WO2023190939A1 - Battery electrode manufacturing device and battery electrode manufacturing method - Google Patents

Battery electrode manufacturing device and battery electrode manufacturing method Download PDF

Info

Publication number
WO2023190939A1
WO2023190939A1 PCT/JP2023/013318 JP2023013318W WO2023190939A1 WO 2023190939 A1 WO2023190939 A1 WO 2023190939A1 JP 2023013318 W JP2023013318 W JP 2023013318W WO 2023190939 A1 WO2023190939 A1 WO 2023190939A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
substance
hopper
active material
accommodation space
Prior art date
Application number
PCT/JP2023/013318
Other languages
French (fr)
Japanese (ja)
Inventor
英明 堀江
健一郎 榎
勇輔 中嶋
浩太郎 那須
Original Assignee
Apb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apb株式会社 filed Critical Apb株式会社
Publication of WO2023190939A1 publication Critical patent/WO2023190939A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery electrode manufacturing apparatus and a battery electrode manufacturing method.
  • Lithium-ion batteries are high-capacity secondary batteries that have been used for a variety of purposes in recent years.
  • the electrode of a lithium ion battery is composed of an active material layer, a current collector layer, a separator, a frame that encloses the active material layer, and the like (see, for example, Patent Document 1).
  • the active material layer in a lithium ion battery can be formed, for example, by supplying an electrode composition to a strip-shaped base film and compressing it using a roll press or the like.
  • the electrode composition is produced by mixing auxiliary materials such as a conductive aid and an electrolyte with a coated active material material containing active material particles.
  • auxiliary materials such as a conductive aid and an electrolyte
  • a resin solution or gel pellets are added to active material particles and mixed with a mixer to produce a work-in-progress product. Thereafter, the work-in-progress is put into another mixer and mixed with the auxiliary materials to produce the electrode composition.
  • the method using the batch type mixer described above involves many steps and cannot be said to have high production efficiency.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a battery electrode manufacturing apparatus and a battery electrode manufacturing method that can continuously produce an electrode composition.
  • a battery electrode manufacturing apparatus includes a hopper, a first supply section, a second supply section, and an extrusion section.
  • the hopper has an accommodation space therein, and has a first opening through which the coating active material is supplied to the accommodation space, a second opening through which the auxiliary material is supplied to the accommodation space, and a substance in the accommodation space. and a third opening for discharging.
  • the first supply unit supplies the covering active material to the housing space from the first opening.
  • the second supply unit supplies the auxiliary material to the accommodation space from the second opening.
  • the extrusion unit kneads and extrudes the substance in the accommodation space from the first opening toward the second opening, and further extrudes the substance from the second opening toward the third opening while kneading.
  • an electrode composition can be continuously produced.
  • FIG. 1 is a schematic cross-sectional view of a single cell of a battery manufactured using the battery electrode manufacturing apparatus of the embodiment.
  • FIG. 2 is a schematic diagram of a battery electrode manufacturing apparatus according to an embodiment.
  • FIG. 3 is a diagram showing an electrode composition generating apparatus according to an embodiment.
  • FIG. 4 is a diagram showing an electrode composition production device according to an embodiment.
  • FIG. 5 is a diagram showing an electrode composition production device according to an embodiment.
  • FIG. 6 is a diagram showing an electrode composition production device according to an embodiment.
  • FIG. 7 is a diagram showing an electrode composition production device according to an embodiment.
  • FIG. 8 is a diagram showing an electrode composition generating apparatus according to an embodiment.
  • FIG. 9 is a diagram showing an electrode composition production device according to an embodiment.
  • a lithium-ion battery is an assembled battery that is made into a module by combining multiple lithium-ion single cells (also referred to as single cells or battery cells), or a battery pack that is made by combining multiple such assembled batteries to adjust the voltage and capacity. used in form.
  • a lithium ion secondary battery is shown below, the type of secondary battery according to the present invention is not limited to a lithium ion secondary battery, and includes other secondary batteries.
  • the lithium ion battery in this specification refers to a secondary battery that uses lithium ions as charge carriers and is charged and discharged by movement of lithium ions between positive and negative electrodes.
  • the lithium ion battery (secondary battery) includes a battery using a liquid material as an electrolyte, and a battery using a solid material as an electrolyte (so-called all-solid-state battery).
  • the lithium ion battery in this embodiment includes a battery having a metal foil (metal current collector foil) as a current collector, and instead of the metal foil, the lithium ion battery includes a so-called resin current collector made of resin to which a conductive material is added. Including a battery with a body.
  • the lithium ion battery in this embodiment includes one in which an electrode is formed by applying a positive electrode or negative electrode active material or the like to a positive electrode or negative electrode current collector using a binder, and in the case of a bipolar type battery, is a bipolar electrode that has a positive electrode layer by applying a positive active material etc. using a binder to one side of the current collector, and a negative electrode layer by applying a negative active material etc. using a binder to the opposite side. Including those made up of.
  • the method of stacking the assembled battery is arbitrary.
  • a single cell having a positive electrode resin current collector on the first surface and a negative electrode resin current collector on the second surface is stacked on the first surface (positive electrode side) and the first surface (positive electrode side) of a pair of adjacent single cells. It may be a stacked battery in which a plurality of batteries are stacked in series so that the two sides (negative electrode side) are adjacent to each other.
  • a single cell in which a positive electrode layer is provided on one side of a single resin current collector and a negative electrode layer is provided on the other side of the resin current collector can be used as a stacked battery in which multiple cells are stacked with an electrolyte layer interposed in between. good.
  • FIG. 1 is a schematic cross-sectional view of a single cell 10. It is possible to produce the above assembled battery by combining a plurality of single cells 10.
  • the single cell 10 includes a positive electrode 20a and a negative electrode 20b as two electrodes 20 (battery electrodes), and a separator 30.
  • the separator 30 is placed between the positive electrode 20a and the negative electrode 20b.
  • a plurality of single cells 10 are stacked with the positive electrode 20a and the negative electrode 20b facing in the same direction.
  • the separator 30 holds an electrolyte. Thereby, separator 30 functions as an electrolyte layer.
  • the separator 30 is arranged between the electrode active material layers 22 of the positive electrode 20a and the negative electrode 20b, and prevents them from coming into contact with each other. Thereby, the separator 30 functions as a partition between the positive electrode 20a and the negative electrode 20b.
  • Examples of the electrolyte held in the separator 30 include an electrolytic solution or a gel polymer electrolyte. By using these electrolytes, high lithium ion conductivity is ensured.
  • Examples of the form of the separator include a porous sheet separator made of a polymer or fiber that absorbs and retains the electrolyte, a nonwoven fabric separator, and the like.
  • the positive electrode 20a and the negative electrode 20b each include a current collector 21, an electrode active material layer 22, and a frame 35.
  • the electrode active material layer 22 and the current collector 21 are arranged in this order from the separator 30 side.
  • the frame 35 is frame-shaped (annular).
  • the frame 35 surrounds the electrode active material layer 22 .
  • the frame 35 of the positive electrode 20a and the frame 35 of the negative electrode 20b are welded together and integrated.
  • the electrode active material layers 22 of the positive electrode 20a and the negative electrode 20b are to be distinguished from each other, they will be referred to as a positive electrode active material layer 22a and a negative electrode active material layer 22b, respectively.
  • positive electrode current collector As the positive electrode current collector constituting the positive electrode current collector layer 21a, a current collector used in a known lithium ion cell can be used, for example, a current collector made of a known metal current collector, a conductive material, and a resin. (Resin current collectors described in JP 2012-150905 A, WO 2015/005116, etc.) can be used.
  • the positive electrode current collector constituting the positive electrode current collector layer 21a is preferably a resin current collector from the viewpoint of battery characteristics and the like.
  • metal current collectors include copper, aluminum, titanium, nickel, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, alloys containing one or more of these metals, and stainless steel alloys.
  • a substrate made of a material other than the above-described metal material on which the above-mentioned metal material is formed by sputtering, electrodeposition, coating, or the like may be used as the metal current collector.
  • the resin current collector preferably contains a conductive filler and a matrix resin.
  • the matrix resin include, but are not particularly limited to, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), and the like.
  • the conductive filler is not particularly limited as long as it is selected from materials having conductivity.
  • the conductive filler may be a conductive fiber having a fibrous shape.
  • the resin current collector may contain other components (dispersant, crosslinking accelerator, crosslinking agent, coloring agent, ultraviolet absorber, plasticizer, etc.). Further, a plurality of resin current collectors may be stacked and used, or a resin current collector and a metal foil may be stacked and used.
  • the thickness of the positive electrode current collector layer 21a is not particularly limited, but is preferably 5 to 150 ⁇ m. When a plurality of resin current collectors are laminated and used as the positive electrode current collector layer 21a, the total thickness after lamination is preferably 5 to 150 ⁇ m.
  • the positive electrode current collector layer 21a can be obtained, for example, by molding a conductive resin composition obtained by melt-kneading a matrix resin, a conductive filler, and an optional filler dispersant into a film by a known method. I can do it.
  • the positive electrode active material layer 22a is preferably a non-bound body of a mixture containing the positive electrode active material.
  • a non-bound body means that the position of the positive electrode active material in the positive electrode active material layer is not fixed, and the positive electrode active materials and the positive electrode active material and the current collector are not irreversibly fixed. means.
  • the positive electrode active material layer 22a is a non-binding body, the positive electrode active materials are not irreversibly fixed to each other, and therefore can be separated without mechanically destroying the interface between the positive electrode active materials. This is preferable because even when stress is applied to the material layer 22a, the movement of the positive electrode active material prevents the destruction of the positive electrode active material layer 22a.
  • the positive electrode active material layer 22a which is a non-binding body, can be obtained by a method such as changing the positive electrode active material layer 22a to a positive electrode active material layer 22a containing a positive electrode active material and an electrolyte and not containing a binder.
  • binder refers to a chemical that cannot reversibly fix the positive electrode active materials to each other or the positive electrode active material and the current collector, and includes starch, polyvinylidene fluoride, polyvinyl alcohol, carboxylic acid, etc.
  • Examples include known solvent-dried binders for lithium ion batteries such as methylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene and polypropylene. These binders are used by being dissolved or dispersed in a solvent, and when the solvent is volatilized or distilled off, the surface becomes solid without exhibiting stickiness, so that the positive electrode active materials can be bonded to each other and the positive electrode active material and the current collector. cannot be fixed reversibly.
  • solvent-dried binders for lithium ion batteries such as methylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene and polypropylene. These binders are used by being dissolved or dispersed in a solvent, and when the solvent is volatilized or distilled off, the surface becomes solid without exhibiting stickiness, so that the positive electrode active materials can be bonded to
  • positive electrode active materials include, but are not particularly limited to, composite oxides of lithium and transition metals, composite oxides containing two types of transition metal elements, composite oxides containing three or more types of metal elements, etc. .
  • the positive electrode active material may be a coated positive electrode active material in which at least a portion of the surface thereof is covered with a coating material containing a polymer compound.
  • a coating material containing a polymer compound When the periphery of the positive electrode active material is covered with a coating material, volume change of the positive electrode is alleviated, and expansion of the positive electrode can be suppressed.
  • polymer compound constituting the coating material those described as active material coating resins in JP2017-054703A, WO2015/005117, etc. can be suitably used.
  • the coating material may contain a conductive agent.
  • the conductive agent the same conductive filler as that contained in the positive electrode current collector layer 21a can be suitably used.
  • the positive electrode active material layer 22a may contain adhesive resin.
  • the adhesive resin for example, a non-aqueous secondary battery active material coating resin described in JP 2017-054703 A is mixed with a small amount of an organic solvent to adjust its glass transition temperature to below room temperature; Also, those described as adhesives in JP-A-10-255805 can be suitably used.
  • Adhesive resin is a resin that does not solidify even if the solvent component is evaporated and dried, but has adhesive properties (the property of adhering by applying slight pressure without using water, solvent, heat, etc.) means.
  • a solution-drying electrode binder used as a binder is one that dries and solidifies by volatilizing the solvent component, thereby firmly adhering and fixing active materials to each other. Therefore, the above-mentioned binder (solution-dried electrode binder) and adhesive resin are different materials.
  • the positive electrode active material layer 22a may contain an electrolytic solution containing an electrolyte and a nonaqueous solvent.
  • electrolyte those used in known electrolytes can be used.
  • non-aqueous solvent those used in known electrolytic solutions (for example, phosphoric acid esters, nitrile compounds, etc., mixtures thereof, etc.) can be used.
  • a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) or a mixture of ethylene carbonate (EC) and propylene carbonate (PC) can be used.
  • the positive electrode active material layer 22a may contain a conductive additive.
  • a conductive material similar to the conductive filler contained in the positive electrode current collector layer 21a can be suitably used.
  • the thickness of the positive electrode active material layer 22a is not particularly limited, but from the viewpoint of battery performance, it is preferably 150 to 600 ⁇ m, more preferably 200 to 450 ⁇ m.
  • the positive electrode composition supplied to form the positive electrode active material layer 22a is a wet powder containing a positive electrode active material and a non-aqueous electrolyte. Moreover, it is more preferable that the wet powder is in a pendular state or a funicular state.
  • the proportion of the non-aqueous electrolyte in the wet powder is not particularly limited, but in the case of a positive electrode, the proportion of the non-aqueous electrolyte in the whole wet powder should be 0.5 to 0.5 to 100% in order to obtain a pendular state or a funicular state.
  • the content is preferably 15% by weight.
  • the negative electrode current collector layer 21b is preferably a resin current collector from the viewpoint of battery characteristics and the like.
  • the thickness of the negative electrode current collector layer 21b is not particularly limited, but is preferably 5 to 150 ⁇ m.
  • the negative electrode active material layer 22b is preferably a non-bound body of a mixture containing negative electrode active materials.
  • the negative electrode active material for example, carbon-based materials, silicon-based materials, mixtures thereof, etc. can be used, but there is no particular limitation.
  • the negative electrode active material may be a coated negative electrode active material in which at least a portion of the surface thereof is covered with a coating material containing a polymer compound.
  • a coating material containing a polymer compound When the periphery of the negative electrode active material is coated with a coating material, the volume change of the negative electrode is alleviated, and expansion of the negative electrode can be suppressed.
  • the same coating material as the coating material constituting the coated positive electrode active material can be suitably used.
  • the negative electrode active material layer 22b contains an electrolyte solution containing an electrolyte and a nonaqueous solvent. Regarding the composition of the electrolytic solution, an electrolytic solution similar to that contained in the positive electrode active material layer 22a can be suitably used.
  • the negative electrode active material layer 22b may contain a conductive additive.
  • a conductive material similar to the conductive filler contained in the positive electrode active material layer 22a can be suitably used.
  • the negative electrode active material layer 22b may contain adhesive resin.
  • the adhesive resin the same adhesive resin as the optional component of the positive electrode active material layer 22a can be suitably used.
  • the thickness of the negative electrode active material layer 22b is not particularly limited, but from the viewpoint of battery performance, it is preferably 150 to 600 ⁇ m, more preferably 200 to 450 ⁇ m.
  • the negative electrode composition supplied to form the negative electrode active material layer 22b is a wet powder containing a negative electrode active material and a non-aqueous electrolyte. Moreover, it is more preferable that the wet powder is in a pendular state or a funicular state.
  • the proportion of the non-aqueous electrolyte in the wet powder is not particularly limited, but in the case of a negative electrode, the proportion of the non-aqueous electrolyte should be 0.5 to 0.5 to the total wet powder in order to obtain a pendular state or a funicular state.
  • the content is preferably 25% by weight.
  • Examples of the electrolyte held in the separator 30 include an electrolytic solution or a gel polymer electrolyte. By using these electrolytes, the separator 30 ensures high lithium ion conductivity.
  • the form of the separator 30 includes, for example, a porous film made of polyethylene or polypropylene, but is not particularly limited.
  • As the separator a sulfide-based or oxide-based inorganic solid electrolyte, a polymer-based organic solid electrolyte, or the like can also be used. By applying a solid electrolyte, an all-solid-state battery can be constructed.
  • the frame 35 is not particularly limited as long as it is made of a material that is durable against the electrolytic solution, but for example, a polymer material is preferable, and a thermosetting polymer material is more preferable.
  • the material constituting the frame 35 may be any material as long as it has insulation properties, sealing properties (liquid tightness), heat resistance under the battery operating temperature, etc., and a resin material is preferably employed. More specifically, examples of the frame 35 include epoxy resin, polyolefin resin, polyurethane resin, polyvinylidene fluoride resin, etc. Epoxy resin is preferred because it is highly durable and easy to handle. preferable.
  • a battery electrode manufacturing apparatus and a battery electrode manufacturing method (hereinafter simply referred to as the manufacturing method) of the present embodiment will be described.
  • a positive electrode 20a and a negative electrode 20b are first manufactured.
  • the method for manufacturing the positive electrode 20a and the method for manufacturing the negative electrode 20b differ mainly in the electrode active material contained in the electrode active material layer 22.
  • methods for manufacturing the positive electrode 20a and the negative electrode 20b will be described together.
  • FIG. 2 is a schematic diagram of the battery electrode manufacturing apparatus 1000.
  • a battery electrode manufacturing apparatus 1000 includes a chamber 100, a conveyance apparatus 200, an electrode composition supply apparatus 300, a frame supply apparatus 400, a press apparatus 500, and an electrode composition production apparatus 600.
  • belt-shaped base film is the strip
  • the chamber 100 is a room whose interior can be maintained at a pressure lower than atmospheric pressure.
  • the pressure inside the chamber 100 is reduced below atmospheric pressure by a pressure reduction pump (not shown).
  • the standard atmospheric pressure is approximately 1013 hPa (approximately 105 Pa).
  • a current collector roll 21R is arranged outside the chamber 100, and a band-shaped current collector 21B pulled out from the current collector roll 21R is conveyed into the chamber 100 through a slit.
  • the strip-shaped current collector 21B may be referred to as a current collector 21B.
  • the current collector 21B is the current collector 21 described above before being cut into a predetermined shape.
  • the current collector 21B is transported at a predetermined speed along the transport direction Da.
  • the direction in which the current collector 21B is conveyed is referred to as the downstream side Da1
  • the opposite direction is referred to as the upstream side Da2.
  • the external space of the chamber 100 in which the current collector roll 21R is arranged may be at normal pressure or may be reduced in pressure by a chamber different from the chamber 100.
  • the upper side in the vertical direction Db is Db1
  • the lower side in the vertical direction Db is Db2.
  • the direction perpendicular to the transport direction Da and the vertical direction Db corresponds to the width direction of the current collector 21B and the electrode composition 22c placed on the current collector 21B.
  • the transport device 200 transports the current collector 21B to the downstream side Da1 in the transport direction Da.
  • the conveyance device 200 is a belt conveyor that supports the current collector 21B from below.
  • the transportation device 200 transports the current collector 21B on which the electrode composition 22c is placed.
  • the frame body 35 is supplied by the frame body supply device 400 described below, the conveyance device 200 conveys the current collector 21B on which the frame body 35 and the electrode composition 22c are placed.
  • the transport device 200 is an example of a transport section.
  • the electrode composition supply device 300 supplies the electrode composition 22c onto the current collector 21B transported within the chamber 100.
  • the electrode composition supply device 300 includes a hopper and a shutter.
  • the electrode composition supply device 300 holds the electrode composition 22c inside a hopper having an opening on the lower side Db2 of the vertical direction Db, and opens and closes the opening of the hopper with a shutter to place the electrode composition 22c at a predetermined supply position.
  • a predetermined amount of the electrode composition 22c can be supplied to the electrode composition 22c.
  • the electrode composition 22c is, for example, a powdered active material.
  • the frame supply device 400 supplies the frame 35 to the current collector 21B being transported.
  • the frame supply device 400 includes a robot arm and places the frame 35 manufactured in advance at a predetermined position on the current collector 21B being transported.
  • the frame supply device 400 may manufacture the frame 35 on the current collector 21B.
  • the frame 35 is formed on the current collector 21B by using the current collector 21B as a base material and discharging or applying a predetermined material in a predetermined shape onto the current collector 21B using a dispenser, coater, etc. can be formed.
  • the press device 500 compresses the electrode composition 22c supplied to the current collector 21B.
  • the press device 500 has an upper roller 501 and a lower roller 502, as shown in FIG.
  • the press device 500 uses an upper roller 501 and a lower roller 502 to sandwich and compress the electrode composition 22c supplied to the current collector 21B. That is, the press device 500 performs roll pressing on the electrode composition 22c.
  • FIG. 2 an example has been described in which the frame body 35 is supplied by the frame body supply device 400 after the electrode composition supply device 300 supplies the electrode composition 22c.
  • the electrode composition 22c may be supplied by the electrode composition supply device 300 to a position inside the frame body 35.
  • FIG. 2 shows a case where the frame supply device 400 is arranged inside the chamber 100, the frame supply device 400 may be arranged outside the chamber 100.
  • the electrode composition generating device 600 is a device that generates the electrode composition 22c.
  • the above-mentioned electrode composition supply device 300 supplies the electrode composition 22c produced by the electrode composition production device 600 to the current collector 21B.
  • the electrode composition production device 610 in FIG. 3 As an example of the electrode composition production device 600, the electrode composition production device 610 in FIG. 3 will be described.
  • the electrode composition generation device 610 includes a hopper 611, an active material particle supply device 612a, a resin solution supply device 612b, a devolatilization device 613, a conductive agent supply device 614a, an electrolyte solution supply device 614b, It includes a deaerator 615, a screw 616a, and a screw 616b.
  • the active material particle supply device 612a and the resin solution supply device 612b are examples of a first supply section.
  • the conductive aid supply device 614a and the electrolytic solution supply device 614b are examples of a second supply section.
  • the screw 616a and the screw 616b are examples of extrusion parts.
  • the devolatilizing device 613 is an example of a devolatilizing section.
  • the deaerator 615 is an example of a de
  • the hopper 611 has a storage space inside and holds therein the substances supplied from the active material particle supply device 612a, the resin solution supply device 612b, the conductive agent supply device 614a, and the electrolyte solution supply device 614b. Further, as shown in FIG. 3, the hopper 611 includes an opening 611a, an opening 611b, an opening 611c, an opening 611d, and an opening 611e.
