WO2023171772A1 - Battery electrode manufacturing device and battery electrode manufacturing method - Google Patents

Battery electrode manufacturing device and battery electrode manufacturing method Download PDF

Info

Publication number
WO2023171772A1
WO2023171772A1 PCT/JP2023/009172 JP2023009172W WO2023171772A1 WO 2023171772 A1 WO2023171772 A1 WO 2023171772A1 JP 2023009172 W JP2023009172 W JP 2023009172W WO 2023171772 A1 WO2023171772 A1 WO 2023171772A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode composition
hopper
current collector
active material
Prior art date
Application number
PCT/JP2023/009172
Other languages
French (fr)
Japanese (ja)
Inventor
英明 堀江
健一郎 榎
勇輔 中嶋
浩太郎 那須
Original Assignee
Apb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apb株式会社 filed Critical Apb株式会社
Publication of WO2023171772A1 publication Critical patent/WO2023171772A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery electrode manufacturing apparatus and a battery electrode manufacturing method.
  • Lithium-ion batteries are high-capacity secondary batteries that have been used for a variety of purposes in recent years.
  • the electrode of a lithium ion battery is composed of an active material layer, a current collector layer, a separator, a frame that encloses the active material layer, and the like (see, for example, Patent Document 1).
  • the active material layer in a lithium ion battery can be formed, for example, by supplying an electrode composition to a strip-shaped base film and compressing it using a roll press or the like. More specifically, an electrode composition is intermittently supplied to a strip-shaped base film, and after compression by a roll press or the like, the base film is cut between the intermittently supplied electrode compositions. By separating the active material layers, the active material layer can be continuously formed.
  • Patent Document 2 discloses a method using a mask. Specifically, in Patent Document 2, after placing a mask layer on the surface of a base material and supplying an electrode composition, excess electrode composition is removed from the base material together with the mask layer, thereby changing the electrode composition. It describes how to supply things intermittently.
  • an object of the present invention is to provide a battery electrode manufacturing apparatus and a battery electrode manufacturing method that can efficiently and intermittently supply an electrode composition. do.
  • a battery electrode manufacturing apparatus is provided with an electrode that is a wet powder containing an active material and an electrolytic solution, and includes a transport section that transports a strip-shaped base film, and an opening. and a hopper for holding the composition therein.
  • the battery electrode manufacturing apparatus includes an extrusion section that is disposed inside the hopper and pushes out the electrode composition toward the opening, and an adjustment section that adjusts the pressure applied to the electrode composition inside the hopper. Equipped with.
  • the electrode composition can be supplied efficiently and intermittently.
  • FIG. 1 is a schematic cross-sectional view of a single cell of a battery manufactured using the battery electrode manufacturing apparatus of the embodiment.
  • FIG. 2 is a schematic diagram of a battery electrode manufacturing apparatus according to an embodiment.
  • FIG. 3 is a diagram showing an electrode composition supply device according to an embodiment.
  • a lithium-ion battery is an assembled battery that is made into a module by combining multiple lithium-ion single cells (also referred to as single cells or battery cells), or a battery pack that is made by combining multiple such assembled batteries to adjust the voltage and capacity. used in form.
  • a lithium ion secondary battery is shown below, the type of secondary battery according to the present invention is not limited to a lithium ion secondary battery, and includes other secondary batteries.
  • FIG. 1 is a schematic cross-sectional view of a single cell 10. It is possible to produce the above assembled battery by combining a plurality of single cells 10.
  • the single cell 10 includes a positive electrode 20a and a negative electrode 20b as two electrodes 20 (battery electrodes), and a separator 30.
  • the separator 30 is placed between the positive electrode 20a and the negative electrode 20b.
  • a plurality of single cells 10 are stacked with the positive electrode 20a and the negative electrode 20b facing in the same direction.
  • the separator 30 holds an electrolyte. Thereby, separator 30 functions as an electrolyte layer.
  • the separator 30 is arranged between the electrode active material layers 22 of the positive electrode 20a and the negative electrode 20b, and prevents them from coming into contact with each other. Thereby, the separator 30 functions as a partition between the positive electrode 20a and the negative electrode 20b.
  • Examples of the electrolyte held in the separator 30 include an electrolytic solution or a gel polymer electrolyte. By using these electrolytes, high lithium ion conductivity is ensured.
  • Examples of the form of the separator include a porous sheet separator made of a polymer or fiber that absorbs and retains the electrolyte, a nonwoven fabric separator, and the like.
  • the positive electrode 20a and the negative electrode 20b each include a current collector 21, an electrode active material layer 22, and a frame 35.
  • the electrode active material layer 22 and the current collector 21 are arranged in this order from the separator 30 side.
  • the frame 35 is frame-shaped (annular).
  • the frame 35 surrounds the electrode active material layer 22 .
  • the frame 35 of the positive electrode 20a and the frame 35 of the negative electrode 20b are welded together and integrated.
  • the electrode active material layers 22 of the positive electrode 20a and the negative electrode 20b are to be distinguished from each other, they will be referred to as a positive electrode active material layer 22a and a negative electrode active material layer 22b, respectively.
  • positive electrode current collector As the positive electrode current collector constituting the positive electrode current collector layer 21a, a current collector used in a known lithium ion cell can be used, for example, a current collector made of a known metal current collector, a conductive material, and a resin. (Resin current collectors described in JP 2012-150905 A, WO 2015/005116, etc.) can be used.
  • the positive electrode current collector constituting the positive electrode current collector layer 21a is preferably a resin current collector from the viewpoint of battery characteristics and the like.
  • metal current collectors include copper, aluminum, titanium, nickel, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, alloys containing one or more of these metals, and stainless steel alloys.
  • a substrate made of a material other than the above-described metal material on which the above-mentioned metal material is formed by sputtering, electrodeposition, coating, or the like may be used as the metal current collector.
  • the resin current collector preferably contains a conductive filler and a matrix resin.
  • the matrix resin include, but are not particularly limited to, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), and the like.
  • the conductive filler is not particularly limited as long as it is selected from materials having conductivity.
  • the conductive filler may be a conductive fiber having a fibrous shape.
  • the resin current collector may contain other components (dispersant, crosslinking accelerator, crosslinking agent, coloring agent, ultraviolet absorber, plasticizer, etc.). Further, a plurality of resin current collectors may be stacked and used, or a resin current collector and a metal foil may be stacked and used.
  • the thickness of the positive electrode current collector layer 21a is not particularly limited, but is preferably 5 to 150 ⁇ m. When a plurality of resin current collectors are laminated and used as the positive electrode current collector layer 21a, the total thickness after lamination is preferably 5 to 150 ⁇ m.
  • the positive electrode current collector layer 21a can be obtained, for example, by molding a conductive resin composition obtained by melt-kneading a matrix resin, a conductive filler, and an optional filler dispersant into a film by a known method. I can do it.
  • the positive electrode active material layer 22a is preferably a non-bound body of a mixture containing the positive electrode active material.
  • a non-bound body means that the position of the positive electrode active material in the positive electrode active material layer is not fixed, and the positive electrode active materials and the positive electrode active material and the current collector are not irreversibly fixed. means.
  • the positive electrode active material layer 22a is a non-binding body, the positive electrode active materials are not irreversibly fixed to each other, and therefore can be separated without mechanically destroying the interface between the positive electrode active materials. This is preferable because even when stress is applied to the material layer 22a, the movement of the positive electrode active material prevents the destruction of the positive electrode active material layer 22a.
  • the positive electrode active material layer 22a which is a non-binding body, can be obtained by a method such as changing the positive electrode active material layer 22a to a positive electrode active material layer 22a containing a positive electrode active material and an electrolyte and not containing a binder.
  • binder refers to a chemical that cannot reversibly fix the positive electrode active materials to each other or the positive electrode active material and the current collector, and includes starch, polyvinylidene fluoride, polyvinyl alcohol, carboxylic acid, etc.
  • Examples include known solvent-dried binders for lithium ion batteries such as methylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene and polypropylene. These binders are used by being dissolved or dispersed in a solvent, and when the solvent is volatilized or distilled off, the surface becomes solid without exhibiting stickiness, so that the positive electrode active materials can be bonded to each other and the positive electrode active material and the current collector. cannot be fixed reversibly.
  • solvent-dried binders for lithium ion batteries such as methylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene and polypropylene. These binders are used by being dissolved or dispersed in a solvent, and when the solvent is volatilized or distilled off, the surface becomes solid without exhibiting stickiness, so that the positive electrode active materials can be bonded to
  • positive electrode active materials include, but are not particularly limited to, composite oxides of lithium and transition metals, composite oxides containing two types of transition metal elements, composite oxides containing three or more types of metal elements, etc. .
  • the positive electrode active material may be a coated positive electrode active material in which at least a portion of the surface thereof is covered with a coating material containing a polymer compound.
  • a coating material containing a polymer compound When the periphery of the positive electrode active material is covered with a coating material, volume change of the positive electrode is alleviated, and expansion of the positive electrode can be suppressed.
  • polymer compound constituting the coating material those described as active material coating resins in JP2017-054703A, WO2015/005117, etc. can be suitably used.
  • the coating material may contain a conductive agent.
  • the conductive agent the same conductive filler as that contained in the positive electrode current collector layer 21a can be suitably used.
  • the positive electrode active material layer 22a may contain adhesive resin.
  • the adhesive resin for example, a non-aqueous secondary battery active material coating resin described in JP 2017-054703 A is mixed with a small amount of an organic solvent to adjust its glass transition temperature to below room temperature; Also, those described as adhesives in JP-A-10-255805 can be suitably used.
  • Adhesive resin is a resin that does not solidify even if the solvent component is evaporated and dried, but has adhesive properties (the property of adhering by applying slight pressure without using water, solvent, heat, etc.) means.
  • a solution-drying electrode binder used as a binder is one that dries and solidifies by volatilizing the solvent component, thereby firmly adhering and fixing active materials to each other. Therefore, the above-mentioned binder (solution-dried electrode binder) and adhesive resin are different materials.
  • the positive electrode active material layer 22a may contain an electrolytic solution containing an electrolyte and a nonaqueous solvent.
  • electrolyte those used in known electrolytes can be used.
  • non-aqueous solvent those used in known electrolytic solutions (for example, phosphoric acid esters, nitrile compounds, etc., mixtures thereof, etc.) can be used.
  • a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) or a mixture of ethylene carbonate (EC) and propylene carbonate (PC) can be used.
  • the positive electrode active material layer 22a may contain a conductive additive.
  • a conductive material similar to the conductive filler contained in the positive electrode current collector layer 21a can be suitably used.
  • the thickness of the positive electrode active material layer 22a is not particularly limited, but from the viewpoint of battery performance, it is preferably 150 to 600 ⁇ m, more preferably 200 to 450 ⁇ m.
  • the positive electrode composition supplied to form the positive electrode active material layer 22a is a wet powder containing a positive electrode active material and a non-aqueous electrolyte. Moreover, it is more preferable that the wet powder is in a pendular state or a funicular state.
  • the proportion of the non-aqueous electrolyte in the wet powder is not particularly limited, but in the case of a positive electrode, the proportion of the non-aqueous electrolyte in the whole wet powder should be 0.5 to 0.5 to 100% in order to obtain a pendular state or a funicular state.
  • the content is preferably 15% by weight.
  • the negative electrode current collector layer 21b is preferably a resin current collector from the viewpoint of battery characteristics and the like.
  • the thickness of the negative electrode current collector layer 21b is not particularly limited, but is preferably 5 to 150 ⁇ m.
  • the negative electrode active material layer 22b is preferably a non-bound body of a mixture containing negative electrode active materials.
  • the negative electrode active material for example, carbon-based materials, silicon-based materials, mixtures thereof, etc. can be used, but there is no particular limitation.
  • the negative electrode active material may be a coated negative electrode active material in which at least a portion of the surface thereof is covered with a coating material containing a polymer compound.
  • a coating material containing a polymer compound When the periphery of the negative electrode active material is coated with a coating material, the volume change of the negative electrode is alleviated, and expansion of the negative electrode can be suppressed.
  • the same coating material as the coating material constituting the coated positive electrode active material can be suitably used.
  • the negative electrode active material layer 22b contains an electrolyte solution containing an electrolyte and a nonaqueous solvent. Regarding the composition of the electrolytic solution, an electrolytic solution similar to that contained in the positive electrode active material layer 22a can be suitably used.
  • the negative electrode active material layer 22b may contain a conductive additive.
  • a conductive material similar to the conductive filler contained in the positive electrode active material layer 22a can be suitably used.
  • the negative electrode active material layer 22b may contain adhesive resin.
  • the adhesive resin the same adhesive resin as the optional component of the positive electrode active material layer 22a can be suitably used.
  • the thickness of the negative electrode active material layer 22b is not particularly limited, but from the viewpoint of battery performance, it is preferably 150 to 600 ⁇ m, more preferably 200 to 450 ⁇ m.
  • the negative electrode composition supplied to form the negative electrode active material layer 22b is a wet powder containing a negative electrode active material and a non-aqueous electrolyte. Moreover, it is more preferable that the wet powder is in a pendular state or a funicular state.
  • the proportion of the non-aqueous electrolyte in the wet powder is not particularly limited, but in the case of a negative electrode, the proportion of the non-aqueous electrolyte should be 0.5 to 0.5 to the total wet powder in order to obtain a pendular state or a funicular state.
