体を吹き付けつつ当該電極組成物を吸引することにより、当該電極組成物を除去する、請求項1に記載の電池用電極製造装置。 The battery electrode according to claim 1, wherein the removing unit removes the electrode composition by sucking the electrode composition while blowing gas onto the electrode composition supplied to the different positions. Manufacturing equipment.
  5.  前記除去部は、前記異なる位置に供給された前記電極組成物をカップで覆い、当該カップ内において、当該電極組成物に対して気体を吹き付けつつ当該電極組成物を吸引することにより、当該電極組成物を除去する、請求項4に記載の電池用電極製造装置。 The removing unit covers the electrode compositions supplied to the different positions with a cup, and sucks the electrode composition while blowing gas to the electrode composition in the cup. The battery electrode manufacturing apparatus according to claim 4, which removes objects.
  6.  前記除去部は、前記異なる位置に供給された前記電極組成物を把持して除去する、請求項1に記載の電池用電極製造装置。 The battery electrode manufacturing apparatus according to claim 1, wherein the removing section grips and removes the electrode composition supplied to the different positions.
  7.  前記除去部は、前記異なる位置に供給された前記電極組成物を拭き取って除去する、請求項1に記載の電池用電極製造装置。 The battery electrode manufacturing apparatus according to claim 1, wherein the removing unit wipes and removes the electrode composition supplied to the different positions.
  8.  前記電極組成物は、前記活物質及び電解液を含んだ湿潤粉体である、請求項1に記載の電池用電極製造装置。 The battery electrode manufacturing apparatus according to claim 1, wherein the electrode composition is a wet powder containing the active material and an electrolyte.
  9.  帯状の基材フィルムを搬送し、
     搬送される前記基材フィルムにおける規定位置に対して、活物質を含む電極組成物を供給し、
     前記基材フィルムにおける、前記規定位置と異なる位置に供給された前記電極組成物を検出し、
     前記異なる位置に供給された前記電極組成物を除去する
     ことを含む、電池用電極製造方法。
    Transporting the strip-shaped base film,
    Supplying an electrode composition containing an active material to a specified position on the base film being transported;
    detecting the electrode composition supplied to a position different from the prescribed position in the base film;
    A method for manufacturing an electrode for a battery, comprising: removing the electrode composition supplied to the different positions.
PCT/JP2023/013319 2022-03-30 2023-03-30 Battery electrode manufacturing device and battery electrode manufacturing method WO2023190940A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-056591 2022-03-30
JP2022056591A JP2023148517A (en) 2022-03-30 2022-03-30 Battery electrode manufacturing device and battery electrode manufacturing method

Publications (1)

Publication Number Publication Date
WO2023190940A1 true WO2023190940A1 (en) 2023-10-05

Family

ID=88202894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013319 WO2023190940A1 (en) 2022-03-30 2023-03-30 Battery electrode manufacturing device and battery electrode manufacturing method

Country Status (2)

Country Link
JP (1) JP2023148517A (en)
WO (1) WO2023190940A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125959A (en) * 1997-05-08 1999-01-29 Sony Corp Manufacture and device of battery
JPH11283613A (en) * 1998-03-30 1999-10-15 Sony Corp Manufacture of metal foil current collector
JP2018018681A (en) * 2016-07-27 2018-02-01 株式会社豊田自動織機 Electrode manufacturing device and electrode manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125959A (en) * 1997-05-08 1999-01-29 Sony Corp Manufacture and device of battery
JPH11283613A (en) * 1998-03-30 1999-10-15 Sony Corp Manufacture of metal foil current collector
JP2018018681A (en) * 2016-07-27 2018-02-01 株式会社豊田自動織機 Electrode manufacturing device and electrode manufacturing method

Also Published As

Publication number Publication date
JP2023148517A (en) 2023-10-13

Similar Documents

Publication Publication Date Title
KR20210027471A (en) Continuous and semi-continuous methods of manufacturing semi-solid electrodes and batteries
US20110183203A1 (en) Polymer supported electrodes
KR100814541B1 (en) Production Method for Secondary Battery and Production Device for Secondary Battery
WO2013122094A1 (en) Battery pressing apparatus and battery pressing method
JP2012155988A (en) Method and apparatus of manufacturing all-solid battery
JP5534370B2 (en) Method for manufacturing battery electrode
KR20170108378A (en) Apparatus for Transferring Battery Cell in Sliding Manner
WO2023190940A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
CN109328414B (en) Method for laminating battery cells using solvent and chamber device for performing lamination
JP2023128854A (en) Manufacturing device for battery electrode and manufacturing method for battery electrode
JP2023150229A (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2024012938A (en) Battery electrode manufacturing device and battery electrode manufacturing method
WO2023167339A1 (en) Apparatus for producing battery electrode and method for producing battery electrode
JP2023128856A (en) Manufacturing device for battery electrode and manufacturing method for battery electrode
KR20170098630A (en) Manufacturing Apparatus for Electrode Assembly Capable of Real Time Removal of Dust Deteriorating Performance of Electrode During Manufacturing Process
WO2023171772A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
WO2022210966A1 (en) Battery electrode manufacturing device
JP2023150230A (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023148518A (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023051223A (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023119212A (en) Battery electrode manufacturing device and battery electrode manufacturing method
WO2022210952A1 (en) Battery-electrode-manufacturing device and method for detecting position of work mechanism in battery-electrode-manufacturing device
JP2023132707A (en) Battery electrode manufacturing device and battery electrode manufacturing method
WO2022211102A1 (en) Active material supply device, and method for manufacturing electrode for battery
WO2023100840A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780948

Country of ref document: EP

Kind code of ref document: A1