  • the opening 611a and the opening 611b are examples of first openings.
  • the opening 611c and the opening 611d are examples of second openings.
  • the opening 611e is an example of a third opening.
  • the active material particle supply device 612a supplies active material particles to the accommodation space inside the hopper 611 from the opening 611a.
  • the resin solution supply device 612b supplies a resin solution to the accommodation space inside the hopper 611 from the opening 611b.
  • the resin solution is a resin dissolved in a solvent.
  • the active material particles and the resin solution are examples of coated active material materials.
  • the conductive agent supply device 614a supplies the conductive agent to the storage space inside the hopper 611 from the opening 611c.
  • the electrolyte supply device 614b supplies an electrolyte to the accommodation space inside the hopper 611 from the opening 611b.
  • a conductive aid and an electrolyte are examples of auxiliary materials.
  • the screw 616a and the screw 616b are members having a spiral protrusion around the rotation axis, and by rotating within the accommodation space of the hopper 611, push out the substance in the accommodation space in the direction along the rotation axis.
  • the screw 616a and the screw 616b can extrude the substance in the storage space while kneading it.
  • the screws 616a and 616b knead and extrude the substance in the storage space from the openings 611a and 611b toward the openings 611c and 611d.
  • a devolatilizing device 613 is provided between the openings 611a and 611b and the openings 611c and 611d. The devolatilization device 613 devolatilizes the active material particles and resin solution kneaded by the screws 616a and 616b.
  • the screw 616a and the screw 616b push out the substance in the storage space from the opening 611c and the opening 611d toward the opening 611e while kneading it.
  • a deaerator 615 is provided between the openings 611c and 611d and the opening 611e. The deaerator 615 deaerates the active material particles, resin solution, conductive aid, and electrolyte solution kneaded by the screws 616a and 616b.
  • the electrode composition 22c is prepared by kneading various substances supplied from the active material particle supply device 612a, the resin solution supply device 612b, the conductive agent supply device 614a, and the electrolyte solution supply device 614b using the screw 616a and the screw 616b. can be generated.
  • the generated electrode composition 22c is discharged into the chamber 100 from the opening 611e, as shown in FIG.
  • the electrode composition 22c discharged into the chamber 100 is supplied by the electrode composition supply device 300 to the current collector 21B being transported.
  • the electrode composition 22c can be continuously generated. That is, the electrode composition 22c is continuously produced by completing a plurality of steps such as charging the coating active material, charging the auxiliary material, and kneading these various substances as a series of processes in the hopper. Generation efficiency can be improved.
  • FIG. 3 shows an example in which the opening 611b is arranged closer to the opening 611e than the opening 611a
  • the embodiment is not limited to this. That is, the opening 611a may be arranged closer to the opening 611e than the opening 611b. Similar changes can be made to the arrangement of the opening 611c and the opening 611d.
  • a screw 616a and a screw 616b are shown as an example of the extrusion part.
  • the embodiment is not limited to this, and the electrode composition generating device 610 may include three or more screws as the extrusion section. Alternatively, the electrode composition generating device 610 may include one screw as the extrusion section.
  • the electrode composition generating device 610 shown in FIG. 3 is an example, and various modifications are possible. Modifications of the electrode composition generating device 600 will be described below with reference to FIGS. 4 to 9.
  • an electrode composition generating device 620 is shown as an example of the electrode composition generating device 600.
  • the electrode composition generating device 620 includes a hopper 621, a hopper 622, a hopper 623, an active material particle supply device 624a, a resin solution supply device 624b, a devolatilization device 625, a degassing device 626, and a conductive support agent. It includes a supply device 627a, an electrolyte supply device 627b, a deaerator 628, a screw 629a, a screw 629b, a screw 629c, a screw 629d, and a screw 629e.
  • the active material particle supply device 624a and the resin solution supply device 624b are examples of the first supply section.
  • the conductive agent supply device 627a and the electrolytic solution supply device 627b are examples of the second supply section.
  • the screw 629a, the screw 629b, the screw 629c, the screw 629d, and the screw 629e are examples of the extrusion part.
  • the devolatilization device 625 is an example of a devolatilization section.
  • the deaerator 626 and the deaerator 628 are examples of a deaerator.
  • the screw 629a and the screw 629b are examples of the first member.
  • the screw 629c is an example of the second member.
  • the screw 629d and the screw 629e are examples of the third member.
  • the hopper 621, the hopper 622, and the hopper 623 each have a storage space inside and hold the substances supplied from the active material particle supply device 624a, the resin solution supply device 624b, the conductive agent supply device 627a, and the electrolyte solution supply device 627b. do.
  • the hopper 621, hopper 622, and hopper 623 form one continuous accommodation space.
  • the hopper 621 includes an opening 621a and an opening 621b.
  • the opening 621a and the opening 621b are examples of first openings.
  • the hopper 623 includes an opening 623a, an opening 623b, and an opening 623c.
  • the opening 623a and the opening 623b are examples of second openings.
  • the opening 623c is an example of a third opening.
  • the active material particle supply device 624a supplies active material particles to the accommodation space inside the hopper 621 from the opening 621a.
  • the resin solution supply device 624b supplies the resin solution to the accommodation space inside the hopper 621 from the opening 621b.
  • the conductive agent supply device 627a supplies the conductive agent to the accommodation space inside the hopper 623 from the opening 623a.
  • the electrolyte supply device 627b supplies an electrolyte to the accommodation space inside the hopper 623 from the opening 623b.
  • the devolatilization device 625 is provided at a position between the openings 621a and 621b and the openings 623a and 623b. Furthermore, the degassing device 626 is provided at a position between the devolatilizing device 625 and the openings 623a and 623b.
  • the screw 629a and the screw 629b push out the substance in the storage space while kneading it toward the devolatilization device 625 from the opening 621a and the opening 621b.
  • the screw 629c extrudes the substance extruded by the screws 629a and 629b while kneading it upward in the vertical direction. That is, the screw 629c imparts potential energy to the substance within the accommodation space.
  • the deaerator 626 deaerates the substance that is falling downward in the vertical direction after being pushed upward in the vertical direction by the screw 629c.
  • the deaerator 626 can perform deaeration efficiently.
  • the screw 629d and the screw 629e knead and push out the substance that has been pushed out vertically upward by the screw 629c and then fallen vertically downward toward the openings 623a and 623b. That is, the screws 629d and 629e push out the substance degassed by the deaerator 626 toward the openings 623a and 623b while kneading it.
  • the screw 629d and the screw 629e push out the substance in the storage space from the opening 623a and the opening 623b toward the opening 623c while kneading it.
  • a deaerator 628 is provided at a position between the openings 623a and 623b and the opening 623c.
  • the degassing device 628 degasses the active material particles, resin solution, conductive aid, and electrolytic solution kneaded by the various screws described above.
  • the electrode composition 22c can be continuously generated using the electrode composition generation device 620 in FIG. That is, it is possible to complete a plurality of steps such as charging the coating active material, charging the auxiliary material, and kneading these various substances within one continuous storage space formed by the hopper 621, hopper 622, and hopper 623. can.
  • the electrode composition 22c generated by the electrode composition generation device 620 is discharged into the chamber 100 from the opening 623c, and is supplied to the current collector 21B by the electrode composition supply device 300.
  • the positional relationship between the opening 621a and the opening 621b and the positional relationship between the opening 623a and the opening 623b in FIG. 4 can be arbitrarily modified. Further, the number of screws that the electrode composition generating device 620 has as an extrusion section is arbitrary.
  • the electrode composition generating device 630 includes a hopper 631, a hopper 632, a hopper 633, an active material particle supply device 634a, a resin solution supply device 634b, a devolatilization device 635, an opening section 636, and a conductive agent supply device. It includes a device 637a, an electrolyte supply device 637b, a deaerator 638, a screw 639a, a screw 639b, a screw 639c, a screw 639d, and a screw 639e.
  • the active material particle supply device 634a and the resin solution supply device 634b are examples of the first supply section.
  • the conductive aid supply device 637a and the electrolytic solution supply device 637b are examples of a second supply section.
  • the screw 639a, the screw 639b, the screw 639c, the screw 639d, and the screw 639e are examples of the extrusion part.
  • the devolatilizing device 635 is an example of a devolatilizing section.
  • the open portion 636 is an example of an open portion.
  • the deaerator 638 is an example of a deaerator.
  • the screw 639a and the screw 639b are examples of the first member.
  • the screw 639c is an example of the second member.
  • the screw 639d and the screw 639e are examples of the third member.
  • the hopper 631, the hopper 632, and the hopper 633 have storage spaces inside, and hold substances supplied from the active material particle supply device 634a, the resin solution supply device 634b, the conductive agent supply device 637a, and the electrolyte solution supply device 637b. do.
  • the hopper 631, the hopper 632, and the hopper 633 form one continuous accommodation space.
  • the hopper 631 includes an opening 631a and an opening 631b.
  • the opening 631a and the opening 631b are examples of first openings.
  • the hopper 633 includes an opening 633a, an opening 633b, and an opening 633c.
  • the opening 633a and the opening 633b are examples of second openings.
  • the opening 633c is an example of a third opening.
  • the active material particle supply device 634a supplies active material particles to the accommodation space inside the hopper 631 from the opening 631a.
  • the resin solution supply device 634b supplies a resin solution to the accommodation space inside the hopper 631 from the opening 631b.
  • the conductive agent supply device 637a supplies the conductive agent to the accommodation space inside the hopper 633 from the opening 633a.
  • the electrolytic solution supply device 637b supplies an electrolytic solution to the accommodation space inside the hopper 633 from the opening 633b.
  • the devolatilization device 635 is provided at a position between the openings 631a and 631b and the openings 633a and 633b. Further, a degassing device 636 is provided at a position between the devolatilizing device 635 and the openings 633a and 633b.
  • the screw 639a and the screw 639b push out the substance in the storage space while kneading it toward the devolatilization device 635 from the opening 631a and the opening 631b.
  • the screw 639c extrudes the substance extruded by the screws 639a and 639b while kneading it upward in the vertical direction. That is, the screw 639c imparts potential energy to the substance within the accommodation space.
  • the open portion 636 is a gap provided between the hopper 632 and the hopper 633. At the opening 636, the substance within the accommodation space comes into contact with air. More specifically, the opening portion 636 exposes the substance that is falling downward in the vertical direction after being pushed upward in the vertical direction by the screw 639c to the air. Here, the falling substances are scattered in a sparse manner, so they can efficiently come into contact with the air.
  • the screw 639d and the screw 639e push out the substance in the storage space from the opening 633a and the opening 633b toward the opening 633c while kneading it.
  • a deaerator 638 is provided at a position between the openings 633a and 633b and the opening 633c.
  • the degassing device 638 degasses the active material particles, resin solution, conductive aid, and electrolytic solution kneaded by the various screws described above.
  • the electrode composition 22c can be continuously generated. That is, it is possible to complete a plurality of steps such as charging the coating active material, charging the auxiliary material, and kneading these various substances within one continuous storage space formed by the hopper 631, hopper 632, and hopper 633. can.
  • the electrode composition 22c generated by the electrode composition generation device 630 is discharged into the chamber 100 from the opening 633c, and is supplied to the current collector 21B by the electrode composition supply device 300.
  • the positional relationship between the opening 631a and the opening 631b and the positional relationship between the opening 633a and the opening 633b in FIG. 5 can be arbitrarily modified. Further, the number of screws that the electrode composition generating device 630 has as an extrusion section is arbitrary.
  • the electrode composition generating device 640 includes a hopper 641, an active material particle supply device 642a, a gel pellet supply device 642b, a heating device 643, a conductive agent supply device 644a, an electrolytic solution supply device 644b, and a degassing device. It includes a device 645, a screw 646a, and a screw 646b.
  • the active material particle supply device 642a and the gel pellet supply device 642b are examples of the first supply section.
  • the conductive aid supply device 644a and the electrolyte supply device 644b are examples of a second supply section.
  • the screw 646a and the screw 646b are examples of extrusion parts.
  • the heating device 643 is an example of a heating section.
  • the deaerator 645 is an example of a deaerator.
  • the hopper 641 has a storage space inside and holds therein the substances supplied from the active material particle supply device 642a, the gel pellet supply device 642b, the conductive aid supply device 644a, and the electrolyte supply device 644b. Further, as shown in FIG. 6, the hopper 641 includes an opening 641a, an opening 641b, an opening 641c, an opening 641d, and an opening 641e.
  • the opening 641a and the opening 641b are examples of first openings.
  • the opening 641c and the opening 641d are examples of second openings.
  • the opening 641e is an example of a third opening.
  • the active material particle supply device 642a supplies active material particles to the accommodation space inside the hopper 641 from the opening 641a.
  • the gel pellet supply device 642b supplies gel pellets to the accommodation space inside the hopper 641 from the opening 641b. Note that while the resin solutions shown in FIGS. 3 to 5 are solutions containing resin, the gel pellets are resin in a solid state or a molten state. Gel pellets are an example of coated active material.
  • the conductive agent supply device 644a supplies the conductive agent to the storage space inside the hopper 641 from the opening 641c.
  • the electrolyte supply device 644b supplies an electrolyte to the accommodation space inside the hopper 641 from the opening 641b.
  • the screws 646a and 646b knead and extrude the substance in the accommodation space from the openings 641a and 641b toward the openings 641c and 641d.
  • a heating device 643 is provided at a position between the openings 641a and 641b and the openings 641c and 641d. The heating device 643 heats the active material particles and gel pellets kneaded by the screws 646a and 646b.
  • a deaerator 645 is provided at a position between the openings 641c and 641d and the opening 641e.
  • the deaerator 645 deaerates the active material particles, gel pellets, conductive aid, and electrolyte solution kneaded by the screws 646a and 646b.
  • the electrode composition 22c can be continuously generated. That is, a plurality of steps such as charging the coating active material, charging the auxiliary material, and kneading these various substances can be completed within the accommodation space provided in the hopper 641.
  • the electrode composition 22c generated by the electrode composition generation device 640 is discharged into the chamber 100 from the opening 641c, and is supplied to the current collector 21B by the electrode composition supply device 300.
  • the positional relationship between the opening 641a and the opening 641b and the positional relationship between the opening 641c and the opening 641d in FIG. 6 can be arbitrarily modified. Further, the number of screws that the electrode composition generating device 640 has as an extrusion section is arbitrary.
  • an electrode composition generating device 650 is shown as an example of the electrode composition generating device 600.
  • the electrode composition generating device 650 includes a hopper 651, a hopper 652, a hopper 653, an active material particle supply device 654a, a gel pellet supply device 654b, a heating device 655, a degassing device 656, and a conductive support agent. It includes a supply device 657a, an electrolyte supply device 657b, a deaerator 658, a screw 659a, a screw 659b, a screw 659c, a screw 659d, and a screw 659e.
  • the active material particle supply device 654a and the gel pellet supply device 654b are examples of the first supply section.
  • the conductive aid supply device 657a and the electrolyte supply device 657b are examples of the second supply section.
  • the screw 659a, the screw 659b, the screw 659c, the screw 659d, and the screw 659e are examples of the extrusion part.
  • the heating device 655 is an example of a heating section.
  • the deaerator 656 and the deaerator 658 are examples of a deaerator.
  • the screw 659a and the screw 659b are examples of the first member.
  • the screw 659c is an example of the second member.
  • the screw 659d and the screw 659e are examples of the third member.
  • the hopper 651, the hopper 652, and the hopper 653 each have a storage space inside, and receive the substances supplied from the active material particle supply device 654a, the gel pellet supply device 654b, the conductive agent supply device 657a, and the electrolyte solution supply device 657b. Hold. Note that, as shown in FIG. 7, the hopper 651, hopper 652, and hopper 653 form one continuous accommodation space. Further, as shown in FIG. 7, the hopper 651 includes an opening 651a and an opening 651b. The opening 651a and the opening 651b are examples of first openings. Further, the hopper 653 includes an opening 653a, an opening 653b, and an opening 653c. The opening 653a and the opening 653b are examples of second openings. The opening 653c is an example of a third opening.
  • the active material particle supply device 654a supplies active material particles to the accommodation space inside the hopper 651 from the opening 651a.
  • the gel pellet supply device 654b supplies gel pellets to the accommodation space inside the hopper 651 from the opening 651b.
  • the conductive agent supply device 657a supplies the conductive agent to the accommodation space inside the hopper 653 from the opening 653a.
  • the electrolyte supply device 657b supplies an electrolyte to the accommodation space inside the hopper 653 from the opening 653b.
  • the heating device 655 is provided at a position between the openings 651a and 651b and the openings 653a and 653b. Further, a deaerator 656 is provided at a position between the heating device 655 and the openings 653a and 653b.
  • the screws 659a and 659b push out the substance in the storage space while kneading it toward the heating device 655 from the openings 651a and 651b.
  • the screw 659c extrudes the substance extruded by the screws 659a and 659b while kneading it upward in the vertical direction. That is, the screw 659c imparts potential energy to the substance within the accommodation space.
  • the deaerator 656 deaerates the substance that is falling downward in the vertical direction after being pushed upward in the vertical direction by the screw 659c.
  • the deaerator 656 can efficiently perform deaeration.
  • the screw 659d and the screw 659e knead and push out the substance that has been pushed out vertically upward by the screw 659c and then fallen vertically downward toward the openings 653a and 653b. That is, the screw 659d and the screw 659e push out the substance degassed by the deaerator 656 toward the openings 653a and 653b while kneading it.
  • a deaerator 658 is provided at a position between the openings 653a and 653b and the opening 653c.
  • the degassing device 658 degasses the active material particles, gel pellets, conductive aid, and electrolytic solution kneaded by the various screws described above.
  • the electrode composition 22c can be continuously generated. That is, a plurality of steps such as charging the coating active material, charging the auxiliary materials, and kneading these various substances can be completed within one continuous storage space formed by the hopper 651, hopper 652, and hopper 653. can.
  • the electrode composition 22c generated by the electrode composition generation device 650 is discharged into the chamber 100 from the opening 653c, and is supplied to the current collector 21B by the electrode composition supply device 300.
  • the positional relationship between the opening 651a and the opening 651b and the positional relationship between the opening 653a and the opening 653b in FIG. 7 can be arbitrarily modified. Further, the number of screws that the electrode composition generating device 650 has as an extrusion section is arbitrary.
  • an electrode composition generating apparatus 660 is shown in FIG.
  • a hopper 661, an active material particle supply device 662a, a conductive agent supply device 663a, an electrolyte supply device 663b, a deaerator 664, a screw 665a, and a screw 665b included in the electrode composition generation device 660 have the electrode composition shown in FIG.
  • the structure is similar to the hopper 641, active material particle supply device 642a, conductive agent supply device 644a, electrolyte supply device 644b, deaerator 645, screw 646a, and screw 646b in the product generation device 640.
  • the electrode composition generating device 660 may include a heating device similarly to the electrode composition generating device 640.
  • the electrode composition generation device 660 includes a gel pellet supply device 662b including a powdering device 662c instead of the gel pellet supply device 642b. differ. That is, the gel pellet supply device 662b powderizes the gel pellets and then supplies them to the storage space in the hopper 661. This makes it possible to further homogenize the substance in the accommodation space and improve the quality of the produced electrode composition 22c.
  • an electrode composition generating apparatus 670 is shown in FIG.
  • a hopper 671, an active material particle supply device 672a, a conductive agent supply device 673a, an electrolyte supply device 673b, a deaerator 674, a screw 675a, and a screw 675b included in the electrode composition generation device 670 have the electrode composition shown in FIG.
  • the structure is similar to the hopper 641, active material particle supply device 642a, conductive agent supply device 644a, electrolyte supply device 644b, deaerator 645, screw 646a, and screw 646b in the product generation device 640.
  • the electrode composition generating device 670 may include a heating device similarly to the electrode composition generating device 640.
  • the electrode composition generation apparatus 670 includes a gel pellet supply apparatus 672b and a gel pellet supply apparatus 672c instead of a single gel pellet supply apparatus 642b. They differ in that they have the following. That is, the electrode composition generating device 670 supplies gel pellets to the accommodation space in the hopper 671 from the plurality of first openings. Thereby, the gel pellets can be dispersed and supplied, and the quality of the generated electrode composition 22c can be improved.
  • gel pellets not only gel pellets but also coated active material materials such as active material particles and resin solution may be supplied from the plurality of first openings. Further, auxiliary materials such as a conductive aid and an electrolyte may be supplied from a plurality of second openings.
  • the strip-shaped base film on which the electrode composition 22c is placed is the strip-shaped current collector 21B, but the present invention is not limited to this.
  • a strip-shaped separator sheet or a strip-shaped release film may be used as the base film.
  • the separator sheet 30 shown in FIG. 1 can be formed by trimming the band-shaped separator sheet later.
  • the specific configuration is not limited to this embodiment, and modifications, combinations, deletions, etc. of the configuration within the scope of the gist of the present invention, etc. Also included. Furthermore, it goes without saying that the configurations shown in each embodiment can be used in appropriate combinations.
  • the lithium ion secondary battery when using the lithium ion secondary battery exemplified in the above explanation, it includes a battery that uses a liquid material as an electrolyte, and a battery that uses a solid material as an electrolyte (a so-called all-solid-state battery).
  • the battery in this embodiment includes a battery having a metal foil (metal current collector foil) as a current collector, and a so-called resin current collector made of resin to which a conductive material is added instead of the metal foil. Including batteries with.
  • a resin current collector is used as a resin current collector for bipolar electrodes, a positive electrode is formed on one surface of the resin current collector and a negative electrode is formed on the other surface to form a bipolar electrode. It may be something that has been done.
  • the batteries in this embodiment include those in which electrodes are formed by applying a positive electrode or negative electrode active material or the like to a positive electrode or negative electrode current collector using a binder, and in the case of a bipolar type battery, A bipolar electrode is constructed by applying a positive electrode active material etc. using a binder to one side of the current collector to form a positive electrode layer, and applying a negative electrode active material etc. using a binder to the opposite side to form a negative electrode layer. Including those who did.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is a battery electrode manufacturing device (1000) comprising: a hopper (611) which has an accommodation space in the interior thereof and comprises at least first openings (611a, 611b) that receive supply of a coating active material into the accommodation space, second openings (611c, 611d) that receive supply of an auxiliary material into the accommodation space, and a third opening (611e) that discharges the substance in the accommodation space; first supply parts (612a, 612b) that supply the coating active material from the first openings into the accommodation space; second supply parts (614a, 614b) that supply the auxiliary material from the second openings into the accommodation space; and pushout parts (616a, 616b) that push the substance in the accommodation space out while kneading the same from the first openings toward the second openings, and that pushes said substance out while kneading the same from the second openings toward the third opening.