  • the content is preferably 25% by weight.
  • Examples of the electrolyte held in the separator 30 include an electrolytic solution or a gel polymer electrolyte. By using these electrolytes, the separator 30 ensures high lithium ion conductivity.
  • the form of the separator 30 includes, for example, a porous film made of polyethylene or polypropylene, but is not particularly limited.
  • the frame 35 is not particularly limited as long as it is made of a material that is durable against the electrolytic solution, but for example, a polymer material is preferable, and a thermosetting polymer material is more preferable.
  • the material constituting the frame 35 may be any material as long as it has insulation properties, sealing properties (liquid tightness), heat resistance under the battery operating temperature, etc., and a resin material is preferably employed. More specifically, examples of the frame 35 include epoxy resin, polyolefin resin, polyurethane resin, polyvinylidene fluoride resin, etc. Epoxy resin is preferred because it is highly durable and easy to handle. preferable.
  • a battery electrode manufacturing apparatus and a battery electrode manufacturing method (hereinafter simply referred to as the manufacturing method) of the present embodiment will be described.
  • a positive electrode 20a and a negative electrode 20b are first manufactured.
  • the method for manufacturing the positive electrode 20a and the method for manufacturing the negative electrode 20b differ mainly in the electrode active material contained in the electrode active material layer 22.
  • methods for manufacturing the positive electrode 20a and the negative electrode 20b will be described together.
  • FIG. 2 is a schematic diagram of the battery electrode manufacturing apparatus 1000.
  • a battery electrode manufacturing apparatus 1000 includes a chamber 100, a conveyance device 200, an electrode composition supply device 300, a frame supply device 400, and a press device 500.
  • belt-shaped base film is the strip
  • the chamber 100 is a room whose interior can be maintained at a pressure lower than atmospheric pressure.
  • the pressure inside the chamber 100 is reduced below atmospheric pressure by a pressure reduction pump (not shown).
  • the standard atmospheric pressure is approximately 1013 hPa (approximately 105 Pa).
  • a current collector roll 21R is arranged outside the chamber 100, and a band-shaped current collector 21B pulled out from the current collector roll 21R is conveyed into the chamber 100 through a slit.
  • the strip-shaped current collector 21B may be referred to as a current collector 21B.
  • the current collector 21B is the current collector 21 described above before being cut into a predetermined shape.
  • the current collector 21B is transported at a predetermined speed along the transport direction Da.
  • the direction in which the current collector 21B is conveyed is referred to as the downstream side Da1
  • the opposite direction is referred to as the upstream side Da2.
  • the external space of the chamber 100 in which the current collector roll 21R is arranged may be at normal pressure or may be reduced in pressure by a chamber different from the chamber 100.
  • the upper side in the vertical direction Db is Db1
  • the lower side in the vertical direction Db is Db2.
  • the direction perpendicular to the transport direction Da and the vertical direction Db corresponds to the width direction of the current collector 21B and the electrode composition 22c placed on the current collector 21B.
  • the transport device 200 transports the current collector 21B to the downstream side Da1 in the transport direction Da.
  • the conveyance device 200 is a belt conveyor that supports the current collector 21B from below.
  • the transportation device 200 transports the current collector 21B on which the electrode composition 22c is placed.
  • the frame body 35 is supplied by the frame body supply device 400 described below, the conveyance device 200 conveys the current collector 21B on which the frame body 35 and the electrode composition 22c are placed.
  • the transport device 200 is an example of a transport section.
  • the electrode composition supply device 300 supplies the electrode composition 22c onto the current collector 21B transported within the chamber 100.
  • the electrode composition 22c positive electrode composition supplied from the electrode composition supply device 300 is The negative electrode composition
  • the negative electrode composition is a wet powder containing an electrode active material (positive electrode active material, negative electrode active material) and an electrolyte (non-aqueous electrolyte).
  • the wet powder as the electrode composition 22c is in a pendular state or a funicular state.
  • the electrode active material is a coated electrode active material coated with a coating material containing a polymer compound. Since the electrode active material contained in the electrode composition 22c is a coated electrode active material, it is necessary to keep the electrode composition 22c in a soft state in the step of supplying it onto the current collector 21B.
  • the electrode composition supply device 300 of the embodiment will be described using FIG. 3. As shown in FIG. 3, the electrode composition supply device 300 includes a hopper 310, a hopper 320, a screw 330, an accumulator 340, and a shutter 350.
  • Hopper 310 supplies electrode composition 22c to hopper 320.
  • Hopper 320 includes an opening 321 and holds electrode composition 22c therein. That is, as described later, the electrode composition 22c held inside the hopper 320 is supplied to the current collector 21B through the opening 321. Then, it is necessary to replenish the hopper 320 with the electrode composition 22c according to the supplied amount. Hopper 310 replenishes hopper 320 with electrode composition 22c as appropriate.
  • the method of supplying the electrode composition 22c to the hopper 320 is not particularly limited.
  • a conveyor for conveying the electrode composition 22c may be provided, and the electrode composition 22c may be supplied to the hopper 320 from the conveyor.
  • the screw 330 is arranged inside the hopper 320 and pushes out the electrode composition 22c toward the opening 321.
  • the screw 330 has a member having a spiral protrusion around the rotation axis, and by rotating within the electrode composition 22c, pushes out the electrode composition 22c in the direction along the rotation axis.
  • the screw 330 is an example of an extrusion section.
  • the screw 330 can extrude the electrode composition 22c while kneading it. That is, since the electrode composition 22c is a wet powder containing multiple types of substances such as an electrode active material and an electrolyte, it is preferable to provide a kneading step for uniformity. When employing the screw 330 as the extrusion section, the kneading step can be omitted.
  • the electrode composition 22c when kneading the electrode composition 22c before supplying the electrode composition 22c to the hopper 320, the electrode composition 22c may be kneaded before the electrode composition 22c is supplied to the current collector 21B. There is a risk that non-uniformity may progress.
  • the screw 330 when the screw 330 is employed as the extrusion section, the time from kneading to supplying the electrode composition 22c to the current collector 21B is shortened, so that the electrode composition 22c supplied to the current collector 21B is The uniformity of the object 22c can be improved.
  • the accumulator 340 adjusts the pressure applied to the electrode composition 22c inside the hopper 320. That is, pressure is applied to the electrode composition 22c by the screw 330 in order to push it out in the direction of the opening 321. Due to this pressure, the electrode composition 22c is pushed out of the hopper 320 through the opening 321. However, as described later, the opening 321 is opened and closed by the shutter 350. While the opening 321 is closed, the pressure inside the hopper 320 increases, and it is assumed that the electrode composition 22c is compacted inside the hopper 320. Accumulator 340 adjusts the pressure within hopper 320 so that the pressure applied to electrode composition 22c does not increase excessively.
  • the accumulator 340 includes a piston that forms part of the inner surface of the hopper 320, as shown in FIG.
  • the piston is configured to be able to reciprocate in a direction Dc perpendicular to the inner surface of the hopper 320.
  • Accumulator 340 is an example of an adjustment section.
  • the piston in the accumulator 340 moves in the direction Dc1 shown in FIG. 3, increasing the internal capacity of the hopper 320 and reducing the internal pressure. Further, when the pressure inside the hopper 320 decreases, the piston in the accumulator 340 moves in the direction Dc2 shown in FIG. 3 to prevent a gap from forming inside the hopper 320.
  • the piston in the accumulator 340 is preferably configured to have a larger area than the opening 321. This makes it difficult for the electrode composition 22c to stay in the accumulator 340.
  • the shutter 350 opens and closes the opening 321 by moving in the direction shown by the arrow in FIG. While the opening 321 is closed by the shutter 350, the supply of the electrode composition 22c from the electrode composition supply device 300 to the current collector 21B is stopped, and while the opening 321 is open, the supply of the electrode composition 22c is stopped. supply is carried out. That is, when the shutter 350 opens and closes the opening 321, the electrode composition 22c can be intermittently supplied.
  • the screw 330 may be operated continuously without being stopped. That is, while the screw 330 is operating, pressure is applied to the electrode composition 22c in the direction of the opening 321. However, the pressure applied to the electrode composition 22c is regulated by the accumulator 340, and the electrode composition 22c is prevented from being compacted by the pressure.
  • the electrode composition 22c can be supplied intermittently without stopping the screw 330. Although it is possible to realize intermittent supply of the electrode composition 22c by repeatedly operating and stopping the screw 330, such a method consumes a large amount of mechanical parts and energy, and is not efficient. do not have. Furthermore, the method using a mask as described in Patent Document 2 has a low yield and cannot be said to be efficient, even if stopping the apparatus is not necessary. On the other hand, according to the electrode composition supply device 300 of the embodiment, it is possible to efficiently and intermittently supply the electrode composition 22c.
  • the frame supply device 400 supplies the frame 35 to the current collector 21B being transported.
  • the frame supply device 400 includes a robot arm and places the frame 35 manufactured in advance at a predetermined position on the current collector 21B being transported.
  • the frame supply device 400 may manufacture the frame 35 on the current collector 21B.
  • the frame 35 is formed on the current collector 21B by using the current collector 21B as a base material and discharging or applying a predetermined material in a predetermined shape onto the current collector 21B using a dispenser, coater, etc. can be formed.
  • the press device 500 compresses the electrode composition 22c supplied to the current collector 21B.
  • the press device 500 has an upper roller 501 and a lower roller 502, as shown in FIG.
  • the press device 500 uses an upper roller 501 and a lower roller 502 to sandwich and compress the electrode composition 22c supplied to the current collector 21B. That is, the press device 500 performs roll pressing on the electrode composition 22c.
  • FIG. 2 an example has been described in which the frame body 35 is supplied by the frame body supply device 400 after the electrode composition supply device 300 supplies the electrode composition 22c.
  • the electrode composition 22c may be supplied by the electrode composition supply device 300 to a position inside the frame body 35.
  • FIG. 2 shows a case where the frame supply device 400 is arranged inside the chamber 100, the frame supply device 400 may be arranged outside the chamber 100.
  • each process such as supplying the electrode composition 22c by the electrode composition supply device 300 and compressing the electrode composition 22c by the press device 500 is performed in the chamber 100 whose interior is reduced in pressure from atmospheric pressure. Execute with. Thereby, air can be prevented from remaining inside the electrode composition 22c, and the uniformity of the electrode active material layer 22 can be improved.
  • the separator 30 shown in FIG. 1 is further supplied, and the single cell 10 is produced.
  • the separator 30 may be supplied continuously to the current collector 21B and the electrode composition 22c transported along the transport direction Da, or the current collector 21B and the electrode composition 22c may be supplied in predetermined units. After dividing, the process may be performed for each leaf.
  • the strip-shaped base film on which the electrode composition 22c is placed is the strip-shaped current collector 21B, but the present invention is not limited thereto.
  • a strip-shaped separator sheet or a strip-shaped release film may be used as the base film.
  • the separator sheet 30 shown in FIG. 1 can be formed by trimming the band-shaped separator sheet later.
  • the electrode composition 22c is supplied on the separator sheet
  • the current collector 21B is supplied on the surface of the electrode composition 22c opposite to the separator sheet
  • the separator sheet and the current collector are By trimming the body 21B into a predetermined shape and further supplying the frame 35, the positive electrode 20a or the negative electrode 20b can be manufactured.
  • the electrode composition 22c is supplied on the release film, the current collector 21B is supplied to the surface of the electrode composition 22c opposite to the release film, and the release film is After collecting the film, a separator sheet is supplied to the surface opposite to the current collector 21B, the current collector 21B and the separator sheet are trimmed into a predetermined shape, and a frame 35 is further supplied to form the positive electrode 20a.
  • the negative electrode 20b can be produced. Note that instead of supplying the separator sheet and trimming it later, the separator 30 may be supplied to the electrode composition 22c.
  • the electrode composition 22c is supplied onto the release film, a separator sheet is supplied to the surface of the electrode composition 22c opposite to the release film, and after the release film is collected, the surface opposite to the separator sheet is By supplying the current collector 21B, trimming the separator sheet and the current collector 21B into a predetermined shape, and further supplying the frame 35, the positive electrode 20a or the negative electrode 20b can be produced. Note that instead of supplying the current collector 21B and trimming it later, the current collector 21 trimmed into a predetermined shape may be supplied to the electrode composition 22c.
  • the specific configuration is not limited to this embodiment, and modifications, combinations, deletions, etc. of the configuration within the scope of the gist of the present invention, etc. Also included. Furthermore, it goes without saying that the configurations shown in each embodiment can be used in appropriate combinations.
  • the lithium ion secondary battery when using the lithium ion secondary battery exemplified in the above explanation, it includes a battery that uses a liquid material as an electrolyte, and a battery that uses a solid material as an electrolyte (a so-called all-solid-state battery).
  • the battery in this embodiment includes a battery having a metal foil (metal current collector foil) as a current collector, and a so-called resin current collector made of resin to which a conductive material is added instead of the metal foil. Including batteries with.
  • a resin current collector is used as a resin current collector for bipolar electrodes, a positive electrode is formed on one surface of the resin current collector and a negative electrode is formed on the other surface to form a bipolar electrode. It may be something that has been done.
  • the batteries in this embodiment include those in which electrodes are formed by applying a positive electrode or negative electrode active material or the like to a positive electrode or negative electrode current collector using a binder, and in the case of a bipolar type battery, A bipolar electrode is constructed by applying a positive electrode active material etc. using a binder to one side of the current collector to form a positive electrode layer, and applying a negative electrode active material etc. using a binder to the opposite side to form a negative electrode layer. Including those who did.