Description

電池用電極製造装置及び電池用電極製造方法Battery electrode manufacturing device and battery electrode manufacturing method
 本発明は、電池用電極製造装置及び電池用電極製造方法に関する。 The present invention relates to a battery electrode manufacturing apparatus and a battery electrode manufacturing method.
 リチウムイオン電池は高容量の二次電池であり、近年様々な用途で使用されている。リチウムイオン電池の電極は、活物質層、集電体層、セパレータ、及び、活物質層を封入する枠体等によって構成される(例えば、特許文献1参照)。リチウムイオン電池における活物質層は、例えば、帯状の基材フィルムに対して電極組成物を供給し、ロールプレス等によって圧縮することで形成することができる。 Lithium-ion batteries are high-capacity secondary batteries that have been used for a variety of purposes in recent years. The electrode of a lithium ion battery is composed of an active material layer, a current collector layer, a separator, a frame that encloses the active material layer, and the like (see, for example, Patent Document 1). The active material layer in a lithium ion battery can be formed, for example, by supplying an electrode composition to a strip-shaped base film and compressing it using a roll press or the like.
 ここで、電極組成物は、活物質の粒子を含む被覆活物質材料に対し、導電助剤や電解液といった副材料を混合して生成される。例えば、まず、活物質の粒子に対して樹脂溶液又はゲル用ペレットを投入し、ミキサーにより混合して仕掛品を生成する。その後、別のミキサーに仕掛品を投入し、副材料と混合することで、電極組成物を生成することができる。 Here, the electrode composition is produced by mixing auxiliary materials such as a conductive aid and an electrolyte with a coated active material material containing active material particles. For example, first, a resin solution or gel pellets are added to active material particles and mixed with a mixer to produce a work-in-progress product. Thereafter, the work-in-progress is put into another mixer and mixed with the auxiliary materials to produce the electrode composition.
特許第6633866号公報Patent No. 6633866
 上述したバッチ式のミキサーを用いる手法は工程が多く、生成効率が高いとは言えない。 The method using the batch type mixer described above involves many steps and cannot be said to have high production efficiency.
 本発明は、上記の事情に鑑みてなされたものであって、電極組成物を連続的に生成することができる電池用電極製造装置及び電池用電極製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a battery electrode manufacturing apparatus and a battery electrode manufacturing method that can continuously produce an electrode composition.
 上記目的を達成するために、本発明に係る電池用電極製造装置は、ホッパと、第1供給部と、第2供給部と、押出部とを備える。前記ホッパは、内部に収容空間を有し、前記収容空間に対する被覆活物質材料の供給を受ける第1開口と、前記収容空間に対する副材料の供給を受ける第2開口と、前記収容空間内の物質を排出する第3開口とを少なくとも備える。第1供給部は、前記収容空間に対して前記第1開口から前記被覆活物質材料を供給する。第2供給部は、前記収容空間に対して前記第2開口から前記副材料を供給する。押出部は、前記収容空間内の物質を、前記第1開口から前記第2開口に向けて混練しつつ押し出し、更に、前記第2開口から前記第3開口に向けて混練しつつ押し出す。 In order to achieve the above object, a battery electrode manufacturing apparatus according to the present invention includes a hopper, a first supply section, a second supply section, and an extrusion section. The hopper has an accommodation space therein, and has a first opening through which the coating active material is supplied to the accommodation space, a second opening through which the auxiliary material is supplied to the accommodation space, and a substance in the accommodation space. and a third opening for discharging. The first supply unit supplies the covering active material to the housing space from the first opening. The second supply unit supplies the auxiliary material to the accommodation space from the second opening. The extrusion unit kneads and extrudes the substance in the accommodation space from the first opening toward the second opening, and further extrudes the substance from the second opening toward the third opening while kneading.
 本発明の電池用電極製造装置及び電池用電極製造方法によれば、電極組成物を連続的に生成することができる。 According to the battery electrode manufacturing apparatus and battery electrode manufacturing method of the present invention, an electrode composition can be continuously produced.
図1は、実施形態の電池用電極製造装置を用いて製造される電池の単セルの断面模式図である。FIG. 1 is a schematic cross-sectional view of a single cell of a battery manufactured using the battery electrode manufacturing apparatus of the embodiment. 図2は、実施形態の電池用電極製造装置の概略図である。FIG. 2 is a schematic diagram of a battery electrode manufacturing apparatus according to an embodiment. 図3は、実施形態の電極組成物生成装置を示す図である。FIG. 3 is a diagram showing an electrode composition generating apparatus according to an embodiment. 図4は、実施形態の電極組成物生成装置を示す図である。FIG. 4 is a diagram showing an electrode composition production device according to an embodiment. 図5は、実施形態の電極組成物生成装置を示す図である。FIG. 5 is a diagram showing an electrode composition production device according to an embodiment. 図6は、実施形態の電極組成物生成装置を示す図である。FIG. 6 is a diagram showing an electrode composition production device according to an embodiment. 図7は、実施形態の電極組成物生成装置を示す図である。FIG. 7 is a diagram showing an electrode composition production device according to an embodiment. 図8は、実施形態の電極組成物生成装置を示す図である。FIG. 8 is a diagram showing an electrode composition generating apparatus according to an embodiment. 図9は、実施形態の電極組成物生成装置を示す図である。FIG. 9 is a diagram showing an electrode composition production device according to an embodiment.
(実施形態)
 以下、図面を参照して、本発明を適用した実施形態について説明する。なお、以下の説明で用いる図面は、特徴部分を強調する目的で、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。また、同様の目的で、一部を省略して図示している場合がある。
(Embodiment)
Embodiments to which the present invention is applied will be described below with reference to the drawings. Note that the drawings used in the following explanations may show characteristic parts enlarged for convenience in order to emphasize them, and the dimensional ratios of each component may not be the same as in reality. do not have. Further, for the same purpose, some parts may be omitted from illustration.
 <組電池(二次電池)>
 実施形態の電池用電極製造装置及び電池用電極製造方法は、例えば、リチウムイオン電池の製造に適用される。リチウムイオン電池は、複数のリチウムイオン単電池(単セル又は電池セルとも記載する)を組み合わせてモジュール化した組電池、或いは、このような組電池を複数組み合わせて電圧及び容量を調整した電池パックの形態で使用される。以下では、リチウムイオン二次電池の例を示すが、本発明に係る二次電池の種類としてリチウムイオン二次電池に限定されず、他の二次電池を含む。
<Assembled battery (secondary battery)>
The battery electrode manufacturing apparatus and battery electrode manufacturing method of the embodiments are applied, for example, to manufacturing lithium ion batteries. A lithium-ion battery is an assembled battery that is made into a module by combining multiple lithium-ion single cells (also referred to as single cells or battery cells), or a battery pack that is made by combining multiple such assembled batteries to adjust the voltage and capacity. used in form. Although an example of a lithium ion secondary battery is shown below, the type of secondary battery according to the present invention is not limited to a lithium ion secondary battery, and includes other secondary batteries.
 本明細書におけるリチウムイオン電池は、電荷担体としてリチウムイオンを利用し、正負極間のリチウムイオンの移動により充放電が行われる二次電池をいう。当該リチウムイオン電池(二次電池)は、電解質に液体材料を使用した電池を含み、電解質に固体材料を使用した電池(いわゆる全固体電池)を含む。また本実施形態におけるリチウムイオン電池は、集電体として金属箔(金属集電箔)を有する電池を含み、金属箔に代わって導電性材料が添加された樹脂から構成される、いわゆる樹脂集電体を有する電池を含む。当該樹脂集電体を、後述するバイポーラ電極用樹脂集電体として用いる場合には、当該樹脂集電体の一方の面に正極を形成し、もう一方の面に負極を形成して双極型電極を構成したものであってもよい。なお、本実施形態におけるリチウムイオン電池は、バインダを用いて正極または負極活物質等を正極用または負極用集電体にそれぞれ塗布して電極を構成したものを含み、双極型の電池の場合には、集電体の一方の面にバインダを用いて正極活物質等を塗布して正極層を、反対側の面にバインダを用いて負極活物質等を塗布して負極層を有する双極型電極を構成したものを含む。 The lithium ion battery in this specification refers to a secondary battery that uses lithium ions as charge carriers and is charged and discharged by movement of lithium ions between positive and negative electrodes. The lithium ion battery (secondary battery) includes a battery using a liquid material as an electrolyte, and a battery using a solid material as an electrolyte (so-called all-solid-state battery). In addition, the lithium ion battery in this embodiment includes a battery having a metal foil (metal current collector foil) as a current collector, and instead of the metal foil, the lithium ion battery includes a so-called resin current collector made of resin to which a conductive material is added. Including a battery with a body. When the resin current collector is used as a resin current collector for a bipolar electrode, which will be described later, a positive electrode is formed on one surface of the resin current collector, and a negative electrode is formed on the other surface to form a bipolar electrode. It may be composed of Note that the lithium ion battery in this embodiment includes one in which an electrode is formed by applying a positive electrode or negative electrode active material or the like to a positive electrode or negative electrode current collector using a binder, and in the case of a bipolar type battery, is a bipolar electrode that has a positive electrode layer by applying a positive active material etc. using a binder to one side of the current collector, and a negative electrode layer by applying a negative active material etc. using a binder to the opposite side. Including those made up of.
 組電池の積層方法は、任意である。積層方法の一例として、第1面に正極樹脂集電体を有し、第2面に負極樹脂集電体を有する単セルを、隣り合う一対の単セルの第1面(正極側)と第2面(負極側)とが隣接するように直列に複数積層した積層電池としても良い。別の一例として、一枚の樹脂集電体の片面に正極層を設け、樹脂集電体の他方の面に負極層を設けた単セルを、電解質層を介して複数積層した積層電池としても良い。 The method of stacking the assembled battery is arbitrary. As an example of a stacking method, a single cell having a positive electrode resin current collector on the first surface and a negative electrode resin current collector on the second surface is stacked on the first surface (positive electrode side) and the first surface (positive electrode side) of a pair of adjacent single cells. It may be a stacked battery in which a plurality of batteries are stacked in series so that the two sides (negative electrode side) are adjacent to each other. As another example, a single cell in which a positive electrode layer is provided on one side of a single resin current collector and a negative electrode layer is provided on the other side of the resin current collector can be used as a stacked battery in which multiple cells are stacked with an electrolyte layer interposed in between. good.
 <単セル(電池セル)>
 図1は、単セル10の断面模式図である。単セル10を複数組み合わせることで上記の組電池を作製することが可能である。例えば、単セル10は、2つの電極20(電池用電極)としての正極20a及び負極20bと、セパレータ30とを有する。
<Single cell (battery cell)>
FIG. 1 is a schematic cross-sectional view of a single cell 10. It is possible to produce the above assembled battery by combining a plurality of single cells 10. For example, the single cell 10 includes a positive electrode 20a and a negative electrode 20b as two electrodes 20 (battery electrodes), and a separator 30.
 セパレータ30は、正極20aと負極20bとの間に配置される。組電池において、複数の単セル10は、正極20aと負極20bとを同方向に向けて積層される。 The separator 30 is placed between the positive electrode 20a and the negative electrode 20b. In the assembled battery, a plurality of single cells 10 are stacked with the positive electrode 20a and the negative electrode 20b facing in the same direction.
 セパレータ30には、電解質が保持される。これにより、セパレータ30は、電解質層として機能する。セパレータ30は、正極20a及び負極20bの電極活物質層22の間に配置され、これらが互いに接触することを抑制する。これにより、セパレータ30は、正極20aと負極20bとの間の隔壁として機能する。 The separator 30 holds an electrolyte. Thereby, separator 30 functions as an electrolyte layer. The separator 30 is arranged between the electrode active material layers 22 of the positive electrode 20a and the negative electrode 20b, and prevents them from coming into contact with each other. Thereby, the separator 30 functions as a partition between the positive electrode 20a and the negative electrode 20b.
 セパレータ30に保持される電解質としては、例えば、電解液またはゲルポリマー電解質等が挙げられる。これらの電解質を用いることで、高いリチウムイオン伝導性が確保される。セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。 Examples of the electrolyte held in the separator 30 include an electrolytic solution or a gel polymer electrolyte. By using these electrolytes, high lithium ion conductivity is ensured. Examples of the form of the separator include a porous sheet separator made of a polymer or fiber that absorbs and retains the electrolyte, a nonwoven fabric separator, and the like.
 正極20a及び負極20bは、それぞれ、集電体21と、電極活物質層22と、枠体35とを有する。電極活物質層22と集電体21とは、セパレータ30側からこの順に並ぶ。枠体35は、額縁状(環状)である。枠体35は、電極活物質層22の周囲を囲む。正極20aの枠体35と負極20bの枠体35とは、互いに溶着され一体化されている。以下の説明において、正極20a及び負極20bの電極活物質層22を互いに区別する場合、これらをそれぞれ正極活物質層22a、負極活物質層22bと呼ぶ。 The positive electrode 20a and the negative electrode 20b each include a current collector 21, an electrode active material layer 22, and a frame 35. The electrode active material layer 22 and the current collector 21 are arranged in this order from the separator 30 side. The frame 35 is frame-shaped (annular). The frame 35 surrounds the electrode active material layer 22 . The frame 35 of the positive electrode 20a and the frame 35 of the negative electrode 20b are welded together and integrated. In the following description, when the electrode active material layers 22 of the positive electrode 20a and the negative electrode 20b are to be distinguished from each other, they will be referred to as a positive electrode active material layer 22a and a negative electrode active material layer 22b, respectively.
<正極集電体の具体例>
 正極集電体層21aを構成する正極集電体としては、公知のリチウムイオン単電池に用いられる集電体を用いることができ、例えば、公知の金属集電体及び導電材料と樹脂とから構成されてなる樹脂集電体(特開2012-150905号公報及び国際公開第2015/005116号等に記載の樹脂集電体等)を用いることができる。正極集電体層21aを構成する正極集電体は、電池特性等の観点から、樹脂集電体であることが好ましい。
<Specific example of positive electrode current collector>
As the positive electrode current collector constituting the positive electrode current collector layer 21a, a current collector used in a known lithium ion cell can be used, for example, a current collector made of a known metal current collector, a conductive material, and a resin. (Resin current collectors described in JP 2012-150905 A, WO 2015/005116, etc.) can be used. The positive electrode current collector constituting the positive electrode current collector layer 21a is preferably a resin current collector from the viewpoint of battery characteristics and the like.
 金属集電体としては、例えば、銅、アルミニウム、チタン、ニッケル、タンタル、ニオブ、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン及びこれらの金属を1種以上含む合金、並びに、ステンレス合金からなる群から選択される一種以上の金属材料が挙げられる。これらの金属材料は、薄板や金属箔等の形態で用いてもよい。また、上記金属材料以外で構成される基材表面にスパッタリング、電着、塗布等の方法により上記金属材料を形成したものを金属集電体として用いてもよい。 Examples of metal current collectors include copper, aluminum, titanium, nickel, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, alloys containing one or more of these metals, and stainless steel alloys. One or more metal materials selected from: These metal materials may be used in the form of a thin plate, metal foil, or the like. Furthermore, a substrate made of a material other than the above-described metal material on which the above-mentioned metal material is formed by sputtering, electrodeposition, coating, or the like may be used as the metal current collector.
 樹脂集電体としては、導電性フィラーとマトリックス樹脂とを含むことが好ましい。マトリックス樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)等が挙げられるが、特に限定されない。また、導電性フィラーは、導電性を有する材料から選択されれば特に限定されない。導電性フィラーは、その形状が繊維状である導電性繊維であってもよい。 The resin current collector preferably contains a conductive filler and a matrix resin. Examples of the matrix resin include, but are not particularly limited to, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), and the like. Further, the conductive filler is not particularly limited as long as it is selected from materials having conductivity. The conductive filler may be a conductive fiber having a fibrous shape.
 樹脂集電体は、マトリックス樹脂及び導電性フィラーのほかに、その他の成分(分散剤、架橋促進剤、架橋剤、着色剤、紫外線吸収剤、可塑剤等)を含んでいてもよい。また、複数の樹脂集電体を積層して用いてもよく、樹脂集電体と金属箔とを積層して用いても良い。 In addition to the matrix resin and the conductive filler, the resin current collector may contain other components (dispersant, crosslinking accelerator, crosslinking agent, coloring agent, ultraviolet absorber, plasticizer, etc.). Further, a plurality of resin current collectors may be stacked and used, or a resin current collector and a metal foil may be stacked and used.
 正極集電体層21aの厚さは、特に限定されないが、5~150μmであることが好ましい。複数の樹脂集電体を積層して正極集電体層21aとして用いる場合には、積層後の全体の厚さが5~150μmであることが好ましい。正極集電体層21aは、例えば、マトリックス樹脂、導電性フィラー及び必要により用いるフィラー用分散剤を溶融混練して得られる導電性樹脂組成物を公知の方法でフィルム状に成形することにより得ることができる。 The thickness of the positive electrode current collector layer 21a is not particularly limited, but is preferably 5 to 150 μm. When a plurality of resin current collectors are laminated and used as the positive electrode current collector layer 21a, the total thickness after lamination is preferably 5 to 150 μm. The positive electrode current collector layer 21a can be obtained, for example, by molding a conductive resin composition obtained by melt-kneading a matrix resin, a conductive filler, and an optional filler dispersant into a film by a known method. I can do it.
<正極活物質の具体例>
 正極活物質層22aは、正極活物質を含む混合物の非結着体であることが好ましい。ここで、非結着体とは、正極活物質層中において正極活物質の位置が固定されておらず、正極活物質同士及び正極活物質と集電体とが不可逆的に固定されていないことを意味する。正極活物質層22aが非結着体である場合、正極活物質同士は不可逆的に固定されていないため、正極活物質同士の界面を機械的に破壊することなく分離することができ、正極活物質層22aに応力がかかった場合でも正極活物質が移動することで正極活物質層22aの破壊を防止することができ好ましい。非結着体である正極活物質層22aは、正極活物質層22aを、正極活物質と電解液とを含みかつ結着剤を含まない正極活物質層22aにする等の方法で得ることができる。なお、本明細書において、結着剤とは、正極活物質同士及び正極活物質と集電体とを可逆的に固定することができない薬剤を意味し、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、スチレン-ブタジエンゴム、ポリエチレン及びポリプロピレン等の公知の溶剤乾燥型のリチウムイオン電池用結着剤等が挙げられる。これらの結着剤は、溶剤に溶解又は分散して用いられ、溶剤を揮発、留去することで表面が粘着性を示すことなく固体化するので正極活物質同士及び正極活物質と集電体とを可逆的に固定することができない。
<Specific examples of positive electrode active materials>
The positive electrode active material layer 22a is preferably a non-bound body of a mixture containing the positive electrode active material. Here, a non-bound body means that the position of the positive electrode active material in the positive electrode active material layer is not fixed, and the positive electrode active materials and the positive electrode active material and the current collector are not irreversibly fixed. means. When the positive electrode active material layer 22a is a non-binding body, the positive electrode active materials are not irreversibly fixed to each other, and therefore can be separated without mechanically destroying the interface between the positive electrode active materials. This is preferable because even when stress is applied to the material layer 22a, the movement of the positive electrode active material prevents the destruction of the positive electrode active material layer 22a. The positive electrode active material layer 22a, which is a non-binding body, can be obtained by a method such as changing the positive electrode active material layer 22a to a positive electrode active material layer 22a containing a positive electrode active material and an electrolyte and not containing a binder. can. In this specification, the term "binder" refers to a chemical that cannot reversibly fix the positive electrode active materials to each other or the positive electrode active material and the current collector, and includes starch, polyvinylidene fluoride, polyvinyl alcohol, carboxylic acid, etc. Examples include known solvent-dried binders for lithium ion batteries such as methylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene and polypropylene. These binders are used by being dissolved or dispersed in a solvent, and when the solvent is volatilized or distilled off, the surface becomes solid without exhibiting stickiness, so that the positive electrode active materials can be bonded to each other and the positive electrode active material and the current collector. cannot be fixed reversibly.
 正極活物質としては、例えば、リチウムと遷移金属との複合酸化物、遷移金属元素が2種である複合酸化物、金属元素が3種類以上である複合酸化物等が挙げられるが、特に限定されない。 Examples of positive electrode active materials include, but are not particularly limited to, composite oxides of lithium and transition metals, composite oxides containing two types of transition metal elements, composite oxides containing three or more types of metal elements, etc. .
 正極活物質は、その表面の少なくとも一部が高分子化合物を含む被覆材により被覆された被覆正極活物質であってもよい。正極活物質の周囲が被覆材で被覆されていると、正極の体積変化が緩和され、正極の膨張を抑制することができる。 The positive electrode active material may be a coated positive electrode active material in which at least a portion of the surface thereof is covered with a coating material containing a polymer compound. When the periphery of the positive electrode active material is covered with a coating material, volume change of the positive electrode is alleviated, and expansion of the positive electrode can be suppressed.
 被覆材を構成する高分子化合物としては、特開2017-054703号公報及び国際公開第2015/005117号等に活物質被覆用樹脂として記載されたものを好適に用いることができる。 As the polymer compound constituting the coating material, those described as active material coating resins in JP2017-054703A, WO2015/005117, etc. can be suitably used.
 被覆材には、導電剤が含まれていてもよい。導電剤としては、正極集電体層21aに含まれる導電性フィラーと同様のものを好適に用いることができる。 The coating material may contain a conductive agent. As the conductive agent, the same conductive filler as that contained in the positive electrode current collector layer 21a can be suitably used.
 正極活物質層22aには、粘着性樹脂が含まれていてもよい。粘着性樹脂としては、例えば、特開2017-054703号公報に記載された非水系二次電池活物質被覆用樹脂に少量の有機溶剤を混合してそのガラス転移温度を室温以下に調節したもの、及び、特開平10-255805号公報に粘着剤として記載されたもの等を好適に用いることができる。なお、粘着性樹脂は、溶媒成分を揮発させて乾燥させても固体化せずに粘着性(水、溶剤、熱等を使用せずに僅かな圧力を加えることで接着する性質)を有する樹脂を意味する。一方、結着剤として用いられる溶液乾燥型の電極用バインダーは、溶媒成分を揮発させることで乾燥、固体化して活物質同士を強固に接着固定するものを意味する。したがって、上述した結着剤(溶液乾燥型の電極バインダー)と粘着性樹脂とは、異なる材料である。 The positive electrode active material layer 22a may contain adhesive resin. As the adhesive resin, for example, a non-aqueous secondary battery active material coating resin described in JP 2017-054703 A is mixed with a small amount of an organic solvent to adjust its glass transition temperature to below room temperature; Also, those described as adhesives in JP-A-10-255805 can be suitably used. Adhesive resin is a resin that does not solidify even if the solvent component is evaporated and dried, but has adhesive properties (the property of adhering by applying slight pressure without using water, solvent, heat, etc.) means. On the other hand, a solution-drying electrode binder used as a binder is one that dries and solidifies by volatilizing the solvent component, thereby firmly adhering and fixing active materials to each other. Therefore, the above-mentioned binder (solution-dried electrode binder) and adhesive resin are different materials.
 正極活物質層22aには、電解質と非水溶媒を含む電解液が含まれていてもよい。電解質としては、公知の電解液に用いられているもの等が使用できる。非水溶媒としては、公知の電解液に用いられているもの(例えば、リン酸エステル、ニトリル化合物等及びこれらの混合物等)等が使用できる。例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合液、又は、エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合液を用いることができる。 The positive electrode active material layer 22a may contain an electrolytic solution containing an electrolyte and a nonaqueous solvent. As the electrolyte, those used in known electrolytes can be used. As the non-aqueous solvent, those used in known electrolytic solutions (for example, phosphoric acid esters, nitrile compounds, etc., mixtures thereof, etc.) can be used. For example, a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) or a mixture of ethylene carbonate (EC) and propylene carbonate (PC) can be used.
 正極活物質層22aには、導電助剤が含まれていてもよい。導電助剤としては、正極集電体層21aに含まれる導電性フィラーと同様の導電性材料を好適に用いることができる。 The positive electrode active material layer 22a may contain a conductive additive. As the conductive aid, a conductive material similar to the conductive filler contained in the positive electrode current collector layer 21a can be suitably used.
 正極活物質層22aの厚さは、特に限定されるものではないが、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。 The thickness of the positive electrode active material layer 22a is not particularly limited, but from the viewpoint of battery performance, it is preferably 150 to 600 μm, more preferably 200 to 450 μm.
 実施形態において、正極活物質層22aを形成するために供給される正極組成物は、正極活物質と非水電解液を含んでなる湿潤粉体である。また、湿潤粉体はペンデュラー状態又はファニキュラー状態であることがより好ましい。 In the embodiment, the positive electrode composition supplied to form the positive electrode active material layer 22a is a wet powder containing a positive electrode active material and a non-aqueous electrolyte. Moreover, it is more preferable that the wet powder is in a pendular state or a funicular state.
 湿潤粉体における非水電解液の割合は、特に限定されないが、ペンデュラー状態又はファニキュラー状態とするためには、正極の場合には非水電解液の割合を湿潤粉体全体の0.5~15重量%とすることが望ましい。 The proportion of the non-aqueous electrolyte in the wet powder is not particularly limited, but in the case of a positive electrode, the proportion of the non-aqueous electrolyte in the whole wet powder should be 0.5 to 0.5 to 100% in order to obtain a pendular state or a funicular state. The content is preferably 15% by weight.
<負極集電体の具体例>
 負極集電体層21bを構成する負極集電体としては、正極集電体で記載した構成と同様のものを適宜選択して用いることができ、同様の方法により得ることができる。負極集電体層21bは、電池特性等の観点から、樹脂集電体であることが好ましい。負極集電体層21bの厚さは、特に限定されないが、5~150μmであることが好ましい。
<Specific example of negative electrode current collector>
As the negative electrode current collector constituting the negative electrode current collector layer 21b, one having the same structure as that described for the positive electrode current collector can be appropriately selected and used, and it can be obtained by the same method. The negative electrode current collector layer 21b is preferably a resin current collector from the viewpoint of battery characteristics and the like. The thickness of the negative electrode current collector layer 21b is not particularly limited, but is preferably 5 to 150 μm.
<負極活物質の具体例>
 負極活物質層22bは、負極活物質を含む混合物の非結着体であることが好ましい。負極活物質層が非結着体であることが好ましい理由、及び非結着体である負極活物質層22bを得る方法等は、正極活物質層22aが非結着体であることが好ましい理由、及び非結着体である正極活物質層22aを得る方法と同様である。
<Specific examples of negative electrode active materials>
The negative electrode active material layer 22b is preferably a non-bound body of a mixture containing negative electrode active materials. The reason why it is preferable that the negative electrode active material layer is a non-bound body, and the method for obtaining the negative electrode active material layer 22b which is a non-bound body, is the reason why it is preferable that the positive electrode active material layer 22a is a non-bound body. , and the method for obtaining the positive electrode active material layer 22a which is a non-binding body.
 負極活物質としては、例えば、炭素系材料、珪素系材料及びこれらの混合物等を用いることができるが、特に限定されない。 As the negative electrode active material, for example, carbon-based materials, silicon-based materials, mixtures thereof, etc. can be used, but there is no particular limitation.
 負極活物質は、その表面の少なくとも一部が高分子化合物を含む被覆材により被覆された被覆負極活物質であってもよい。負極活物質の周囲が被覆材で被覆されていると、負極の体積変化が緩和され、負極の膨張を抑制することができる。 The negative electrode active material may be a coated negative electrode active material in which at least a portion of the surface thereof is covered with a coating material containing a polymer compound. When the periphery of the negative electrode active material is coated with a coating material, the volume change of the negative electrode is alleviated, and expansion of the negative electrode can be suppressed.
 被覆材としては、被覆正極活物質を構成する被覆材と同様のものを好適に用いることができる。 As the coating material, the same coating material as the coating material constituting the coated positive electrode active material can be suitably used.
 負極活物質層22bは、電解質と非水溶媒を含む電解液を含有する。電解液の組成は、正極活物質層22aに含まれる電解液と同様の電解液を好適に用いることができる。 The negative electrode active material layer 22b contains an electrolyte solution containing an electrolyte and a nonaqueous solvent. Regarding the composition of the electrolytic solution, an electrolytic solution similar to that contained in the positive electrode active material layer 22a can be suitably used.
 負極活物質層22bには、導電助剤が含まれていてもよい。導電助剤としては、正極活物質層22aに含まれる導電性フィラーと同様の導電性材料を好適に用いることができる。 The negative electrode active material layer 22b may contain a conductive additive. As the conductive aid, a conductive material similar to the conductive filler contained in the positive electrode active material layer 22a can be suitably used.
 負極活物質層22bには、粘着性樹脂が含まれていてもよい。粘着性樹脂としては、正極活物質層22aの任意成分である粘着性樹脂と同様のものを好適に用いることができる。 The negative electrode active material layer 22b may contain adhesive resin. As the adhesive resin, the same adhesive resin as the optional component of the positive electrode active material layer 22a can be suitably used.
 負極活物質層22bの厚さは、特に限定されるものではないが、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。 The thickness of the negative electrode active material layer 22b is not particularly limited, but from the viewpoint of battery performance, it is preferably 150 to 600 μm, more preferably 200 to 450 μm.
 実施形態において、負極活物質層22bを形成するために供給される負極組成物は、負極活物質と非水電解液を含んでなる湿潤粉体である。また、湿潤粉体はペンデュラー状態又はファニキュラー状態であることがより好ましい。 In the embodiment, the negative electrode composition supplied to form the negative electrode active material layer 22b is a wet powder containing a negative electrode active material and a non-aqueous electrolyte. Moreover, it is more preferable that the wet powder is in a pendular state or a funicular state.
 湿潤粉体における非水電解液の割合は、特に限定されないが、ペンデュラー状態又はファニキュラー状態とするためには、負極の場合には非水電解液の割合を湿潤粉体全体の0.5~25重量%とすることが望ましい。 The proportion of the non-aqueous electrolyte in the wet powder is not particularly limited, but in the case of a negative electrode, the proportion of the non-aqueous electrolyte should be 0.5 to 0.5 to the total wet powder in order to obtain a pendular state or a funicular state. The content is preferably 25% by weight.
<セパレータの具体例>
 セパレータ30に保持される電解質としては、例えば、電解液又はゲルポリマー電解質等が挙げられる。セパレータ30は、これらの電解質を用いることで、高いリチウムイオン伝導性が確保される。セパレータ30の形態としては、例えば、ポリエチレン又はポリプロピレン製の多孔性フィルム等が挙げられるが、特に限定されない。セパレータとして、硫化物系、酸化物系の無機系固体電解質、または高分子系の有機系固体電解質などを適用することもできる。固体電解質の適用により、全固体電池を構成することができる。
<Specific example of separator>
Examples of the electrolyte held in the separator 30 include an electrolytic solution or a gel polymer electrolyte. By using these electrolytes, the separator 30 ensures high lithium ion conductivity. The form of the separator 30 includes, for example, a porous film made of polyethylene or polypropylene, but is not particularly limited. As the separator, a sulfide-based or oxide-based inorganic solid electrolyte, a polymer-based organic solid electrolyte, or the like can also be used. By applying a solid electrolyte, an all-solid-state battery can be constructed.
<枠体の具体例>
 枠体35としては、電解液に対して耐久性のある材料であれば特に限定されないが、例えば、高分子材料が好ましく、熱硬化性高分子材料がより好ましい。枠体35を構成する材料としては、絶縁性、シール性(液密性)、電池動作温度下での耐熱性等を有するものであればよく、樹脂材料が好適に採用される。より具体的には、枠体35としては、例えば、エポキシ系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂及びポリフッ化ビニリデン樹脂等が挙げられ、耐久性が高く取り扱いが容易であることからエポキシ系樹脂が好ましい。
<Specific example of frame>
The frame 35 is not particularly limited as long as it is made of a material that is durable against the electrolytic solution, but for example, a polymer material is preferable, and a thermosetting polymer material is more preferable. The material constituting the frame 35 may be any material as long as it has insulation properties, sealing properties (liquid tightness), heat resistance under the battery operating temperature, etc., and a resin material is preferably employed. More specifically, examples of the frame 35 include epoxy resin, polyolefin resin, polyurethane resin, polyvinylidene fluoride resin, etc. Epoxy resin is preferred because it is highly durable and easy to handle. preferable.
 <電池用電極製造装置及び電池用電極製造方法>
 次に、本実施形態の電池用電極製造装置及び電池用電極製造方法(以下、製造方法と略して呼ぶ)について説明する。例えば、電池用電極製造装置及び電池用電極製造方法では、まず正極20a及び負極20bが製造される。正極20aの製造方法と負極20bの製造方法とは、主に電極活物質層22に含まれる電極活物質が異なる。ここでは、電極20の製造方法として、正極20a及び負極20bの製造方法をまとめて説明する。
<Battery electrode manufacturing device and battery electrode manufacturing method>
Next, a battery electrode manufacturing apparatus and a battery electrode manufacturing method (hereinafter simply referred to as the manufacturing method) of the present embodiment will be described. For example, in a battery electrode manufacturing apparatus and a battery electrode manufacturing method, a positive electrode 20a and a negative electrode 20b are first manufactured. The method for manufacturing the positive electrode 20a and the method for manufacturing the negative electrode 20b differ mainly in the electrode active material contained in the electrode active material layer 22. Here, as a method for manufacturing the electrode 20, methods for manufacturing the positive electrode 20a and the negative electrode 20b will be described together.
 図2は、電池用電極製造装置1000の概略図である。例えば、電池用電極製造装置1000は、チャンバ100、搬送装置200、電極組成物供給装置300、枠体供給装置400、プレス装置500、及び、電極組成物生成装置600を含む。なお、以下では、帯状の基材フィルムが帯状の集電体21Bである場合を一例として説明する。 FIG. 2 is a schematic diagram of the battery electrode manufacturing apparatus 1000. For example, a battery electrode manufacturing apparatus 1000 includes a chamber 100, a conveyance apparatus 200, an electrode composition supply apparatus 300, a frame supply apparatus 400, a press apparatus 500, and an electrode composition production apparatus 600. In addition, below, the case where a strip|belt-shaped base film is the strip|belt-shaped current collector 21B is demonstrated as an example.
 チャンバ100は、内部を大気圧よりも減圧された状態に保持できる部屋である。チャンバ100の内部は、図示しない減圧ポンプにより大気圧よりも減圧される。なお、標準大気圧は、約1013hPa(約105Pa)である。 The chamber 100 is a room whose interior can be maintained at a pressure lower than atmospheric pressure. The pressure inside the chamber 100 is reduced below atmospheric pressure by a pressure reduction pump (not shown). Note that the standard atmospheric pressure is approximately 1013 hPa (approximately 105 Pa).
 例えば、チャンバ100の外部に集電体ロール21Rが配置され、集電体ロール21Rから引き出された帯状の集電体21Bが、スリットを通してチャンバ100の内部に搬送される。以下、帯状の集電体21Bを集電体21Bと記載する場合がある。なお、集電体21Bは、上述した集電体21が所定の形状に切り出される前のものである。集電体21Bは、搬送方向Daに沿って所定の速度で搬送される。以下では、集電体21Bが搬送される方向を下流側Da1、その反対方向を上流側Da2として説明する。なお、集電体ロール21Rが配置されるチャンバ100の外部空間は、常圧であってもよいし、チャンバ100と異なるチャンバによって減圧されていてもよい。 For example, a current collector roll 21R is arranged outside the chamber 100, and a band-shaped current collector 21B pulled out from the current collector roll 21R is conveyed into the chamber 100 through a slit. Hereinafter, the strip-shaped current collector 21B may be referred to as a current collector 21B. Note that the current collector 21B is the current collector 21 described above before being cut into a predetermined shape. The current collector 21B is transported at a predetermined speed along the transport direction Da. In the following description, the direction in which the current collector 21B is conveyed is referred to as the downstream side Da1, and the opposite direction is referred to as the upstream side Da2. Note that the external space of the chamber 100 in which the current collector roll 21R is arranged may be at normal pressure or may be reduced in pressure by a chamber different from the chamber 100.
 なお、図2に示す通り、鉛直方向Dbにおける上側をDb1、鉛直方向Dbにおける下側をDb2とする。搬送方向Da及び鉛直方向Dbに対して直交する方向は、集電体21B、及び、集電体21Bに載置される電極組成物22cの幅方向に対応する。 Note that, as shown in FIG. 2, the upper side in the vertical direction Db is Db1, and the lower side in the vertical direction Db is Db2. The direction perpendicular to the transport direction Da and the vertical direction Db corresponds to the width direction of the current collector 21B and the electrode composition 22c placed on the current collector 21B.
 搬送装置200は、集電体21Bを、搬送方向Daの下流側Da1に搬送する。例えば、搬送装置200は、集電体21Bを下側から支持するベルトコンベアである。なお、後述の電極組成物供給装置300による電極組成物22cの供給が行なわれた後、搬送装置200は、電極組成物22cを載せた集電体21Bを搬送することとなる。また、後述の枠体供給装置400による枠体35の供給が行なわれた後、搬送装置200は、枠体35及び電極組成物22cを載せた集電体21Bを搬送することとなる。搬送装置200は、搬送部の一例である。 The transport device 200 transports the current collector 21B to the downstream side Da1 in the transport direction Da. For example, the conveyance device 200 is a belt conveyor that supports the current collector 21B from below. Note that after the electrode composition 22c is supplied by the electrode composition supply device 300 described below, the transportation device 200 transports the current collector 21B on which the electrode composition 22c is placed. Further, after the frame body 35 is supplied by the frame body supply device 400 described below, the conveyance device 200 conveys the current collector 21B on which the frame body 35 and the electrode composition 22c are placed. The transport device 200 is an example of a transport section.
 電極組成物供給装置300は、図2に示す通り、チャンバ100内で搬送される集電体21B上に電極組成物22cを供給する。一例を挙げると、電極組成物供給装置300は、ホッパ及びシャッタから構成される。この場合、電極組成物供給装置300は、鉛直方向Dbの下側Db2に開口を有するホッパの内部に電極組成物22cを保持するとともに、ホッパの開口をシャッタで開閉することにより、所定の供給位置に対して所定量の電極組成物22cを供給することができる。電極組成物22cは、例えば、粉体状の活物質である。 As shown in FIG. 2, the electrode composition supply device 300 supplies the electrode composition 22c onto the current collector 21B transported within the chamber 100. For example, the electrode composition supply device 300 includes a hopper and a shutter. In this case, the electrode composition supply device 300 holds the electrode composition 22c inside a hopper having an opening on the lower side Db2 of the vertical direction Db, and opens and closes the opening of the hopper with a shutter to place the electrode composition 22c at a predetermined supply position. A predetermined amount of the electrode composition 22c can be supplied to the electrode composition 22c. The electrode composition 22c is, for example, a powdered active material.
 枠体供給装置400は、搬送される集電体21Bに対して枠体35を供給する。例えば、枠体供給装置400は、ロボットアームを有し、事前に製造された枠体35を、搬送される集電体21B上の所定の位置に配置する。或いは、枠体供給装置400は、集電体21Bの上で枠体35を製造してもよい。一例を挙げると、集電体21Bを基材とし、ディスペンサーやコーター等によって集電体21B上に所定の材料を所定の形状に吐出又は塗布することで、集電体21B上に枠体35を形成することができる。 The frame supply device 400 supplies the frame 35 to the current collector 21B being transported. For example, the frame supply device 400 includes a robot arm and places the frame 35 manufactured in advance at a predetermined position on the current collector 21B being transported. Alternatively, the frame supply device 400 may manufacture the frame 35 on the current collector 21B. For example, the frame 35 is formed on the current collector 21B by using the current collector 21B as a base material and discharging or applying a predetermined material in a predetermined shape onto the current collector 21B using a dispenser, coater, etc. can be formed.
 プレス装置500は、集電体21Bに供給された電極組成物22cを圧縮する。例えば、プレス装置500は、図2に示す通り、上部ローラ501及び下部ローラ502を有する。プレス装置500は、上部ローラ501及び下部ローラ502により、集電体21Bに供給された電極組成物22cを挟み込んで圧縮する。即ち、プレス装置500は、電極組成物22cに対するロールプレスを実行する。 The press device 500 compresses the electrode composition 22c supplied to the current collector 21B. For example, the press device 500 has an upper roller 501 and a lower roller 502, as shown in FIG. The press device 500 uses an upper roller 501 and a lower roller 502 to sandwich and compress the electrode composition 22c supplied to the current collector 21B. That is, the press device 500 performs roll pressing on the electrode composition 22c.
 図2においては、電極組成物供給装置300による電極組成物22cの供給後に、枠体供給装置400による枠体35の供給が行なわれる例を説明した。しかしながら、実施形態はこれに限定されるものではない。例えば、枠体供給装置400による枠体35の供給が行なわれた後、枠体35の内部の位置に対して、電極組成物供給装置300による電極組成物22cの供給が行なわれてもよい。また、図2では枠体供給装置400がチャンバ100の内部に配置される場合を示すが、枠体供給装置400はチャンバ100の外部に配置されてもよい。 In FIG. 2, an example has been described in which the frame body 35 is supplied by the frame body supply device 400 after the electrode composition supply device 300 supplies the electrode composition 22c. However, embodiments are not limited thereto. For example, after the frame body 35 is supplied by the frame body supply device 400, the electrode composition 22c may be supplied by the electrode composition supply device 300 to a position inside the frame body 35. Further, although FIG. 2 shows a case where the frame supply device 400 is arranged inside the chamber 100, the frame supply device 400 may be arranged outside the chamber 100.
 電極組成物生成装置600は、電極組成物22cを生成する装置である。上述の電極組成物供給装置300は、電極組成物生成装置600により生成された電極組成物22cを、集電体21Bに対して供給する。 The electrode composition generating device 600 is a device that generates the electrode composition 22c. The above-mentioned electrode composition supply device 300 supplies the electrode composition 22c produced by the electrode composition production device 600 to the current collector 21B.
 電極組成物生成装置600の一例として、図3の電極組成物生成装置610について説明する。例えば、電極組成物生成装置610は、ホッパ611と、活物質粒子供給装置612aと、樹脂溶液供給装置612bと、脱揮装置613と、導電助剤供給装置614aと、電解液供給装置614bと、脱気装置615と、スクリュー616aと、スクリュー616bとを備える。活物質粒子供給装置612a及び樹脂溶液供給装置612bは、第1供給部の一例である。導電助剤供給装置614a及び電解液供給装置614bは、第2供給部の一例である。スクリュー616a及びスクリュー616bは、押出部の一例である。脱揮装置613は、脱揮部の一例である。脱気装置615は、脱気部の一例である。 As an example of the electrode composition production device 600, the electrode composition production device 610 in FIG. 3 will be described. For example, the electrode composition generation device 610 includes a hopper 611, an active material particle supply device 612a, a resin solution supply device 612b, a devolatilization device 613, a conductive agent supply device 614a, an electrolyte solution supply device 614b, It includes a deaerator 615, a screw 616a, and a screw 616b. The active material particle supply device 612a and the resin solution supply device 612b are examples of a first supply section. The conductive aid supply device 614a and the electrolytic solution supply device 614b are examples of a second supply section. The screw 616a and the screw 616b are examples of extrusion parts. The devolatilizing device 613 is an example of a devolatilizing section. The deaerator 615 is an example of a deaerator.
 ホッパ611は、内部に収容空間を有し、活物質粒子供給装置612a、樹脂溶液供給装置612b、導電助剤供給装置614a及び電解液供給装置614bから供給された物質を内部に保持する。また、図3に示す通り、ホッパ611は、開口611aと、開口611bと、開口611cと、開口611dと、開口611eとを備える。開口611a及び開口611bは、第1開口の一例である。開口611c及び開口611dは、第2開口の一例である。開口611eは、第3開口の一例である。 The hopper 611 has a storage space inside and holds therein the substances supplied from the active material particle supply device 612a, the resin solution supply device 612b, the conductive agent supply device 614a, and the electrolyte solution supply device 614b. Further, as shown in FIG. 3, the hopper 611 includes an opening 611a, an opening 611b, an opening 611c, an opening 611d, and an opening 611e. The opening 611a and the opening 611b are examples of first openings. The opening 611c and the opening 611d are examples of second openings. The opening 611e is an example of a third opening.