Abstract

This battery electrode manufacturing device (1000) comprises: a conveying part (200) that conveys a strip-shaped substrate film (21B); and a hopper (320) that is provided with an opening (321), and holds therein an electrode composition (22c), which is a wet powder containing an active material and an electrolyte solution. The battery electrode manufacturing device comprises: an extrusion part (330) which is disposed inside the hopper, and extrudes the electrode composition in the direction of the opening; and an adjustment part (340) which adjusts the pressure applied to the electrode composition inside the hopper.

Description

電池用電極製造装置及び電池用電極製造方法Battery electrode manufacturing device and battery electrode manufacturing method
 本発明は、電池用電極製造装置及び電池用電極製造方法に関する。 The present invention relates to a battery electrode manufacturing apparatus and a battery electrode manufacturing method.
 リチウムイオン電池は高容量の二次電池であり、近年様々な用途で使用されている。リチウムイオン電池の電極は、活物質層、集電体層、セパレータ、及び、活物質層を封入する枠体等によって構成される(例えば、特許文献1参照)。リチウムイオン電池における活物質層は、例えば、帯状の基材フィルムに対して電極組成物を供給し、ロールプレス等によって圧縮することで形成することができる。より具体的には、帯状の基材フィルムに対して電極組成物を間欠的に供給し、ロールプレス等による圧縮の後、間欠的に供給された電極組成物の間の基材フィルムを切断して分離することで、活物質層を連続的に形成することができる。 Lithium-ion batteries are high-capacity secondary batteries that have been used for a variety of purposes in recent years. The electrode of a lithium ion battery is composed of an active material layer, a current collector layer, a separator, a frame that encloses the active material layer, and the like (see, for example, Patent Document 1). The active material layer in a lithium ion battery can be formed, for example, by supplying an electrode composition to a strip-shaped base film and compressing it using a roll press or the like. More specifically, an electrode composition is intermittently supplied to a strip-shaped base film, and after compression by a roll press or the like, the base film is cut between the intermittently supplied electrode compositions. By separating the active material layers, the active material layer can be continuously formed.
 電極組成物を間欠的に供給する手法として、特許文献2には、マスクを用いた手法が開示されている。具体的には、特許文献2では、基材の表面にマスク層を載置し、電極組成物を供給した後、余分な電極組成物をマスク層ごと基材上から除去することにより、電極組成物を間欠的に供給することについて記載されている。 As a method for intermittently supplying an electrode composition, Patent Document 2 discloses a method using a mask. Specifically, in Patent Document 2, after placing a mask layer on the surface of a base material and supplying an electrode composition, excess electrode composition is removed from the base material together with the mask layer, thereby changing the electrode composition. It describes how to supply things intermittently.
特許第6633866号公報Patent No. 6633866 特開2021-27043号公報JP 2021-27043 Publication
 上述の特許文献2に記載されるようなマスクを用いた手法では、電極組成物の歩留まりが課題となる。即ち、除去した電極組成物について再利用するにしても無駄が出やすく、電極組成物の有効利用が難しい。本発明は、上記の事情に鑑みてなされたものであって、電極組成物を効率的且つ間欠的に供給することができる電池用電極製造装置及び電池用電極製造方法を提供することを目的とする。 In the method using a mask as described in Patent Document 2 mentioned above, the yield of the electrode composition becomes an issue. That is, even if the removed electrode composition is reused, it is likely to be wasted, making it difficult to use the electrode composition effectively. The present invention was made in view of the above circumstances, and an object of the present invention is to provide a battery electrode manufacturing apparatus and a battery electrode manufacturing method that can efficiently and intermittently supply an electrode composition. do.
 上記目的を達成するために、本発明に係る電池用電極製造装置は、帯状の基材フィルムを搬送する搬送部と、開口部を備え、活物質及び電解液を含んだ湿潤粉体である電極組成物を内部に保持するホッパとを備える。電池用電極製造装置は、前記ホッパの内部に配置され、前記電極組成物を前記開口部の方向に向けて押し出す押出部と、前記ホッパの内部において前記電極組成物に加わる圧力を調整する調整部とを備える。 In order to achieve the above object, a battery electrode manufacturing apparatus according to the present invention is provided with an electrode that is a wet powder containing an active material and an electrolytic solution, and includes a transport section that transports a strip-shaped base film, and an opening. and a hopper for holding the composition therein. The battery electrode manufacturing apparatus includes an extrusion section that is disposed inside the hopper and pushes out the electrode composition toward the opening, and an adjustment section that adjusts the pressure applied to the electrode composition inside the hopper. Equipped with.
 本発明の電池用電極製造装置及び電池用電極製造方法によれば、電極組成物を効率的且つ間欠的に供給することができる。 According to the battery electrode manufacturing apparatus and battery electrode manufacturing method of the present invention, the electrode composition can be supplied efficiently and intermittently.
図1は、実施形態の電池用電極製造装置を用いて製造される電池の単セルの断面模式図である。FIG. 1 is a schematic cross-sectional view of a single cell of a battery manufactured using the battery electrode manufacturing apparatus of the embodiment. 図2は、実施形態の電池用電極製造装置の概略図である。FIG. 2 is a schematic diagram of a battery electrode manufacturing apparatus according to an embodiment. 図3は、実施形態の電極組成物供給装置を示す図である。FIG. 3 is a diagram showing an electrode composition supply device according to an embodiment.
(実施形態)
 以下、図面を参照して、本発明を適用した実施形態について説明する。なお、以下の説明で用いる図面は、特徴部分を強調する目的で、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。また、同様の目的で、一部を省略して図示している場合がある。
(Embodiment)
Embodiments to which the present invention is applied will be described below with reference to the drawings. Note that the drawings used in the following explanations may show characteristic parts enlarged for convenience in order to emphasize them, and the dimensional ratios of each component may not be the same as in reality. do not have. Further, for the same purpose, some parts may be omitted from illustration.
 <組電池(二次電池)>
 実施形態の電池用電極製造装置及び電池用電極製造方法は、例えば、リチウムイオン電池の製造に適用される。リチウムイオン電池は、複数のリチウムイオン単電池(単セル又は電池セルとも記載する)を組み合わせてモジュール化した組電池、或いは、このような組電池を複数組み合わせて電圧及び容量を調整した電池パックの形態で使用される。以下では、リチウムイオン二次電池の例を示すが、本発明に係る二次電池の種類としてリチウムイオン二次電池に限定されず、他の二次電池を含む。
<Assembled battery (secondary battery)>
The battery electrode manufacturing apparatus and battery electrode manufacturing method of the embodiments are applied, for example, to manufacturing lithium ion batteries. A lithium-ion battery is an assembled battery that is made into a module by combining multiple lithium-ion single cells (also referred to as single cells or battery cells), or a battery pack that is made by combining multiple such assembled batteries to adjust the voltage and capacity. used in form. Although an example of a lithium ion secondary battery is shown below, the type of secondary battery according to the present invention is not limited to a lithium ion secondary battery, and includes other secondary batteries.
 <単セル(電池セル)>
 図1は、単セル10の断面模式図である。単セル10を複数組み合わせることで上記の組電池を作製することが可能である。例えば、単セル10は、2つの電極20(電池用電極)としての正極20a及び負極20bと、セパレータ30とを有する。
<Single cell (battery cell)>
FIG. 1 is a schematic cross-sectional view of a single cell 10. It is possible to produce the above assembled battery by combining a plurality of single cells 10. For example, the single cell 10 includes a positive electrode 20a and a negative electrode 20b as two electrodes 20 (battery electrodes), and a separator 30.
 セパレータ30は、正極20aと負極20bとの間に配置される。組電池において、複数の単セル10は、正極20aと負極20bとを同方向に向けて積層される。 The separator 30 is placed between the positive electrode 20a and the negative electrode 20b. In the assembled battery, a plurality of single cells 10 are stacked with the positive electrode 20a and the negative electrode 20b facing in the same direction.
 セパレータ30には、電解質が保持される。これにより、セパレータ30は、電解質層として機能する。セパレータ30は、正極20a及び負極20bの電極活物質層22の間に配置され、これらが互いに接触することを抑制する。これにより、セパレータ30は、正極20aと負極20bとの間の隔壁として機能する。 The separator 30 holds an electrolyte. Thereby, separator 30 functions as an electrolyte layer. The separator 30 is arranged between the electrode active material layers 22 of the positive electrode 20a and the negative electrode 20b, and prevents them from coming into contact with each other. Thereby, the separator 30 functions as a partition between the positive electrode 20a and the negative electrode 20b.
 セパレータ30に保持される電解質としては、例えば、電解液またはゲルポリマー電解質等が挙げられる。これらの電解質を用いることで、高いリチウムイオン伝導性が確保される。セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。 Examples of the electrolyte held in the separator 30 include an electrolytic solution or a gel polymer electrolyte. By using these electrolytes, high lithium ion conductivity is ensured. Examples of the form of the separator include a porous sheet separator made of a polymer or fiber that absorbs and retains the electrolyte, a nonwoven fabric separator, and the like.
 正極20a及び負極20bは、それぞれ、集電体21と、電極活物質層22と、枠体35とを有する。電極活物質層22と集電体21とは、セパレータ30側からこの順に並ぶ。枠体35は、額縁状(環状)である。枠体35は、電極活物質層22の周囲を囲む。正極20aの枠体35と負極20bの枠体35とは、互いに溶着され一体化されている。以下の説明において、正極20a及び負極20bの電極活物質層22を互いに区別する場合、これらをそれぞれ正極活物質層22a、負極活物質層22bと呼ぶ。 The positive electrode 20a and the negative electrode 20b each include a current collector 21, an electrode active material layer 22, and a frame 35. The electrode active material layer 22 and the current collector 21 are arranged in this order from the separator 30 side. The frame 35 is frame-shaped (annular). The frame 35 surrounds the electrode active material layer 22 . The frame 35 of the positive electrode 20a and the frame 35 of the negative electrode 20b are welded together and integrated. In the following description, when the electrode active material layers 22 of the positive electrode 20a and the negative electrode 20b are to be distinguished from each other, they will be referred to as a positive electrode active material layer 22a and a negative electrode active material layer 22b, respectively.
<正極集電体の具体例>
 正極集電体層21aを構成する正極集電体としては、公知のリチウムイオン単電池に用いられる集電体を用いることができ、例えば、公知の金属集電体及び導電材料と樹脂とから構成されてなる樹脂集電体(特開2012-150905号公報及び国際公開第2015/005116号等に記載の樹脂集電体等)を用いることができる。正極集電体層21aを構成する正極集電体は、電池特性等の観点から、樹脂集電体であることが好ましい。
<Specific example of positive electrode current collector>
As the positive electrode current collector constituting the positive electrode current collector layer 21a, a current collector used in a known lithium ion cell can be used, for example, a current collector made of a known metal current collector, a conductive material, and a resin. (Resin current collectors described in JP 2012-150905 A, WO 2015/005116, etc.) can be used. The positive electrode current collector constituting the positive electrode current collector layer 21a is preferably a resin current collector from the viewpoint of battery characteristics and the like.
 金属集電体としては、例えば、銅、アルミニウム、チタン、ニッケル、タンタル、ニオブ、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン及びこれらの金属を1種以上含む合金、並びに、ステンレス合金からなる群から選択される一種以上の金属材料が挙げられる。これらの金属材料は、薄板や金属箔等の形態で用いてもよい。また、上記金属材料以外で構成される基材表面にスパッタリング、電着、塗布等の方法により上記金属材料を形成したものを金属集電体として用いてもよい。 Examples of metal current collectors include copper, aluminum, titanium, nickel, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, alloys containing one or more of these metals, and stainless steel alloys. One or more metal materials selected from: These metal materials may be used in the form of a thin plate, metal foil, or the like. Furthermore, a substrate made of a material other than the above-described metal material on which the above-mentioned metal material is formed by sputtering, electrodeposition, coating, or the like may be used as the metal current collector.
 樹脂集電体としては、導電性フィラーとマトリックス樹脂とを含むことが好ましい。マトリックス樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)等が挙げられるが、特に限定されない。また、導電性フィラーは、導電性を有する材料から選択されれば特に限定されない。導電性フィラーは、その形状が繊維状である導電性繊維であってもよい。 The resin current collector preferably contains a conductive filler and a matrix resin. Examples of the matrix resin include, but are not particularly limited to, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), and the like. Further, the conductive filler is not particularly limited as long as it is selected from materials having conductivity. The conductive filler may be a conductive fiber having a fibrous shape.
 樹脂集電体は、マトリックス樹脂及び導電性フィラーのほかに、その他の成分(分散剤、架橋促進剤、架橋剤、着色剤、紫外線吸収剤、可塑剤等)を含んでいてもよい。また、複数の樹脂集電体を積層して用いてもよく、樹脂集電体と金属箔とを積層して用いても良い。 In addition to the matrix resin and the conductive filler, the resin current collector may contain other components (dispersant, crosslinking accelerator, crosslinking agent, coloring agent, ultraviolet absorber, plasticizer, etc.). Further, a plurality of resin current collectors may be stacked and used, or a resin current collector and a metal foil may be stacked and used.
 正極集電体層21aの厚さは、特に限定されないが、5~150μmであることが好ましい。複数の樹脂集電体を積層して正極集電体層21aとして用いる場合には、積層後の全体の厚さが5~150μmであることが好ましい。正極集電体層21aは、例えば、マトリックス樹脂、導電性フィラー及び必要により用いるフィラー用分散剤を溶融混練して得られる導電性樹脂組成物を公知の方法でフィルム状に成形することにより得ることができる。 The thickness of the positive electrode current collector layer 21a is not particularly limited, but is preferably 5 to 150 μm. When a plurality of resin current collectors are laminated and used as the positive electrode current collector layer 21a, the total thickness after lamination is preferably 5 to 150 μm. The positive electrode current collector layer 21a can be obtained, for example, by molding a conductive resin composition obtained by melt-kneading a matrix resin, a conductive filler, and an optional filler dispersant into a film by a known method. I can do it.