 活物質粒子供給装置612aは、ホッパ611内部の収容空間に対して、開口611aから活物質の粒子を供給する。樹脂溶液供給装置612bは、ホッパ611内部の収容空間に対して、開口611bから樹脂溶液を供給する。なお、樹脂溶液は、樹脂を溶媒で溶解したものである。活物質の粒子及び樹脂溶液は、被覆活物質材料の一例である。 The active material particle supply device 612a supplies active material particles to the accommodation space inside the hopper 611 from the opening 611a. The resin solution supply device 612b supplies a resin solution to the accommodation space inside the hopper 611 from the opening 611b. Note that the resin solution is a resin dissolved in a solvent. The active material particles and the resin solution are examples of coated active material materials.
 導電助剤供給装置614aは、ホッパ611内部の収容空間に対して、開口611cから導電助剤を供給する。電解液供給装置614bは、ホッパ611内部の収容空間に対して、開口611bから電解液を供給する。導電助剤及び電解液は、副材料の一例である。 The conductive agent supply device 614a supplies the conductive agent to the storage space inside the hopper 611 from the opening 611c. The electrolyte supply device 614b supplies an electrolyte to the accommodation space inside the hopper 611 from the opening 611b. A conductive aid and an electrolyte are examples of auxiliary materials.
 スクリュー616a及びスクリュー616bは、回転軸の周囲にらせん状の突起を有する部材であり、ホッパ611の収容空間内で回転することにより、収容空間内の物質を回転軸に沿った方向に押し出す。ここで、スクリュー616a及びスクリュー616bは、収容空間内の物質を混練しつつ押し出すことができる。 The screw 616a and the screw 616b are members having a spiral protrusion around the rotation axis, and by rotating within the accommodation space of the hopper 611, push out the substance in the accommodation space in the direction along the rotation axis. Here, the screw 616a and the screw 616b can extrude the substance in the storage space while kneading it.
 具体的には、スクリュー616a及びスクリュー616bは、収容空間内の物質を、開口611a及び開口611bから、開口611c及び開口611dに向けて混練しつつ押し出す。ここで、開口611a及び開口611bと、開口611c及び開口611dとの間の位置には、脱揮装置613が設けられる。脱揮装置613は、スクリュー616a及びスクリュー616bにより混練された活物質の粒子及び樹脂溶液を対象として脱揮を行なう。 Specifically, the screws 616a and 616b knead and extrude the substance in the storage space from the openings 611a and 611b toward the openings 611c and 611d. Here, a devolatilizing device 613 is provided between the openings 611a and 611b and the openings 611c and 611d. The devolatilization device 613 devolatilizes the active material particles and resin solution kneaded by the screws 616a and 616b.
 更に、スクリュー616a及びスクリュー616bは、収容空間内の物質を、開口611c及び開口611dから、開口611eに向けて混練しつつ押し出す。ここで、開口611c及び開口611dと、開口611eとの間の位置には、脱気装置615が設けられる。脱気装置615は、スクリュー616a及びスクリュー616bにより混練された活物質の粒子、樹脂溶液、導電助剤及び電解液を対象として脱気を行なう。 Further, the screw 616a and the screw 616b push out the substance in the storage space from the opening 611c and the opening 611d toward the opening 611e while kneading it. Here, a deaerator 615 is provided between the openings 611c and 611d and the opening 611e. The deaerator 615 deaerates the active material particles, resin solution, conductive aid, and electrolyte solution kneaded by the screws 616a and 616b.
 活物質粒子供給装置612a、樹脂溶液供給装置612b、導電助剤供給装置614a及び電解液供給装置614bから供給された各種の物質を、スクリュー616a及びスクリュー616bにより混練することで、電極組成物22cを生成することができる。生成された電極組成物22cは、図3に示す通り、開口611eからチャンバ100内に向けて排出される。チャンバ100内に排出された電極組成物22cは、電極組成物供給装置300によって、搬送される集電体21Bに対して供給される。 The electrode composition 22c is prepared by kneading various substances supplied from the active material particle supply device 612a, the resin solution supply device 612b, the conductive agent supply device 614a, and the electrolyte solution supply device 614b using the screw 616a and the screw 616b. can be generated. The generated electrode composition 22c is discharged into the chamber 100 from the opening 611e, as shown in FIG. The electrode composition 22c discharged into the chamber 100 is supplied by the electrode composition supply device 300 to the current collector 21B being transported.
 図3に示した電極組成物生成装置610によれば、電極組成物22cを連続的に生成することができる。即ち、被覆活物質材料の投入や、副材料の投入、これら各種物質の混練といった複数の工程を、一連の処理としてホッパ内で完結させることにより、電極組成物22cを連続的に生成して、生成効率を向上させることができる。 According to the electrode composition generating device 610 shown in FIG. 3, the electrode composition 22c can be continuously generated. That is, the electrode composition 22c is continuously produced by completing a plurality of steps such as charging the coating active material, charging the auxiliary material, and kneading these various substances as a series of processes in the hopper. Generation efficiency can be improved.
 なお、図3においては、開口611aよりも開口611bの方が開口611eに近い配置となる例を示したが、実施形態はこれに限定されるものではない。即ち、開口611bよりも開口611aの方が開口611eに近くなるように配置してもよい。開口611c及び開口611dの配置についても同様の変更が可能である。 Although FIG. 3 shows an example in which the opening 611b is arranged closer to the opening 611e than the opening 611a, the embodiment is not limited to this. That is, the opening 611a may be arranged closer to the opening 611e than the opening 611b. Similar changes can be made to the arrangement of the opening 611c and the opening 611d.
 また、図3においては、押出部の一例としてスクリュー616a及びスクリュー616bを示した。しかしながら実施形態はこれに限定されるものではなく、電極組成物生成装置610は、3本以上のスクリューを押出部として備えてもよい。或いは、電極組成物生成装置610は、1本のスクリューを押出部として備えてもよい。 Further, in FIG. 3, a screw 616a and a screw 616b are shown as an example of the extrusion part. However, the embodiment is not limited to this, and the electrode composition generating device 610 may include three or more screws as the extrusion section. Alternatively, the electrode composition generating device 610 may include one screw as the extrusion section.
 図3に示した電極組成物生成装置610は一例であり、種々の変形が可能である。以下、電極組成物生成装置600の変形例について、図4~図9を用いて説明する。 The electrode composition generating device 610 shown in FIG. 3 is an example, and various modifications are possible. Modifications of the electrode composition generating device 600 will be described below with reference to FIGS. 4 to 9.
(変形例1)
 図4においては、電極組成物生成装置600の一例として電極組成物生成装置620を示す。電極組成物生成装置620は、ホッパ621と、ホッパ622と、ホッパ623と、活物質粒子供給装置624aと、樹脂溶液供給装置624bと、脱揮装置625と、脱気装置626と、導電助剤供給装置627aと、電解液供給装置627bと、脱気装置628と、スクリュー629aと、スクリュー629bと、スクリュー629cと、スクリュー629dと、スクリュー629eとを備える。
(Modification 1)
In FIG. 4, an electrode composition generating device 620 is shown as an example of the electrode composition generating device 600. The electrode composition generating device 620 includes a hopper 621, a hopper 622, a hopper 623, an active material particle supply device 624a, a resin solution supply device 624b, a devolatilization device 625, a degassing device 626, and a conductive support agent. It includes a supply device 627a, an electrolyte supply device 627b, a deaerator 628, a screw 629a, a screw 629b, a screw 629c, a screw 629d, and a screw 629e.
 活物質粒子供給装置624a及び樹脂溶液供給装置624bは、第1供給部の一例である。導電助剤供給装置627a及び電解液供給装置627bは、第2供給部の一例である。スクリュー629a、スクリュー629b、スクリュー629c、スクリュー629d及びスクリュー629eは、押出部の一例である。脱揮装置625は、脱揮部の一例である。脱気装置626及び脱気装置628は、脱気部の一例である。 The active material particle supply device 624a and the resin solution supply device 624b are examples of the first supply section. The conductive agent supply device 627a and the electrolytic solution supply device 627b are examples of the second supply section. The screw 629a, the screw 629b, the screw 629c, the screw 629d, and the screw 629e are examples of the extrusion part. The devolatilization device 625 is an example of a devolatilization section. The deaerator 626 and the deaerator 628 are examples of a deaerator.
 また、スクリュー629a及びスクリュー629bは、第1部材の一例である。スクリュー629cは、第2部材の一例である。スクリュー629d及びスクリュー629eは、第3部材の一例である。 Furthermore, the screw 629a and the screw 629b are examples of the first member. The screw 629c is an example of the second member. The screw 629d and the screw 629e are examples of the third member.
 ホッパ621、ホッパ622及びホッパ623は、内部に収容空間を有し、活物質粒子供給装置624a、樹脂溶液供給装置624b、導電助剤供給装置627a及び電解液供給装置627bから供給された物質を保持する。なお、図4に示す通り、ホッパ621、ホッパ622及びホッパ623は、連続した1つの収容空間を形成する。また、図4に示す通り、ホッパ621は、開口621aと、開口621bとを備える。開口621a及び開口621bは、第1開口の一例である。また、ホッパ623は、開口623aと、開口623bと、開口623cとを備える。開口623a及び開口623bは、第2開口の一例である。開口623cは、第3開口の一例である。 The hopper 621, the hopper 622, and the hopper 623 each have a storage space inside and hold the substances supplied from the active material particle supply device 624a, the resin solution supply device 624b, the conductive agent supply device 627a, and the electrolyte solution supply device 627b. do. Note that, as shown in FIG. 4, the hopper 621, hopper 622, and hopper 623 form one continuous accommodation space. Further, as shown in FIG. 4, the hopper 621 includes an opening 621a and an opening 621b. The opening 621a and the opening 621b are examples of first openings. Further, the hopper 623 includes an opening 623a, an opening 623b, and an opening 623c. The opening 623a and the opening 623b are examples of second openings. The opening 623c is an example of a third opening.
 活物質粒子供給装置624aは、ホッパ621内部の収容空間に対して、開口621aから活物質の粒子を供給する。樹脂溶液供給装置624bは、ホッパ621内部の収容空間に対して、開口621bから樹脂溶液を供給する。導電助剤供給装置627aは、ホッパ623内部の収容空間に対して、開口623aから導電助剤を供給する。電解液供給装置627bは、ホッパ623内部の収容空間に対して、開口623bから電解液を供給する。 The active material particle supply device 624a supplies active material particles to the accommodation space inside the hopper 621 from the opening 621a. The resin solution supply device 624b supplies the resin solution to the accommodation space inside the hopper 621 from the opening 621b. The conductive agent supply device 627a supplies the conductive agent to the accommodation space inside the hopper 623 from the opening 623a. The electrolyte supply device 627b supplies an electrolyte to the accommodation space inside the hopper 623 from the opening 623b.
 図4に示す通り、脱揮装置625は、開口621a及び開口621bと、開口623a及び開口623bとの間の位置に設けられる。更に、脱気装置626は、脱揮装置625と、開口623a及び開口623bとの間の位置に設けられる。スクリュー629a及びスクリュー629bは、開口621a及び開口621bから脱揮装置625に向けて、収容空間内の物質を混練しつつ押し出す。スクリュー629cは、スクリュー629a及びスクリュー629bにより押し出された物質を鉛直方向上側に向けて混練しつつ押し出す。即ち、スクリュー629cは、収容空間内の物質に対して位置エネルギーを付与する。 As shown in FIG. 4, the devolatilization device 625 is provided at a position between the openings 621a and 621b and the openings 623a and 623b. Furthermore, the degassing device 626 is provided at a position between the devolatilizing device 625 and the openings 623a and 623b. The screw 629a and the screw 629b push out the substance in the storage space while kneading it toward the devolatilization device 625 from the opening 621a and the opening 621b. The screw 629c extrudes the substance extruded by the screws 629a and 629b while kneading it upward in the vertical direction. That is, the screw 629c imparts potential energy to the substance within the accommodation space.
 脱気装置626は、スクリュー629cにより鉛直方向上側に押し出された後に鉛直方向下側に落下する途中の物質を対象として脱気を行なう。ここで、落下途中の物質はまばらに散った状態となるため、脱気装置626は、効率的に脱気を行なうことができる。 The deaerator 626 deaerates the substance that is falling downward in the vertical direction after being pushed upward in the vertical direction by the screw 629c. Here, since the falling substance is in a sparsely scattered state, the deaerator 626 can perform deaeration efficiently.
 スクリュー629d及びスクリュー629eは、スクリュー629cにより鉛直方向上側に押し出された後に鉛直方向下側に落下してきた物質を、開口623a及び開口623bに向けて混練しつつ押し出す。即ち、スクリュー629d及びスクリュー629eは、脱気装置626により脱気された物質を、開口623a及び開口623bに向けて混練しつつ押し出す。 The screw 629d and the screw 629e knead and push out the substance that has been pushed out vertically upward by the screw 629c and then fallen vertically downward toward the openings 623a and 623b. That is, the screws 629d and 629e push out the substance degassed by the deaerator 626 toward the openings 623a and 623b while kneading it.
 更に、スクリュー629d及びスクリュー629eは、収容空間内の物質を、開口623a及び開口623bから、開口623cに向けて混練しつつ押し出す。ここで、開口623a及び開口623bと、開口623cとの間の位置には、脱気装置628が設けられる。脱気装置628は、上述の各種スクリューにより混練された活物質の粒子、樹脂溶液、導電助剤及び電解液を対象として脱気を行なう。 Furthermore, the screw 629d and the screw 629e push out the substance in the storage space from the opening 623a and the opening 623b toward the opening 623c while kneading it. Here, a deaerator 628 is provided at a position between the openings 623a and 623b and the opening 623c. The degassing device 628 degasses the active material particles, resin solution, conductive aid, and electrolytic solution kneaded by the various screws described above.
 電極組成物生成装置610の場合と同様、図4の電極組成物生成装置620によっても、電極組成物22cを連続的に生成することができる。即ち、被覆活物質材料の投入や、副材料の投入、これら各種物質の混練といった複数の工程を、ホッパ621、ホッパ622及びホッパ623によって形成される連続した1つの収容空間内において完結させることができる。電極組成物生成装置620によって生成された電極組成物22cは、開口623cからチャンバ100内に向けて排出され、電極組成物供給装置300によって集電体21Bに供給される。 As in the case of the electrode composition generation device 610, the electrode composition 22c can be continuously generated using the electrode composition generation device 620 in FIG. That is, it is possible to complete a plurality of steps such as charging the coating active material, charging the auxiliary material, and kneading these various substances within one continuous storage space formed by the hopper 621, hopper 622, and hopper 623. can. The electrode composition 22c generated by the electrode composition generation device 620 is discharged into the chamber 100 from the opening 623c, and is supplied to the current collector 21B by the electrode composition supply device 300.
 なお、図3の場合と同様、図4における開口621a及び開口621bの位置関係、開口623a及び開口623bの位置関係については任意に変形が可能である。また、電極組成物生成装置620が押出部として備えるスクリューの数は任意である。 Note that, as in the case of FIG. 3, the positional relationship between the opening 621a and the opening 621b and the positional relationship between the opening 623a and the opening 623b in FIG. 4 can be arbitrarily modified. Further, the number of screws that the electrode composition generating device 620 has as an extrusion section is arbitrary.
(変形例2)
 電極組成物生成装置600の他の例として、図5に電極組成物生成装置630を示す。電極組成物生成装置630は、ホッパ631と、ホッパ632と、ホッパ633と、活物質粒子供給装置634aと、樹脂溶液供給装置634bと、脱揮装置635と、開放部636と、導電助剤供給装置637aと、電解液供給装置637bと、脱気装置638と、スクリュー639aと、スクリュー639bと、スクリュー639cと、スクリュー639dと、スクリュー639eとを備える。
(Modification 2)
As another example of the electrode composition generating apparatus 600, an electrode composition generating apparatus 630 is shown in FIG. The electrode composition generating device 630 includes a hopper 631, a hopper 632, a hopper 633, an active material particle supply device 634a, a resin solution supply device 634b, a devolatilization device 635, an opening section 636, and a conductive agent supply device. It includes a device 637a, an electrolyte supply device 637b, a deaerator 638, a screw 639a, a screw 639b, a screw 639c, a screw 639d, and a screw 639e.
 活物質粒子供給装置634a及び樹脂溶液供給装置634bは、第1供給部の一例である。導電助剤供給装置637a及び電解液供給装置637bは、第2供給部の一例である。スクリュー639a、スクリュー639b、スクリュー639c、スクリュー639d及びスクリュー639eは、押出部の一例である。脱揮装置635は、脱揮部の一例である。開放部636は、開放部の一例である。脱気装置638は、脱気部の一例である。 The active material particle supply device 634a and the resin solution supply device 634b are examples of the first supply section. The conductive aid supply device 637a and the electrolytic solution supply device 637b are examples of a second supply section. The screw 639a, the screw 639b, the screw 639c, the screw 639d, and the screw 639e are examples of the extrusion part. The devolatilizing device 635 is an example of a devolatilizing section. The open portion 636 is an example of an open portion. The deaerator 638 is an example of a deaerator.
 また、スクリュー639a及びスクリュー639bは、第1部材の一例である。スクリュー639cは、第2部材の一例である。スクリュー639d及びスクリュー639eは、第3部材の一例である。 Further, the screw 639a and the screw 639b are examples of the first member. The screw 639c is an example of the second member. The screw 639d and the screw 639e are examples of the third member.
 ホッパ631、ホッパ632及びホッパ633は、内部に収容空間を有し、活物質粒子供給装置634a、樹脂溶液供給装置634b、導電助剤供給装置637a及び電解液供給装置637bから供給された物質を保持する。なお、図5に示す通り、ホッパ631、ホッパ632及びホッパ633は、連続した1つの収容空間を形成する。また、図4に示す通り、ホッパ631は、開口631aと、開口631bとを備える。開口631a及び開口631bは、第1開口の一例である。また、ホッパ633は、開口633aと、開口633bと、開口633cとを備える。開口633a及び開口633bは、第2開口の一例である。開口633cは、第3開口の一例である。 The hopper 631, the hopper 632, and the hopper 633 have storage spaces inside, and hold substances supplied from the active material particle supply device 634a, the resin solution supply device 634b, the conductive agent supply device 637a, and the electrolyte solution supply device 637b. do. Note that, as shown in FIG. 5, the hopper 631, the hopper 632, and the hopper 633 form one continuous accommodation space. Further, as shown in FIG. 4, the hopper 631 includes an opening 631a and an opening 631b. The opening 631a and the opening 631b are examples of first openings. Further, the hopper 633 includes an opening 633a, an opening 633b, and an opening 633c. The opening 633a and the opening 633b are examples of second openings. The opening 633c is an example of a third opening.
 活物質粒子供給装置634aは、ホッパ631内部の収容空間に対して、開口631aから活物質の粒子を供給する。樹脂溶液供給装置634bは、ホッパ631内部の収容空間に対して、開口631bから樹脂溶液を供給する。導電助剤供給装置637aは、ホッパ633内部の収容空間に対して、開口633aから導電助剤を供給する。電解液供給装置637bは、ホッパ633内部の収容空間に対して、開口633bから電解液を供給する。 The active material particle supply device 634a supplies active material particles to the accommodation space inside the hopper 631 from the opening 631a. The resin solution supply device 634b supplies a resin solution to the accommodation space inside the hopper 631 from the opening 631b. The conductive agent supply device 637a supplies the conductive agent to the accommodation space inside the hopper 633 from the opening 633a. The electrolytic solution supply device 637b supplies an electrolytic solution to the accommodation space inside the hopper 633 from the opening 633b.
 図5に示す通り、脱揮装置635は、開口631a及び開口631bと、開口633a及び開口633bとの間の位置に設けられる。更に、脱気装置636は、脱揮装置635と、開口633a及び開口633bとの間の位置に設けられる。スクリュー639a及びスクリュー639bは、開口631a及び開口631bから脱揮装置635に向けて、収容空間内の物質を混練しつつ押し出す。スクリュー639cは、スクリュー639a及びスクリュー639bにより押し出された物質を鉛直方向上側に向けて混練しつつ押し出す。即ち、スクリュー639cは、収容空間内の物質に対して位置エネルギーを付与する。 As shown in FIG. 5, the devolatilization device 635 is provided at a position between the openings 631a and 631b and the openings 633a and 633b. Further, a degassing device 636 is provided at a position between the devolatilizing device 635 and the openings 633a and 633b. The screw 639a and the screw 639b push out the substance in the storage space while kneading it toward the devolatilization device 635 from the opening 631a and the opening 631b. The screw 639c extrudes the substance extruded by the screws 639a and 639b while kneading it upward in the vertical direction. That is, the screw 639c imparts potential energy to the substance within the accommodation space.
 開放部636は、ホッパ632とホッパ633との間に設けられた隙間である。開放部636において、収容空間内の物質は空気に触れることとなる。より具体的には、開放部636は、スクリュー639cにより鉛直方向上側に押し出された後に鉛直方向下側に落下する途中の物質を空気に触れさせる。ここで、落下途中の物質はまばらに散った状態となるため、効率的に空気に触れることができる。 The open portion 636 is a gap provided between the hopper 632 and the hopper 633. At the opening 636, the substance within the accommodation space comes into contact with air. More specifically, the opening portion 636 exposes the substance that is falling downward in the vertical direction after being pushed upward in the vertical direction by the screw 639c to the air. Here, the falling substances are scattered in a sparse manner, so they can efficiently come into contact with the air.
 スクリュー639d及びスクリュー639eは、スクリュー639cにより鉛直方向上側に押し出された後に鉛直方向下側に落下してきた物質を、開口633a及び開口633bに向けて混練しつつ押し出す。即ち、スクリュー639d及びスクリュー639eは、開放部636において空気に触れた物質を、開口633a及び開口633bに向けて混練しつつ押し出す。 The screw 639d and the screw 639e knead and push out the substance that has been pushed out vertically upward by the screw 639c and then fallen vertically downward toward the openings 633a and 633b. That is, the screws 639d and 639e knead and push out the substance that has been exposed to air in the opening 636 toward the openings 633a and 633b.
 更に、スクリュー639d及びスクリュー639eは、収容空間内の物質を、開口633a及び開口633bから、開口633cに向けて混練しつつ押し出す。ここで、開口633a及び開口633bと、開口633cとの間の位置には、脱気装置638が設けられる。脱気装置638は、上述の各種スクリューにより混練された活物質の粒子、樹脂溶液、導電助剤及び電解液を対象として脱気を行なう。 Furthermore, the screw 639d and the screw 639e push out the substance in the storage space from the opening 633a and the opening 633b toward the opening 633c while kneading it. Here, a deaerator 638 is provided at a position between the openings 633a and 633b and the opening 633c. The degassing device 638 degasses the active material particles, resin solution, conductive aid, and electrolytic solution kneaded by the various screws described above.
 図5の電極組成物生成装置630によれば、電極組成物22cを連続的に生成することができる。即ち、被覆活物質材料の投入や、副材料の投入、これら各種物質の混練といった複数の工程を、ホッパ631、ホッパ632及びホッパ633によって形成される連続した1つの収容空間内において完結させることができる。電極組成物生成装置630によって生成された電極組成物22cは、開口633cからチャンバ100内に向けて排出され、電極組成物供給装置300によって集電体21Bに供給される。 According to the electrode composition generating device 630 of FIG. 5, the electrode composition 22c can be continuously generated. That is, it is possible to complete a plurality of steps such as charging the coating active material, charging the auxiliary material, and kneading these various substances within one continuous storage space formed by the hopper 631, hopper 632, and hopper 633. can. The electrode composition 22c generated by the electrode composition generation device 630 is discharged into the chamber 100 from the opening 633c, and is supplied to the current collector 21B by the electrode composition supply device 300.