<正極活物質の具体例>
 正極活物質層22aは、正極活物質を含む混合物の非結着体であることが好ましい。ここで、非結着体とは、正極活物質層中において正極活物質の位置が固定されておらず、正極活物質同士及び正極活物質と集電体とが不可逆的に固定されていないことを意味する。正極活物質層22aが非結着体である場合、正極活物質同士は不可逆的に固定されていないため、正極活物質同士の界面を機械的に破壊することなく分離することができ、正極活物質層22aに応力がかかった場合でも正極活物質が移動することで正極活物質層22aの破壊を防止することができ好ましい。非結着体である正極活物質層22aは、正極活物質層22aを、正極活物質と電解液とを含みかつ結着剤を含まない正極活物質層22aにする等の方法で得ることができる。なお、本明細書において、結着剤とは、正極活物質同士及び正極活物質と集電体とを可逆的に固定することができない薬剤を意味し、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、スチレン-ブタジエンゴム、ポリエチレン及びポリプロピレン等の公知の溶剤乾燥型のリチウムイオン電池用結着剤等が挙げられる。これらの結着剤は、溶剤に溶解又は分散して用いられ、溶剤を揮発、留去することで表面が粘着性を示すことなく固体化するので正極活物質同士及び正極活物質と集電体とを可逆的に固定することができない。
<Specific examples of positive electrode active materials>
The positive electrode active material layer 22a is preferably a non-bound body of a mixture containing the positive electrode active material. Here, a non-bound body means that the position of the positive electrode active material in the positive electrode active material layer is not fixed, and the positive electrode active materials and the positive electrode active material and the current collector are not irreversibly fixed. means. When the positive electrode active material layer 22a is a non-binding body, the positive electrode active materials are not irreversibly fixed to each other, and therefore can be separated without mechanically destroying the interface between the positive electrode active materials. This is preferable because even when stress is applied to the material layer 22a, the movement of the positive electrode active material prevents the destruction of the positive electrode active material layer 22a. The positive electrode active material layer 22a, which is a non-binding body, can be obtained by a method such as changing the positive electrode active material layer 22a to a positive electrode active material layer 22a containing a positive electrode active material and an electrolyte and not containing a binder. can. In this specification, the term "binder" refers to a chemical that cannot reversibly fix the positive electrode active materials to each other or the positive electrode active material and the current collector, and includes starch, polyvinylidene fluoride, polyvinyl alcohol, carboxylic acid, etc. Examples include known solvent-dried binders for lithium ion batteries such as methylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene and polypropylene. These binders are used by being dissolved or dispersed in a solvent, and when the solvent is volatilized or distilled off, the surface becomes solid without exhibiting stickiness, so that the positive electrode active materials can be bonded to each other and the positive electrode active material and the current collector. cannot be fixed reversibly.
 正極活物質としては、例えば、リチウムと遷移金属との複合酸化物、遷移金属元素が2種である複合酸化物、金属元素が3種類以上である複合酸化物等が挙げられるが、特に限定されない。 Examples of positive electrode active materials include, but are not particularly limited to, composite oxides of lithium and transition metals, composite oxides containing two types of transition metal elements, composite oxides containing three or more types of metal elements, etc. .
 正極活物質は、その表面の少なくとも一部が高分子化合物を含む被覆材により被覆された被覆正極活物質であってもよい。正極活物質の周囲が被覆材で被覆されていると、正極の体積変化が緩和され、正極の膨張を抑制することができる。 The positive electrode active material may be a coated positive electrode active material in which at least a portion of the surface thereof is covered with a coating material containing a polymer compound. When the periphery of the positive electrode active material is covered with a coating material, volume change of the positive electrode is alleviated, and expansion of the positive electrode can be suppressed.
 被覆材を構成する高分子化合物としては、特開2017-054703号公報及び国際公開第2015/005117号等に活物質被覆用樹脂として記載されたものを好適に用いることができる。 As the polymer compound constituting the coating material, those described as active material coating resins in JP2017-054703A, WO2015/005117, etc. can be suitably used.
 被覆材には、導電剤が含まれていてもよい。導電剤としては、正極集電体層21aに含まれる導電性フィラーと同様のものを好適に用いることができる。 The coating material may contain a conductive agent. As the conductive agent, the same conductive filler as that contained in the positive electrode current collector layer 21a can be suitably used.
 正極活物質層22aには、粘着性樹脂が含まれていてもよい。粘着性樹脂としては、例えば、特開2017-054703号公報に記載された非水系二次電池活物質被覆用樹脂に少量の有機溶剤を混合してそのガラス転移温度を室温以下に調節したもの、及び、特開平10-255805号公報に粘着剤として記載されたもの等を好適に用いることができる。なお、粘着性樹脂は、溶媒成分を揮発させて乾燥させても固体化せずに粘着性(水、溶剤、熱等を使用せずに僅かな圧力を加えることで接着する性質)を有する樹脂を意味する。一方、結着剤として用いられる溶液乾燥型の電極用バインダーは、溶媒成分を揮発させることで乾燥、固体化して活物質同士を強固に接着固定するものを意味する。したがって、上述した結着剤(溶液乾燥型の電極バインダー)と粘着性樹脂とは、異なる材料である。 The positive electrode active material layer 22a may contain adhesive resin. As the adhesive resin, for example, a non-aqueous secondary battery active material coating resin described in JP 2017-054703 A is mixed with a small amount of an organic solvent to adjust its glass transition temperature to below room temperature; Also, those described as adhesives in JP-A-10-255805 can be suitably used. Adhesive resin is a resin that does not solidify even if the solvent component is evaporated and dried, but has adhesive properties (the property of adhering by applying slight pressure without using water, solvent, heat, etc.) means. On the other hand, a solution-drying electrode binder used as a binder is one that dries and solidifies by volatilizing the solvent component, thereby firmly adhering and fixing active materials to each other. Therefore, the above-mentioned binder (solution-dried electrode binder) and adhesive resin are different materials.
 正極活物質層22aには、電解質と非水溶媒を含む電解液が含まれていてもよい。電解質としては、公知の電解液に用いられているもの等が使用できる。非水溶媒としては、公知の電解液に用いられているもの(例えば、リン酸エステル、ニトリル化合物等及びこれらの混合物等)等が使用できる。例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合液、又は、エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合液を用いることができる。 The positive electrode active material layer 22a may contain an electrolytic solution containing an electrolyte and a nonaqueous solvent. As the electrolyte, those used in known electrolytes can be used. As the non-aqueous solvent, those used in known electrolytic solutions (for example, phosphoric acid esters, nitrile compounds, etc., mixtures thereof, etc.) can be used. For example, a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) or a mixture of ethylene carbonate (EC) and propylene carbonate (PC) can be used.
 正極活物質層22aには、導電助剤が含まれていてもよい。導電助剤としては、正極集電体層21aに含まれる導電性フィラーと同様の導電性材料を好適に用いることができる。 The positive electrode active material layer 22a may contain a conductive additive. As the conductive aid, a conductive material similar to the conductive filler contained in the positive electrode current collector layer 21a can be suitably used.
 正極活物質層22aの厚さは、特に限定されるものではないが、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。 The thickness of the positive electrode active material layer 22a is not particularly limited, but from the viewpoint of battery performance, it is preferably 150 to 600 μm, more preferably 200 to 450 μm.
 実施形態において、正極活物質層22aを形成するために供給される正極組成物は、正極活物質と非水電解液を含んでなる湿潤粉体である。また、湿潤粉体はペンデュラー状態又はファニキュラー状態であることがより好ましい。 In the embodiment, the positive electrode composition supplied to form the positive electrode active material layer 22a is a wet powder containing a positive electrode active material and a non-aqueous electrolyte. Moreover, it is more preferable that the wet powder is in a pendular state or a funicular state.
 湿潤粉体における非水電解液の割合は、特に限定されないが、ペンデュラー状態又はファニキュラー状態とするためには、正極の場合には非水電解液の割合を湿潤粉体全体の0.5~15重量%とすることが望ましい。 The proportion of the non-aqueous electrolyte in the wet powder is not particularly limited, but in the case of a positive electrode, the proportion of the non-aqueous electrolyte in the whole wet powder should be 0.5 to 0.5 to 100% in order to obtain a pendular state or a funicular state. The content is preferably 15% by weight.
<負極集電体の具体例>
 負極集電体層21bを構成する負極集電体としては、正極集電体で記載した構成と同様のものを適宜選択して用いることができ、同様の方法により得ることができる。負極集電体層21bは、電池特性等の観点から、樹脂集電体であることが好ましい。負極集電体層21bの厚さは、特に限定されないが、5~150μmであることが好ましい。
<Specific example of negative electrode current collector>
As the negative electrode current collector constituting the negative electrode current collector layer 21b, one having the same structure as that described for the positive electrode current collector can be appropriately selected and used, and it can be obtained by the same method. The negative electrode current collector layer 21b is preferably a resin current collector from the viewpoint of battery characteristics and the like. The thickness of the negative electrode current collector layer 21b is not particularly limited, but is preferably 5 to 150 μm.
<負極活物質の具体例>
 負極活物質層22bは、負極活物質を含む混合物の非結着体であることが好ましい。負極活物質層が非結着体であることが好ましい理由、及び非結着体である負極活物質層22bを得る方法等は、正極活物質層22aが非結着体であることが好ましい理由、及び非結着体である正極活物質層22aを得る方法と同様である。
<Specific examples of negative electrode active materials>
The negative electrode active material layer 22b is preferably a non-bound body of a mixture containing negative electrode active materials. The reason why it is preferable that the negative electrode active material layer is a non-bound body, and the method for obtaining the negative electrode active material layer 22b which is a non-bound body, is the reason why it is preferable that the positive electrode active material layer 22a is a non-bound body. , and the method for obtaining the positive electrode active material layer 22a which is a non-binding body.
 負極活物質としては、例えば、炭素系材料、珪素系材料及びこれらの混合物等を用いることができるが、特に限定されない。 As the negative electrode active material, for example, carbon-based materials, silicon-based materials, mixtures thereof, etc. can be used, but there is no particular limitation.
 負極活物質は、その表面の少なくとも一部が高分子化合物を含む被覆材により被覆された被覆負極活物質であってもよい。負極活物質の周囲が被覆材で被覆されていると、負極の体積変化が緩和され、負極の膨張を抑制することができる。 The negative electrode active material may be a coated negative electrode active material in which at least a portion of the surface thereof is covered with a coating material containing a polymer compound. When the periphery of the negative electrode active material is coated with a coating material, the volume change of the negative electrode is alleviated, and expansion of the negative electrode can be suppressed.
 被覆材としては、被覆正極活物質を構成する被覆材と同様のものを好適に用いることができる。 As the coating material, the same coating material as the coating material constituting the coated positive electrode active material can be suitably used.
 負極活物質層22bは、電解質と非水溶媒を含む電解液を含有する。電解液の組成は、正極活物質層22aに含まれる電解液と同様の電解液を好適に用いることができる。 The negative electrode active material layer 22b contains an electrolyte solution containing an electrolyte and a nonaqueous solvent. Regarding the composition of the electrolytic solution, an electrolytic solution similar to that contained in the positive electrode active material layer 22a can be suitably used.
 負極活物質層22bには、導電助剤が含まれていてもよい。導電助剤としては、正極活物質層22aに含まれる導電性フィラーと同様の導電性材料を好適に用いることができる。 The negative electrode active material layer 22b may contain a conductive additive. As the conductive aid, a conductive material similar to the conductive filler contained in the positive electrode active material layer 22a can be suitably used.
 負極活物質層22bには、粘着性樹脂が含まれていてもよい。粘着性樹脂としては、正極活物質層22aの任意成分である粘着性樹脂と同様のものを好適に用いることができる。 The negative electrode active material layer 22b may contain adhesive resin. As the adhesive resin, the same adhesive resin as the optional component of the positive electrode active material layer 22a can be suitably used.
 負極活物質層22bの厚さは、特に限定されるものではないが、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。 The thickness of the negative electrode active material layer 22b is not particularly limited, but from the viewpoint of battery performance, it is preferably 150 to 600 μm, more preferably 200 to 450 μm.
 実施形態において、負極活物質層22bを形成するために供給される負極組成物は、負極活物質と非水電解液を含んでなる湿潤粉体である。また、湿潤粉体はペンデュラー状態又はファニキュラー状態であることがより好ましい。 In the embodiment, the negative electrode composition supplied to form the negative electrode active material layer 22b is a wet powder containing a negative electrode active material and a non-aqueous electrolyte. Moreover, it is more preferable that the wet powder is in a pendular state or a funicular state.
 湿潤粉体における非水電解液の割合は、特に限定されないが、ペンデュラー状態又はファニキュラー状態とするためには、負極の場合には非水電解液の割合を湿潤粉体全体の0.5~25重量%とすることが望ましい。 The proportion of the non-aqueous electrolyte in the wet powder is not particularly limited, but in the case of a negative electrode, the proportion of the non-aqueous electrolyte should be 0.5 to 0.5 to the total wet powder in order to obtain a pendular state or a funicular state. The content is preferably 25% by weight.
<セパレータの具体例>
 セパレータ30に保持される電解質としては、例えば、電解液又はゲルポリマー電解質等が挙げられる。セパレータ30は、これらの電解質を用いることで、高いリチウムイオン伝導性が確保される。セパレータ30の形態としては、例えば、ポリエチレン又はポリプロピレン製の多孔性フィルム等が挙げられるが、特に限定されない。
<Specific example of separator>
Examples of the electrolyte held in the separator 30 include an electrolytic solution or a gel polymer electrolyte. By using these electrolytes, the separator 30 ensures high lithium ion conductivity. The form of the separator 30 includes, for example, a porous film made of polyethylene or polypropylene, but is not particularly limited.
<枠体の具体例>
 枠体35としては、電解液に対して耐久性のある材料であれば特に限定されないが、例えば、高分子材料が好ましく、熱硬化性高分子材料がより好ましい。枠体35を構成する材料としては、絶縁性、シール性(液密性)、電池動作温度下での耐熱性等を有するものであればよく、樹脂材料が好適に採用される。より具体的には、枠体35としては、例えば、エポキシ系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂及びポリフッ化ビニリデン樹脂等が挙げられ、耐久性が高く取り扱いが容易であることからエポキシ系樹脂が好ましい。
<Specific example of frame>
The frame 35 is not particularly limited as long as it is made of a material that is durable against the electrolytic solution, but for example, a polymer material is preferable, and a thermosetting polymer material is more preferable. The material constituting the frame 35 may be any material as long as it has insulation properties, sealing properties (liquid tightness), heat resistance under the battery operating temperature, etc., and a resin material is preferably employed. More specifically, examples of the frame 35 include epoxy resin, polyolefin resin, polyurethane resin, polyvinylidene fluoride resin, etc. Epoxy resin is preferred because it is highly durable and easy to handle. preferable.
 <電池用電極製造装置及び電池用電極製造方法>
 次に、本実施形態の電池用電極製造装置及び電池用電極製造方法(以下、製造方法と略して呼ぶ)について説明する。例えば、電池用電極製造装置及び電池用電極製造方法では、まず正極20a及び負極20bが製造される。正極20aの製造方法と負極20bの製造方法とは、主に電極活物質層22に含まれる電極活物質が異なる。ここでは、電極20の製造方法として、正極20a及び負極20bの製造方法をまとめて説明する。
<Battery electrode manufacturing device and battery electrode manufacturing method>
Next, a battery electrode manufacturing apparatus and a battery electrode manufacturing method (hereinafter simply referred to as the manufacturing method) of the present embodiment will be described. For example, in a battery electrode manufacturing apparatus and a battery electrode manufacturing method, a positive electrode 20a and a negative electrode 20b are first manufactured. The method for manufacturing the positive electrode 20a and the method for manufacturing the negative electrode 20b differ mainly in the electrode active material contained in the electrode active material layer 22. Here, as a method for manufacturing the electrode 20, methods for manufacturing the positive electrode 20a and the negative electrode 20b will be described together.
 図2は、電池用電極製造装置1000の概略図である。例えば、電池用電極製造装置1000は、チャンバ100、搬送装置200、電極組成物供給装置300、枠体供給装置400及びプレス装置500を含む。なお、以下では、帯状の基材フィルムが帯状の集電体21Bである場合を一例として説明する。 FIG. 2 is a schematic diagram of the battery electrode manufacturing apparatus 1000. For example, a battery electrode manufacturing apparatus 1000 includes a chamber 100, a conveyance device 200, an electrode composition supply device 300, a frame supply device 400, and a press device 500. In addition, below, the case where a strip|belt-shaped base film is the strip|belt-shaped current collector 21B is demonstrated as an example.
 チャンバ100は、内部を大気圧よりも減圧された状態に保持できる部屋である。チャンバ100の内部は、図示しない減圧ポンプにより大気圧よりも減圧される。なお、標準大気圧は、約1013hPa(約105Pa)である。 The chamber 100 is a room whose interior can be maintained at a pressure lower than atmospheric pressure. The pressure inside the chamber 100 is reduced below atmospheric pressure by a pressure reduction pump (not shown). Note that the standard atmospheric pressure is approximately 1013 hPa (approximately 105 Pa).
 例えば、チャンバ100の外部に集電体ロール21Rが配置され、集電体ロール21Rから引き出された帯状の集電体21Bが、スリットを通してチャンバ100の内部に搬送される。以下、帯状の集電体21Bを集電体21Bと記載する場合がある。なお、集電体21Bは、上述した集電体21が所定の形状に切り出される前のものである。集電体21Bは、搬送方向Daに沿って所定の速度で搬送される。以下では、集電体21Bが搬送される方向を下流側Da1、その反対方向を上流側Da2として説明する。なお、集電体ロール21Rが配置されるチャンバ100の外部空間は、常圧であってもよいし、チャンバ100と異なるチャンバによって減圧されていてもよい。 For example, a current collector roll 21R is arranged outside the chamber 100, and a band-shaped current collector 21B pulled out from the current collector roll 21R is conveyed into the chamber 100 through a slit. Hereinafter, the strip-shaped current collector 21B may be referred to as a current collector 21B. Note that the current collector 21B is the current collector 21 described above before being cut into a predetermined shape. The current collector 21B is transported at a predetermined speed along the transport direction Da. In the following description, the direction in which the current collector 21B is conveyed is referred to as the downstream side Da1, and the opposite direction is referred to as the upstream side Da2. Note that the external space of the chamber 100 in which the current collector roll 21R is arranged may be at normal pressure or may be reduced in pressure by a chamber different from the chamber 100.
 なお、図2に示す通り、鉛直方向Dbにおける上側をDb1、鉛直方向Dbにおける下側をDb2とする。搬送方向Da及び鉛直方向Dbに対して直交する方向は、集電体21B、及び、集電体21Bに載置される電極組成物22cの幅方向に対応する。 Note that, as shown in FIG. 2, the upper side in the vertical direction Db is Db1, and the lower side in the vertical direction Db is Db2. The direction perpendicular to the transport direction Da and the vertical direction Db corresponds to the width direction of the current collector 21B and the electrode composition 22c placed on the current collector 21B.
 搬送装置200は、集電体21Bを、搬送方向Daの下流側Da1に搬送する。例えば、搬送装置200は、集電体21Bを下側から支持するベルトコンベアである。なお、後述の電極組成物供給装置300による電極組成物22cの供給が行なわれた後、搬送装置200は、電極組成物22cを載せた集電体21Bを搬送することとなる。また、後述の枠体供給装置400による枠体35の供給が行なわれた後、搬送装置200は、枠体35及び電極組成物22cを載せた集電体21Bを搬送することとなる。搬送装置200は、搬送部の一例である。 The transport device 200 transports the current collector 21B to the downstream side Da1 in the transport direction Da. For example, the conveyance device 200 is a belt conveyor that supports the current collector 21B from below. Note that after the electrode composition 22c is supplied by the electrode composition supply device 300 described below, the transportation device 200 transports the current collector 21B on which the electrode composition 22c is placed. Further, after the frame body 35 is supplied by the frame body supply device 400 described below, the conveyance device 200 conveys the current collector 21B on which the frame body 35 and the electrode composition 22c are placed. The transport device 200 is an example of a transport section.
 電極組成物供給装置300は、図2に示す通り、チャンバ100内で搬送される集電体21B上に電極組成物22cを供給する。上述したように、実施形態において、電極活物質層22(正極活物質層22a、負極活物質層22b)を形成するために、電極組成物供給装置300から供給される電極組成物22c(正極組成物、負極組成物)は、電極活物質(正極活物質、負極活物質)と電解液(非水電解液)を含んでなる湿潤粉体である。また、実施形態において、電極組成物22cとしての湿潤粉体は、ペンデュラー状態又はファニキュラー状態であることがより好ましい。また、電極活物質は、高分子化合物を含む被覆材により被覆された被覆電極活物質である。電極組成物22cに含まれる電極活物質は、被覆電極活物質であるため、集電体21B上に供給する工程では、電極組成物22cを柔らかい状態にしておくことが必要となる。 As shown in FIG. 2, the electrode composition supply device 300 supplies the electrode composition 22c onto the current collector 21B transported within the chamber 100. As described above, in the embodiment, in order to form the electrode active material layer 22 (positive electrode active material layer 22a, negative electrode active material layer 22b), the electrode composition 22c (positive electrode composition) supplied from the electrode composition supply device 300 is The negative electrode composition) is a wet powder containing an electrode active material (positive electrode active material, negative electrode active material) and an electrolyte (non-aqueous electrolyte). Moreover, in the embodiment, it is more preferable that the wet powder as the electrode composition 22c is in a pendular state or a funicular state. Further, the electrode active material is a coated electrode active material coated with a coating material containing a polymer compound. Since the electrode active material contained in the electrode composition 22c is a coated electrode active material, it is necessary to keep the electrode composition 22c in a soft state in the step of supplying it onto the current collector 21B.
 実施形態の電極組成物供給装置300について、図3を用いて説明する。図3に示す通り、電極組成物供給装置300は、ホッパ310と、ホッパ320と、スクリュー330と、アキュームレータ340と、シャッタ350とを備える。 The electrode composition supply device 300 of the embodiment will be described using FIG. 3. As shown in FIG. 3, the electrode composition supply device 300 includes a hopper 310, a hopper 320, a screw 330, an accumulator 340, and a shutter 350.
 ホッパ310は、ホッパ320に対して電極組成物22cを供給する。ホッパ320は、開口部321を備え、電極組成物22cを内部に保持する。即ち、後述するように、ホッパ320の内部に保持される電極組成物22cは、開口部321を通して集電体21Bに供給される。そして、供給した量に応じて、電極組成物22cをホッパ320に補充する必要がある。ホッパ310は、ホッパ320に対して電極組成物22cを適宜補充する。 Hopper 310 supplies electrode composition 22c to hopper 320. Hopper 320 includes an opening 321 and holds electrode composition 22c therein. That is, as described later, the electrode composition 22c held inside the hopper 320 is supplied to the current collector 21B through the opening 321. Then, it is necessary to replenish the hopper 320 with the electrode composition 22c according to the supplied amount. Hopper 310 replenishes hopper 320 with electrode composition 22c as appropriate.
 なお、ホッパ320に対して電極組成物22cを供給する手法は特に限定されるものではない。例えば、ホッパ310に代えて、電極組成物22cを搬送するコンベアを設け、当該コンベアからホッパ320に対して電極組成物22cを供給してもよい。 Note that the method of supplying the electrode composition 22c to the hopper 320 is not particularly limited. For example, instead of the hopper 310, a conveyor for conveying the electrode composition 22c may be provided, and the electrode composition 22c may be supplied to the hopper 320 from the conveyor.
 スクリュー330は、ホッパ320の内部に配置され、電極組成物22cを開口部321の方向に向けて押し出す。具体的には、スクリュー330は、回転軸の周囲にらせん状の突起を有する部材を有し、電極組成物22cの中で回転することにより、回転軸に沿った方向に電極組成物22cを押し出す。スクリュー330は、押出部の一例である。 The screw 330 is arranged inside the hopper 320 and pushes out the electrode composition 22c toward the opening 321. Specifically, the screw 330 has a member having a spiral protrusion around the rotation axis, and by rotating within the electrode composition 22c, pushes out the electrode composition 22c in the direction along the rotation axis. . The screw 330 is an example of an extrusion section.
 ここで、スクリュー330は、電極組成物22cを混練しつつ押し出すことができる。即ち、電極組成物22cは、電極活物質や電解液などの複数種類の物質を含んだ湿潤紛体であるところ、均一化のため、混練する工程を設けることが好ましい。押出部としてスクリュー330を採用する場合、当該混練する工程を省略することができる。 Here, the screw 330 can extrude the electrode composition 22c while kneading it. That is, since the electrode composition 22c is a wet powder containing multiple types of substances such as an electrode active material and an electrolyte, it is preferable to provide a kneading step for uniformity. When employing the screw 330 as the extrusion section, the kneading step can be omitted.
 また、例えばホッパ320に電極組成物22cを供給する前の段階において電極組成物22cの混練を行なう場合、集電体21Bへの電極組成物22cの供給が済むまでの間に、電極組成物22cの不均一化が進んでしまうおそれがある。これに対し、押出部としてスクリュー330を採用する場合、混練を行なってから集電体21Bに電極組成物22cを供給するまでの時間が短縮されるため、集電体21Bに供給される電極組成物22cの均一性を向上させることができる。 Further, for example, when kneading the electrode composition 22c before supplying the electrode composition 22c to the hopper 320, the electrode composition 22c may be kneaded before the electrode composition 22c is supplied to the current collector 21B. There is a risk that non-uniformity may progress. On the other hand, when the screw 330 is employed as the extrusion section, the time from kneading to supplying the electrode composition 22c to the current collector 21B is shortened, so that the electrode composition 22c supplied to the current collector 21B is The uniformity of the object 22c can be improved.
 アキュームレータ340は、ホッパ320の内部において電極組成物22cに加わる圧力を調整する。即ち、電極組成物22cには、スクリュー330によって、開口部321の方向に向けて押し出すための圧力が加えられている。当該圧力により、電極組成物22cは、開口部321からホッパ320の外部へ押し出される。しかしながら、後述する通り、開口部321は、シャッタ350によって開閉される。開口部321が閉じられている間、ホッパ320内の圧力は高まり、ホッパ320の内部で電極組成物22cが押し固められてしまうことが想定される。アキュームレータ340は、電極組成物22cに加わる圧力が過度に高まることのないよう、ホッパ320内の圧力を調整する。 The accumulator 340 adjusts the pressure applied to the electrode composition 22c inside the hopper 320. That is, pressure is applied to the electrode composition 22c by the screw 330 in order to push it out in the direction of the opening 321. Due to this pressure, the electrode composition 22c is pushed out of the hopper 320 through the opening 321. However, as described later, the opening 321 is opened and closed by the shutter 350. While the opening 321 is closed, the pressure inside the hopper 320 increases, and it is assumed that the electrode composition 22c is compacted inside the hopper 320. Accumulator 340 adjusts the pressure within hopper 320 so that the pressure applied to electrode composition 22c does not increase excessively.
 例えば、アキュームレータ340は、図3に示す通り、ホッパ320の内面の一部を構成するピストンを含む。当該ピストンは、ホッパ320の内面に対して垂直な方向Dcに往復運動可能に構成される。アキュームレータ340は、調整部の一例である。 For example, the accumulator 340 includes a piston that forms part of the inner surface of the hopper 320, as shown in FIG. The piston is configured to be able to reciprocate in a direction Dc perpendicular to the inner surface of the hopper 320. Accumulator 340 is an example of an adjustment section.