 なお、図3の場合と同様、図5における開口631a及び開口631bの位置関係、開口633a及び開口633bの位置関係については任意に変形が可能である。また、電極組成物生成装置630が押出部として備えるスクリューの数は任意である。 Note that, as in the case of FIG. 3, the positional relationship between the opening 631a and the opening 631b and the positional relationship between the opening 633a and the opening 633b in FIG. 5 can be arbitrarily modified. Further, the number of screws that the electrode composition generating device 630 has as an extrusion section is arbitrary.
(変形例3)
 電極組成物生成装置600の他の例として、図6に電極組成物生成装置640を示す。電極組成物生成装置640は、ホッパ641と、活物質粒子供給装置642aと、ゲル用ペレット供給装置642bと、加熱装置643と、導電助剤供給装置644aと、電解液供給装置644bと、脱気装置645と、スクリュー646aと、スクリュー646bとを備える。活物質粒子供給装置642a及びゲル用ペレット供給装置642bは、第1供給部の一例である。導電助剤供給装置644a及び電解液供給装置644bは、第2供給部の一例である。スクリュー646a及びスクリュー646bは、押出部の一例である。加熱装置643は、加熱部の一例である。脱気装置645は、脱気部の一例である。
(Modification 3)
As another example of the electrode composition generating apparatus 600, an electrode composition generating apparatus 640 is shown in FIG. The electrode composition generating device 640 includes a hopper 641, an active material particle supply device 642a, a gel pellet supply device 642b, a heating device 643, a conductive agent supply device 644a, an electrolytic solution supply device 644b, and a degassing device. It includes a device 645, a screw 646a, and a screw 646b. The active material particle supply device 642a and the gel pellet supply device 642b are examples of the first supply section. The conductive aid supply device 644a and the electrolyte supply device 644b are examples of a second supply section. The screw 646a and the screw 646b are examples of extrusion parts. The heating device 643 is an example of a heating section. The deaerator 645 is an example of a deaerator.
 ホッパ641は、内部に収容空間を有し、活物質粒子供給装置642a、ゲル用ペレット供給装置642b、導電助剤供給装置644a及び電解液供給装置644bから供給された物質を内部に保持する。また、図6に示す通り、ホッパ641は、開口641aと、開口641bと、開口641cと、開口641dと、開口641eとを備える。開口641a及び開口641bは、第1開口の一例である。開口641c及び開口641dは、第2開口の一例である。開口641eは、第3開口の一例である。 The hopper 641 has a storage space inside and holds therein the substances supplied from the active material particle supply device 642a, the gel pellet supply device 642b, the conductive aid supply device 644a, and the electrolyte supply device 644b. Further, as shown in FIG. 6, the hopper 641 includes an opening 641a, an opening 641b, an opening 641c, an opening 641d, and an opening 641e. The opening 641a and the opening 641b are examples of first openings. The opening 641c and the opening 641d are examples of second openings. The opening 641e is an example of a third opening.
 活物質粒子供給装置642aは、ホッパ641内部の収容空間に対して、開口641aから活物質の粒子を供給する。ゲル用ペレット供給装置642bは、ホッパ641内部の収容空間に対して、開口641bからゲル用ペレットを供給する。なお、図3~図5に示した樹脂溶液が樹脂を含む溶液であるのに対して、ゲル用ペレットは、固体状態或いは溶融状態の樹脂である。ゲル用ペレットは、被覆活物質材料の一例である。 The active material particle supply device 642a supplies active material particles to the accommodation space inside the hopper 641 from the opening 641a. The gel pellet supply device 642b supplies gel pellets to the accommodation space inside the hopper 641 from the opening 641b. Note that while the resin solutions shown in FIGS. 3 to 5 are solutions containing resin, the gel pellets are resin in a solid state or a molten state. Gel pellets are an example of coated active material.
 導電助剤供給装置644aは、ホッパ641内部の収容空間に対して、開口641cから導電助剤を供給する。電解液供給装置644bは、ホッパ641内部の収容空間に対して、開口641bから電解液を供給する。 The conductive agent supply device 644a supplies the conductive agent to the storage space inside the hopper 641 from the opening 641c. The electrolyte supply device 644b supplies an electrolyte to the accommodation space inside the hopper 641 from the opening 641b.
 スクリュー646a及びスクリュー646bは、収容空間内の物質を、開口641a及び開口641bから、開口641c及び開口641dに向けて混練しつつ押し出す。ここで、開口641a及び開口641bと、開口641c及び開口641dとの間の位置には、加熱装置643が設けられる。加熱装置643は、スクリュー646a及びスクリュー646bにより混練された活物質の粒子及びゲル用ペレットを加熱する。 The screws 646a and 646b knead and extrude the substance in the accommodation space from the openings 641a and 641b toward the openings 641c and 641d. Here, a heating device 643 is provided at a position between the openings 641a and 641b and the openings 641c and 641d. The heating device 643 heats the active material particles and gel pellets kneaded by the screws 646a and 646b.
 更に、スクリュー646a及びスクリュー646bは、収容空間内の物質を、開口641c及び開口641dから、開口641eに向けて混練しつつ押し出す。ここで、開口641c及び開口641dと、開口641eとの間の位置には、脱気装置645が設けられる。脱気装置645は、スクリュー646a及びスクリュー646bにより混練された活物質の粒子、ゲル用ペレット、導電助剤及び電解液を対象として脱気を行なう。 Further, the screw 646a and the screw 646b push out the substance in the accommodation space from the opening 641c and the opening 641d toward the opening 641e while kneading it. Here, a deaerator 645 is provided at a position between the openings 641c and 641d and the opening 641e. The deaerator 645 deaerates the active material particles, gel pellets, conductive aid, and electrolyte solution kneaded by the screws 646a and 646b.
 図6の電極組成物生成装置640によれば、電極組成物22cを連続的に生成することができる。即ち、被覆活物質材料の投入や、副材料の投入、これら各種物質の混練といった複数の工程を、ホッパ641が備える収容空間内において完結させることができる。電極組成物生成装置640によって生成された電極組成物22cは、開口641cからチャンバ100内に向けて排出され、電極組成物供給装置300によって集電体21Bに供給される。 According to the electrode composition generating device 640 of FIG. 6, the electrode composition 22c can be continuously generated. That is, a plurality of steps such as charging the coating active material, charging the auxiliary material, and kneading these various substances can be completed within the accommodation space provided in the hopper 641. The electrode composition 22c generated by the electrode composition generation device 640 is discharged into the chamber 100 from the opening 641c, and is supplied to the current collector 21B by the electrode composition supply device 300.
 なお、図3の場合と同様、図6における開口641a及び開口641bの位置関係、開口641c及び開口641dの位置関係については任意に変形が可能である。また、電極組成物生成装置640が押出部として備えるスクリューの数は任意である。 Note that, as in the case of FIG. 3, the positional relationship between the opening 641a and the opening 641b and the positional relationship between the opening 641c and the opening 641d in FIG. 6 can be arbitrarily modified. Further, the number of screws that the electrode composition generating device 640 has as an extrusion section is arbitrary.
(変形例4)
 図7においては、電極組成物生成装置600の一例として電極組成物生成装置650を示す。電極組成物生成装置650は、ホッパ651と、ホッパ652と、ホッパ653と、活物質粒子供給装置654aと、ゲル用ペレット供給装置654bと、加熱装置655と、脱気装置656と、導電助剤供給装置657aと、電解液供給装置657bと、脱気装置658と、スクリュー659aと、スクリュー659bと、スクリュー659cと、スクリュー659dと、スクリュー659eとを備える。
(Modification 4)
In FIG. 7, an electrode composition generating device 650 is shown as an example of the electrode composition generating device 600. The electrode composition generating device 650 includes a hopper 651, a hopper 652, a hopper 653, an active material particle supply device 654a, a gel pellet supply device 654b, a heating device 655, a degassing device 656, and a conductive support agent. It includes a supply device 657a, an electrolyte supply device 657b, a deaerator 658, a screw 659a, a screw 659b, a screw 659c, a screw 659d, and a screw 659e.
 活物質粒子供給装置654a及びゲル用ペレット供給装置654bは、第1供給部の一例である。導電助剤供給装置657a及び電解液供給装置657bは、第2供給部の一例である。スクリュー659a、スクリュー659b、スクリュー659c、スクリュー659d及びスクリュー659eは、押出部の一例である。加熱装置655は、加熱部の一例である。脱気装置656及び脱気装置658は、脱気部の一例である。 The active material particle supply device 654a and the gel pellet supply device 654b are examples of the first supply section. The conductive aid supply device 657a and the electrolyte supply device 657b are examples of the second supply section. The screw 659a, the screw 659b, the screw 659c, the screw 659d, and the screw 659e are examples of the extrusion part. The heating device 655 is an example of a heating section. The deaerator 656 and the deaerator 658 are examples of a deaerator.
 また、スクリュー659a及びスクリュー659bは、第1部材の一例である。スクリュー659cは、第2部材の一例である。スクリュー659d及びスクリュー659eは、第3部材の一例である。 Further, the screw 659a and the screw 659b are examples of the first member. The screw 659c is an example of the second member. The screw 659d and the screw 659e are examples of the third member.
 ホッパ651、ホッパ652及びホッパ653は、内部に収容空間を有し、活物質粒子供給装置654a、ゲル用ペレット供給装置654b、導電助剤供給装置657a及び電解液供給装置657bから供給された物質を保持する。なお、図7に示す通り、ホッパ651、ホッパ652及びホッパ653は、連続した1つの収容空間を形成する。また、図7に示す通り、ホッパ651は、開口651aと、開口651bとを備える。開口651a及び開口651bは、第1開口の一例である。また、ホッパ653は、開口653aと、開口653bと、開口653cとを備える。開口653a及び開口653bは、第2開口の一例である。開口653cは、第3開口の一例である。 The hopper 651, the hopper 652, and the hopper 653 each have a storage space inside, and receive the substances supplied from the active material particle supply device 654a, the gel pellet supply device 654b, the conductive agent supply device 657a, and the electrolyte solution supply device 657b. Hold. Note that, as shown in FIG. 7, the hopper 651, hopper 652, and hopper 653 form one continuous accommodation space. Further, as shown in FIG. 7, the hopper 651 includes an opening 651a and an opening 651b. The opening 651a and the opening 651b are examples of first openings. Further, the hopper 653 includes an opening 653a, an opening 653b, and an opening 653c. The opening 653a and the opening 653b are examples of second openings. The opening 653c is an example of a third opening.
 活物質粒子供給装置654aは、ホッパ651内部の収容空間に対して、開口651aから活物質の粒子を供給する。ゲル用ペレット供給装置654bは、ホッパ651内部の収容空間に対して、開口651bからゲル用ペレットを供給する。導電助剤供給装置657aは、ホッパ653内部の収容空間に対して、開口653aから導電助剤を供給する。電解液供給装置657bは、ホッパ653内部の収容空間に対して、開口653bから電解液を供給する。 The active material particle supply device 654a supplies active material particles to the accommodation space inside the hopper 651 from the opening 651a. The gel pellet supply device 654b supplies gel pellets to the accommodation space inside the hopper 651 from the opening 651b. The conductive agent supply device 657a supplies the conductive agent to the accommodation space inside the hopper 653 from the opening 653a. The electrolyte supply device 657b supplies an electrolyte to the accommodation space inside the hopper 653 from the opening 653b.
 図7に示す通り、加熱装置655は、開口651a及び開口651bと、開口653a及び開口653bとの間の位置に設けられる。更に、脱気装置656は、加熱装置655と、開口653a及び開口653bとの間の位置に設けられる。スクリュー659a及びスクリュー659bは、開口651a及び開口651bから加熱装置655に向けて、収容空間内の物質を混練しつつ押し出す。スクリュー659cは、スクリュー659a及びスクリュー659bにより押し出された物質を鉛直方向上側に向けて混練しつつ押し出す。即ち、スクリュー659cは、収容空間内の物質に対して位置エネルギーを付与する。 As shown in FIG. 7, the heating device 655 is provided at a position between the openings 651a and 651b and the openings 653a and 653b. Further, a deaerator 656 is provided at a position between the heating device 655 and the openings 653a and 653b. The screws 659a and 659b push out the substance in the storage space while kneading it toward the heating device 655 from the openings 651a and 651b. The screw 659c extrudes the substance extruded by the screws 659a and 659b while kneading it upward in the vertical direction. That is, the screw 659c imparts potential energy to the substance within the accommodation space.
 脱気装置656は、スクリュー659cにより鉛直方向上側に押し出された後に鉛直方向下側に落下する途中の物質を対象として脱気を行なう。ここで、落下途中の物質はまばらに散った状態となるため、脱気装置656は、効率的に脱気を行なうことができる。 The deaerator 656 deaerates the substance that is falling downward in the vertical direction after being pushed upward in the vertical direction by the screw 659c. Here, since the falling substances are scattered in a sparse manner, the deaerator 656 can efficiently perform deaeration.
 スクリュー659d及びスクリュー659eは、スクリュー659cにより鉛直方向上側に押し出された後に鉛直方向下側に落下してきた物質を、開口653a及び開口653bに向けて混練しつつ押し出す。即ち、スクリュー659d及びスクリュー659eは、脱気装置656により脱気された物質を、開口653a及び開口653bに向けて混練しつつ押し出す。 The screw 659d and the screw 659e knead and push out the substance that has been pushed out vertically upward by the screw 659c and then fallen vertically downward toward the openings 653a and 653b. That is, the screw 659d and the screw 659e push out the substance degassed by the deaerator 656 toward the openings 653a and 653b while kneading it.
 更に、スクリュー659d及びスクリュー659eは、収容空間内の物質を、開口653a及び開口653bから、開口653cに向けて混練しつつ押し出す。ここで、開口653a及び開口653bと、開口653cとの間の位置には、脱気装置658が設けられる。脱気装置658は、上述の各種スクリューにより混練された活物質の粒子、ゲル用ペレット、導電助剤及び電解液を対象として脱気を行なう。 Further, the screw 659d and the screw 659e push out the substance in the accommodation space from the opening 653a and the opening 653b toward the opening 653c while kneading it. Here, a deaerator 658 is provided at a position between the openings 653a and 653b and the opening 653c. The degassing device 658 degasses the active material particles, gel pellets, conductive aid, and electrolytic solution kneaded by the various screws described above.
 図7の電極組成物生成装置650によれば、電極組成物22cを連続的に生成することができる。即ち、被覆活物質材料の投入や、副材料の投入、これら各種物質の混練といった複数の工程を、ホッパ651、ホッパ652及びホッパ653によって形成される連続した1つの収容空間内において完結させることができる。電極組成物生成装置650によって生成された電極組成物22cは、開口653cからチャンバ100内に向けて排出され、電極組成物供給装置300によって集電体21Bに供給される。 According to the electrode composition generating device 650 of FIG. 7, the electrode composition 22c can be continuously generated. That is, a plurality of steps such as charging the coating active material, charging the auxiliary materials, and kneading these various substances can be completed within one continuous storage space formed by the hopper 651, hopper 652, and hopper 653. can. The electrode composition 22c generated by the electrode composition generation device 650 is discharged into the chamber 100 from the opening 653c, and is supplied to the current collector 21B by the electrode composition supply device 300.
 なお、図3の場合と同様、図7における開口651a及び開口651bの位置関係、開口653a及び開口653bの位置関係については任意に変形が可能である。また、電極組成物生成装置650が押出部として備えるスクリューの数は任意である。 Note that, as in the case of FIG. 3, the positional relationship between the opening 651a and the opening 651b and the positional relationship between the opening 653a and the opening 653b in FIG. 7 can be arbitrarily modified. Further, the number of screws that the electrode composition generating device 650 has as an extrusion section is arbitrary.
(変形例5)
 電極組成物生成装置600の他の例として、図8に電極組成物生成装置660を示す。電極組成物生成装置660が備えるホッパ661、活物質粒子供給装置662a、導電助剤供給装置663a、電解液供給装置663b、脱気装置664、スクリュー665a及びスクリュー665bは、図6に示した電極組成物生成装置640におけるホッパ641、活物質粒子供給装置642a、導電助剤供給装置644a、電解液供給装置644b、脱気装置645、スクリュー646a、スクリュー646bと同様の構成である。電極組成物生成装置660は、電極組成物生成装置640と同様に加熱装置を備えることとしてもよい。
(Modification 5)
As another example of the electrode composition generating apparatus 600, an electrode composition generating apparatus 660 is shown in FIG. A hopper 661, an active material particle supply device 662a, a conductive agent supply device 663a, an electrolyte supply device 663b, a deaerator 664, a screw 665a, and a screw 665b included in the electrode composition generation device 660 have the electrode composition shown in FIG. The structure is similar to the hopper 641, active material particle supply device 642a, conductive agent supply device 644a, electrolyte supply device 644b, deaerator 645, screw 646a, and screw 646b in the product generation device 640. The electrode composition generating device 660 may include a heating device similarly to the electrode composition generating device 640.
 図6に示した電極組成物生成装置640と比較して、電極組成物生成装置660は、ゲル用ペレット供給装置642bに代えて、紛体化装置662cを含むゲル用ペレット供給装置662bを備える点で相違する。即ち、ゲル用ペレット供給装置662bは、ゲル用ペレットを紛体化した上で、ホッパ661内の収容空間に供給する。これにより、収容空間内の物質をより均質化し、生成される電極組成物22cの品質を向上させることができる。 Compared to the electrode composition generation device 640 shown in FIG. 6, the electrode composition generation device 660 includes a gel pellet supply device 662b including a powdering device 662c instead of the gel pellet supply device 642b. differ. That is, the gel pellet supply device 662b powderizes the gel pellets and then supplies them to the storage space in the hopper 661. This makes it possible to further homogenize the substance in the accommodation space and improve the quality of the produced electrode composition 22c.
(変形例6)
 電極組成物生成装置600の他の例として、図9に電極組成物生成装置670を示す。電極組成物生成装置670が備えるホッパ671、活物質粒子供給装置672a、導電助剤供給装置673a、電解液供給装置673b、脱気装置674、スクリュー675a及びスクリュー675bは、図6に示した電極組成物生成装置640におけるホッパ641、活物質粒子供給装置642a、導電助剤供給装置644a、電解液供給装置644b、脱気装置645、スクリュー646a、スクリュー646bと同様の構成である。電極組成物生成装置670は、電極組成物生成装置640と同様に加熱装置を備えることとしてもよい。
(Modification 6)
As another example of the electrode composition generating apparatus 600, an electrode composition generating apparatus 670 is shown in FIG. A hopper 671, an active material particle supply device 672a, a conductive agent supply device 673a, an electrolyte supply device 673b, a deaerator 674, a screw 675a, and a screw 675b included in the electrode composition generation device 670 have the electrode composition shown in FIG. The structure is similar to the hopper 641, active material particle supply device 642a, conductive agent supply device 644a, electrolyte supply device 644b, deaerator 645, screw 646a, and screw 646b in the product generation device 640. The electrode composition generating device 670 may include a heating device similarly to the electrode composition generating device 640.
 図6に示した電極組成物生成装置640と比較して、電極組成物生成装置670は、単一のゲル用ペレット供給装置642bに代えて、ゲル用ペレット供給装置672b及びゲル用ペレット供給装置672cを備える点で相違する。即ち、電極組成物生成装置670は、ゲル用ペレットを、複数の第1開口からホッパ671内の収容空間に対して供給する。これにより、ゲル用ペレットを分散化して供給し、生成される電極組成物22cの品質を向上させることができる。 Compared to the electrode composition generation apparatus 640 shown in FIG. 6, the electrode composition generation apparatus 670 includes a gel pellet supply apparatus 672b and a gel pellet supply apparatus 672c instead of a single gel pellet supply apparatus 642b. They differ in that they have the following. That is, the electrode composition generating device 670 supplies gel pellets to the accommodation space in the hopper 671 from the plurality of first openings. Thereby, the gel pellets can be dispersed and supplied, and the quality of the generated electrode composition 22c can be improved.
 なお、ゲル用ペレットに限らず、活物質の粒子や樹脂溶液といった被覆活物質材料について、複数の第1開口から供給するようにしてもよい。また、導電助剤や電解液といった副材料を、複数の第2開口から供給するようにしてもよい。 Note that not only gel pellets but also coated active material materials such as active material particles and resin solution may be supplied from the plurality of first openings. Further, auxiliary materials such as a conductive aid and an electrolyte may be supplied from a plurality of second openings.
 上述した実施形態では、電極組成物22cが載置される帯状の基材フィルムが帯状の集電体21Bであるものとして説明したが、これに限定されるものではない。例えば、図2に示した帯状の集電体21Bに代えて、帯状のセパレータシートや、帯状の離形フィルムを基材フィルムとしてもよい。なお、帯状のセパレータシートは、後にトリミングすることで、図1に示したセパレータ30を形成することができる。 In the embodiment described above, the strip-shaped base film on which the electrode composition 22c is placed is the strip-shaped current collector 21B, but the present invention is not limited to this. For example, instead of the strip-shaped current collector 21B shown in FIG. 2, a strip-shaped separator sheet or a strip-shaped release film may be used as the base film. Note that the separator sheet 30 shown in FIG. 1 can be formed by trimming the band-shaped separator sheet later.
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。更に、各実施形態で示した構成のそれぞれを適宜組み合わせて利用できることは、言うまでもない。二次電池のうち、以上の説明で例示したリチウムイオン二次電池を用いる場合は、電解質に液体材料を使用した電池を含み、電解質に固体材料を使用した電池(いわゆる全固体電池)を含む。また本実施形態における電池は、集電体として金属箔(金属集電箔)を有する電池を含み、金属箔に代わって導電性材料が添加された樹脂から構成される、いわゆる樹脂集電体を有する電池を含む。当該樹脂集電体を、バイポーラ電極用樹脂集電体として用いる場合には、当該樹脂集電体の一方の面に正極を形成し、もう一方の面に負極を形成して双極型電極を構成したものであってもよい。なお、本実施形態における電池は、バインダを用いて正極または負極活物質等を正極用または負極用集電体にそれぞれ塗布して電極を構成したものを含み、双極型の電池の場合には、集電体の一方の面にバインダを用いて正極活物質等を塗布して正極層を、反対側の面にバインダを用いて負極活物質等を塗布して負極層を有する双極型電極を構成したものを含む。 Although the embodiment of the present invention has been described in detail with reference to the drawings above, the specific configuration is not limited to this embodiment, and modifications, combinations, deletions, etc. of the configuration within the scope of the gist of the present invention, etc. Also included. Furthermore, it goes without saying that the configurations shown in each embodiment can be used in appropriate combinations. Among secondary batteries, when using the lithium ion secondary battery exemplified in the above explanation, it includes a battery that uses a liquid material as an electrolyte, and a battery that uses a solid material as an electrolyte (a so-called all-solid-state battery). Furthermore, the battery in this embodiment includes a battery having a metal foil (metal current collector foil) as a current collector, and a so-called resin current collector made of resin to which a conductive material is added instead of the metal foil. Including batteries with. When the resin current collector is used as a resin current collector for bipolar electrodes, a positive electrode is formed on one surface of the resin current collector and a negative electrode is formed on the other surface to form a bipolar electrode. It may be something that has been done. Note that the batteries in this embodiment include those in which electrodes are formed by applying a positive electrode or negative electrode active material or the like to a positive electrode or negative electrode current collector using a binder, and in the case of a bipolar type battery, A bipolar electrode is constructed by applying a positive electrode active material etc. using a binder to one side of the current collector to form a positive electrode layer, and applying a negative electrode active material etc. using a binder to the opposite side to form a negative electrode layer. Including those who did.