 例えば、ホッパ320内部の圧力が高まった際、アキュームレータ340におけるピストンは図3に示す方向Dc1に移動し、ホッパ320の内容量を増加させて内部を減圧する。また、ホッパ320内部の圧力が低下した際、アキュームレータ340におけるピストンは図3に示す方向Dc2に移動し、ホッパ320の内部に隙間が生じることを防ぐ。なお、アキュームレータ340におけるピストンは、開口部321よりも面積が大きくなるように構成することが好ましい。これにより、電極組成物22cがアキュームレータ340内に滞留しにくくすることができる。 For example, when the pressure inside the hopper 320 increases, the piston in the accumulator 340 moves in the direction Dc1 shown in FIG. 3, increasing the internal capacity of the hopper 320 and reducing the internal pressure. Further, when the pressure inside the hopper 320 decreases, the piston in the accumulator 340 moves in the direction Dc2 shown in FIG. 3 to prevent a gap from forming inside the hopper 320. Note that the piston in the accumulator 340 is preferably configured to have a larger area than the opening 321. This makes it difficult for the electrode composition 22c to stay in the accumulator 340.
 シャッタ350は、図3の矢印で示す方向に移動することで、開口部321を開閉させる。シャッタ350により開口部321が閉じられている間、電極組成物供給装置300から集電体21Bへの電極組成物22cの供給は停止し、開口部321が開かれている間に電極組成物22cの供給が実行される。即ち、シャッタ350が開口部321を開閉させることにより、電極組成物22cを間欠的に供給することができる。 The shutter 350 opens and closes the opening 321 by moving in the direction shown by the arrow in FIG. While the opening 321 is closed by the shutter 350, the supply of the electrode composition 22c from the electrode composition supply device 300 to the current collector 21B is stopped, and while the opening 321 is open, the supply of the electrode composition 22c is stopped. supply is carried out. That is, when the shutter 350 opens and closes the opening 321, the electrode composition 22c can be intermittently supplied.
 ここで、シャッタ350が開口部321を開閉させている間、スクリュー330については停止させることなく、連続的に動作させることとしてよい。即ち、スクリュー330が動作している間、電極組成物22cに対しては、開口部321の方向に向けた圧力が加えられる。しかしながら、電極組成物22cに加わる圧力はアキュームレータ340によって調整されており、当該圧力によって電極組成物22cが押し固められてしまうことは回避される。 Here, while the shutter 350 is opening and closing the opening 321, the screw 330 may be operated continuously without being stopped. That is, while the screw 330 is operating, pressure is applied to the electrode composition 22c in the direction of the opening 321. However, the pressure applied to the electrode composition 22c is regulated by the accumulator 340, and the electrode composition 22c is prevented from being compacted by the pressure.
 以上のように、電極組成物供給装置300においては、スクリュー330を停止させることなく、電極組成物22cを間欠的に供給することができる。スクリュー330の動作及び停止を繰り返すことによって電極組成物22cの間欠的な供給を実現することも可能ではあるが、このような手法は、機械部品の消耗やエネルギー消費が大きく、効率的とは言えない。また、特許文献2に記載されるようなマスクを用いた手法では、装置の停止は必要でないとしても歩留まりが低く、効率的とは言えない。これに対し、実施形態の電極組成物供給装置300によれば、電極組成物22cを効率的且つ間欠的に供給することが可能となる。 As described above, in the electrode composition supply device 300, the electrode composition 22c can be supplied intermittently without stopping the screw 330. Although it is possible to realize intermittent supply of the electrode composition 22c by repeatedly operating and stopping the screw 330, such a method consumes a large amount of mechanical parts and energy, and is not efficient. do not have. Furthermore, the method using a mask as described in Patent Document 2 has a low yield and cannot be said to be efficient, even if stopping the apparatus is not necessary. On the other hand, according to the electrode composition supply device 300 of the embodiment, it is possible to efficiently and intermittently supply the electrode composition 22c.
 図2に戻って説明を続ける。枠体供給装置400は、搬送される集電体21Bに対して枠体35を供給する。例えば、枠体供給装置400は、ロボットアームを有し、事前に製造された枠体35を、搬送される集電体21B上の所定の位置に配置する。或いは、枠体供給装置400は、集電体21Bの上で枠体35を製造してもよい。一例を挙げると、集電体21Bを基材とし、ディスペンサーやコーター等によって集電体21B上に所定の材料を所定の形状に吐出又は塗布することで、集電体21B上に枠体35を形成することができる。 Returning to FIG. 2, the explanation will continue. The frame supply device 400 supplies the frame 35 to the current collector 21B being transported. For example, the frame supply device 400 includes a robot arm and places the frame 35 manufactured in advance at a predetermined position on the current collector 21B being transported. Alternatively, the frame supply device 400 may manufacture the frame 35 on the current collector 21B. For example, the frame 35 is formed on the current collector 21B by using the current collector 21B as a base material and discharging or applying a predetermined material in a predetermined shape onto the current collector 21B using a dispenser, coater, etc. can be formed.
 プレス装置500は、集電体21Bに供給された電極組成物22cを圧縮する。例えば、プレス装置500は、図2に示す通り、上部ローラ501及び下部ローラ502を有する。プレス装置500は、上部ローラ501及び下部ローラ502により、集電体21Bに供給された電極組成物22cを挟み込んで圧縮する。即ち、プレス装置500は、電極組成物22cに対するロールプレスを実行する。 The press device 500 compresses the electrode composition 22c supplied to the current collector 21B. For example, the press device 500 has an upper roller 501 and a lower roller 502, as shown in FIG. The press device 500 uses an upper roller 501 and a lower roller 502 to sandwich and compress the electrode composition 22c supplied to the current collector 21B. That is, the press device 500 performs roll pressing on the electrode composition 22c.
 図2においては、電極組成物供給装置300による電極組成物22cの供給後に、枠体供給装置400による枠体35の供給が行なわれる例を説明した。しかしながら、実施形態はこれに限定されるものではない。例えば、枠体供給装置400による枠体35の供給が行なわれた後、枠体35の内部の位置に対して、電極組成物供給装置300による電極組成物22cの供給が行なわれてもよい。また、図2では枠体供給装置400がチャンバ100の内部に配置される場合を示すが、枠体供給装置400はチャンバ100の外部に配置されてもよい。 In FIG. 2, an example has been described in which the frame body 35 is supplied by the frame body supply device 400 after the electrode composition supply device 300 supplies the electrode composition 22c. However, embodiments are not limited thereto. For example, after the frame body 35 is supplied by the frame body supply device 400, the electrode composition 22c may be supplied by the electrode composition supply device 300 to a position inside the frame body 35. Further, although FIG. 2 shows a case where the frame supply device 400 is arranged inside the chamber 100, the frame supply device 400 may be arranged outside the chamber 100.
 上述した通り、実施形態では、電極組成物供給装置300による電極組成物22cの供給や、プレス装置500による電極組成物22cの圧縮といった各工程を、内部が大気圧よりも減圧されたチャンバ100内で実行する。これにより、電極組成物22cの内部に空気が残留することが防止でき、電極活物質層22の均一性を向上することができる。 As described above, in the embodiment, each process such as supplying the electrode composition 22c by the electrode composition supply device 300 and compressing the electrode composition 22c by the press device 500 is performed in the chamber 100 whose interior is reduced in pressure from atmospheric pressure. Execute with. Thereby, air can be prevented from remaining inside the electrode composition 22c, and the uniformity of the electrode active material layer 22 can be improved.
 プレス装置500による圧縮工程の後、図1に示したセパレータ30が更に供給され、単セル10が作製される。セパレータ30の供給は、搬送方向Daに沿って搬送される集電体21B及び電極組成物22cに対して連続的に行なわれてもよいし、集電体21Bや電極組成物22cを所定単位に分割した後、枚葉に行なってもよい。 After the compression process by the press device 500, the separator 30 shown in FIG. 1 is further supplied, and the single cell 10 is produced. The separator 30 may be supplied continuously to the current collector 21B and the electrode composition 22c transported along the transport direction Da, or the current collector 21B and the electrode composition 22c may be supplied in predetermined units. After dividing, the process may be performed for each leaf.
 また、上述した実施形態では、電極組成物22cが載置される帯状の基材フィルムが帯状の集電体21Bであるものとして説明したが、これに限定されるものではない。例えば、図2に示した帯状の集電体21Bに代えて、帯状のセパレータシートや、帯状の離形フィルムを基材フィルムとしてもよい。なお、帯状のセパレータシートは、後にトリミングすることで、図1に示したセパレータ30を形成することができる。 Furthermore, in the embodiment described above, the strip-shaped base film on which the electrode composition 22c is placed is the strip-shaped current collector 21B, but the present invention is not limited thereto. For example, instead of the strip-shaped current collector 21B shown in FIG. 2, a strip-shaped separator sheet or a strip-shaped release film may be used as the base film. Note that the separator sheet 30 shown in FIG. 1 can be formed by trimming the band-shaped separator sheet later.
 例えば、セパレータシートを基材フィルムとする場合、セパレータシート上に電極組成物22cを供給し、電極組成物22cにおけるセパレータシートと反対側の面に集電体21Bを供給し、セパレータシート及び集電体21Bを所定の形状にトリミングし、更に、枠体35を供給することで、正極20a又は負極20bを作製することができる。 For example, when the separator sheet is used as a base film, the electrode composition 22c is supplied on the separator sheet, the current collector 21B is supplied on the surface of the electrode composition 22c opposite to the separator sheet, and the separator sheet and the current collector are By trimming the body 21B into a predetermined shape and further supplying the frame 35, the positive electrode 20a or the negative electrode 20b can be manufactured.
 また、離形フィルムを基材フィルムとする場合、離形フィルム上に電極組成物22cを供給し、電極組成物22cにおける離形フィルムと反対側の面に集電体21Bを供給し、離形フィルムを回収した後、集電体21Bと反対側の面にセパレータシートを供給し、集電体21B及びセパレータシートを所定の形状にトリミングし、更に、枠体35を供給することで、正極20a又は負極20bを作製することができる。なお、セパレータシートを供給して後にトリミングすることに代え、電極組成物22cに対してセパレータ30を供給することとしても構わない。 In addition, when the release film is used as a base film, the electrode composition 22c is supplied on the release film, the current collector 21B is supplied to the surface of the electrode composition 22c opposite to the release film, and the release film is After collecting the film, a separator sheet is supplied to the surface opposite to the current collector 21B, the current collector 21B and the separator sheet are trimmed into a predetermined shape, and a frame 35 is further supplied to form the positive electrode 20a. Alternatively, the negative electrode 20b can be produced. Note that instead of supplying the separator sheet and trimming it later, the separator 30 may be supplied to the electrode composition 22c.
 或いは、離形フィルム上に電極組成物22cを供給し、電極組成物22cにおける離形フィルムと反対側の面にセパレータシートを供給し、離形フィルムを回収した後、セパレータシートと反対側の面に集電体21Bを供給し、セパレータシート及び集電体21Bを所定の形状にトリミングし、更に、枠体35を供給することで、正極20a又は負極20bを作製することができる。なお、集電体21Bを供給して後にトリミングすることに代え、所定の形状にトリミングされた集電体21を電極組成物22cに対して供給することとしても構わない。 Alternatively, the electrode composition 22c is supplied onto the release film, a separator sheet is supplied to the surface of the electrode composition 22c opposite to the release film, and after the release film is collected, the surface opposite to the separator sheet is By supplying the current collector 21B, trimming the separator sheet and the current collector 21B into a predetermined shape, and further supplying the frame 35, the positive electrode 20a or the negative electrode 20b can be produced. Note that instead of supplying the current collector 21B and trimming it later, the current collector 21 trimmed into a predetermined shape may be supplied to the electrode composition 22c.
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。更に、各実施形態で示した構成のそれぞれを適宜組み合わせて利用できることは、言うまでもない。二次電池のうち、以上の説明で例示したリチウムイオン二次電池を用いる場合は、電解質に液体材料を使用した電池を含み、電解質に固体材料を使用した電池(いわゆる全固体電池)を含む。また本実施形態における電池は、集電体として金属箔(金属集電箔)を有する電池を含み、金属箔に代わって導電性材料が添加された樹脂から構成される、いわゆる樹脂集電体を有する電池を含む。当該樹脂集電体を、バイポーラ電極用樹脂集電体として用いる場合には、当該樹脂集電体の一方の面に正極を形成し、もう一方の面に負極を形成して双極型電極を構成したものであってもよい。なお、本実施形態における電池は、バインダを用いて正極または負極活物質等を正極用または負極用集電体にそれぞれ塗布して電極を構成したものを含み、双極型の電池の場合には、集電体の一方の面にバインダを用いて正極活物質等を塗布して正極層を、反対側の面にバインダを用いて負極活物質等を塗布して負極層を有する双極型電極を構成したものを含む。 Although the embodiment of the present invention has been described in detail with reference to the drawings above, the specific configuration is not limited to this embodiment, and modifications, combinations, deletions, etc. of the configuration within the scope of the gist of the present invention, etc. Also included. Furthermore, it goes without saying that the configurations shown in each embodiment can be used in appropriate combinations. Among secondary batteries, when using the lithium ion secondary battery exemplified in the above explanation, it includes a battery that uses a liquid material as an electrolyte, and a battery that uses a solid material as an electrolyte (a so-called all-solid-state battery). Furthermore, the battery in this embodiment includes a battery having a metal foil (metal current collector foil) as a current collector, and a so-called resin current collector made of resin to which a conductive material is added instead of the metal foil. Including batteries with. When the resin current collector is used as a resin current collector for bipolar electrodes, a positive electrode is formed on one surface of the resin current collector and a negative electrode is formed on the other surface to form a bipolar electrode. It may be something that has been done. Note that the batteries in this embodiment include those in which electrodes are formed by applying a positive electrode or negative electrode active material or the like to a positive electrode or negative electrode current collector using a binder, and in the case of a bipolar type battery, A bipolar electrode is constructed by applying a positive electrode active material etc. using a binder to one side of the current collector to form a positive electrode layer, and applying a negative electrode active material etc. using a binder to the opposite side to form a negative electrode layer. Including those who did.