Claims (11)

  1.  内部に収容空間を有し、前記収容空間に対する被覆活物質材料の供給を受ける第1開口と、前記収容空間に対する副材料の供給を受ける第2開口と、前記収容空間内の物質を排出する第3開口とを少なくとも備えるホッパと、
     前記収容空間に対して前記第1開口から前記被覆活物質材料を供給する第1供給部と、
     前記収容空間に対して前記第2開口から前記副材料を供給する第2供給部と、
     前記収容空間内の物質を、前記第1開口から前記第2開口に向けて混練しつつ押し出し、更に、前記第2開口から前記第3開口に向けて混練しつつ押し出す押出部と
     を備えた、電池用電極製造装置。
    A first opening having an accommodation space therein, through which the covering active material is supplied to the accommodation space, a second opening through which an auxiliary material is supplied to the accommodation space, and a second opening through which the substance in the accommodation space is discharged. a hopper comprising at least three openings;
    a first supply unit that supplies the coated active material from the first opening to the accommodation space;
    a second supply unit that supplies the auxiliary material from the second opening to the accommodation space;
    an extrusion unit that kneads and extrudes the substance in the accommodation space from the first opening toward the second opening, and further extrudes the substance from the second opening toward the third opening while kneading it; Battery electrode manufacturing equipment.
  2.  前記被覆活物質材料は、活物質の粒子と樹脂溶液とを少なくとも含み、
     前記ホッパにおける前記第1開口と前記第2開口との間の位置に脱揮部を更に備える、請求項1に記載の電池用電極製造装置。
    The coated active material includes at least active material particles and a resin solution,
    The battery electrode manufacturing apparatus according to claim 1, further comprising a devolatilization section located between the first opening and the second opening in the hopper.
  3.  前記ホッパにおける前記脱揮部と前記第2開口との間の位置に脱気部を更に備え、
     前記押出部は、
     前記第1開口から前記脱揮部に向けて前記収容空間内の物質を混練しつつ押し出す第1部材と、
     当該第1部材により押し出された物質を鉛直方向上側に向けて混練しつつ押し出す第2部材と、
     前記第2部材により鉛直方向上側に押し出された後に鉛直方向下側に落下してきた物質を前記第2開口に向けて混練しつつ押し出し、更に、前記第2開口から前記第3開口に向けて混練しつつ押し出す第3部材とを備え、
     前記脱揮部は、前記第2部材により鉛直方向上側に押し出された後に鉛直方向下側に落下する途中の物質を対象として脱気を行なう、請求項2に記載の電池用電極製造装置。
    further comprising a degassing part in the hopper at a position between the devolatilization part and the second opening,
    The extrusion section is
    a first member that kneads and pushes out the substance in the storage space from the first opening toward the devolatilization section;
    a second member that extrudes the substance extruded by the first member while kneading it vertically upward;
    The substance that has been pushed out vertically upward by the second member and then fallen vertically downward is pushed out while being kneaded toward the second opening, and further kneaded from the second opening toward the third opening. and a third member that extrudes while
    3. The battery electrode manufacturing apparatus according to claim 2, wherein the devolatilization section degasses the substance that is falling downward in the vertical direction after being pushed upward in the vertical direction by the second member.
  4.  前記ホッパにおける前記脱揮部と前記第2開口との間の位置に開放部を更に備え、
     前記押出部は、
     前記第1開口から前記開放部に向けて前記収容空間内の物質を混練しつつ押し出す第1部材と、
     当該第1部材により押し出された物質を鉛直方向上側に向けて混練しつつ押し出す第2部材と、
     前記第2部材により鉛直方向上側に押し出された後に鉛直方向下側に落下してきた物質を前記第2開口に向けて混練しつつ押し出し、更に、前記第2開口から前記第3開口に向けて混練しつつ押し出す第3部材とを備え、
     前記開放部は、前記第2部材により鉛直方向上側に押し出された後に鉛直方向下側に落下する途中の物質を空気に触れさせる、請求項2に記載の電池用電極製造装置。
    further comprising an opening part in the hopper at a position between the devolatilization part and the second opening,
    The extrusion section is
    a first member that kneads and pushes out the substance in the storage space from the first opening toward the opening;
    a second member that extrudes the substance extruded by the first member while kneading it vertically upward;
    The substance that has been pushed out vertically upward by the second member and then fallen vertically downward is pushed out while being kneaded toward the second opening, and further kneaded from the second opening toward the third opening. and a third member that extrudes while
    3. The battery electrode manufacturing apparatus according to claim 2, wherein the opening portion exposes the substance falling downward in the vertical direction after being pushed upward in the vertical direction by the second member to air.
  5.  前記被覆活物質材料は、活物質の粒子とゲル用ペレットとを少なくとも含み、
     前記ホッパにおける前記第1開口と前記第2開口との間の位置に加熱部を更に備える、請求項1に記載の電池用電極製造装置。
    The coated active material includes at least active material particles and gel pellets,
    The battery electrode manufacturing apparatus according to claim 1, further comprising a heating section at a position between the first opening and the second opening in the hopper.
  6.  前記ホッパにおける前記加熱部と前記第2開口との間の位置に脱気部を更に備え、
     前記押出部は、
     前記第1開口から前記加熱部に向けて前記収容空間内の物質を混練しつつ押し出す第1部材と、
     当該第1部材により押し出された物質を鉛直方向上側に向けて混練しつつ押し出す第2部材と、
     前記第2部材により鉛直方向上側に押し出された後に鉛直方向下側に落下してきた物質を前記第2開口に向けて混練しつつ押し出し、更に、前記第2開口から前記第3開口に向けて混練しつつ押し出す第3部材とを備え、
     前記脱気部は、前記第2部材により鉛直方向上側に押し出された後に鉛直方向下側に落下する途中の物質を対象として脱気を行なう、請求項5に記載の電池用電極製造装置。
    further comprising a degassing section in the hopper at a position between the heating section and the second opening,
    The extrusion section is
    a first member that kneads and extrudes the substance in the storage space from the first opening toward the heating section;
    a second member that extrudes the substance extruded by the first member while kneading it vertically upward;
    The substance that has been pushed out vertically upward by the second member and then fallen vertically downward is pushed out while being kneaded toward the second opening, and further kneaded from the second opening toward the third opening. and a third member that extrudes while
    6. The battery electrode manufacturing apparatus according to claim 5, wherein the deaeration section deaerates the substance that is falling downward in the vertical direction after being pushed upward in the vertical direction by the second member.
  7.  前記第1供給部は、前記ゲル用ペレットを紛体化した上で、前記第1開口から前記収容空間に対して供給する、請求項5に記載の電池用電極製造装置。 6. The battery electrode manufacturing apparatus according to claim 5, wherein the first supply unit powderizes the gel pellets and supplies the powdered pellets to the accommodation space from the first opening.
  8.  前記第1供給部は、前記ゲル用ペレットを、複数の前記第1開口から前記収容空間に対して供給する、請求項5に記載の電池用電極製造装置。 The battery electrode manufacturing apparatus according to claim 5, wherein the first supply unit supplies the gel pellets to the accommodation space from the plurality of first openings.
  9.  前記ホッパにおける前記第2開口と前記第3開口との間の位置に脱気部を更に備える、請求項1に記載の電池用電極製造装置。 The battery electrode manufacturing apparatus according to claim 1, further comprising a deaeration section at a position between the second opening and the third opening in the hopper.
  10.  前記第3開口は、内部に帯状の基材フィルムが搬入される減圧チャンバ内に向けて、前記収容空間内の物質を排出する、請求項1に記載の電池用電極製造装置。 The battery electrode manufacturing apparatus according to claim 1, wherein the third opening discharges the substance in the accommodation space into a reduced pressure chamber into which a strip-shaped base film is carried.
  11.  ホッパ内の収容空間に対して、前記ホッパに設けられた第1開口から被覆活物質材料を供給し、
     前記収容空間に対して、前記ホッパに設けられた第2開口から副材料を供給し、
     前記収容空間内の物質を、前記第1開口から前記第2開口に向けて混練しつつ押し出し、更に、前記第2開口から前記ホッパに設けられた第3開口に向けて混練しつつ押し出し、前記収容空間内の物質を前記第3開口から排出する
     ことを含む、電池用電極製造方法。
    Supplying a coated active material from a first opening provided in the hopper to the accommodation space in the hopper;
    Supplying an auxiliary material to the storage space from a second opening provided in the hopper,
    The substance in the storage space is kneaded and extruded from the first opening toward the second opening, further extruded while being kneaded from the second opening toward a third opening provided in the hopper, and A method for manufacturing an electrode for a battery, comprising: discharging a substance in the accommodation space from the third opening.
PCT/JP2023/013318 2022-03-30 2023-03-30 Battery electrode manufacturing device and battery electrode manufacturing method WO2023190939A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022056784A JP2023148643A (en) 2022-03-30 2022-03-30 Electrode manufacturing apparatus for battery and electrode manufacturing method for battery
JP2022-056784 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023190939A1 true WO2023190939A1 (en) 2023-10-05