Claims (6)

  1.  帯状の基材フィルムを搬送する搬送部と、
     開口部を備え、活物質及び電解液を含んだ湿潤粉体である電極組成物を内部に保持するホッパと、
     を備えた電池用電極製造装置であって、
     前記ホッパの内部に配置され、前記電極組成物を前記開口部の方向に向けて押し出す押出部と、
     前記ホッパの内部において前記電極組成物に加わる圧力を調整する調整部と、
     を備える、電池用電極製造装置。
    a conveyance unit that conveys a strip-shaped base film;
    a hopper having an opening and holding therein an electrode composition that is a wet powder containing an active material and an electrolyte;
    A battery electrode manufacturing device comprising:
    an extruder disposed inside the hopper and extruding the electrode composition toward the opening;
    an adjustment unit that adjusts the pressure applied to the electrode composition inside the hopper;
    A battery electrode manufacturing device comprising:
  2.  前記押出部は、前記電極組成物を混練しつつ押し出すスクリューである、請求項1に記載の電池用電極製造装置。 The battery electrode manufacturing apparatus according to claim 1, wherein the extrusion section is a screw that extrudes the electrode composition while kneading it.
  3.  前記調整部は、前記ホッパの内面の一部を構成するピストンであって、当該ホッパの内面に対して垂直な方向に往復運動可能なピストンを含み、
     前記ピストンは、前記開口部よりも面積が大きくなるように構成される、請求項1に記載の電池用電極製造装置。
    The adjustment unit includes a piston that forms part of the inner surface of the hopper and is capable of reciprocating in a direction perpendicular to the inner surface of the hopper,
    The battery electrode manufacturing apparatus according to claim 1, wherein the piston is configured to have a larger area than the opening.
  4.  前記開口部に配置されたシャッタを更に備え、
     前記シャッタは、前記開口部を開閉させることにより前記電極組成物を前記基材フィルムに対して供給する、請求項1に記載の電池用電極製造装置。
    further comprising a shutter disposed in the opening,
    The battery electrode manufacturing apparatus according to claim 1, wherein the shutter supplies the electrode composition to the base film by opening and closing the opening.
  5.  前記押出部は、前記電極組成物を前記開口部の方向に向けて連続的に押し出し、
     前記シャッタは、前記開口部を開閉させることにより、前記電極組成物を前記基材フィルムに対して間欠的に供給する、請求項4に記載の電池用電極製造装置。
    The extrusion unit continuously extrudes the electrode composition in the direction of the opening,
    The battery electrode manufacturing apparatus according to claim 4, wherein the shutter intermittently supplies the electrode composition to the base film by opening and closing the opening.
  6.  活物質及び電解液を含んだ湿潤粉体である電極組成物を内部に保持するホッパの内部に配置された押出部により、前記電極組成物を、前記ホッパの開口部の方向に向けて押し出し、
     前記ホッパの内部において前記電極組成物に加わる圧力を調整部により調整する、
     ことによって、前記電極組成物を、搬送される帯状の基材フィルムに対して供給する、電池用電極製造方法。
    Extruding the electrode composition in the direction of the opening of the hopper by an extrusion unit disposed inside a hopper holding therein an electrode composition that is a wet powder containing an active material and an electrolyte;
    adjusting the pressure applied to the electrode composition inside the hopper by an adjustment section;
    A method for manufacturing an electrode for a battery, wherein the electrode composition is supplied to a belt-shaped base film that is being transported.
PCT/JP2023/009172 2022-03-11 2023-03-09 Battery electrode manufacturing device and battery electrode manufacturing method WO2023171772A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022038086A JP2023132640A (en) 2022-03-11 2022-03-11 Apparatus for manufacturing electrode for battery and method for manufacturing electrode for battery
JP2022-038086 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023171772A1 true WO2023171772A1 (en) 2023-09-14