Family

ID=88202915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013318 WO2023190939A1 (en) 2022-03-30 2023-03-30 Battery electrode manufacturing device and battery electrode manufacturing method

Country Status (2)

Country Link
JP (1) JP2023148643A (en)
WO (1) WO2023190939A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765816A (en) * 1993-06-15 1995-03-10 Fuji Photo Film Co Ltd Manufacture of sheet electrode and chemical battery manufactured thereby
JP2005519442A (en) * 2002-03-07 2005-06-30 アヴェスター リミティッド パートナーシップ Positive electrode film for alkali metal polymer battery and method for producing the same
JP2005222772A (en) * 2004-02-04 2005-08-18 Hitachi Maxell Ltd Manufacturing method of cathode coating composition for lithium ion secondary battery and lithium ion secondary battery
JP2013504846A (en) * 2009-09-09 2013-02-07 バスカップ Method for producing positive electrode material by extrusion molding in the presence of an aqueous solvent, positive electrode obtained by the method, and use thereof
JP2015146247A (en) * 2014-02-03 2015-08-13 日本ゼオン株式会社 Method for manufacturing electrode for lithium ion battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765816A (en) * 1993-06-15 1995-03-10 Fuji Photo Film Co Ltd Manufacture of sheet electrode and chemical battery manufactured thereby
JP2005519442A (en) * 2002-03-07 2005-06-30 アヴェスター リミティッド パートナーシップ Positive electrode film for alkali metal polymer battery and method for producing the same
JP2005222772A (en) * 2004-02-04 2005-08-18 Hitachi Maxell Ltd Manufacturing method of cathode coating composition for lithium ion secondary battery and lithium ion secondary battery
JP2013504846A (en) * 2009-09-09 2013-02-07 バスカップ Method for producing positive electrode material by extrusion molding in the presence of an aqueous solvent, positive electrode obtained by the method, and use thereof
JP2015146247A (en) * 2014-02-03 2015-08-13 日本ゼオン株式会社 Method for manufacturing electrode for lithium ion battery

Also Published As

Publication number Publication date
JP2023148643A (en) 2023-10-13

Similar Documents

Publication Publication Date Title
US20200335756A1 (en) Solid-state battery separators and methods of fabrication
KR102611365B1 (en) Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
CN100452502C (en) Non-aqueous solution lithium-ferrous disulfide primary cell
JP2013065560A (en) Paste-like masses for electrochemical elements, and layers and electrochemical elements obtained from the same
US20100304220A1 (en) Gel polymer li-ion battery and producing method thereof
CN106784628A (en) A kind of electrode comprising transfer type solid electrolyte thin layer and its preparation technology, application
CN105531855A (en) Apparatus for manufacturing power storage device, and method for manufacturing power storage device
KR20190039450A (en) Method for manufacturing battery
WO2023190939A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
CN106450333A (en) Lithium battery anode slurry and slurry mixing method thereof
WO2023171772A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023047702A (en) lithium ion battery
WO2022210966A1 (en) Battery electrode manufacturing device
JP2023148518A (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023062800A (en) Battery electrode manufacturing device and battery electrode manufacturing method
KR20210130176A (en) Composition for forming a thin film for an energy storage device electrode
JP2023132707A (en) Battery electrode manufacturing device and battery electrode manufacturing method
CN1949562A (en) Method for mfg. high power type lithium ion cell electrode set
JP2023128856A (en) Manufacturing device for battery electrode and manufacturing method for battery electrode
JP2023103563A (en) Battery electrode manufacturing device and battery electrode manufacturing method
WO2023100840A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023119212A (en) Battery electrode manufacturing device and battery electrode manufacturing method
WO2023190940A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023128854A (en) Manufacturing device for battery electrode and manufacturing method for battery electrode
JP2022157900A (en) Active material supply device, manufacturing apparatus for electrode for battery, and active material supply method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780947

Country of ref document: EP

Kind code of ref document: A1