Family

ID=87935388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009172 WO2023171772A1 (en) 2022-03-11 2023-03-09 Battery electrode manufacturing device and battery electrode manufacturing method

Country Status (2)

Country Link
JP (1) JP2023132640A (en)
WO (1) WO2023171772A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266943A (en) * 2000-03-17 2001-09-28 Sony Corp Manufacturing method of battery and application device used for it
JP2013062268A (en) * 2011-09-12 2013-04-04 Nippon Zeon Co Ltd Powder rolling mill and method for producing rolled sheet
JP2014033996A (en) * 2012-08-08 2014-02-24 Nishi Kogyo Kk Intermittent coating apparatus
JP2018101593A (en) * 2016-12-21 2018-06-28 出光興産株式会社 Production method of solid electrolyte
CN213212186U (en) * 2020-10-10 2021-05-14 赣州市创翔电源有限公司 Automatic paste coating machine for power battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266943A (en) * 2000-03-17 2001-09-28 Sony Corp Manufacturing method of battery and application device used for it
JP2013062268A (en) * 2011-09-12 2013-04-04 Nippon Zeon Co Ltd Powder rolling mill and method for producing rolled sheet
JP2014033996A (en) * 2012-08-08 2014-02-24 Nishi Kogyo Kk Intermittent coating apparatus
JP2018101593A (en) * 2016-12-21 2018-06-28 出光興産株式会社 Production method of solid electrolyte
CN213212186U (en) * 2020-10-10 2021-05-14 赣州市创翔电源有限公司 Automatic paste coating machine for power battery pack

Also Published As

Publication number Publication date
JP2023132640A (en) 2023-09-22

Similar Documents

Publication Publication Date Title
CN105531855B (en) The manufacture device of electrical storage device and the manufacture method of electrical storage device
KR101510509B1 (en) Method for manufacturing a battery electrode
WO2023171772A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023128856A (en) Manufacturing device for battery electrode and manufacturing method for battery electrode
WO2022210966A1 (en) Battery electrode manufacturing device
JP2023148518A (en) Battery electrode manufacturing device and battery electrode manufacturing method
WO2023100840A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023132707A (en) Battery electrode manufacturing device and battery electrode manufacturing method
WO2023190939A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023128854A (en) Manufacturing device for battery electrode and manufacturing method for battery electrode
JP2023003069A (en) Battery electrode manufacturing device and method for manufacturing battery electrode
JP2023128855A (en) Manufacturing device for battery electrode and manufacturing method for battery electrode
WO2023157931A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023080523A (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023051223A (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023051209A (en) Battery electrode manufacturing device and battery electrode manufacturing method
WO2023167339A1 (en) Apparatus for producing battery electrode and method for producing battery electrode
JP2023065919A (en) Electrode manufacturing device for batteries and electrode manufacturing method for batteries
JP2023062800A (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023053788A (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023053789A (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023003068A (en) Battery electrode manufacturing device and method for manufacturing battery electrode
JP2022157900A (en) Active material supply device, manufacturing apparatus for electrode for battery, and active material supply method
JP2023119212A (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023096326A (en) Battery electrode manufacturing device and battery electrode manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766948

Country of ref document: EP

Kind code of ref document: A1